JP3884607B2 - Dynamic pressure groove processing equipment - Google Patents

Dynamic pressure groove processing equipment Download PDF

Info

Publication number
JP3884607B2
JP3884607B2 JP2000143347A JP2000143347A JP3884607B2 JP 3884607 B2 JP3884607 B2 JP 3884607B2 JP 2000143347 A JP2000143347 A JP 2000143347A JP 2000143347 A JP2000143347 A JP 2000143347A JP 3884607 B2 JP3884607 B2 JP 3884607B2
Authority
JP
Japan
Prior art keywords
electrode
workpiece
dynamic pressure
circumferential
groove processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000143347A
Other languages
Japanese (ja)
Other versions
JP2001322034A (en
Inventor
義和 市山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec America Corp
Original Assignee
Nidec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Corp filed Critical Nidec Corp
Priority to JP2000143347A priority Critical patent/JP3884607B2/en
Publication of JP2001322034A publication Critical patent/JP2001322034A/en
Application granted granted Critical
Publication of JP3884607B2 publication Critical patent/JP3884607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Sliding-Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、スリーブの内周面やシャフト(軸体)の外周面等に動圧溝を形成する動圧溝加工装置に関する。
【0002】
【従来の技術】
従来、例えば、ハードディスク等の記録媒体を回転駆動させるためのモータ等の回転機械には、流体を利用した動圧軸受が用いられることがあり、この動圧軸受部に設けられるスリーブの内周面やシャフトの外周面には所定形状の動圧溝が形成されている。
【0003】
このような動圧溝を上記スリーブ等の軸受素材に形成する方法として、例えば、特開平10−86020号公報に開示されているような電解加工法が採用されることがある。
【0004】
この電解加工法は、所定形状の電極を有する金型と軸受素材の被加工面とを所定の間隙を介して対向配置し、その間隙に所定の電解液を流しながら、上記金型の電極と軸受素材の被加工面との間で通電させることにより、上記電極の形状に対応する溝(動圧溝)を軸受素材の被加工面に形成するというものである。なお、上記スリーブの内周面に動圧溝を形成する場合には、この内周面に対向する外周面を有しこの外周面に所定形状の電極が形成された金型が用いられ、シャフトの外周面に動圧溝を形成する場合には、この外周面に対向する内周面を有しこの内周面に所定形状の電極が形成された金型が用いられる。
【0005】
【発明が解決しようとする課題】
ところで、上記のように軸受素材を加工する場合に、この軸受素材と金型との間の間隙が全周にわたって一定でないと、通電量が上記電極及び軸受素材の各部位によって異なることになり、その結果、形成する動圧溝の深さや幅にばらつきが生じるという問題が発生する。
【0006】
本発明は、上記に鑑みてなされたもので、主として上記動圧軸受部を構成する動圧溝を軸受素材に形成する場合に、形成する動圧溝の深さや幅にばらつきが発生するのを防止することを目的とする。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、円周状周面に所定形状の電極が形成された金型の周面に被加工物の円周状周面を対向させ、上記電極と上記被加工物との隙間に電解液を満たした状態で、上記電極と上記被加工物との間で通電を行わせて上記被加工物の円周状周面に上記電極に対応する動圧溝を形成する動圧溝加工装置において、上記電極と上記被加工物との調芯を行う調芯機構部を備え、上記調芯機構部は、上記金型の一部に設けられ、上記電極と同心状に配置された円錐状のテーパ部と、同一径を有する少なくとも3個の球体と、上記各球体を上記テーパ部の側面と上記被加工物の円周状周面とに当接させ、且つ、上記テーパ部の側面と上記被加工物の円周状周面との間隙を周方向に等しくするべく、それぞれ周方向の所定位置に保持する保持部材と、を備え、上記テーパ部と上記被加工物との間には上記各球体が介されており、上記各球体は、電気絶縁性を示すものであることを特徴とする。
【0008】
この発明によれば、金型の一部に設けられた軸芯方向に向かう円錐状のテーパ部と、同一径を有する少なくとも3個の球体と、上記各球体を上記テーパ部の側面と上記被加工物の表面とに当接させるべく、それぞれ周方向の所定位置に保持する保持部材とを備える調芯機構部を設けたから、金型の円周状周面から上記被加工物の表面までの距離が等しくなり、被加工物の軸芯位置と電極の軸芯位置とが一致することになる。したがって、被加工物と金型とが全周にわたって一定の間隙を介して対向した状態で被加工物が加工されることになり、形成する溝の深さや幅にばらつきが発生するのを防止することができる。
【0010】
請求項に記載の発明は、請求項1に記載の溝加工装置において、上記調芯機構部は、金型の軸芯方向に少なくとも2個以上設けられていることを特徴とする。この発明によれば、より確実に被加工物の軸芯位置を金型の軸芯位置に一致させることができる。
【0011】
請求項に記載の発明は、請求項1又は2のいずれかに記載の溝加工装置において、上記金型は柱状体であり、上記電極は上記柱状体の外表面に形成されているものであることを特徴とする。この発明によれば、電極が柱状体とされた金型の外表面に形成するように構成されたものにおいて、上記第1又は第2発明の作用が得られる。
【0012】
請求項に記載の発明は、請求項1又は2のいずれかに記載の溝加工装置において、上記金型は円筒体であり、上記電極は上記円筒体の内表面に形成されているものであることを特徴とする。この発明によれば、電極が円筒体とされた金型の内表面に形成するように構成されたものにおいて、上記第1又は第2発明の作用が得られる。
【0013】
請求項に記載の発明は、請求項1〜4のいずれかに記載の動圧溝加工装置において、上記被加工物には、動圧溝が形成される一対の被加工面が軸芯方向に離れて設けられており、上記電極を一方の被加工面に対向させるとともに、上記テーパ部を他方の被加工面に対向させ、上記保持部材に保持された上記少なくとも3個の球体を上記テーパ部の側面と上記他方の被加工面とに当接させるように構成されていることを特徴とする。この発明によれば、被加工物に一対の被加工面が軸芯方向に離れて設けられている場合には、電極を一方の被加工面に対向させるとともに、上記テーパ部を他方の被加工面に対向させ、上記保持部材に保持された上記少なくとも3個の球体を上記テーパ部の側面と上記他方の被加工面とに当接させるようにすれば、上記一対の被加工面に動圧溝を加工することができる。
【0014】
その場合に、請求項に記載の発明のように、上記電極を上記一方の被加工面に対向させて溝加工を行う第1の工程と、上記第1の工程に対して反転状態で上記電極を上記他方の被加工面に対向させて溝加工を行う第2の工程とにより、上記一対の被加工面に対する溝加工を行うようにしてもよい。
【0015】
【発明の実施の形態】
本動圧溝加工装置1は、真鍮もしくはステンレス等からなるスリーブSを加工する電解加工機10と、この電解加工機10に供給する電解液Lを貯留する電解液供給タンク50と、この電解液供給タンク50から電解液Lを汲み上げて電解加工機10に供給する電解液供給ポンプ60と、電解加工機10から排出された電解液Lを一時的に貯留する電解液再生タンク70とを備える。上記電解液Lは、例えば、硝酸ナトリウムNaNO3を30重量%含有するものである。
【0016】
図1に示すように、電解加工機10は、固設された第1加工ユニット20と、この第1加工ユニット20の配設位置の上方に設けられた第2加工ユニット30と、この第2加工ユニット30を昇降駆動して第1加工ユニット20に対して近接離反させる駆動手段としてのエアシリンダ11と、第1、第2加工ユニット20,30及びエアシリンダ11を支持する固定台12とを有し、第2加工ユニット30が第1加工ユニット20に最も近接したときに、第1加工ユニット20上に載置された円筒状のスリーブSの軸芯位置と第1加工ユニット20に設けられた金型電極としての円柱状の嵌合部材の軸芯位置とを一致させ(以下、調芯という)て、スリーブSの内周面に、例えば深さ10ミクロンのへリングボーン状の動圧溝を形成する。本発明の動圧溝加工装置1は、円筒状のスリーブSの軸芯位置と円柱状の嵌合部材の軸芯位置とを調芯する機構に特徴がある。
【0017】
第1加工ユニット20は、電源80の負端子81と接続されている。また、第1加工ユニット20には、電解液供給タンク50に貯留された電解液Lが電解液供給ポンプ60により供給されるようになっている。なお、電解液供給ポンプ60により供給される電解液Lの一部は電解液供給タンク70に戻されるとともに、第1加工ユニット20から流出した電解液Lは、固形物除去フィルタ71を介して不要物が除去された状態で電解液再生タンク70に戻された後、フィルタ用ポンプ72によりこの電解液再生タンク70から汲み上げられフィルタ73を介して電解液供給タンク50に戻される。
【0018】
第2加工ユニット30は、電気伝導性を有する材質からなる円筒状の電極接続具31を有し、この電極接続具31はエアシリンダ11のロッド11a下端に取付部材301を介して取付けられている。電極接続具31は、FET(Field Effect Transistor)等のスイッチ素子SWを介して電源80の正端子82と接続されている。
【0019】
図2に示すように、電極接続具31の下端部には、中央部に孔を有する円盤状の第1プレート部材32が取付けられている。このプレート部材32は、電気伝導性を有する材質からなり、電極接続具31を電源80の正端子82に接続することで、第2加工ユニット30を下降させ電極接続具31をスリーブS上端面に当接させたときに、上記スリーブSが正極となるように構成されている。
【0020】
第1プレート部材32には、電解液Lを外部へ排出するための電解液排出路32aが設けられている。
【0021】
電極接続具31は、軸芯方向に延びる貫通孔31aを有し、この貫通孔31aの下側部分には、後述する調芯用押え部材33が遊嵌されているとともに、貫通孔31aの上側部分がネジ部31bとされ、このネジ部31bに調整ネジ34が螺合されている。調整ネジ34と調芯用押え部材33との間には、この調芯用押え部材33を下方へ付勢するためのスプリング35が介設されており、貫通孔31aに対する調整ネジ31bの相対位置を調整することで、調芯用押え部材33に作用する付勢力が調節されるようになっている。
【0022】
第1加工ユニット20は、固定台12に固設されたベース部材21と、このベース部材21の周囲に取付けられた円筒状のカバー部材22とを有し、このカバー部材22とベース部材21とにより凹部Hが形成されている。そして、この凹部Hに第1プレート部材32の電解液排出路32aからの電解液Lが排出されるようになっている。また、カバー部材22の適所には、電解液排出路22aが設けられており、この凹部Hに排出された電解液Lがこの電解液排出路22aを通って電解液再生タンク70に排出されるようになっている。その際、ベース部材21とカバー部材22との隙間から外部へ電解液Lが漏出するのを防止すべく、シール手段としてのOリング23が設けられている。
【0023】
ベース部材21は、その上面中央部分において上方に突出する突出部21aを有し、この突出部21aに設けられた取付孔21a’に後述する加工機構24が取付けられている。
【0024】
加工機構24は、上記取付孔21a’に嵌合固定される基部材25と、この基部材25の上面に設けられ、スリーブSに内嵌する上記金型電極としての円柱状の嵌合部材26とを有する。突出部21aの開口部分には、電気絶縁性の材質からなる基部カバー部材28が取付けられており、嵌合部材26の上部が、基部カバー部材28の中央部に設けられた孔28aを介して突出部21aの開口部から突出するようになっている。そして、スリーブSを加工する際には、この突出する上部にスリーブSを嵌合し仮保持した状態で、第1加工ユニット20の基部カバー部材28上にセットされることになる。
【0025】
