JP3884526B2 - Mica-based composite material and method for producing the same - Google Patents

Mica-based composite material and method for producing the same Download PDF

Info

Publication number
JP3884526B2
JP3884526B2 JP14347497A JP14347497A JP3884526B2 JP 3884526 B2 JP3884526 B2 JP 3884526B2 JP 14347497 A JP14347497 A JP 14347497A JP 14347497 A JP14347497 A JP 14347497A JP 3884526 B2 JP3884526 B2 JP 3884526B2
Authority
JP
Japan
Prior art keywords
mica
composite material
based composite
particle size
large particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14347497A
Other languages
Japanese (ja)
Other versions
JPH10316882A (en
Inventor
福二 鈴木
喜昭 八木田
昌人 倉谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topy Industries Ltd
Original Assignee
Topy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topy Industries Ltd filed Critical Topy Industries Ltd
Priority to JP14347497A priority Critical patent/JP3884526B2/en
Publication of JPH10316882A publication Critical patent/JPH10316882A/en
Application granted granted Critical
Publication of JP3884526B2 publication Critical patent/JP3884526B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は雲母系複合材料およびその製造方法、特に光学的性質に優れた雲母系複合材料に関する。
【0002】
【従来の技術】
化粧料あるいは塗料など、特殊な意匠性が要求される分野においては、顔料などの粉体にも単に特定の色を求めるだけでなく、光輝性あるいは見る角度により色調ないし干渉色などの変化する多色フリップ・フロップ効果等を有した粉体の需要が増大している。これらの要求を満たすものとして、従来より雲母の表面を二酸化チタンや酸化鉄で被覆した雲母系複合材料あるいは該雲母系複合材料にさらに群青や紺青、カーミン、コバルト酸化物、ジルコニウム酸化物、アルミニウム酸化物、珪素酸化物、リチウム酸化物、ニッケル酸化物などの一種又は二種以上を被覆したものが知られている。これらの雲母系複合材料は、真珠光沢顔料として種々の干渉色を有することから、化粧料、塗料、プラスチックなどの顔料として広く用いられていた。
【0003】
【発明が解決しようとする課題】
しかしながら、従来の雲母系複合材料は、粒子の板径が大きいものでも0.08mm(80μm)以下であるために、その塗布面はほぼ均一なものとして看取され、きらきらと輝いた干渉色の強い光輝性や多色性フリップフロップ効果を発現することはできず、意匠性の弱い雲母系複合材料であった。
一方、特開平6−93205号公報には、粒径が0.1〜5mmの雲母表面に一種以上の金属酸化物微粒子を前記雲母に対し0.1〜15重量%被覆し、配向させなくともどの角度から見ても光輝感を発現し得る装飾用顔料が開示されている。
【0004】
しかし、この顔料は配向させなくてもどの角度から見ても光輝感を発現させるため、核雲母を厚い立方体形状にすることが必要であり、多色性フリップフロップ効果は全く発現されないものであった。
本発明は前記従来技術の課題に鑑みなされたものであり、その目的は光輝感に優れしかも多色性フリップフロップ効果を発現し得る雲母系複合材料を提供することにある。
【0005】
【課題を解決するための手段】
前記目的を達成するために本発明者らが鋭意検討を行った結果、薄片状の大粒径雲母に金属酸化物ないし金属水酸化物を被覆することにより、優れた光輝性及び多色性フリップフロップ効果が得られることを見いだし、本発明を完成するに至った。
すなわち、本発明にかかる雲母系複合材料は、粒子の板径が0.5〜2mmで、粒子の厚さが0.2〜2μmである大粒径薄片状雲母と、
【0006】
該雲母表面に形成された金属酸化物および/又は金属水酸化物の一種又は二種以上からなる被覆層と、からなり、
金属酸化物が二酸化チタンを含む場合は二酸化チタンはルチル型及び/又はアナターゼ型であることを特徴とする。
また、本発明にかかる材料において、雲母が合成雲母であることが好適である。
【0007】
また、本発明にかかる材料において、前記金属酸化物ないし金属水酸化物における金属は、チタン、鉄、亜鉛、ジルコニウム、コバルト、ニッケル、リチウム、ナトリウム、珪素、アルミニウム、ビスマス、タングステン、スズからなる群より選択される一種又は二種以上であることが好適である。
また、本発明にかかる材料において、前記金属酸化物ないし金属水酸化物の一種又は二種以上の被覆量は、大粒径薄片状雲母に対し、0.1〜50重量%であることが好適である。
また、本発明にかかる製造方法は、大粒径薄片状雲母に金属酸化物及び/又は金属水酸化物の一種又は二種以上を被覆した後、200〜1200℃で焼成することを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明の好適な実施形態について説明する。
本発明において好適に用いられる大粒径薄片状雲母は、天然雲母であっても合成雲母であっても差し支えないが、天然雲母は不純物を含んでいるため大粒径薄片状雲母の粒子の透明性が若干低下する。この点で不純物が少なく透明度及び白色度の高い合成雲母が好ましい。また、天然雲母を用いる場合には、透明度を上げるために塩酸や硝酸の水溶液で洗浄することが好ましい。
大粒径薄片状雲母の製造工程の例を以下に示す。
【0009】
大粒径薄片状雲母を天然雲母より得るには、まず採掘した原鉱石雲母をクラッシャーで粗粉砕し、約20mm前後の不定形粗粉とする。これを750〜800℃で約2時間、大気中で焼成した。放冷後、雲母を薄片化するために、希薄塩酸水溶液に懸濁させスラリー状態とした。一昼夜放置後、これに炭酸ナトリウムを加えて層間を開き、劈開しやすくした。スラリーの状態で湿式にてスリップ解砕した。解砕は12時間行い、これに水を加えて20メッシュの篩を通過させる。通過した湿式解砕物を200メッシュの篩を通し、未通過物を回収し、これにさらに水を加えて200メッシュの篩を通し、微粒子を通過させた。この工程を3回繰り返し、微粒子を十分に除去した。また、20メッシュの篩に残った未通過物は再度湿式解砕を12時間行い、上述と同様な工程で処理した。解砕後に篩分級し、回収した天然雲母は、水分が約30%になるまで濾過した。さらに白色度を上げるために30%含水している解砕天然雲母1Kgに0.2N硝酸水溶液1Lを加えた。これにクエン酸50gを加えてプロペラ撹拌を1日行った。濾過・水洗後80℃以下の低温度で乾燥した。乾燥物は低速のヘンシェルミキサーにて凝集状態をほぐして大粒径薄片状天然雲母650gを得た。
【0010】
大粒径薄片状雲母を合成雲母より得る例として、合成フッ素雲母を用いる例について説明する。合成フッ素金雲母の化学式はKMg3(AlSi310)F2である。溶融析出法で製造する場合、例えばSiO2を1800g,Al23を510g,K2CO3を690g、MgF2を630g秤り取り、V型ブレンダーにて十分混合した。混合物を1500℃に加熱し、溶融状態にした後、薄片状大粒径の合成雲母を得るために、溶融状態から1300℃まで冷却させる。この際の冷却速度を100℃/15時間とした。さらに1300℃で24時間放置した。この後、室温に3日間放置して冷却した。このようにして結晶性のよい合成雲母を得、これを20mmぐらいになるように粗粉砕した。これに水を加えて大粒径薄片状天然雲母を得たのと同様な工程で解砕、篩い分け、乾燥した。乾燥物をほぐして大粒径薄片状合成フッ素金雲母1000gを得た。
【0011】
上記のように大粒径薄片状雲母は篩分級法により製造したが、粒子の厚さは走査型電子顕微鏡で観察して得た。
本発明にかかる雲母系複合材料は上述した製造法によって得た大粒径薄片状雲母を核とし、該核雲母粒子の表面が金属酸化物及び/又は金属水酸化物の一種または二種以上で被覆されている。これらの該金属酸化物及び/又は金属水酸化物の金属は、チタン、鉄、亜鉛、ジルコニウム、コバルト、ニッケル、リチウム、ナトリウム、ケイ素、アルミニウム、ビスマス、タングステン、スズより選択される。そして、金属酸化物及び/又は金属水酸化物の一種または二種以上による被覆量は大粒径薄片状雲母に対して0.1〜50重量%である。さらに金属酸化物及び/又は金属水酸化物の一種または二種以上で被覆した大粒径薄片状雲母は200〜1200℃、好ましくは500〜1100℃で焼成し雲母系複合材料を得ることが好ましい。金属酸化物及び/又は金属水酸化物の被覆量が0.1重量%以下では得られた雲母系複合材料の高彩色とぎらぎらと輝いた干渉色が得られず、光輝性に乏しく、多色性フリップフロップ効果の発現も乏しい。また、50重量%を越えると、着色性は有するものの粒子の厚さが2μm以上になるため、側面の反射が強くなり、ギラギラと輝いた干渉色が弱くなり、光輝性、さらには多色性フリップフロップ効果が乏しく、意匠性にも欠け好ましくない。また、金属酸化物及び/又は金属水酸化物の一種または二種以上で被覆した雲母系複合材料において、200℃未満の温度で焼成して得られた雲母系複合材料は着色が少なく、しかも多色性フリップフロップ効果の発現にも非常に乏しく意匠性にも欠けていた。さらに、被覆状態より、1200℃を越える温度で焼成して得られた雲母系複合材料は、被覆物が凝集すると同時に被覆した雲母系複合材料の凝集も起こり、ギラギラと輝いた干渉色が得られず光輝性にも乏しく、多色性フリップフロップ効果の発現も乏しく意匠性に劣り好ましくない。
【0012】
本発明の上記雲母系複合材料は大粒径薄片状雲母表面が、好ましくはチタン、鉄、亜鉛、ジルコニウム、コバルト、ニッケル、リチウム、ナトリウム、ケイ素、アルミニウム、ビスマス、タングステン、スズの金属酸化物及び/又は金属水酸化物の一種または二種以上で被覆されてなるものであるが、これを得るには種々の方法を採用することができる。その製法として、真空蒸着被覆法もあるが、特公昭43−25644号公報に見られるような可溶性無機塩、例えば塩化物、硫酸化物、硝酸化物、炭酸化物、水酸化物などの水溶液を大粒径薄片状雲母の存在下で加水分解し、大粒径薄片状雲母の表面に金属酸化物及び/又は金属水酸化物を析出させた後加熱する方法によって大粒径薄片状雲母系複合材料が得られる。
【0013】
本発明の大粒径薄片状雲母系複合材料は、高彩色のギラギラと輝いた干渉色の強い光輝性及び多色性フリップフロップ効果を発現する意匠性の高い雲母系複合材料である。
しかも、耐光性、耐熱性などの安定性に優れ、塗料、化粧品、プラスチック、インキ、絵の具、装飾品、日用雑貨、繊維製品、セラミックスなどの粉体、着色パール光沢材料として有用であり、意匠性の高い材料として期待される。
【0014】
【実施例】
以下、実施例に基づき本発明をより詳細に説明する。なお、本発明はこれらの実施例に限定されるものではない。
実施例1
大粒径薄片状天然雲母100g(平均粒径約0.5mm、平均粒子約1μmをイオン交換水1lに添加してプロペラにて十分に攪拌し均一に分散させた。得られた分散液に濃度40重量%の硫酸チタニル水溶液102mlを加えて攪拌しながら加熱し3時間沸騰させた。放冷後濾過水洗し100℃で乾燥させた。乾燥後700℃で2時間焼成し放冷して銀色の大粒径薄片状天然雲母112gを得た。得られた大粒径薄片状天然雲母をX線回折と走査型電子顕微鏡にて解析した結果、二酸化チタンのアナターゼ型で被覆された大粒径薄片状天然雲母複合材料であった。また、二酸化チタンの被覆量は蛍光X線分析で定量した。その結果、二酸化チタンの被覆量は14重量%であった。
次に各種粉体と実施例1記載の粉体との比較結果を示す。
【0015】
【表1】
────────────────────────────────────
試 験 例
1 2 3 4 5
────────────────────────────────────
パール剤 ○ − − − −
大粒径薄片状雲母系複合材料 − ○ − − −
(実施例1)
大粒径シリカ − − ○ − −
大粒径球状樹脂粉末 − − − ○ −
大粒径サイコロ状雲母系複合材料 − − − − ○
────────────────────────────────────
評価項目
キラキラした輝き △ ◎ × × ○
フリップフロップ性 ○ ◎ × × ×
────────────────────────────────────
パール剤:平均50μm径 厚さ0.2μm
大径薄片状(合成金)雲母系複合材料:平均1mm径 厚さ1μm
大径シリカ、大径球状樹脂(スチレン)粉末:平均1mm径
大粒径サイコロ状雲母:平均粒径約0.5mm 平均粒子約200μm
二酸化チタン被覆量10%
【0016】
<結果>
上記表1より明らかなように、通常用いられているパール剤の場合(試験例1)には、若干キラキラした輝きを発揮するものの、未だ十分ではない。しかしながら、本発明の大粒径薄片状雲母径複合材料の場合(試験例2)には、パール剤を用いた場合よりも遥かにキラキラした輝き及び見る方向により異なる色調を呈するフリップフロップ性が観察され、優れた意匠性を発揮する。
【0017】
また、他の粉末で大粒径薄片状雲母系複合材料と近似した径の粉末を用いた場合(試験例3,4)には、キラキラした輝きは発揮されず、無論、フリップフロップ性も観察されなかった。
一方、大粒サイコロ状雲母系複合材料(試験例5)は、キラキラして輝きはある程度発揮し、かつ見る方向にかかわらず光輝感は有するものの、特に多色性フリップフロップ効果については全く観察されなかった。
【0018】
次に、本発明者らは雲母の粒径について検討を進めた。
【表2】

Figure 0003884526
【0019】
上記表2より、雲母の平均粒径は意匠性を考慮するならば0.1mm以上が好ましく、特に0.5mm以上で優れた輝きを得ることができる。一方、2.0mmを越えるとザラザラした感触が生じ、各種用途への適用も悪くなる傾向にある。従って、2.0mm以下、特に好ましくは1.5mm以下であることが好ましい。
【0020】
実施例2〜5
実施例1と同じ大粒径薄片状天然雲母を用いて、硫酸チタニルの添加量を変えた以外は同じ工程で各種複合材料を得た。
Figure 0003884526
【0021】
実施例6〜10
大粒径薄片状合成雲母100gをイオン交換水1Lに添加してプロペラにて十分撹拌し、均一に分散させた。得られた分散液に塩化スズ3.5gを含む希塩酸水溶液20mlを加えこれに苛性ソーダ水溶液を加えてpHを1.8に調整した。pH調整済み分散液を撹拌しながら加熱して80℃の温度とした。この状態を保ちながら1時間撹拌した。さらにこの加熱撹拌分散液にpHを1.8に保持しながら苛性ソーダ水溶液と2モル濃度の四塩化チタン水溶液とを加えた。四塩化チタン水溶液添加後2時間加熱熟成させた。放冷後、濾過水洗し120℃で乾燥した。乾燥後900℃にて2時間焼成した。得られた大粒径薄片状合成雲母複合材料は実施例1と同様にX線回折と走査型電子顕微鏡で解析した。
【0022】
Figure 0003884526
【0023】
実施例11
大粒径薄片状合成雲母100gをイオン交換水1Lに添加してプロペラにて十分に撹拌し均一に分散させた。得られた分散液に濃度40重量%の硫酸チタニル水溶液625mlを加えて撹拌しながら加熱し6時間沸騰させた。放冷後、濾過水洗し、100℃で乾燥させた。乾燥後500℃で6時間焼成した。放冷して、ギラギラと輝いた彩度の高い緑色の干渉色の二酸化チタンで被覆された雲母系複合材料195gを得た。X線回析結果、二酸化チタンはアナターゼであり、走査型電子顕微鏡で観察すると粒子表面が均一に被覆されていた。また、蛍光X線分析で二酸化チタンを定量した結果50重量%であった。
【0024】
実施例12
大粒径薄片状合成雲母100gをイオン交換水500mlに添加してプロペラにて十分に撹拌し均一に分散させた。得られた分散液に、塩化第二鉄0.1gと尿素0.2gとを加えて十分に撹拌し溶解させた。溶解後撹拌しながら加熱し、80℃以上の温度で4時間熟成した。放冷後、濾過水洗し、100℃で乾燥させた。乾燥後200℃で2時間低温焼成し、淡橙色の外観をもった酸化鉄で被覆された雲母系複合材料98gを得た。X線回析の結果では回析線に変化はみられないが蛍光X線分析の結果、鉄を0.1重量%含有していることが定量された。しかも走査型電子顕微鏡観察の結果、大粒径薄片状粒子の表面に被覆されていることが分かった。
【0025】
実施例13
実施例7で得た、二酸化チタン被覆大粒径薄片状合成雲母複合材料40gを700mlのイオン交換水に添加してプロペラにて十分撹拌し、均一に分散させた。得られた分散液に修酸第2鉄アンモニウム4.5gと尿素1.0g秤り、これにイオン交換水100mlを加えて、溶解するまでプロペラ撹拌した。この水溶液を二酸化チタン被覆大粒径薄片状合成雲母複合材料が均一分散している分散液に加え、撹拌しながら80℃に加熱し、4時間加熱撹拌を続けた。4時間終了後、分散液を放冷し、濾過水洗し、100℃で7時間乾燥した。乾燥後、放冷し、彩度が高く橙色でギラギラと輝いた黄色の干渉色をもった複合材料41gを得た。更にこのものを900℃で4時間焼成した。放冷後、鮮やかで彩度の高い黄色でギラギラと輝いた黄色の干渉色をもった複合材料40gを得た。得られた複合材料のX線回析から合成雲母と二酸化チタンのルチル及び鉄と二酸化チタンの化合物である擬板チタン鉄鉱(Fe2TiO5)が確認された。また、走査型電子顕微鏡観察によれば、粒子表面に若干粒子の大きい粒状(約0.08μm)の粒子が点在しており、その下に0.02μmの超微粒子の粒状粒子が粒子表面全体を均一に被覆していた。このことより本実施例にかかる複合材料は、二酸化チタンと擬板チタン鉄鉱で被覆された大粒径薄片状合成雲母複合材料で、鉄の量は蛍光X線分析の結果0.7重量%であった。