ベース部材21には、突出部21aの底部からさらに奥側へ延び、突出部21aの取付孔21a’より小径の第1電解液供給路21bと、この供給路21bに略垂直に交差する第2電解液供給路21cとが設けられており、電解液供給タンク50から供給された電解液Lは、第2電解液供給路21cを通って第1電解液供給路21bに流入するようになっている。また、基部材25には、複数の貫通孔25aが設けられているとともに、基部材25の上面と基部カバー部材28の孔28aの内周面との間には所定の間隙Pが形成され、第1電解液供給路21bに流入した電解液Lは、上記貫通孔25a及び間隙Pを介して、嵌合部材26とスリーブSとの間隙に供給されるようになっている。
【0026】
電源80の負端子81は、第1加工ユニット20の嵌合部材26に接続されており、これにより、嵌合部材26は負極となる。また、図3に示すように、スリーブSに嵌合する嵌合部材26の上部は、周面にへリングボーン状の電極が形成された電極形成部26aとされており、この電極形成部26aとスリーブSの被加工面とが電解液Lを介して対向するようになっている。これにより、電源80がONされると、電極形成部26aとスリーブSの被加工面との間で通電することになる。なお、本実施形態においては、上記電源80は、10(A)の電流を電圧10(V)で通電させるとともに、この通電時間は、上記スイッチ素子SWにより1回の加工につき1〜3秒間に設定されている。なお、上記電流値、電圧値及び通電時間は、上記数値に限らず適宜変更可能である。
【0027】
次に、本発明の特徴部分である調芯機構について説明する。
【0028】
調芯用押え部材33の下端部は、上側部分に比して小さい径とされているとともに、図4に示すように、横断面視で120度間隔で切欠き部33aが設けられている。また、この調芯用押え部材33には後述のボール保持部材36が嵌合固定され、このボール保持部材36と上記調芯用押え部材33との間に、電気絶縁性を有する材質で構成された球状の調芯用ボール部材37が複数配設されている。
【0029】
ボール保持部材36は、後述の調芯部材27が挿通する挿通孔36aと、調芯用ボール部材37を径方向に逸脱しない程度に移動可能とする複数のボール保持穴部36bと、各ボール保持穴部36b間に立設され、上記調芯用押え部材33の切欠き部33aに嵌入する壁部36cとを有する。
【0030】
嵌合部材26の上端面には、テーパ面27aを有するペン先形状の調芯部材27が取付けられている。
【0031】
次に、本発明の作用について説明する。
【0032】
上記電極接続具31が下降すると、調芯部材27がボール保持部材36の挿通孔36aに嵌合し、図5の鎖線で示すように、上記調芯用ボール部材37は、調芯部材27のテーパ面27aに当接する。そして、第2加工ユニット30の降下に伴って、そのテーパ面27aにより調芯用ボール部材37が径方向外側に押され、スリーブSの内周面にも当接することになる。その後、その状態からさらに所定の長さだけ第2加工ユニット30が降下することにより、調芯用ボール部材37が、上記テーパ面27a及びスリーブSの内周面に所定の押付力で押し付けられて、スリーブSと嵌合部材26とが固定されることになる。
【0033】
これにより、図6に示すように、調芯部材27の軸芯位置Gから各調芯用ボール部材37の中芯O1〜O3までの距離R1〜R3がすべて等しくなるから、スリーブSの軸芯位置と嵌合部材26の軸芯位置とが一致することになる。
【0034】
以上の構成により、スリーブSの内周面と嵌合部材26の電極形成部26aとが、どの部位においても同一の間隙で対向した状態で動圧溝形成処理を行うことができる。その結果、動圧溝の深さや幅にばらつきが発生するのを防止することができる。また、スリーブSをセットする際には、嵌合部材26にスリーブSを嵌めるだけであり、また、加工されたスリーブSを取り出す際には、第2加工ユニットを元の上昇位置に戻すだけでよいから、スリーブSの着脱が容易である。
【0035】
また、調芯用ボール部材37を電気絶縁性を有する材質で構成したから、調芯部材27とスリーブSの内周面との間で調芯用ボール部材37を介して通電してしまうのを防止することができる。
【0036】
なお、上記実施形態においては、テーパ面が嵌合部材26に1箇所設けられているが、図7に示すように、スリーブSの内周面の2つの部位に動圧溝を形成する場合には、嵌合部材26に2つのテーパ面(第1、第2テーパ面26A,26B)を設け、テーパ面26AとスリーブSの内周面とに調芯用ボール部材37’を、テーパ面26BとスリーブSの内周面とに調芯用ボール部材37”をそれぞれ押し付けて調芯を行うようにすれば、被加工面Sa,Sbが離間していても、どちらの部分においても一定の間隙で電極形成部26a’,26a”に対向配置させることができる。また、上記第1実施形態のように被加工面が1箇所であっても、このように軸芯方向に2箇所の調芯機構を設けることで、さらに高い精度で両軸芯を一致させることができる。
【0037】
また、シャフトBの周面に所定の動圧溝を形成する場合には、図8に示すように、円筒状の電極50の内部にシャフトBを嵌挿させ、シャフトBと電極50との間で通電させることになるが、この場合、電極50の内周面にテーパ面50aを設け、上記第1実施形態と同様に、シャフトBの外周面と上記電極50のテーパ面50aに調芯用ボール部材60を所定の押付力で押し付けるようにすれば、シャフトBの軸芯位置と電極50の軸芯位置とを一致させることができる。
【0038】
さらに、本発明のようにスリーブSやシャフトB等の円周面に動圧溝を形成する場合に限らず、被加工物の被加工面が例えば角周面のように、軸芯位置から見て均一な周面を有する被加工物であれば本発明は採用可能である。また、形成する溝は上記のような動圧溝に限らず、他種の溝であってもよい。
【0039】
また、上記実施形態においては、各調芯用ボール部材60を横断面視で120度間隔で配設しているが、これに限らず、図6に示すように、軸芯Gと各調芯用ボール部材60の中芯O1〜O3とで構成される中芯角θ1〜θ3が、いずれも180°超えない角度となるように調芯用ボール部材60を配設すればよい。
【0040】
【発明の効果】
請求項1に記載の発明によれば、金型の円周状周面から上記被加工物の表面までの距離が等しくなるように、被加工物の軸芯位置と電極の軸芯位置とを一致させたから、被加工物と金型とが全周にわたって一定の間隙を介して対向した状態で被加工物を加工することができ、形成する溝の深さや幅にばらつきが発生するのを防止することができる。
【0041】
請求項2に記載の発明によれば、テーパ面と被加工物との間に球部材を介設してもこの部分では通電しないから、テーパ面と被加工物との間に無駄な通電が発生するのを回避することができる。
【0042】
請求項3に記載の発明によれば、より確実に被加工物の軸芯位置を金型の軸芯位置に一致させることができる。
【0043】
請求項4に記載の発明によれば、電極が柱状体とされた金型の外表面に形成するように構成されたものにおいて、上記第1〜第3発明の作用が得られる。
【0044】
請求項5に記載の発明によれば、電極が円筒体とされた金型の内表面に形成するように構成されたものにおいて、上記第1〜第3発明の作用が得られる。
【0045】
請求項6に記載の発明によれば、被加工物に一対の被加工面が軸芯方向に離れて設けられている場合には、電極を一方の被加工面に対向させるとともに、上記テーパ部を他方の被加工面に対向させ、上記保持部材に保持された上記少なくとも3個の球体を上記テーパ部の側面と上記他方の被加工面とに当接させるようにするようにしたから、上記一対の被加工面に動圧溝を加工することができる。
【0046】
その場合に、請求項7に記載の発明のように、上記電極を上記一方の被加工面に対向させて溝加工を行う第1の工程と、上記第1の工程に対して反転状態で上記電極を上記他方の被加工面に対向させて溝加工を行う第2の工程を行うことで、上記一対の被加工面に動圧溝を加工することができる。
【図面の簡単な説明】
【図1】 本発明に係る溝加工装置の一実施形態の全体構成図である。
【図2】 第1、第2加工ユニットの拡大断面図である。
【図3】 調芯部分の拡大断面図である。
【図4】 調芯部分の構造を示す説明図である。
【図5】 本発明の作用を示す説明図である。
【図6】 同じく本発明の作用を示す説明図である。
【図7】 調芯部分を2つ設けたときの断面図である。
【図8】 本発明の他の実施形態を示す調芯部分の概略図である。
【符号の説明】
1 溝加工装置
20 第1加工ユニット
26 嵌合部材
26a 電極形成部
27 調芯部材
27a テーパ面
30 第2加工ユニット
31 電極接続具
33 調芯用押え部材
33a 切欠き部
36 ボール保持部材
36a 挿通孔
36b ボール保持穴部
36c 壁部
37 調芯用ボール部材
S スリーブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a dynamic pressure groove processing apparatus for forming dynamic pressure grooves on an inner peripheral surface of a sleeve, an outer peripheral surface of a shaft (shaft body), and the like.
[0002]
[Prior art]
Conventionally, for example, a rotary bearing such as a motor for rotationally driving a recording medium such as a hard disk, a dynamic pressure bearing using a fluid is sometimes used, and an inner peripheral surface of a sleeve provided in the dynamic pressure bearing portion In addition, a dynamic pressure groove having a predetermined shape is formed on the outer peripheral surface of the shaft.
[0003]
As a method of forming such a dynamic pressure groove in a bearing material such as the sleeve, for example, an electrolytic processing method as disclosed in JP-A-10-86020 may be employed.
[0004]
In this electrolytic processing method, a mold having an electrode having a predetermined shape and a surface to be processed of a bearing material are arranged to face each other with a predetermined gap therebetween, and a predetermined electrolytic solution is allowed to flow through the gap. By energizing between the work surface of the bearing material, a groove (dynamic pressure groove) corresponding to the shape of the electrode is formed on the work surface of the bearing material. When the dynamic pressure groove is formed on the inner peripheral surface of the sleeve, a die having an outer peripheral surface facing the inner peripheral surface and having an electrode of a predetermined shape formed on the outer peripheral surface is used. When a dynamic pressure groove is formed on the outer peripheral surface, a mold having an inner peripheral surface facing the outer peripheral surface and having electrodes of a predetermined shape formed on the inner peripheral surface is used.
[0005]
[Problems to be solved by the invention]