【0026】
実施例14
実施例4で得た二酸化チタン被覆大粒径薄片状天然雲母複合材料40gにイオン交換水700mlを加えてプロペラにて十分撹拌し、均一に分散させた。この分散液に塩化コバルトの6水塩16gをイオン交換水150mlに溶解させた液を加えた。次いで分散液を50℃に加熱してから撹拌しながら1モル濃度の苛性ソーダー水溶液を毎分100mlの滴下速度で加えてpHが9.0になってから苛性ソーダの滴下を止め、2時間熟成させた。熟成終了後放冷し、濾過水洗して100℃で5時間乾燥した。乾燥粉末を900℃で4時間焼成した。放冷した複合材料は外観色が緑色を呈し、ギラギラと輝いた干渉色が赤味の青色を呈した光輝性の強い複合材料を43g得た。この材料のX線回析結果から、雲母と二酸化チタン及び二酸化チタンと酸化コバルトから生成されたチタン酸コバルトが確認された。また、走査型電子顕微鏡の観察から、大粒径薄片状粒子表面に0.5μmの粒状粒子が点在しており、その下には0.02μmの超微粒子が観察された。更に蛍光X線分析からコバルトが4重量%被覆していることが確認された。そして、この複合材料を両面粘着テープに均一に塗布し、白と黒からなる隠蔽率試験紙に貼り、測色角度と変えて測色した。その結果、45゜入射に対して0゜方向で測色すると緑色が強く反射され、正反射方向に近い30゜で測色すると赤みの青色反射が強くみられた。すなわちコバルトとチタンの金属酸化物とを被覆し焼成した大粒径薄片状天然雲母複合材料は、外観色が緑色でギラギラと輝いた光輝性が強く、しかも、二色性を示すフリップ・フロップ効果を発現した。意匠性に優れた雲母系複合材料であった。
【0027】
実施例15
実施例14と同じ工程で二酸化チタン被覆大粒径薄片状天然雲母複合材料にコバルト化合物を被覆した複合材料20gに、炭酸リチウム2.5gを混合し950℃で8時間焼成した。放冷後、高彩度の青緑色の外観を呈したギラギラと輝いた材料22gを得た。この材料のX線回析結果から、雲母と二酸化チタン及び二酸化チタンと酸化コバルトと酸化リチウムとから生成されたチタン酸リチウムコバルトからなることが確定された。また、走査型電子顕微鏡の観察から大粒径薄片状粒子表面に1μmの粒状粒子が点在しており、その下には0.02μmの超微粒子が均一に全面を被覆していた。更に蛍光X線分析からリチウムが2.5重量%被覆されていることが確認された。そしてこの複合材料を両面粘着テープに均一に塗布し、白と黒からなる隠蔽率試験紙に貼り、測色角度を変えて測色した。その結果、45゜入射に対して0゜方向で測色すると青緑色が強く反射され、正反射方向に近い30゜で測色すると赤みの青色反射が強くみられた。すなわちチタンとコバルト及びリチウムの金属酸化物を被覆し、焼成した大粒径薄片状天然雲母複合材料は、外観色が彩度の高い青緑色でギラギラと輝いた光輝性が強く、しかも青緑色と赤みの青色干渉色とを呈する、二色性を示すフリップ・フロップ効果を発現した。本実施例にかかる材料は、意匠性に優れた雲母系複合材料であった。
【0028】
実施例16
実施例10で得た二酸化チタン被覆大粒径薄片状合成雲母複合材料40gを700mlのイオン交換水に添加してプロペラにて十分撹拌し均一に分散させた。得られた分散液に硫酸ニッケル10gと尿素1gとを100mlのイオン交換水に溶解させ水溶液を加えた。撹拌しながら沸騰させ4時間熟成した。熟成後放冷し、濾過水洗して100℃で乾燥した。得られた材料は、外観色が灰色のギラギラしたものであり42g得られた。得られた材料20gに炭酸ナトリム3gを混合して、1200℃で2時間焼成した。放冷後、彩度の高い黄色の外観色を持った、ギラギラと輝きの強い青緑色の干渉色をもった材料21gを得た。得られた材料のX線回析結果から、合成雲母と二酸化チタン及びナトリウムとニッケルとチタネートの化合物であるナトリウムニッケルテタネットがわずかではあるが確認された。また、走査型電子顕微鏡から大粒径薄片状粒子の表面が溶融している状態が観察された。更に蛍光X線分析の結果、ナトリウムが5.5重量%でリチウムが7重量%であった。すなわち本品は合成雲母が二酸化チタンとナトリウムニッケルチタネートで被覆された大粒径薄片状合成雲母複合材料で彩度の高い黄色の外観色をもち、ギラギラと輝きの強い青緑色の干渉色をもち、黄色と干渉色との二色性をもった意匠性の高い雲母系複合材料であった。
【0029】
実施例17
実施例1で得た、二酸化チタン被覆大粒径薄片状天然雲母40gを700mlのイオン交換水に添加してプロペラにて十分撹拌し均一に分散させた。得られた分散液に、オキシ塩化ジルコニウム2.1gをイオン交換水50mlに溶解させたものを加えて、撹拌しながら加熱して沸騰させ3時間熟成した。熟成後放冷して濾過水洗した。水洗後得られた材料を600mlのイオン交換水に添加してプロペラにて十分撹拌し均一に分散させた。得られた分散液に、硫酸アルミニウム28gと尿素2.3gとをイオン交換水100mlに溶解させたものを加えた。撹拌しながら加熱した。80℃で4時間熟成した。熟成後、放冷して濾過水洗し100℃で乾燥した。得た材料を200℃で16時間焼成した。放冷後、白色のギラギラと輝いた材料42gを得た。得られた材料5gを50容量%のエタノール水容液50mlに加えてプロペラにて撹拌し均一に分散させた。また、比較として実施例1で得られた材料を上記と同様な方法でエタノールに分散させた。各々の分散液に2.5KwのXeランプで30時間照射した。その結果、オキシ塩化ジルコニウムと硫酸アルミニウムで処理した材料はギラギラと輝いていたが、比較として実施例1で得た材料は灰黒色の外観色をもちギラギラと輝いた材料に変わっていた。すなわち処理した材料はより一層耐光性に強いものであった。
【0030】
得られた複合材料のX線回析からは雲母と二酸化チタンのアナターゼ型のみが確認された。走査型電子顕微鏡によると大粒子表面に粒子径が0.5μmの針状径粒子と0.1μm以下の粒状が点在していた。更にEDX(エネルギー分散型X線分析)にて点分析を行った結果、針状粒子はアルミニウムの化合物、粒状粒子はジルコニウムの化合物からなっていた。すなわち、大粒径薄片状雲母複合材料はアルミニウムとジルコニム化合物と二酸化チタンで被覆された。耐光性の強いギラギラと輝いた材料であった。しかも、アルミニウムは定量の結果、1重量%であり、ジルコニウムは定量の結果0.8重量%であった。
【0031】
実施例18
実施例7で得た二酸化チタン被覆大粒径薄片状合成雲母複合材料40gを700mlのイオン交換水に添加してプロペラにて十分撹拌し均一に分散させた。得られた分散液に塩化亜鉛8gと尿素18gとを0.1N塩酸水溶液100mlに加え溶解させ、これを加えた。撹拌しながら加熱し、80℃にて4時間熟成させた。熟成後放冷し濾過水洗した。このスラリーにイオン交換水600mlを加えてプロペラにて均一に撹拌した。均一分散液に苛性ソーダー水溶液を加えpHを9に調整し、80℃に加熱した。この加熱撹拌分散液に、水ガラス2gを含む水溶液50mlと1.0N塩酸水溶液とを同時に滴下した。但しpH9を保つと共に水ガラスの滴下速度は毎分10mlの速度で加え、添加終了後2時間熟成した。熟成後濾過・水洗し100℃で乾燥した。乾燥材料は白色のギラギラ輝いた黄色の干渉色をもったもので、43g得られた。得られた材料はX線回析から合成雲母と二酸化チタンのルチル及び酸化亜鉛が認められた。また、走査型電子顕微鏡観察から大粒子表面が0.5μmの針状の粒子と0.02μmの粒状の粒子が観察できた。更にEDXでの点分析から針状は亜鉛化合物であり、0.02μmはチタン化合物であった。走査型電子顕微鏡での観察倍率を10万倍にすると針状粒子が更に細かい0.01μm以下の粒子で被覆されており、これがケイ素化合物であった。このことから、この材料は大粒径薄片状合成雲母が二酸化チタンと酸化亜鉛及びケイ素化合物で被覆された複合雲母材料であることが解った。更にまた、化学分析した結果、酸化亜鉛は10重量%で、ケイ素は0.8重量%であった。
【0032】
実施例19
実施例6で得た二酸化チタン被覆大粒径薄片状合成雲母複合材料40gを700mlのイオン交換水に添加してプロペラにて十分撹拌し均一に分散させた。得られた分散液に硝酸ビスマス6gと尿素2gとをイオン交換水100mlに溶解させたものを加えた。撹拌しながら加熱し、80℃で4時間熟成させた。熟成後放冷し濾過水洗し、100℃で8時間乾燥させた。乾燥後400℃で2時間焼成した。放冷後、黄色のギラギラと輝いた材料44gを得た。この材料のX線回析から合成雲母と二酸化チタンのルチル及び酸化ビスマスが確認された。また、走査型電子顕微鏡から大粒子表面が0.03μmの粒状粒子が点在し更にその下には若干小さい0.02μm程度の粒状粒子が表面全面を被覆していた。そして、EDXによる点分析から点在粒子がビスマスであり、その下の粒子がチタンであることが解った。また、蛍光X線分析からビスマスは6重量%であった。このことから、この材料は、酸化ビスマスと二酸化チタンで被覆された大粒径薄片状合成雲母で、黄色の外観色をもちギラギラと輝いた複合材料である。
【0033】
実施例20
実施例10で得た二酸化チタン被覆大粒径薄片状合成雲母複合材料40gを700mlのイオン交換水に添加してプロペラにて十分撹拌して均一に分散させた。得られた分散液に、オキシ塩化タングステン5gをイオン交換水100mlに溶解させた水溶液を加えた。分散液を撹拌しながら80℃に加熱し、0.2Nの苛性カリ水溶液を毎分10mlの速度で滴下し、液のpHが9になるまで苛性カリ水溶液を滴下した。pH9の状態で4時間熟成した。熟成後放冷し濾過水洗し、100℃で乾燥した。乾燥材料を500℃で2時間焼成した。放冷後、淡黄色のギラギラと輝いた緑色の干渉色をもった材料43gを得た。この材料のX線回析から合成雲母と二酸化チタンのルチル及び酸化タングステンが確認された。また、走査型電子顕微鏡観察から大粒子表面が0.3μmの不定型粒子が点在しており、その下には0.02μmと小さい粒状粒子が全面を被覆していることが解った。そしてEDXによる点分析から点在している粒子がタングステンであり、その下の粒子はチタンであった。また、蛍光X線分析からタングステンは5重量%であった。このことからこの材料は酸化タングステンと二酸化チタンで被覆された大粒径薄片状合成雲母で、淡黄色の外観色を呈するギラギラと輝き緑色の干渉色をもち、淡黄色と緑色干渉色との二色性をもった意匠性の高い雲母系複合材料であった。
【0034】
【発明の効果】
以上説明したように、本発明にかかる雲母系複合材料によれば、大粒径薄片状雲母に金属酸化物および/又は金属水酸化物を被覆することとしたので、光輝性とともに、優れた多色性フリップフロップ効果を発揮することができる。
また、本発明にかかる雲母系複合材料の製造方法によれば、大粒径薄片状雲母に金属酸化物ないし金属水酸化物を被覆した後、焼成することとしたので、光輝性及び多色性フリップフロップ効果をより顕著に発揮することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a mica-based composite material and a method for producing the same, and more particularly to a mica-based composite material having excellent optical properties.
[0002]
[Prior art]
In fields where special design properties are required, such as cosmetics and paints, not only specific colors are required for powders such as pigments, but there are many changes in color tone or interference color depending on glitter or viewing angle. There is an increasing demand for powders having a color flip-flop effect. In order to satisfy these requirements, a mica-based composite material in which the surface of mica has been coated with titanium dioxide or iron oxide or the mica-based composite material is further added to ultramarine, bitumen, carmine, cobalt oxide, zirconium oxide, aluminum oxide. A material coated with one or more of silicon oxide, lithium oxide, nickel oxide and the like is known. Since these mica-based composite materials have various interference colors as pearlescent pigments, they have been widely used as pigments for cosmetics, paints, plastics and the like.
[0003]
[Problems to be solved by the invention]
However, since the conventional mica-based composite material has a particle diameter of 0.08 mm (80 μm) or less even if the plate diameter is large, the coated surface is considered to be almost uniform, and the interference color is brilliantly shining. It was a mica-based composite material that could not exhibit strong luster and pleochroic flip-flop effect and had poor design.
On the other hand, JP-A-6-93205 discloses that a mica surface having a particle diameter of 0.1 to 5 mm is coated with 0.1 to 15% by weight of one or more metal oxide fine particles with respect to the mica and is not oriented. A decorative pigment is disclosed that can exhibit a brilliant feeling when viewed from any angle.
[0004]
However, this pigment does not have to be oriented so that it can exhibit a radiant sensation from any angle. Therefore, it is necessary to make the nuclei mica into a thick cubic shape, and the pleochroic flip-flop effect is not exhibited at all. It was.
The present invention has been made in view of the above-mentioned problems of the prior art, and an object thereof is to provide a mica-based composite material that is excellent in glitter and can exhibit a polychromatic flip-flop effect.
[0005]
[Means for Solving the Problems]
As a result of intensive studies by the present inventors in order to achieve the above object, excellent glitter and pleochroic flip-flops are obtained by coating flaky large particle mica with metal oxide or metal hydroxide. The present invention has been completed.
That is, the mica-based composite material according to the present invention has a large particle size flaky mica having a particle diameter of 0.5 to 2 mm and a particle thickness of 0.2 to 2 μm,
[0006]
A coating layer made of one or more metal oxides and / or metal hydroxides formed on the mica surface ;
When the metal oxide contains titanium dioxide, the titanium dioxide is a rutile type and / or anatase type .