By the way, when machining the bearing material as described above, if the gap between the bearing material and the mold is not constant over the entire circumference, the energization amount will vary depending on each part of the electrode and the bearing material, As a result, there arises a problem that variation occurs in the depth and width of the dynamic pressure groove to be formed.
[0006]
The present invention has been made in view of the above, and when the dynamic pressure grooves that mainly constitute the dynamic pressure bearing portion are formed in the bearing material, variations in the depth and width of the dynamic pressure grooves to be formed occur. The purpose is to prevent.
[0007]
[Means for Solving the Problems]
According to the first aspect of the present invention, the circumferential circumferential surface of the workpiece is opposed to the circumferential surface of a mold in which electrodes having a predetermined shape are formed on the circumferential circumferential surface, and the electrode, the workpiece, In a state where the gap is filled with the electrolyte solution, a current is applied between the electrode and the workpiece, and a dynamic pressure groove corresponding to the electrode is formed on the circumferential surface of the workpiece. The pressure groove processing apparatus includes an alignment mechanism portion that aligns the electrode and the workpiece, and the alignment mechanism portion is provided in a part of the mold and is arranged concentrically with the electrode. A conical tapered portion, at least three spheres having the same diameter, each sphere being brought into contact with a side surface of the tapered portion and a circumferential circumferential surface of the workpiece, and the taper Holding in a predetermined position in the circumferential direction so that the gap between the side surface of the part and the circumferential circumferential surface of the workpiece is equal in the circumferential direction. Comprising a timber, a, it is between the tapered portion and the workpiece are each sphere interposed, each sphere is characterized in that it is intended to indicate an electrical insulation.
[0008]
According to this invention, the conical taper portion provided in a part of the mold and extending in the axial direction, at least three spheres having the same diameter, and each sphere is connected to the side surface of the taper portion and the cover. In order to contact the surface of the workpiece, a centering mechanism portion provided with a holding member that holds each of the workpiece in a predetermined position in the circumferential direction is provided, so that from the circumferential circumferential surface of the mold to the surface of the workpiece The distance becomes equal, and the axial center position of the workpiece matches the axial center position of the electrode. Therefore, the workpiece is processed in a state where the workpiece and the mold face each other with a certain gap over the entire circumference, and variation in the depth and width of the groove to be formed is prevented. be able to.
[0010]
According to a second aspect of the invention, the groove processing apparatus according to claim 1, said alignment mechanism is characterized in that in the axial direction of the mold are provided at least two. According to the present invention, the axial center position of the workpiece can be more reliably matched with the axial center position of the mold.
[0011]
According to a third aspect of the present invention, in the groove processing apparatus according to the first or second aspect , the mold is a columnar body, and the electrode is formed on an outer surface of the columnar body. It is characterized by being. According to the present invention, in the structure in which the electrode is formed on the outer surface of the mold having a columnar body, the effect of the first or second invention can be obtained.
[0012]
According to a fourth aspect of the present invention, in the grooving apparatus according to the first or second aspect , the mold is a cylindrical body, and the electrode is formed on an inner surface of the cylindrical body. It is characterized by being. According to the present invention, in the structure in which the electrode is formed on the inner surface of the cylindrical mold, the effect of the first or second invention can be obtained.
[0013]
According to a fifth aspect of the present invention, in the dynamic pressure groove machining apparatus according to any one of the first to fourth aspects, the workpiece has a pair of work surfaces on which the dynamic pressure grooves are formed in an axial direction. The at least three spheres held by the holding member with the tapered portion facing the other processing surface and the taper portion facing the other processing surface. It is comprised so that it may contact | abut to the side surface of a part, and the said other to-be-processed surface. According to the present invention, when the workpiece is provided with a pair of workpiece surfaces that are separated from each other in the axial direction, the electrode is opposed to one of the workpiece surfaces and the tapered portion is disposed on the other workpiece. If the at least three spheres held on the holding member are brought into contact with the side surface of the tapered portion and the other processed surface, the dynamic pressure is applied to the pair of processed surfaces. Grooves can be processed.
[0014]
In that case, as in the invention described in claim 6 , the first step of performing grooving with the electrode opposed to the one surface to be processed, and the inversion state with respect to the first step You may make it perform the groove process with respect to a pair of said to-be-processed surface by the 2nd process of making an electrode oppose the said other to-be-processed surface, and performing a groove process.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