In the material according to the present invention, it is preferable that the mica is synthetic mica.
[0007]
Further, in the material according to the present invention, the metal in the metal oxide or metal hydroxide is a group consisting of titanium, iron, zinc, zirconium, cobalt, nickel, lithium, sodium, silicon, aluminum, bismuth, tungsten, tin. It is suitable that it is 1 type selected from 2 or more types.
Further, in the material according to the present invention, the coating amount of one or more of the metal oxide or metal hydroxide is preferably 0.1 to 50% by weight with respect to the large particle size flaky mica. It is.
In addition, the production method according to the present invention is characterized in that a large particle size flaky mica is coated with one or more metal oxides and / or metal hydroxides and then fired at 200 to 1200 ° C. .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
The large particle size flaky mica preferably used in the present invention may be natural mica or synthetic mica, but since natural mica contains impurities, the particles of the large particle flaky mica are transparent. The characteristics are slightly reduced. In this respect, synthetic mica having less impurities and high transparency and whiteness is preferable. When natural mica is used, it is preferably washed with an aqueous solution of hydrochloric acid or nitric acid in order to increase transparency.
An example of the production process of large particle size flaky mica is shown below.
[0009]
In order to obtain a large particle size flaky mica from natural mica, the mined raw ore mica is first roughly crushed with a crusher to obtain an irregular coarse powder of about 20 mm. This was calcined in the atmosphere at 750 to 800 ° C. for about 2 hours. After cooling, in order to flake the mica, it was suspended in a dilute hydrochloric acid aqueous solution to form a slurry. After standing for a whole day and night, sodium carbonate was added thereto to open the layers, making it easy to cleave. Slip pulverization was performed in a wet state in a slurry state. Crushing is carried out for 12 hours, and water is added to this and passed through a 20-mesh sieve. The passed wet pulverized product was passed through a 200-mesh sieve, and the non-passed product was collected. Water was further added to this and passed through the 200-mesh sieve to allow fine particles to pass through. This process was repeated three times to sufficiently remove the fine particles. In addition, the non-passed matter remaining on the 20 mesh sieve was again wet crushed for 12 hours and treated in the same manner as described above. The pulverized natural mica after pulverization was filtered until the water content was about 30%. Further, in order to increase the whiteness, 1 L of 0.2N nitric acid aqueous solution was added to 1 kg of crushed natural mica containing 30% water. To this, 50 g of citric acid was added, and propeller stirring was performed for 1 day. After filtration and washing with water, it was dried at a low temperature of 80 ° C. or lower. The dried product was flocculated with a low-speed Henschel mixer to obtain 650 g of flake natural mica having a large particle size.
[0010]
As an example of obtaining large particle size flaky mica from synthetic mica, an example using synthetic fluorine mica will be described. The chemical formula of synthetic fluorine phlogopite is KMg 3 (AlSi 3 O 10 ) F 2 . When producing a melt deposition method, for example, a SiO 2 1800 g, 510 g of Al 2 O 3, 690 g of K 2 CO 3, MgF 2 and 630g weighed and thoroughly mixed in a V-blender. The mixture is heated to 1500 ° C. and brought into a molten state, and then cooled from the molten state to 1300 ° C. in order to obtain a flaky large particle size synthetic mica. The cooling rate at this time was 100 ° C./15 hours. Further, it was left at 1300 ° C. for 24 hours. Thereafter, it was allowed to cool at room temperature for 3 days. Thus, synthetic mica having good crystallinity was obtained, and this was coarsely pulverized to about 20 mm. This was crushed, sieved and dried in the same process as adding water to obtain flaky natural mica with a large particle size. The dried product was loosened to obtain 1000 g of a large particle size flaky synthetic fluorine phlogopite.
[0011]
As described above, the large particle size flaky mica was produced by the sieve classification method, and the thickness of the particles was obtained by observing with a scanning electron microscope.
The mica-based composite material according to the present invention has a large particle size flaky mica obtained by the above-described production method as a nucleus, and the surface of the nuclei mica particle is one or more of metal oxide and / or metal hydroxide. It is covered. The metal of the metal oxide and / or metal hydroxide is selected from titanium, iron, zinc, zirconium, cobalt, nickel, lithium, sodium, silicon, aluminum, bismuth, tungsten, and tin. And the coating amount by 1 type, or 2 or more types of a metal oxide and / or a metal hydroxide is 0.1 to 50 weight% with respect to a large particle size flaky mica. Furthermore, the large particle size flaky mica coated with one or more metal oxides and / or metal hydroxides is preferably fired at 200 to 1200 ° C., preferably 500 to 1100 ° C., to obtain a mica-based composite material. . When the coating amount of the metal oxide and / or metal hydroxide is 0.1% by weight or less, the obtained mica-based composite material cannot provide a high-colored and brilliant interference color, has poor glitter, and is multicolored. The effect of the flip-flop effect is poor. On the other hand, if the amount exceeds 50% by weight, the thickness of the particles becomes 2 μm or more, although the color has a coloring property, the reflection on the side surface becomes strong, the brilliant interference color becomes weak, the glittering property, and the pleochroicity The flip-flop effect is poor, and the design is lacking. Further, in the mica-based composite material coated with one or more metal oxides and / or metal hydroxides, the mica-based composite material obtained by firing at a temperature of less than 200 ° C. is less colored and moreover. The color flip-flop effect was very poor and the design was lacking. Furthermore, the mica-based composite material obtained by firing at a temperature exceeding 1200 ° C. from the coated state causes the coating to agglomerate and at the same time agglomeration of the coated mica-based composite material occurs, and a brilliant interference color is obtained. Further, it is not preferable because it has poor glitter and poor polychromatic flip-flop effect and poor design.
[0012]
The mica-based composite material of the present invention has a large particle size flaky mica surface, preferably a metal oxide of titanium, iron, zinc, zirconium, cobalt, nickel, lithium, sodium, silicon, aluminum, bismuth, tungsten, tin, and Although it is a thing coat | covered with 1 type, or 2 or more types of a metal hydroxide, various methods are employable in order to obtain this. As its production method, there is a vacuum deposition coating method, but a soluble inorganic salt such as that disclosed in Japanese Patent Publication No. 43-25644, for example, an aqueous solution of chloride, sulfate, nitrate, carbonate, hydroxide, etc. The large particle size flaky mica-based composite material is hydrolyzed in the presence of the diameter flaky mica and the metal oxide and / or metal hydroxide is precipitated on the surface of the large particle size flaky mica and then heated. can get.
[0013]
The large particle size flaky mica-based composite material of the present invention is a highly designed mica-based composite material that exhibits a high chromatic glitter and a strong brilliant interference color and a polychromatic flip-flop effect.
In addition, it has excellent stability such as light resistance and heat resistance, and is useful as a powder, colored pearl luster material for paints, cosmetics, plastics, inks, paints, ornaments, household goods, textiles, ceramics, etc. It is expected as a highly functional material.
[0014]
【Example】
Hereinafter, based on an Example, this invention is demonstrated in detail. The present invention is not limited to these examples.
Example 1
Large particle size flaky natural mica 100 g (average particle size of about 0.5 mm, average particle thickness of about 1 μm was added to 1 liter of ion-exchanged water and stirred well with a propeller to disperse uniformly. After adding 102 ml of titanyl sulfate aqueous solution with a concentration of 40% by weight and heating with stirring, it was boiled for 3 hours. As a result of analyzing the obtained large particle size flaky natural mica by X-ray diffraction and a scanning electron microscope, a large particle size coated with titanium dioxide anatase type was obtained. The coating amount of titanium dioxide was determined by fluorescent X-ray analysis, and as a result, the coating amount of titanium dioxide was 14% by weight.
Next, comparison results between various powders and the powders described in Example 1 are shown.
[0015]
[Table 1]
────────────────────────────────────
Test example
1 2 3 4 5
────────────────────────────────────
Pearl agent ○ − − − −
Large particle size flaky mica based composite material − ○ − − −
Example 1
Large particle size silica--○--
Large particle size spherical resin powder − − − ○ −
Large particle dice mica based composite material----○
────────────────────────────────────
Evaluation item Glittering △ ◎ × × ○
Flip flop ○ ◎ × × ×
────────────────────────────────────
Pearl agent: average 50μm diameter, thickness 0.2μm
Large-diameter flaky (synthetic gold) mica-based composite material: Average 1 mm diameter Thickness 1 μm
Large diameter silica, large diameter spherical resin (styrene) powder: average 1 mm diameter large particle size dice mica: average particle size about 0.5 mm average particle thickness about 200 μm
Titanium dioxide coverage 10%
[0016]
<Result>
As is clear from Table 1 above, in the case of a commonly used pearl agent (Test Example 1), although a slight sparkle is exhibited, it is still not sufficient. However, in the case of the large particle size flaky mica diameter composite material of the present invention (Test Example 2), a flip-flop property exhibiting a far more brilliant shine and a different color tone depending on the viewing direction than the case of using a pearl agent was observed. And exhibits excellent design properties.
[0017]
In addition, when a powder having a diameter close to that of a large particle size flaky mica-based composite material is used (Test Examples 3 and 4), the glittering shine is not exhibited, and, of course, the flip-flop property is also observed. Was not.
On the other hand, the large dice mica-based composite material (Test Example 5) is sparkling and exhibits a certain degree of brightness, and has a glittering feeling regardless of the viewing direction, but in particular, no polychromatic flip-flop effect is observed. It was.
[0018]
Next, the present inventors proceeded with studies on the particle size of mica.
[Table 2]
Figure 0003884526
[0019]
From Table 2 above, the average particle size of mica is preferably 0.1 mm or more in consideration of design properties, and particularly excellent brightness can be obtained at 0.5 mm or more. On the other hand, when it exceeds 2.0 mm, a rough feel is produced, and application to various uses tends to be poor. Accordingly, it is preferably 2.0 mm or less, particularly preferably 1.5 mm or less.
[0020]
Examples 2-5
Using the same large particle size flaky natural mica as in Example 1, various composite materials were obtained in the same process except that the addition amount of titanyl sulfate was changed.
Figure 0003884526
[0021]
Examples 6-10
100 g of flaky synthetic mica having a large particle size was added to 1 L of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. To the obtained dispersion was added 20 ml of a dilute hydrochloric acid solution containing 3.5 g of tin chloride, and an aqueous sodium hydroxide solution was added thereto to adjust the pH to 1.8. The pH adjusted dispersion was heated to 80 ° C. with stirring. The mixture was stirred for 1 hour while maintaining this state. Further, a caustic soda aqueous solution and a 2 molar titanium tetrachloride aqueous solution were added to the heated stirring dispersion while maintaining the pH at 1.8. After the addition of the aqueous titanium tetrachloride solution, the mixture was aged by heating for 2 hours. After standing to cool, it was washed with filtered water and dried at 120 ° C. After drying, it was calcined at 900 ° C. for 2 hours. The obtained large particle size flaky synthetic mica composite material was analyzed by X-ray diffraction and a scanning electron microscope in the same manner as in Example 1.
[0022]
Figure 0003884526
[0023]
Example 11
100 g of flaky synthetic mica having a large particle size was added to 1 L of ion exchange water and sufficiently stirred with a propeller to uniformly disperse. To the resulting dispersion, 625 ml of a 40% strength by weight aqueous solution of titanyl sulfate was added and heated with stirring to boil for 6 hours. After standing to cool, it was washed with filtered water and dried at 100 ° C. After drying, it was calcined at 500 ° C. for 6 hours. The mixture was allowed to cool to obtain 195 g of a mica-based composite material coated with titanium dioxide having a high-saturation green interference color that was glittering. As a result of X-ray diffraction, titanium dioxide was anatase, and the particle surface was uniformly coated when observed with a scanning electron microscope. Further, the result of quantitative determination of titanium dioxide by fluorescent X-ray analysis was 50% by weight.
[0024]
Example 12
100 g of flaky synthetic mica having a large particle size was added to 500 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. To the obtained dispersion, 0.1 g of ferric chloride and 0.2 g of urea were added and sufficiently stirred to dissolve. After dissolution, the mixture was heated with stirring and aged at a temperature of 80 ° C. or higher for 4 hours. After standing to cool, it was washed with filtered water and dried at 100 ° C. After drying, it was calcined at 200 ° C. for 2 hours, and 98 g of a mica-based composite material coated with iron oxide having a pale orange appearance was obtained. As a result of X-ray diffraction, no change was observed in the diffraction line, but as a result of fluorescent X-ray analysis, it was quantified to contain 0.1% by weight of iron. Moreover, as a result of observation with a scanning electron microscope, it was found that the surface of the large-sized flaky particles was coated.
[0025]
Example 13
40 g of the titanium dioxide-coated large particle size flaky synthetic mica composite material obtained in Example 7 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. To the obtained dispersion, 4.5 g of ferric ammonium oxalate and 1.0 g of urea were weighed, and 100 ml of ion-exchanged water was added thereto and stirred with a propeller until dissolved. This aqueous solution was added to a dispersion in which the titanium dioxide-coated large particle size flaky synthetic mica composite material was uniformly dispersed, heated to 80 ° C. with stirring, and heated and stirred for 4 hours. After 4 hours, the dispersion was allowed to cool, washed with filtered water, and dried at 100 ° C. for 7 hours. After drying, the mixture was allowed to cool to obtain 41 g of a composite material having a high chroma and a yellow interference color that was orange and brilliant. Further, this was baked at 900 ° C. for 4 hours. After allowing to cool, 40 g of a composite material having a bright, highly saturated yellow, glittering yellow interference color was obtained. From the X-ray diffraction of the obtained composite material, synthetic mica, rutile titanium dioxide, and pseudo-plate titanite (Fe 2 TiO 5 ), which is a compound of iron and titanium dioxide, were confirmed. Further, according to observation with a scanning electron microscope, granular particles (approximately 0.08 μm) having slightly larger particles are scattered on the particle surface, and 0.02 μm ultrafine particle particles are below the entire particle surface. Was uniformly coated. From this, the composite material according to this example is a large particle size flaky synthetic mica composite material coated with titanium dioxide and pseudo-plate titanite, and the amount of iron is 0.7% by weight as a result of fluorescent X-ray analysis. there were.
[0026]
Example 14
To 40 g of the titanium dioxide-coated large particle size flaky natural mica composite material obtained in Example 4, 700 ml of ion exchange water was added and sufficiently stirred with a propeller to uniformly disperse. To this dispersion was added a solution prepared by dissolving 16 g of cobalt chloride hexahydrate in 150 ml of ion-exchanged water. Next, the dispersion is heated to 50 ° C., and a 1 molar aqueous caustic soda solution is added at a dropping rate of 100 ml per minute while stirring to stop the dripping of caustic soda from reaching pH 9.0 and ripen for 2 hours. It was. After aging, the mixture was allowed to cool, washed with filtered water, and dried at 100 ° C. for 5 hours. The dried powder was fired at 900 ° C. for 4 hours. The composite material that had been allowed to cool was obtained with 43 g of a highly brilliant composite material having a green appearance color and a brilliant interference color of reddish blue. From the result of X-ray diffraction of this material, mica and titanium dioxide and cobalt titanate produced from titanium dioxide and cobalt oxide were confirmed. Also, from observation with a scanning electron microscope, 0.5 μm granular particles were scattered on the surface of the large flaky particles, and 0.02 μm ultrafine particles were observed below the particles. Furthermore, it was confirmed from the fluorescent X-ray analysis that 4% by weight of cobalt was coated. And this composite material was uniformly apply | coated to the double-sided adhesive tape, and it affixed on the concealment rate test paper which consists of white and black, and changed the colorimetric angle, and measured the color. As a result, when the color was measured in the 0 ° direction with respect to 45 ° incidence, green was strongly reflected, and when the color was measured at 30 ° close to the regular reflection direction, reddish blue reflection was strongly observed. In other words, the large particle size flaky natural mica composite material coated with cobalt and titanium metal oxide and fired is a flip-flop effect that exhibits a brilliant, brilliant, brilliant appearance with a green appearance color. Expressed. It was a mica-based composite material with excellent design.