The dynamic pressure groove processing apparatus 1 includes an electrolytic processing machine 10 that processes a sleeve S made of brass or stainless steel, an electrolytic solution supply tank 50 that stores an electrolytic solution L to be supplied to the electrolytic processing machine 10, and the electrolytic solution. An electrolytic solution supply pump 60 that pumps the electrolytic solution L from the supply tank 50 and supplies the electrolytic solution L to the electrolytic processing machine 10 and an electrolytic solution regeneration tank 70 that temporarily stores the electrolytic solution L discharged from the electrolytic processing machine 10 are provided. The electrolyte L contains, for example, 30% by weight of sodium nitrate NaNO 3 .
[0016]
As shown in FIG. 1, the electrolytic processing machine 10 includes a fixed first processing unit 20, a second processing unit 30 provided above the position where the first processing unit 20 is disposed, and the second processing unit 20. An air cylinder 11 as drive means for moving the machining unit 30 up and down to approach and move away from the first machining unit 20, and a fixed base 12 that supports the first and second machining units 20, 30 and the air cylinder 11. And when the second processing unit 30 is closest to the first processing unit 20, the axial position of the cylindrical sleeve S placed on the first processing unit 20 and the first processing unit 20 are provided. For example, a herringbone-like dynamic pressure having a depth of 10 microns is formed on the inner peripheral surface of the sleeve S by matching the axial center position of the cylindrical fitting member as the mold electrode (hereinafter referred to as alignment). Grooves are formed. The dynamic pressure groove processing apparatus 1 of the present invention is characterized by a mechanism for aligning the axial center position of the cylindrical sleeve S and the axial center position of the columnar fitting member.
[0017]
The first processing unit 20 is connected to the negative terminal 81 of the power supply 80. In addition, the first processing unit 20 is supplied with the electrolyte L stored in the electrolyte supply tank 50 by the electrolyte supply pump 60. A part of the electrolytic solution L supplied by the electrolytic solution supply pump 60 is returned to the electrolytic solution supply tank 70, and the electrolytic solution L flowing out from the first processing unit 20 is not necessary via the solid matter removing filter 71. After being returned to the electrolyte regeneration tank 70 in a state where the substances are removed, it is pumped up from the electrolyte regeneration tank 70 by the filter pump 72 and returned to the electrolyte supply tank 50 through the filter 73.
[0018]
The second processing unit 30 has a cylindrical electrode connector 31 made of a material having electrical conductivity, and this electrode connector 31 is attached to the lower end of the rod 11 a of the air cylinder 11 via an attachment member 301. . The electrode connector 31 is connected to the positive terminal 82 of the power supply 80 via a switch element SW such as an FET (Field Effect Transistor).
[0019]
As shown in FIG. 2, a disk-shaped first plate member 32 having a hole in the center is attached to the lower end of the electrode connector 31. The plate member 32 is made of a material having electrical conductivity. By connecting the electrode connector 31 to the positive terminal 82 of the power source 80, the second processing unit 30 is lowered to place the electrode connector 31 on the upper end surface of the sleeve S. The sleeve S is configured to be a positive electrode when brought into contact.
[0020]
The first plate member 32 is provided with an electrolyte discharge path 32a for discharging the electrolyte L to the outside.
[0021]
The electrode connector 31 has a through hole 31a extending in the axial direction, and an alignment pressing member 33 (described later) is loosely fitted to the lower portion of the through hole 31a, and the upper side of the through hole 31a. The portion is a screw portion 31b, and an adjustment screw 34 is screwed into the screw portion 31b. A spring 35 is interposed between the adjustment screw 34 and the alignment pressing member 33 to bias the alignment pressing member 33 downward, and the relative position of the adjustment screw 31b with respect to the through hole 31a. By adjusting the urging force, the urging force acting on the alignment pressing member 33 is adjusted.
[0022]
The first processing unit 20 includes a base member 21 fixed to the fixed base 12 and a cylindrical cover member 22 attached around the base member 21, and the cover member 22, the base member 21, Thus, a recess H is formed. Then, the electrolytic solution L from the electrolytic solution discharge path 32a of the first plate member 32 is discharged into the recess H. Further, an electrolyte solution discharge path 22a is provided at an appropriate position of the cover member 22, and the electrolyte solution L discharged to the concave portion H is discharged to the electrolyte regeneration tank 70 through the electrolyte solution discharge path 22a. It is like that. At this time, an O-ring 23 as a sealing means is provided to prevent the electrolyte L from leaking outside through the gap between the base member 21 and the cover member 22.
[0023]
The base member 21 has a protruding portion 21a that protrudes upward at the center portion of the upper surface, and a processing mechanism 24 described later is attached to an attachment hole 21a ′ provided in the protruding portion 21a.
[0024]