[0027]
Example 15
In the same process as in Example 14, 2.5 g of lithium carbonate was mixed with 20 g of a composite material obtained by coating a titanium dioxide-coated large particle size flaky natural mica composite material with a cobalt compound, and calcined at 950 ° C. for 8 hours. After standing to cool, 22 g of a brilliant and bright material having a blue-green appearance with high saturation was obtained. From the X-ray diffraction results of this material, it was determined that it consists of mica and titanium dioxide and lithium cobalt titanate produced from titanium dioxide, cobalt oxide and lithium oxide. Also, from observation with a scanning electron microscope, 1 μm granular particles were scattered on the surface of the large flaky particles, and 0.02 μm ultrafine particles uniformly covered the entire surface under the particles. Furthermore, it was confirmed from the fluorescent X-ray analysis that 2.5% by weight of lithium was coated. Then, this composite material was uniformly applied to a double-sided adhesive tape and affixed to a white and black concealment rate test paper, and colorimetry was performed by changing the colorimetric angle. As a result, when the color was measured in the 0 ° direction with respect to 45 ° incidence, blue-green was strongly reflected, and when the color was measured at 30 ° close to the regular reflection direction, reddish blue reflection was strongly observed. In other words, the large particle size flaky natural mica composite material coated with a metal oxide of titanium, cobalt, and lithium and calcined with a bright blue-green color with a high appearance color and a brilliant glitter, A flip-flop effect exhibiting dichroism exhibiting a reddish blue interference color was developed. The material according to this example was a mica-based composite material having excellent design properties.
[0028]
Example 16
40 g of the titanium dioxide-coated large particle size flaky synthetic mica composite material obtained in Example 10 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. To the obtained dispersion, 10 g of nickel sulfate and 1 g of urea were dissolved in 100 ml of ion exchange water, and an aqueous solution was added. The mixture was boiled with stirring and aged for 4 hours. After aging, it was allowed to cool, washed with filtered water and dried at 100 ° C. The obtained material was glaring with a gray appearance color, and 42 g was obtained. 20 g of the obtained material was mixed with 3 g of sodium carbonate and baked at 1200 ° C. for 2 hours. After standing to cool, 21 g of a material having a high-saturation yellow appearance color and having a brilliant and bright blue-green interference color was obtained. From the result of X-ray diffraction of the obtained material, it was confirmed that there was a slight amount of synthetic mica and titanium dioxide and sodium nickel tetanet which is a compound of sodium, nickel and titanate. In addition, a state where the surface of the large particle flaky particles was melted was observed from a scanning electron microscope. Furthermore, as a result of fluorescent X-ray analysis, sodium was 5.5% by weight and lithium was 7% by weight. That is, this product is a large particle size flaky synthetic mica composite material in which synthetic mica is coated with titanium dioxide and sodium nickel titanate, and has a yellow appearance color with high saturation, and has a bright blue-green interference color with glitter. It was a highly mica-based composite material having a dichroic property of yellow and interference color.
[0029]
Example 17
40 g of titanium dioxide-coated large particle size flake natural mica obtained in Example 1 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. A solution obtained by dissolving 2.1 g of zirconium oxychloride in 50 ml of ion-exchanged water was added to the obtained dispersion, heated to the boil with stirring, and aged for 3 hours. After aging, it was allowed to cool and washed with filtered water. The material obtained after washing with water was added to 600 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. A solution obtained by dissolving 28 g of aluminum sulfate and 2.3 g of urea in 100 ml of ion-exchanged water was added to the obtained dispersion. Heat with stirring. Aging was performed at 80 ° C. for 4 hours. After aging, the mixture was allowed to cool, washed with filtered water, and dried at 100 ° C. The resulting material was fired at 200 ° C. for 16 hours. After standing to cool, 42 g of white glittering material was obtained. 5 g of the obtained material was added to 50 ml of 50% by volume ethanol aqueous solution and stirred with a propeller to uniformly disperse. For comparison, the material obtained in Example 1 was dispersed in ethanol in the same manner as described above. Each dispersion was irradiated with a 2.5 Kw Xe lamp for 30 hours. As a result, the material treated with zirconium oxychloride and aluminum sulfate was brilliant, but for comparison, the material obtained in Example 1 had a gray-black appearance color and changed to a brilliant material. That is, the processed material was much more resistant to light.
[0030]
From the X-ray diffraction of the obtained composite material, only an anatase type of mica and titanium dioxide was confirmed. According to the scanning electron microscope, needle-like particles having a particle diameter of 0.5 μm and particles having a particle diameter of 0.1 μm or less were scattered on the surface of the large particles. Furthermore, as a result of performing point analysis by EDX (energy dispersive X-ray analysis), the acicular particles were composed of an aluminum compound and the granular particles were composed of a zirconium compound. That is, the large particle size flaky mica composite material was coated with aluminum, a zirconium compound, and titanium dioxide. It was a glittering material with strong light resistance. Moreover, aluminum was 1% by weight as a result of quantification, and zirconium was 0.8% by weight as a result of quantification.
[0031]
Example 18
40 g of the titanium dioxide-coated large particle size flaky synthetic mica composite material obtained in Example 7 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. To the obtained dispersion, 8 g of zinc chloride and 18 g of urea were added and dissolved in 100 ml of 0.1N hydrochloric acid aqueous solution, and this was added. The mixture was heated with stirring and aged at 80 ° C. for 4 hours. After aging, it was allowed to cool and washed with filtered water. To this slurry, 600 ml of ion exchange water was added and stirred uniformly with a propeller. A caustic soda aqueous solution was added to the uniform dispersion to adjust the pH to 9 and heated to 80 ° C. To this heated stirring dispersion, 50 ml of an aqueous solution containing 2 g of water glass and 1.0 N aqueous hydrochloric acid were simultaneously added dropwise. However, while maintaining pH 9, the dropping rate of water glass was added at a rate of 10 ml per minute, and the mixture was aged for 2 hours after completion of the addition. After aging, it was filtered, washed with water and dried at 100 ° C. The dried material had a white, glittery, yellow interference color, yielding 43 g. From the X-ray diffraction of the obtained material, synthetic mica, rutile titanium dioxide and zinc oxide were observed. Further, from observation with a scanning electron microscope, acicular particles having a large particle surface of 0.5 μm and granular particles having a particle size of 0.02 μm were observed. Further, from the point analysis by EDX, the needle shape was a zinc compound, and 0.02 μm was a titanium compound. When the observation magnification with a scanning electron microscope was increased to 100,000, the acicular particles were covered with finer particles of 0.01 μm or less, which were silicon compounds. This indicates that this material is a composite mica material in which large particle size flaky synthetic mica is coated with titanium dioxide, zinc oxide, and a silicon compound. Furthermore, as a result of chemical analysis, zinc oxide was 10% by weight and silicon was 0.8% by weight.
[0032]
Example 19
40 g of the titanium dioxide-coated large particle size flaky synthetic mica composite material obtained in Example 6 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. A solution obtained by dissolving 6 g of bismuth nitrate and 2 g of urea in 100 ml of ion exchange water was added to the obtained dispersion. The mixture was heated with stirring and aged at 80 ° C. for 4 hours. After aging, it was allowed to cool, washed with filtered water, and dried at 100 ° C. for 8 hours. After drying, it was calcined at 400 ° C. for 2 hours. After standing to cool, 44 g of yellow glittering material was obtained. X-ray diffraction of this material confirmed synthetic mica, titanium dioxide rutile and bismuth oxide. Further, granular particles having a large particle surface of 0.03 μm were scattered from the scanning electron microscope, and a slightly smaller granular particle of about 0.02 μm covered the entire surface below the particles. And it was found from the point analysis by EDX that the interspersed particles are bismuth and the underlying particles are titanium. Further, bismuth was 6% by weight from fluorescent X-ray analysis. From this, this material is a composite material with a large particle size flaky synthetic mica coated with bismuth oxide and titanium dioxide, which has a yellow appearance color and shines brightly.
[0033]
Example 20
40 g of the titanium dioxide-coated large particle size flaky synthetic mica composite material obtained in Example 10 was added to 700 ml of ion-exchanged water and sufficiently stirred with a propeller to uniformly disperse. An aqueous solution in which 5 g of tungsten oxychloride was dissolved in 100 ml of ion-exchanged water was added to the obtained dispersion. The dispersion was heated to 80 ° C. with stirring, a 0.2N aqueous caustic potash solution was added dropwise at a rate of 10 ml / min, and the aqueous caustic potash solution was added dropwise until the pH of the liquid reached 9. The mixture was aged at pH 9 for 4 hours. After aging, it was allowed to cool, washed with filtered water, and dried at 100 ° C. The dried material was calcined at 500 ° C. for 2 hours. After standing to cool, 43 g of a material having a pale yellow glitter and a bright green interference color was obtained. X-ray diffraction of this material confirmed synthetic mica, titanium dioxide rutile and tungsten oxide. Further, from observation with a scanning electron microscope, it was found that irregular particles having a large particle surface of 0.3 μm were scattered, and below that, granular particles as small as 0.02 μm covered the entire surface. And the particle | grains scattered from the point analysis by EDX were tungsten, and the particle | grains under it were titanium. Moreover, tungsten was 5 weight% from the fluorescent X ray analysis. Therefore, this material is a large particle size flaky synthetic mica coated with tungsten oxide and titanium dioxide. It has a brilliant and bright green interference color with a pale yellow appearance color, and a light yellow and green interference color. It was a mica-based composite material with color and high design.
[0034]
【The invention's effect】
As described above, according to the mica-based composite material according to the present invention, the large particle size flaky mica is coated with the metal oxide and / or metal hydroxide. A chromatic flip-flop effect can be exhibited.
In addition, according to the method for producing a mica-based composite material according to the present invention, a large particle size flaky mica is coated with a metal oxide or a metal hydroxide, and then fired. The flip-flop effect can be exhibited more remarkably.

Claims (7)

粒子の板径が0.5〜2mmで、粒子の厚さが0.2〜2μmである大粒径薄片状雲母と、
該雲母表面に形成された金属酸化物および/又は金属水酸化物の一種又は二種以上からなる被覆層と、からなり、
金属酸化物が二酸化チタンを含む場合は二酸化チタンはルチル型及び/又はアナターゼ型であることを特徴とする雲母系複合材料。
A large particle size flaky mica having a particle diameter of 0.5 to 2 mm and a particle thickness of 0.2 to 2 μm;
A coating layer composed of one or more metal oxides and / or metal hydroxides formed on the mica surface ;
When the metal oxide contains titanium dioxide, the mica-based composite material is characterized in that the titanium dioxide is rutile type and / or anatase type .
請求項1記載の材料において、雲母が合成雲母であることを特徴とする雲母系複合材料。  The mica-based composite material according to claim 1, wherein the mica is synthetic mica. 請求項1又は2記載の材料において、前記金属酸化物ないし金属水酸化物における金属は、チタン、鉄、亜鉛、ジルコニウム、コバルト、ニッケル、リチウム、ナトリウム、珪素、アルミニウム、ビスマス、タングステン、スズからなる群より選択される一種又は二種以上であることを特徴とする雲母系複合材料。  3. The material according to claim 1, wherein the metal in the metal oxide or metal hydroxide is made of titanium, iron, zinc, zirconium, cobalt, nickel, lithium, sodium, silicon, aluminum, bismuth, tungsten, tin. A mica-based composite material, which is one or more selected from the group. 請求項1〜3のいずれかに記載の材料において、前記金属酸化物ないし金属水酸化物の一種又は二種以上の被覆量は、大粒径薄片状雲母に対し、0.1〜50重量%であることを特徴とする雲母系複合材料。  4. The material according to claim 1, wherein the coating amount of one or more of the metal oxides or metal hydroxides is 0.1 to 50 wt% with respect to the large particle size flaky mica. A mica-based composite material characterized by 請求項1〜4のいずれかに記載の材料において、大粒径薄片状雲母が湿式解砕により得られたものであることを特徴とする雲母系複合材料。5. The mica-based composite material according to claim 1, wherein the large particle size flaky mica is obtained by wet crushing. 請求項5記載の材料において、雲母の粗粉砕物を塩酸水溶液中でスラリー化し、これに炭酸ナトリウムを添加した後、湿式解砕することを特徴とする雲母系複合材料。 6. The mica-based composite material according to claim 5, wherein a coarsely pulverized product of mica is slurried in an aqueous hydrochloric acid solution, and sodium carbonate is added thereto, followed by wet crushing. 大粒径薄片状雲母に金属酸化物及び/又は金属水酸化物の一種又は二種以上を被覆した後、200〜1200℃で焼成することを特徴とする請求項1〜6の何れかに記載の雲母系複合材料の製造方法。After coating of the metal oxides and / or metal hydroxide one or two or more kinds in large diameter thin flake mica, according to claim 1, characterized in that firing at 200 to 1200 ° C. Manufacturing method of mica-based composite material.
JP14347497A 1997-05-16 1997-05-16 Mica-based composite material and method for producing the same Expired - Lifetime JP3884526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14347497A JP3884526B2 (en) 1997-05-16 1997-05-16 Mica-based composite material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14347497A JP3884526B2 (en) 1997-05-16 1997-05-16 Mica-based composite material and method for producing the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006287373A Division JP4624333B2 (en) 2006-10-23 2006-10-23 Mica-based composite material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH10316882A JPH10316882A (en) 1998-12-02
JP3884526B2 true JP3884526B2 (en) 2007-02-21

Family

ID=15339548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14347497A Expired - Lifetime JP3884526B2 (en) 1997-05-16 1997-05-16 Mica-based composite material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3884526B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142084A1 (en) * 2003-12-29 2005-06-30 Sanjoy Ganguly Cosmetic compositions containing nacreous pigments of large sized synthetic mica
JP2006291156A (en) * 2005-04-14 2006-10-26 Nippon Koken Kogyo Kk Production method of pearlescent pigment having high brilliance and pearlescent pigment produced by the production method
WO2013111771A1 (en) * 2012-01-23 2013-08-01 トピー工業株式会社 Iron oxide-coated layered silicate pigment
WO2016097421A1 (en) * 2014-12-19 2016-06-23 Eckart Gmbh Red-coloured decorative pigments with high chroma and high brilliancy, method for their production and use of same
JP7214276B1 (en) * 2022-04-18 2023-01-30 サンヨー化成株式会社 Handle material for plastic molded products, patterned plastic molded products containing the same, and method for producing handle material for plastic molded products

Also Published As

Publication number Publication date
JPH10316882A (en) 1998-12-02

Similar Documents

Publication Publication Date Title
KR102375787B1 (en) α-Alumina Flakes
KR102375756B1 (en) α-Alumina Flakes
US6019831A (en) Non-lustrous pigments
US7226503B2 (en) Effect pigments based on coated glass flakes
US4494993A (en) Nacreous pigments, their preparation and use
US3331699A (en) Nacreous glass flake pigment compositions
US4192691A (en) Metal oxide platelets as nacreous pigments
US7318861B2 (en) Effect pigment
EP0912640B1 (en) Pearlescent glass
JP2585128B2 (en) Colored fine particle inorganic pigment
US20040170838A1 (en) Multilayer pigments based on glass flakes
JP2004511644A (en) Method for producing pearlescent pigment by coating metal oxide on synthetic mica
KR100363369B1 (en) Matte Pigment
WO2016194352A1 (en) Lustrous pigment and production method therefor, pigment-containing composition, and pigment-containing painted object
JP4624333B2 (en) Mica-based composite material and method for producing the same
JP3884526B2 (en) Mica-based composite material and method for producing the same
TW200521193A (en) Improved effect pigment
JP2646454B2 (en) Coated pigment
JP5186071B2 (en) Silky luster pigment
JPS63254169A (en) Coating pigment and production thereof
JP3713086B2 (en) Matte colored pigment, its production method and use
JP3044949B2 (en) Decorative pigments
JP3884534B2 (en) Cosmetics
JPH07157686A (en) Bluish brilliant white nacreous pigment
JP2002069355A (en) Ink composition for intaglio printing and printed matter using the same composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

EXPY Cancellation because of completion of term