The processing mechanism 24 includes a base member 25 that is fitted and fixed in the mounting hole 21a ′, and a columnar fitting member 26 that is provided on the upper surface of the base member 25 and that is fitted in the sleeve S as the mold electrode. And have. A base cover member 28 made of an electrically insulating material is attached to the opening portion of the protruding portion 21 a, and the upper portion of the fitting member 26 is inserted through a hole 28 a provided in the central portion of the base cover member 28. It protrudes from the opening part of the protrusion part 21a. When the sleeve S is processed, the sleeve S is fitted onto the protruding upper portion and temporarily held, and is set on the base cover member 28 of the first processing unit 20.
[0025]
The base member 21 has a first electrolyte solution supply path 21b that extends further from the bottom of the protrusion 21a and has a smaller diameter than the attachment hole 21a ′ of the protrusion 21a, and a second that intersects the supply path 21b substantially perpendicularly. The electrolyte solution supply path 21c is provided, and the electrolyte solution L supplied from the electrolyte solution supply tank 50 flows into the first electrolyte solution supply path 21b through the second electrolyte solution supply path 21c. Yes. The base member 25 is provided with a plurality of through holes 25a, and a predetermined gap P is formed between the upper surface of the base member 25 and the inner peripheral surface of the hole 28a of the base cover member 28 . The electrolyte L flowing into the first electrolyte supply path 21b is supplied to the gap between the fitting member 26 and the sleeve S through the through hole 25a and the gap P.
[0026]
The negative terminal 81 of the power source 80 is connected to the fitting member 26 of the first processing unit 20, whereby the fitting member 26 becomes a negative electrode. Further, as shown in FIG. 3, the upper portion of the fitting member 26 that fits into the sleeve S is an electrode forming portion 26a in which a herringbone electrode is formed on the peripheral surface, and this electrode forming portion 26a. And the work surface of the sleeve S are opposed to each other with the electrolytic solution L interposed therebetween. As a result, when the power supply 80 is turned on, current is supplied between the electrode forming portion 26a and the work surface of the sleeve S. In the present embodiment, the power supply 80 energizes a current of 10 (A) at a voltage of 10 (V), and this energization time is 1 to 3 seconds per process by the switch element SW. Is set. The current value, voltage value, and energization time are not limited to the above numerical values and can be changed as appropriate.
[0027]
Next, the alignment mechanism which is a characteristic part of the present invention will be described.
[0028]
The lower end portion of the alignment pressing member 33 has a diameter smaller than that of the upper portion, and as shown in FIG. 4, notched portions 33a are provided at intervals of 120 degrees in a cross sectional view. Further, a ball holding member 36 to be described later is fitted and fixed to the centering pressing member 33, and the ball holding member 36 and the centering pressing member 33 are made of a material having electrical insulation. A plurality of spherical alignment ball members 37 are disposed.
[0029]
The ball holding member 36 includes an insertion hole 36a through which an alignment member 27 (to be described later) is inserted, a plurality of ball holding holes 36b that allow the alignment ball member 37 to move within a radial direction, and each ball holding It has a wall part 36c which is erected between the hole parts 36b and fits into the notch part 33a of the alignment pressing member 33.
[0030]
A nib-shaped alignment member 27 having a tapered surface 27 a is attached to the upper end surface of the fitting member 26.
[0031]
Next, the operation of the present invention will be described.
[0032]
When the electrode connector 31 is lowered, the alignment member 27 is fitted into the insertion hole 36a of the ball holding member 36, and the alignment ball member 37 is connected to the alignment member 27 as shown by a chain line in FIG. It contacts the tapered surface 27a. As the second machining unit 30 is lowered, the alignment ball member 37 is pushed radially outward by the taper surface 27 a and also comes into contact with the inner peripheral surface of the sleeve S. Thereafter, when the second processing unit 30 is further lowered from the state by a predetermined length, the alignment ball member 37 is pressed against the tapered surface 27a and the inner peripheral surface of the sleeve S with a predetermined pressing force. The sleeve S and the fitting member 26 are fixed.
[0033]
As a result, as shown in FIG. 6, since the distances R 1 to R 3 from the axial center position G of the alignment member 27 to the center O 1 to O 3 of the alignment ball members 37 are all equal, The axial center position of S and the axial center position of the fitting member 26 coincide.
[0034]
With the above configuration, the dynamic pressure groove forming process can be performed with the inner peripheral surface of the sleeve S and the electrode forming portion 26a of the fitting member 26 facing each other at the same gap. As a result, it is possible to prevent variations in the depth and width of the dynamic pressure grooves. Further, when setting the sleeve S, it is only necessary to fit the sleeve S into the fitting member 26, and when taking out the processed sleeve S, it is only necessary to return the second processing unit to the original raised position. Since it is good, the sleeve S can be easily attached and detached.
[0035]
In addition, since the alignment ball member 37 is made of a material having electrical insulation, it is energized between the alignment member 27 and the inner peripheral surface of the sleeve S via the alignment ball member 37. Can be prevented.
[0036]
In the above-described embodiment, the tapered surface is provided at one place on the fitting member 26. However, as shown in FIG. 7, when the dynamic pressure grooves are formed at two portions on the inner peripheral surface of the sleeve S. Is provided with two tapered surfaces (first and second tapered surfaces 26A, 26B) on the fitting member 26, an alignment ball member 37 'is provided on the tapered surface 26A and the inner peripheral surface of the sleeve S, and the tapered surface 26B. If the centering ball member 37 "is pressed against the inner peripheral surface of the sleeve S and the centering is performed, the surface to be processed S a , S b will be constant in either part even if they are separated from each other The electrode forming portions 26a ′ and 26a ″ can be arranged to face each other with a gap of. Moreover, even if there is only one surface to be processed as in the first embodiment, by providing two alignment mechanisms in the axial direction in this way, both axial centers can be matched with higher accuracy. Can do.
[0037]
When a predetermined dynamic pressure groove is formed on the peripheral surface of the shaft B, as shown in FIG. 8, the shaft B is fitted into the cylindrical electrode 50, and the shaft B and the electrode 50 are interposed. In this case, a tapered surface 50a is provided on the inner peripheral surface of the electrode 50, and the outer peripheral surface of the shaft B and the tapered surface 50a of the electrode 50 are used for alignment as in the first embodiment. If the ball member 60 is pressed with a predetermined pressing force, the axial center position of the shaft B and the axial center position of the electrode 50 can be matched.
[0038]
Furthermore, the present invention is not limited to the case where the dynamic pressure grooves are formed on the circumferential surfaces of the sleeve S and the shaft B as in the present invention. The present invention can be adopted as long as the workpiece has a uniform peripheral surface. Further, the grooves to be formed are not limited to the dynamic pressure grooves as described above, but may be other types of grooves.
[0039]
In the above embodiment, the alignment ball members 60 are arranged at intervals of 120 degrees in a cross-sectional view. However, the present invention is not limited to this, and as shown in FIG. interliner O 1 ~ O 3 and in the core angle theta 1 through? 3 composed of use ball member 60 may be disposed in alignment ball member 60 as both a 180 ° not exceeding an angle .
[0040]
【The invention's effect】
According to the first aspect of the present invention, the axial position of the workpiece and the axial position of the electrode are set such that the distance from the circumferential circumferential surface of the mold to the surface of the workpiece is equal. Since they match, the workpiece can be processed with the workpiece and the mold facing each other with a certain gap over the entire circumference, preventing variations in the depth and width of the grooves to be formed. can do.
[0041]
According to the second aspect of the present invention, even if a ball member is interposed between the tapered surface and the work piece, no current is passed through this portion. It can be avoided.
[0042]
According to the third aspect of the present invention, the axial center position of the workpiece can be more reliably matched with the axial center position of the mold.
[0043]
According to the fourth aspect of the present invention, in the configuration in which the electrode is formed on the outer surface of the columnar body, the effects of the first to third aspects of the invention can be obtained.
[0044]
According to the fifth aspect of the present invention, in the structure in which the electrode is formed on the inner surface of the cylindrical mold, the effects of the first to third aspects of the invention can be obtained.
[0045]
According to the invention described in claim 6, when the workpiece is provided with a pair of workpiece surfaces separated in the axial direction, the electrode is opposed to one of the workpiece surfaces and the tapered portion is provided. Is opposed to the other processed surface, and the at least three spheres held by the holding member are brought into contact with the side surface of the tapered portion and the other processed surface. The dynamic pressure grooves can be machined on the pair of work surfaces.
[0046]
In that case, as in the invention described in claim 7, the first step of performing groove processing with the electrode facing the one surface to be processed, and the inversion state with respect to the first step A dynamic pressure groove can be processed in the pair of processed surfaces by performing the second step of performing the groove processing with the electrode facing the other processed surface.
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of an embodiment of a groove processing apparatus according to the present invention.
FIG. 2 is an enlarged sectional view of first and second processing units.
FIG. 3 is an enlarged cross-sectional view of an alignment portion.
FIG. 4 is an explanatory view showing a structure of an alignment portion.
FIG. 5 is an explanatory diagram showing the operation of the present invention.
FIG. 6 is an explanatory view showing the operation of the present invention.
FIG. 7 is a cross-sectional view when two alignment portions are provided.
FIG. 8 is a schematic view of an alignment portion showing another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Groove processing apparatus 20 1st process unit 26 Fitting member 26a Electrode formation part 27 Alignment member 27a Tapered surface 30 2nd process unit 31 Electrode connection tool 33 Alignment pressing member 33a Notch part 36 Ball holding member 36a Insertion hole 36b Ball holding hole portion 36c Wall portion 37 Ball member S for alignment S sleeve

Claims (6)

円周状周面に所定形状の電極が形成された金型の周面に被加工物の円周状周面を対向させ、上記電極と上記被加工物との隙間に電解液を満たした状態で、上記電極と上記被加工物との間で通電を行わせて上記被加工物の円周状周面に上記電極に対応する動圧溝を形成する動圧溝加工装置において、上記電極と上記被加工物との調芯を行う調芯機構部を備え、上記調芯機構部は、上記金型の一部に設けられ、上記電極と同心状に配置された円錐状のテーパ部と、同一径を有する少なくとも3個の球体と、上記各球体を上記テーパ部の側面と上記被加工物の円周状周面とに当接させ、且つ、上記テーパ部の側面と上記被加工物の円周状周面との間隙を周方向に等しくするべく、それぞれ周方向の所定位置に保持する保持部材と、を備え、上記テーパ部と上記被加工物との間には上記各球体が介されており、上記各球体は、電気絶縁性を示すものであることを特徴とする動圧溝加工装置。A state in which the circumferential circumferential surface of the workpiece is opposed to the circumferential surface of a mold having electrodes of a predetermined shape formed on the circumferential circumferential surface, and a gap between the electrode and the workpiece is filled with an electrolytic solution In the dynamic pressure groove processing apparatus for forming a dynamic pressure groove corresponding to the electrode on a circumferential circumferential surface of the workpiece by energizing between the electrode and the workpiece, A centering mechanism that performs centering with the workpiece, and the centering mechanism is provided in a part of the mold, and a conical taper disposed concentrically with the electrode; At least three spheres having the same diameter, and each sphere is brought into contact with the side surface of the tapered portion and the circumferential circumferential surface of the workpiece, and the side surface of the tapered portion and the workpiece A holding member for holding each circumferential circumferential surface at a predetermined position in the circumferential direction in order to make the gap with the circumferential circumferential surface equal to the circumferential direction. Between the parts and the workpiece are each sphere interposed, each sphere dynamic pressure groove processing apparatus is characterized in that shows the electrical insulating properties. 上記調芯機構部は、上記金型の軸芯方向に少なくとも2個設けられていることを特徴とする請求項記載の動圧溝加工装置。It said alignment mechanism includes dynamic pressure groove processing apparatus according to claim 1, wherein the provided at least two in the axial direction of the mold. 上記金型は柱状体であり、上記電極は上記柱状体の外表面に形成されているものであることを特徴とする請求項1又は2のいずれかに記載の動圧溝加工装置。It said mold is a columnar body, the electrode is dynamic pressure groove processing apparatus according to claim 1 or 2, characterized in that formed on the outer surface of the columnar body. 上記金型は円筒体であり、上記電極は上記円筒体の内表面に形成されているものであることを特徴とする請求項1又は2のいずれかに記載の動圧溝加工装置。It said mold has a cylindrical body, the electrode is dynamic pressure groove processing apparatus according to claim 1 or 2, characterized in that formed on the inner surface of the cylindrical body. 上記被加工物には、動圧溝が形成される一対の被加工面が軸芯方向に離れて設けられており、上記電極を一方の被加工面に対向させるとともに、上記テーパ部を他方の被加工面に対向させ、上記保持部材に保持された上記少なくとも3個の球体を上記テーパ部の側面と上記他方の被加工面とに当接させるように構成されていることを特徴とする請求項1〜のいずれかに記載の動圧溝加工装置。The workpiece is provided with a pair of machining surfaces in which a dynamic pressure groove is formed so as to be separated from each other in the axial direction, the electrode is opposed to one machining surface, and the tapered portion is arranged on the other workpiece. The structure is characterized in that the at least three spheres held by the holding member are brought into contact with a side surface of the tapered portion and the other processed surface so as to face the processing surface. Item 5. The dynamic pressure groove processing apparatus according to any one of Items 1 to 4 . 上記電極を上記一方の被加工面に対向させて溝加工を行う第1の工程と、上記第1の工程に対して反転状態で上記電極を上記他方の被加工面に対向させて溝加工を行う第2の工程とにより、上記一対の被加工面に対する溝加工を行うように構成されていることを特徴とする請求項に記載の動圧溝加工装置。A first step of performing groove processing with the electrode opposed to the one processing surface; and a groove processing with the electrode opposed to the other processing surface in an inverted state with respect to the first step. 6. The hydrodynamic groove processing apparatus according to claim 5 , wherein the second pressure step is configured to perform groove processing on the pair of processing surfaces.
JP2000143347A 2000-05-16 2000-05-16 Dynamic pressure groove processing equipment Expired - Fee Related JP3884607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000143347A JP3884607B2 (en) 2000-05-16 2000-05-16 Dynamic pressure groove processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000143347A JP3884607B2 (en) 2000-05-16 2000-05-16 Dynamic pressure groove processing equipment

Publications (2)

Publication Number Publication Date
JP2001322034A JP2001322034A (en) 2001-11-20
JP3884607B2 true JP3884607B2 (en) 2007-02-21

Family

ID=18650184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000143347A Expired - Fee Related JP3884607B2 (en) 2000-05-16 2000-05-16 Dynamic pressure groove processing equipment

Country Status (1)

Country Link
JP (1) JP3884607B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006142421A (en) * 2004-11-18 2006-06-08 Nippon Densan Corp Electrochemical machining tool for dynamic pressure groove, method for manufacturing electrochemical machining tool, electrochemical machining device, and electrochemical machining method
KR101309349B1 (en) 2009-09-03 2013-09-17 삼성전기주식회사 Electrode for electrolytic machining, electrolytic machining device and method using the same

Also Published As

Publication number Publication date
JP2001322034A (en) 2001-11-20

Similar Documents

Publication Publication Date Title
US6638414B2 (en) Electrode design for electrochemical machining of grooves
US20070246372A1 (en) Electrochemical Machining Tool and Method for Machining a Product Using the Same
US20180111210A1 (en) Apparatus and method for electrically machining
JP3884607B2 (en) Dynamic pressure groove processing equipment
KR100782934B1 (en) Eletrolytic machining apparatus and method
KR101053371B1 (en) ECM processing equipment
US6447376B1 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
US20040213489A1 (en) Hydrodynamic bearing, method of manufacturing the same, method of manufacturing shaft member for hydrodynamic bearing, spindle motor, and recording disk driving apparatus
JP2004340368A5 (en)
US6767438B2 (en) Dual voltage conical ECM electrode
KR100312831B1 (en) Micro electrochemical micromachining device for structure micro groove
JP2003097543A (en) Dynamic pressure bearing and its manufacturing method
CN100421876C (en) Apparatus for mounting a hollow work piece
JP2006142421A (en) Electrochemical machining tool for dynamic pressure groove, method for manufacturing electrochemical machining tool, electrochemical machining device, and electrochemical machining method
JP2004025444A (en) Groove machining device
US7160431B2 (en) Method and device for forming a dynamic pressure-generating groove in a fluid dynamic pressure bearing
CN101293323A (en) Machine work clamping apparatus for processing holes of acceptor in electrohydraulic servo valve
JP2002046023A5 (en)
TWI487595B (en) Combined electrolytic-abrasive polishing tool
JPH10180545A (en) Electrochemical machining method and device for dynamic pressure groove in dynamic pressure bearing
KR20100048221A (en) Processing apparatus for electro-chemical machining
JPH0512496Y2 (en)
JPH0512495Y2 (en)
KR100536891B1 (en) center setting device of ball or valve body
JP2003039250A (en) Method of electro-chemical machining, and method for manufacturing hydrodynamic bearing apparatus, and hydrodynamic bearing apparatus manufactured by the manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees