JP3884371B2 - レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法 - Google Patents

レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法 Download PDF

Info

Publication number
JP3884371B2
JP3884371B2 JP2002342798A JP2002342798A JP3884371B2 JP 3884371 B2 JP3884371 B2 JP 3884371B2 JP 2002342798 A JP2002342798 A JP 2002342798A JP 2002342798 A JP2002342798 A JP 2002342798A JP 3884371 B2 JP3884371 B2 JP 3884371B2
Authority
JP
Japan
Prior art keywords
exposure
exposure amount
pattern
monitor
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002342798A
Other languages
English (en)
Other versions
JP2004177611A (ja
Inventor
信洋 小峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002342798A priority Critical patent/JP3884371B2/ja
Priority to US10/721,903 priority patent/US7092068B2/en
Priority to CNB2003101155001A priority patent/CN1312530C/zh
Publication of JP2004177611A publication Critical patent/JP2004177611A/ja
Application granted granted Critical
Publication of JP3884371B2 publication Critical patent/JP3884371B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70625Dimensions, e.g. line width, critical dimension [CD], profile, sidewall angle or edge roughness
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • G03F1/42Alignment or registration features, e.g. alignment marks on the mask substrates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/50Mask blanks not covered by G03F1/20 - G03F1/34; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70466Multiple exposures, e.g. combination of fine and coarse exposures, double patterning or multiple exposures for printing a single feature

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、多重露光過程における実効的な露光量をモニタするレチクル、及び露光モニタ方法に関する。さらには、その露光モニタ方法を用いた露光方法、及び半導体装置の製造方法に関する。
【0002】
【従来の技術】
近年、複数回の露光過程を必要とする多重露光法が、微細加工技術の一つとして注目されている。半導体装置の性能は、配線パターンの寸法に大きく支配されている。このため、多重露光法を用いる工程において寸法精度を向上させるための制御パラメータを、より高精度に制御することが求められている。多重露光法を用いる場合、通常は各露光過程に対してそれぞれ露光条件を求めて、求めた露光条件で各露光過程を行って多重露光を実施している。
【0003】
フォトリソグラフィ工程は、露光装置を用いてレジスト膜を塗布した半導体基板上に回路パターンの転写を行う工程である。縮小投影露光装置を用いたパターン形成において、露光装置の解像力は、露光光の波長λに比例し、開口数NAに反比例する。したがって、半導体装置の微細化の要求に対して、これまでは露光波長の短波長化、投影レンズの高NA化とそれに伴ったプロセス改善が行われてきた。しかしながら、近年の半導体装置のさらなる微細化要求に対しては、露光量裕度および焦点深度の確保が極めて困難となってきている。このため、少ない露光マージンを有効に活用し、歩留まりの低下を招くことなく、加工寸法精度の向上を図るために、より高精度な露光量およびフォーカス管理が求められている。
【0004】
露光量管理については、使用する縮小投影露光装置において半導体基板上で解像しないピッチで、透過部と遮光部の寸法比を一方向に連続的に変えたパターンを配置したレチクルにより、露光量に傾斜分布を持たせて露光する露光量モニタ法の提案がなされている(特許文献1及び非特許文献1参照)。この方法によれば、レジストマスクパターン形成の実効的な適正露光量の変動分布を知ることができる。また、透過率の異なる複数のパターンを連続的に配置することで照射量の傾斜分布を持ったパターンを形成する方法も提案されている(非特許文献2参照)。
【0005】
【特許文献1】
特開2000−310850号公報(第5−9頁、第1図)
【0006】
【非特許文献1】
SPIEインテグレーティッド・サーキット・メトロロジ、インスペクション・アンド・プロセスコントロール4(Integrated Circuit Metrology, Inspection, and Process Control4 )、第1261巻、1990年、315頁
【0007】
【非特許文献2】
SPIEインテグレーティッド・サーキット・メトロロジ、インスペクション・アンド・プロセスコントロール4(integrated Circuit Metrology, Inspection, and Process Control4)、第2726巻、1996年、799頁
【0008】
【発明が解決しようとする課題】
上述したように、微細加工においては、半導体装置のパターン寸法の加工精度や均一性を求めるために、フォトリソグラフィの露光条件を高精度に制御することが重要となる。しかしながら、二重露光の場合、第1の露光過程と第2の露光過程相互間のかぶりの影響がある。この相互間のかぶりのため、露光量が設定した露光条件からずれてしまう。その結果、仕上がりのパターン寸法が設計と異なるという問題がある。従来行われている露光量モニタ法では、多重露光法の各々の露光過程における実効的な露光量を見積もることは可能であるものの、多重露光することによって各々の露光量に及ぼす影響を見積もることができないという問題があった。
【0009】
本発明は、このような課題を解決し、多重露光過程における実効的な露光量を高精度にモニタすることができるレチクル、露光モニタ方法、及び露光モニタ方法を適用した露光方法、半導体装置の製造方法を提供することを目的とする。
【0013】
【課題を解決するための手段】
本発明の第1の特徴は、(イ)レジスト上に、第1の遮光部に設けられた第1の窓部から第1の露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写するステップと、(ロ)レジストの未露後部に、第1の遮光部に設けられた第2の窓部から第1の露光量で、一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写するステップと、(ハ)レジストの未露光部に、第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写するステップと、(ニ)レジストの未露光部に、第1の遮光部に対応する位置の第2の遮光部に設けられた第4の窓部から可変露光量で、逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写するステップと、(ホ)第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1の変位、及び、第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2の変位を測定するステップと、(ヘ)第1の露光量及び可変露光量間の露光量差に対する第1及び第2の変位間の変位差を求めるステップと、(ト)新たなレジスト上に、第1の窓部から第1の露光量と異なる検査露光量で、第1の露光モニタパターンを転写するステップと、(チ)新たなレジストの未露光部に、第2の窓部から検査露光量で、第2の露光モニタパターンを転写するステップと、(リ)新たなレジストの未露光部に、第3の窓部から検査露光量で、第3の露光モニタパターンを転写するステップと、(ヌ)新たなレジストの未露光部に、第4の窓部から検査露光量で、第4の露光モニタパターンを転写するステップと、(ル)第1及び第3の露光モニタパターンが新たなレジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、第2及び第4の露光モニタパターンが新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定するステップと、(ヲ)露光量差と変位差との関係を用いて、新たな第1及び第2のパターン変位間の新たな変位差値から検査露光量による実効かぶり露光量を算出するステップとを含む露光モニタ方法であることを要旨とする。ここで、上記した(イ)と(ロ)のステップは同時でも別々でもよい。また、(ハ)と(ニ)のステップは同時でも別々でもよい。
【0014】
本発明の第2の特徴によれば、多重露光過程における実効的な露光量を高精度にモニタすることができる露光モニタ方法を提供することができる。
【0015】
本発明の第2の特徴は、(イ)検査用レジストを用いて、第1のマスク部を露光する第1の露光量に対して、検査用レジスト上に、第1のマスク部に設けられ、第1の遮光部に設けられた第1の窓部から第1の露光量と異なる一定露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写する段階、検査用レジストの未露後部に、第1の遮光部に設けられた第2の窓部から一定露光量で、一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写する段階、検査用レジストの未露光部に、第2のマスク部に設けられ、第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写する段階、検査用レジストの未露光部に、第1の遮光部に対応する位置の第2の遮光部に設けられた第4の窓部から可変露光量で、逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写する段階、第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1のパターン変位、及び、第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2のパターン変位を測定する段階、一定露光量及び可変露光量間の露光量差に対する第1及び第2のパターン変位間の変位差を求める段階、新たな検査用レジスト上に、第1の窓部から第1の露光量で、第1の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第2の窓部から第1の露光量で、第2の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第3の窓部から第1の露光量で、第3の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第4の窓部から第1の露光量で、第4の露光モニタパターンを転写する段階、第1及び第3の露光モニタパターンが新たな検査用レジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、第2及び第4の露光モニタパターンが新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定する段階、及び、露光量差と変位差との関係を用いて、新たな第1及び第2のパターン変位間の新たな変位差値から第1の露光量による実効かぶり露光量を算出する段階より、第1の実効かぶり露光量を得るステップと、(ロ)第1のマスク部に重ねて第2のマスク部を露光する第2の露光量に対して、更に新たな検査用レジストを用いて、第1のマスク部を第2の露光量で露光し、更に、第2のマスク部を第2の露光量で露光して、新たな変位差値を求めて第2の露光量による新たな実効かぶり露光量を算出することにより、第2の実効かぶり露光量を得るステップと、(ハ)第1のマスク部を含むレチクルと被露光基板を準備するステップと、(ニ)被露光基板に第1のマスク部を第1の露光量から第2の実効かぶり露光量を差し引いた露光量で露光するステップと、(ホ)第2のマスク部を含むレチクルを準備するステップと、(ヘ)被露光基板に第2のマスク部を第2の露光量から第1の実効かぶり露光量を差し引いた露光量で露光するステップとを含む露光方法であることを要旨とする。
【0016】
本発明の第3の特徴によれば、多重露光過程における実効的な露光量を高精度にモニタすることができる露光モニタ方法適用した露光方法を提供することができる。
【0017】
本発明の第3の特徴は、(イ)検査用レジストを用いて、第1のマスク部を露光する第1の露光量に対して、検査用レジスト上に、第1のマスク部に設けられ、第1の遮光部に設けられた第1の窓部から第1の露光量と異なる一定露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写する段階、検査用レジストの未露後部に、第1の遮光部に設けられた第2の窓部から一定露光量で、一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写する段階、検査用レジストの未露光部に、第2のマスク部に設けられ、第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写する段階、検査用レジストの未露光部に、第1の遮光部に対応する位置の第2の遮光部に設けられた第4の窓部から可変露光量で、逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写する段階、第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1のパターン変位、及び、第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2のパターン変位を測定する段階、一定露光量及び可変露光量間の露光量差に対する第1及び第2のパターン変位間の変位差を求める段階、新たな検査用レジスト上に、第1の窓部から第1の露光量で、第1の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第2の窓部から第1の露光量で、第2の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第3の窓部から第1の露光量で、第3の露光モニタパターンを転写する段階、新たな検査用レジストの未露光部に、第4の窓部から第1の露光量で、第4の露光モニタパターンを転写する段階、第1及び第3の露光モニタパターンが新たな検査用レジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、第2及び第4の露光モニタパターンが新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定する段階、及び、露光量差と変位差との関係を用いて、新たな第1及び第2のパターン変位間の新たな変位差値から第1の露光量による実効かぶり露光量を算出する段階より、第1の実効かぶり露光量を得るステップと、(ロ)第1のマスク部に重ねて第2のマスク部を露光する第2の露光量に対して、更に新たな検査用レジストを用いて、第1のマスク部を第2の露光量で露光し、更に、第2のマスク部を第2の露光量で露光して、新たな変位差値を求めて第2の露光量による新たな実効かぶり露光量を算出することにより、第2の実効かぶり露光量を得るステップと、(ハ)半導体基板上に、レジストを塗布する工程と、(ニ)半導体基板と第1のマスク部を含むレチクルを露光装置に装着する工程と、(ホ)半導体基板に第1のマスク部を第1の露光量から第2の実効かぶり露光量を差し引いた露光量で露光する工程と、(ヘ)第2のマスク部を含むレチクルを露光装置に装着する工程と、(ト)半導体基板に第2のマスク部を第2の露光量から第1の実効かぶり露光量を差し引いた露光量で露光する工程とを含む半導体装置の製造方法であることを要旨とする。
【0018】
本発明の第4の特徴によれば、多重露光過程における実効的な露光量を高精度にモニタすることができる露光モニタ方法を適用した半導体装置の製造方法を提供することができる。
【0019】
本発明の第2〜第4の特徴において、関係は、変位の露光量差に関する2次の近似式であることが好ましい。本発明の第1〜第4の特徴において、第1〜第4の露光モニタパターンが、光透過率が単調に変化するピッチを有する回折格子パターンで形成されることが好ましい。また、回折格子のピッチPは、光源の波長をλ、レンズの開口数をNA、光学系の光の干渉性を表わすコヒーレンスファクタをσとしたとき、
P<λ/(NA×(1+σ)) ・・・ (1)
の条件を満たすことが好ましい。
【0020】
【発明の実施の形態】
以下図面を参照して、本発明の実施の形態について説明する。以下の図面の記載において、同一または類似の部分には同一または類似の符号が付してある。但し、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
【0021】
本発明の実施の形態に係る二重露光用のレチクル4は、図1に示すように、第1の露光過程で露光される回路パターンが配置された第1の回路パターン領域21を有する第1のマスク部14aと、第2の露光過程で第1のマスク部より露光された第1の回路パターンに重ね合せて露光される回路パターンが配置された第2の回路パターン領域22を有する第2のマスク部14bからなる。第1のマスク部14aには、第1の露光過程において露光量を測定する第1の変位モニタ51が配置されている。第2のマスク部14bには、第2の露光過程において露光量を測定する第2の変位モニタ52が配置されている。ここで、第2の変位モニタ52は、第2の露光過程で第1の露光過程より露光された第1の変位モニタ51に重ね合せて露光される位置に配置されている。第1及び第2の変位モニタ51、52は、第1及び第2の回路パターン領域21、22中の回路パターンがない領域に配置される。
【0022】
第1のマスク部14aの第1の変位モニタ51には、図2の平面図、及び図3(a)のA−A断面図に示すように、第1の窓部11aと第2の窓部11bが透明基板5上の第1の遮光部16に設けられている。第1及び第2の窓部11a、11b内には、第1及び第2の露光モニタパターン6、7がそれぞれ配置されている。第1の露光モニタパターン6は、紙面左から右の一方向に向かってパターン幅が連続的に増加する複数の遮光膜6a〜6mを有する回折格子からなり、第2の露光モニタパターン7は、逆方向に向かってパターン幅が連続的に増加する複数の遮光膜7a〜7mを有する回折格子からなる。また、第1の窓部11a内には、第1の回路パターン領域21の回路パターンの一つである配線パターン3等が、第1の露光モニタパターン6の紙面に向かって左側に隣接して配置されている。
【0023】
第2のマスク部14bの第2の変位モニタ52には、図2の平面図、及び図3(b)のB−B断面図に示すように、第3の窓部12aと第4の窓部12bが透明基板5上の第2の遮光部18に設けられている。第3及び第4の窓部12a、12b内には、第3及び第4の露光モニタパターン8、9がそれぞれ配置されている。第3の露光モニタパターン8は、紙面左から右の一方向に向かってパターン幅が連続的に増加する複数の遮光膜8a〜8mを有する回折格子からなり、第4の露光モニタパターン9は、逆方向に向かってパターン幅が連続的に増加する複数の遮光膜9a〜9mを有する回折格子からなる。また、第3の窓部12aの紙面に向かって左側には、配線窓部17a、17bで挟まれた第2の回路パターン領域22の配線遮光部13が配置されている。ここで、第1及び第3の露光モニタ6、8と第2及び第4の露光モニタパターン7、9のパターンは180度反転してあるが、パターン寸法は同一である。
【0024】
第1及び第2の露光過程による第1及び第2の変位モニタ51、52のマスク合せについて、図4を用いて説明する。図4に示すように、第1の窓部11aに配置された第1の露光モニタパターン6は、第2のマスク部14bの第2の遮光部18に対応する位置、例えば、第3の窓部12aと配線窓部17bの間に収まるように配置されている。第2の窓部11bに配置された第2の露光モニタパターン7も、第2のマスク部14bの第2の遮光部18に対応する位置、例えば、第3及び第4の窓部12a、12bの間に収まるように配置されている。また、第3の窓部12aに配置された第3の露光モニタパターン8は、第1のマスク部14aの第1の遮光部16に対応する位置、例えば、第1及び第2の窓部11a、11bの間に収まるように配置されている。第4の窓部12bに配置された第4の露光モニタパターン9は、第1のマスク部14aの第1の遮光部16に対応する位置、例えば、第2の窓部11bの紙面に受かって左側に収まるように配置されている。また、第1のマスク部14aの配線パターン3は、第2のマスク部14bの配線遮光部13により遮光される位置に収まるように配置されている。
【0025】
二重露光工程においてはまず、第1の露光過程で、第1のマスク部14aの配線パターン3等を含む回路パターンと第1の変位モニタ51の第1及び第2の露光モニタパターン6、7が露光される。引き続き、第2の露光過程では、第3及び第4の露光モニタパターン8、9が、第1の露光過程で遮光された第1の遮光部16の領域に露光される。このとき、露光された第1および第2の露光モニタパターン6、7は、第2の露光過程においては、第2の遮光部18で遮光される。また、第1の露光過程で露光された第1のマスク部14aの配線パターン3は、第2の露光過程では、第2のマスク部の配線遮光部13により遮光される。
【0026】
本発明の実施の形態の二重露光工程の説明に用いる露光装置50は、例えば、図5に示すような縮小投影露光装置(ステッパ)で、縮小比は1:4としている。光源41、シャッタ42及び照明レンズ系44により照明光学系40が構成されている。光源41として、波長λ:248nmのクリプトンフロライド(KrF)エキシマレーザを用い、照明レンズ系44には、フライアイレンズ及びコンデンサレンズが含まれる。照明光学系のコヒーレンスファクタσは、0.75である。投影光学系46は、投影レンズと瞳絞り等により構成され、レンズ開口数NAは、0.6である。露光光Bは、照明光学系45と投影光学系46との間に設置されたレチクル4のパターンをステージ48上の半導体基板1に縮小投影する。二重露光工程では、まず、レチクル4上の第1のマスク部14aが半導体基板のショット領域にステップアンドリピートで露光される。次いで、レチクル4上の第2のマスク部14bが、第1のマスク部14aが露光されたショット領域にステップアンドリピートで露光される。ショット当りの露光範囲は、20mm角である。なお、説明の便宜上、露光装置50の縮小比を1:4としているが、任意の縮小比でもよいことは勿論である。以下の説明において、レチクル4上のパターンの寸法としては、断りのない限り半導体基板1上に縮小投影された寸法に換算して記述する。
【0027】
次に、本発明の実施の形態に係る露光モニタ方法について、簡単のため、第1の露光モニタパターン6を例にとり説明する。図6(a)及び(b)に示すように、第1の露光モニタパターン6は、透明基板5上に配置した複数の遮光膜6a〜6mの幅を、固定のピッチPで、一定の割合で増加させることにより開口率を連続的に変化させた回折格子である。遮光膜6aの紙面に向かって右側は開口率:100%に近い最大値であり、遮光膜6mでは開口率:0%となる。波長λ、開口数NAに対して、ピッチPが、(1)式の条件を満たすとき、投影される第1の露光モニタパターン6の回折格子パターンは、基板上では解像されない。露光光Bは、第1の露光モニタパターン6の回折格子により回折されるが、1次回折光は露光装置の投影光学系46の瞳絞りで遮られ、半導体基板1面上に到達しない。即ち、半導体基板1面上では、回折格子パターンの開口率に応じて0次回折光の強度分布が生じるだけで、回折格子パターンは結像されない。即ち、回折格子パターンは開口率に比例して、一方向に向かって光透過率が一定の割合で連続的に変化するため、透過する露光光量に傾斜分布が生じる。本発明の実施の形態の説明に用いる露光装置50(λ:248nm、NA:0.6、σ:0.75)の場合、(1)式の条件を満たすピッチPは、略234nm以下となる。ここでは、ピッチPとして、190nmとしている。
【0028】
本発明の実施の形態の説明に用いるポジティブ型のレジストは、例えば、下限露光量EXc以上で感度を持つ。下限露光量EXc以上の露光量で露光されたレジスト膜は現像工程で溶解することで膜厚は減少し、限界露光量EX0以上の露光量で完全に溶解する。通常は余裕を見て限界露光量EX0以上の露光量EXが与えられる。限界露光量EXcと下限露光量EX0間は中間領域でレジスト膜は膜減りするものの除去されずに基板表面に残る。なお、露光量を限界露光量EX0よりはるかに大きくして、所謂オーバ露光するとレジスト残膜はないものの、残すべきレジストパターン幅も減少してしまう。従って、露光量EXの設定は、限界露光量EX0の数10%オーバの露光量が用いられる。
【0029】
図7(a)に示すように、露光光Bを、第1の露光モニタパターン6を有するレチクル4に照射し、レジスト膜を塗布した半導体基板1を露光する。例えば、第1の露光モニタパターン6の遮光膜6mの左側のエッジを基点とすると、図7(b)に示すように、得られる光学像は、紙面右に向かって、なだらかに露光強度が増加し、第1の露光モニタパターン6の遮光膜6aの右側のエッジで露光強度は1に達する分布を持つ。ここで、露光強度は、露光光の露光量EXで規格化された値である。露光量EXは、EX0よりも十分大きいので、レジストの感度曲線に従い、半導体基板1上のレジスト膜に露光され、図7(c)に示すような第1のモニタレジスト膜26が得られる。即ち、露光強度がEXc/EXより小さい範囲に対応する露光位置では、レジスト膜はそのまま残り、露光強度がEXc/EX〜EX0/EX間で第1のモニタレジスト膜26の傾斜側壁20が形成される。なお、露光強度がEX0/EX〜1間に対応する露光位置ではレジスト膜は除去されるため、図7(c)に示されるように、第1のモニタレジスト膜26は、第1の露光モニタパターン6の遮光膜6a側のエッジより、ずれ幅Δsだけ縮小後退する。あるいは、露光された第1の露光モニタパターン6のパターン中心Caと第1のモニタレジスト膜26のパターン中心Cbには、パターン変位Δc(≒Δs/2)が発生する。したがって、パターン変位Δcあるいはずれ幅Δsを光学式の合せずれ検査装置を使用して測定することにより、露光量がモニタできる。
【0030】
本発明の実施の形態に係るレチクル4を用いて二重露光工程を行う場合について説明する。第1の露光過程において、図8(a)に示すように、例えば第1の露光量D1でいったん第1のマスク部14aの第1の変位モニタ51がレジスト上に露光される。その結果、半導体基板1上のレジストが露光された露光レジスト32の間に未露光部の、第1及び第2の露光モニタパターン6、7に対応した第1及び第2のモニタ潜像36、37と、第1の遮光部16の一部に対応した第3及び第4のモニタ遮光部38、39が形成される。第1及び第2のモニタ潜像36、37は、図7で説明したように、第1の露光量D1に応じてパターン幅が第1のずれ幅Δ1だけ縮小して、第1のモニタ幅L1となる。
【0031】
引き続き、第2の露光過程では、図8(b)に示すように、第2のマスク部14bの第2の変位モニタ52が第2の露光量D2で露光される。その結果、第1及び第2の露光過程で露光された露光レジスト32aの間に、未露光部の第1及び第2のモニタ潜像36a、37aに加えて、第3のモニタ遮光部38に未露光の第3のモニタ潜像38a及び第4のモニタ遮光部39に未露光の第4のモニタ潜像39aが形成される。第3及び第4のモニタ潜像38、39は、第2の露光量D2に応じてパターン幅が第2のずれ幅Δ2だけ縮小して、第2のモニタ幅L2となる。第1の露光過程で露光された第1及び第2のモニタ潜像36、37は、第2の露光過程では第2の遮光部18で遮光される。二重露光後に得られた第1及び第2のモニタ潜像36a、37aは、単独に第1の露光量D1で露光されて得られるパターン幅より更に、変位Xeだけ狭くなって、第1の縮小幅La1となる。第2の露光過程の時に、回折や乱反射等に起因する迷光により、第2の遮光部18下にかぶりが生じ、オーバー露光になるためである。
【0032】
二重露光工程のかぶり量を評価するため、図8(a)で示した第1の露光過程において、まず、第1の露光量D1を一定値として第1の変位モニタ51を、半導体基板1上のショット領域に所望の数だけ露光する。引き続き図8(b)で示した第2の露光過程では、第2の露光量D2を可変露光量Dxとして変化させながら第2の変位モニタ52を、第1の変位モニタ51が露光された半導体基板1のショット領域に露光する。現像後、図8(c)に示すように、第1及び第2の変位モニタ51、52の第1第4の露光モニタパターン69が転写された第1〜第4のモニタレジスト膜26〜29が形成される。第1及び第3のモニタレジスト膜26、28は、例えば、紙面に向かって右側のパターンエッジが左方向に縮小後退する。逆に、第2及び第4のモニタレジスト膜27、29は、紙面に向かって左側のパターンエッジが右方向に縮小後退する。更に、第1及び第2のモニタレジスト膜26、27は、第2の露光過程で可変露光量Dxのかぶりを受けて、互いに逆方向に変位Xeだけずれている。一方、第2の露光過程で第3及び第4の露光モニタパターン8、9が露光されるとき、合せずれが生じて、第3及び第4のモニタレジスト膜28、29は、二重露光による合せずれ幅Xaだけ同一方向にずれる。ここで、例えば、第1のモニタレジスト膜26が縮小後退する、紙面に向かって左方向を正の方向とする。したがって、二重露光工程で得られる第1のモニタレジスト膜26と第3のモニタレジスト膜28で生じる第1のパタン変位S1は、
S1=Xe+Xa+ΔS1+ΔS2 ・・・ (2)
となる。第2のモニタレジスト膜27と第4のモニタレジスト膜29で生じる第2のパターン変位S2は同様に、
S2=−Xe+Xa−ΔS1−ΔS2 ・・・ (3)
と表わすことができる。したがって、第1及び第2のパターン変位S1、S2の変位差ΔXは、(2)及び(3)式の差より、
ΔX=(S1−S2)/2=Xe+ΔS1+ΔS2 ・・・ (4)
と表わすことができる。
【0033】
第1及び第2のパターン変位S1、S2は、光学式の合せずれ検査装置で測定することができる。ここで、第1の露光量D1と第2の露光量(可変露光量)D2との差の絶対値を露光量差ΔDとし、各露光量差ΔDについて変位差ΔXをプロットすると、図9に示すような関係が得られる。この露光量差ΔDと変位差ΔXの関係は、補正係数A、B、Cを用いて、
ΔX=A・ΔD+B・ΔD+C ・・・ (5)
と2次式でよく近似できる。ここで、補正係数A、B、Cは測定データをもとにフィティングにより求められる。
【0034】
次に、第1及び第2の露光過程での露光量をともに露光量D3(検査露光量)と同じにして、同様に二重露光を行う。そして、合せずれ検査装置の測定結果より、(4)式により変位差ΔX(D3)を算出する。得られた変位差ΔX(D3)は、露光量D3が第1の露光量D1と等しくなければ、(5)式の補正係数Cと等しくない。変位差ΔX(D3)を、(5)式に代入して、算出されるΔDを「実効かぶり露光量(以下において、「かぶり露光量」と記す。)E3」とする。この場合、二重露光工程での第1および第2の露光過程で、同じ露光量を用いているため、算出された変位差の変化分は、露光量D3のかぶりから生じるものである。したがって、かぶり露光量E3は、二重露光工程における第2の露光過程の露光量D3で生じるかぶりである。このようにして、本発明の実施の形態に係る露光モニタ方法よれば、二重露光工程でのかぶり露光量E3を定量的に評価することができる。
【0035】
次に、本発明の実施の形態に係るレチクル4を用いた、回路パターン形成のための露光方法を、図10により説明する。レチクル4の第1及び第2のマスク部14a、14bを単独で露光する場合の第1の最適露光量Dm1及び第2の最適露光量Dm2を予め決定しておく。更に、本発明の実施の形態に係る露光モニタ方法により第1及び第2の最適露光量Dm1、Dm2に対してそれぞれ、第1のかぶり露光量E1、及び第2のかぶり露光量E2を算出する。
【0036】
(イ)まず、レチクル4が設置された露光装置50のステージ48上に、図10(a)に示すように、ポジティブ型のレジスト31を塗布した半導体基板1を装着する。
【0037】
(ロ)第1の露光過程で、第1の露光量D1で第1のマスク部14aの第1を、半導体基板1上の各ショット領域にステップアンドリピートで露光する。ここで、第1の露光量D1は、第1の最適露光量Dm1から第2のかぶり露光量E2を差し引いた第1の補正露光量(Dm1−E2)としてある。例えば、図10(b)に示すように、レジスト31が露光された露光レジスト32の間に未露後部の配線潜像33、第1のモニタ潜像36、第2のモニタ潜像37、第3のモニタ遮光部38、及び第4のモニタ遮光部39が形成される。
【0038】
(ハ)引き続き第2の露光過程では、第2の露光量D2で第2のマスク部14bを、第1のマスク部14aが露光された半導体基板1の各ショット領域にステップアンドリピートで露光する。第2の露光量D2は、第2の最適露光量Dm2としてある。図10(c)に示すように、第1及び第2の露光過程で露光された露光レジスト32aの間に、未露後部の配線潜像33a、第1および第2のモニタ潜像36a、37aに加えて、第3のモニタ遮光部38に第3のモニタ潜像38a、及び第4のモニタ遮光部39に第4のモニタ潜像39aが新たに形成される。なお、配線潜像33a、第1および第2のモニタ潜像36a、37aは、第2の露光過程において、かぶり露光量E2でかぶり露光されている。
【0039】
(ニ)上記のように二重露光された半導体基板1を現像して、図10(d)に示すように、配線レジスト膜23と、第1〜第4のモニタレジスト膜26〜29が形成される。配線レジスト膜23は、第1の露光過程において、第2の露光過程で用いる第2の露光量D2から生じるかぶり露光量E2により補正された第1の補正露光量(Dm1−E2)で露光されているため、所望のパターン寸法となる。
【0040】
本発明の実施の形態に係る露光方法によれば、二重露光工程において高精度で制御性良くパターン形成ができる。
【0041】
なお、上述の説明においては、第1の露光過程で配線パターン3等の回路パターンをレジスト31上に露光する場合について説明したが、逆に、第1の露光過程で遮光された領域に第2の露光過程で配線パターン等の回路パターンを露光する工程もある。この場合は、第2の露光過程の第2の露光量D2として、第2の最適露光量Dm2から第1のかぶり露光量E1を差し引いた第2の補正露光量(Dm2−E1)を用いれば、同様の効果が得られることは、勿論である。更に、第1および第2の露光過程それぞれで、異なる回路パターンを露光する場合には、第1及び第2の露光量D1、D2として、第1及び第2の補正露光量(Dm1−E2)、(Dm2−E1)を用いれば、同様の効果があることが確認されている。
【0042】
(変形例)
次に、本発明の実施の形態の変形例に係わる二重露光用のレチクルを説明する。本発明の実施の形態の変形例では、露光モニタパターンに特徴があり、他は本発明の実施の形態と同様であるので、重複した記載を省略する。
【0043】
本発明の実施の形態において、第1及び第2の変位モニタ51、52に配置される第1〜第4の露光モニタパターン6〜8は単一のパターンである。単一の露光モニタの替わりに、例えば、複数の露光モニタ群のパターン変位を測ることにより、変位測定精度を向上させることができる。本発明の実施の形態の変形例として、ボックス形状の露光モニタを備えたレチクル4aを図11に示す。レチクル4aは、図11に示すように、透明基板5a上に第1の変位モニタ53と第2の変位モニタ54を備えている。上述したレチクル4と同様に、第1の変位モニタ53は、第1の露光過程で用いる第1の露光マスク部に設けられ、第2の変位モニタ54は、第2の露光過程で用いる第2の露光マスク部に設けられる。
【0044】
第1の変位モニタ53には、枠状に配置された4個の第1〜第4のモニタ61〜64からなる第1の露光モニタボックス60と、枠状に配置された4個の第1〜第4のモニタ71〜74からなる第2の露光モニタボックス70、及び均一な遮光膜よりなる第1の遮光部65からなる。
【0045】
第2の変位モニタ54には、枠状に配置された4個の第1〜第4のモニタ81〜84からなる第3の露光モニタボックス80と、枠状に配置された4個の第1〜第4のモニタ91〜94からなる第4の露光モニタボックス90、及び均一な遮光膜よりなる第2の遮光部85からなる。
【0046】
ここで、本発明の実施の形態の変形例において、第1〜第4のモニタ61〜64,71〜74,81〜84、及び91〜94は、図11では詳細は省略しているが、図6に示した第1の露光モニタパターン6と同様の構造の回折格子パターンを有する露光モニタである。第1および第3の露光モニタボックス60、80において、第1および第2のモニタ61、62、81、82は、例えば、図11の紙面右から左の方向に開口率が増加する回折格子であり、第3及び第4のモニタ63、64、83、84は、紙面上から下方向に開口率が増加する回折格子である。また、第2および第4の露光モニタボックス70、90においては、第1および第2のモニタ71、72、91、92は、例えば、図11の紙面左から右の方向に開口率が増加する回折格子であり、第3及び第4のモニタ73、74、93、94は、紙面下から上方向に開口率が増加する回折格子である。
【0047】
更に、第1の変位モニタ53に配置された、第1及び第2の露光モニタボックス60、70は、第2の変位モニタ54の第2の遮光部85により遮光される領域に収まるように重ねあわされる。第2の変位モニタ54に配置されている第3及び第4の露光モニタボックス80、90は、第1の変位モニタ53の第1の遮光部65により遮光される領域に収まるように重ねあわされる。
【0048】
図11において、第1及び第3の露光モニタボックス60、80は、露光により紙面に向かって右上方向にパターンずれを起こし、第2及び第4の露光モニタボックス70、90は、紙面に向かって左下方向にパターンずれすることになる。このように、レチクル4aによれば、第1及び第2の変位モニタ53、54のパターンの変位として1次元だけでなく、2次元の変位を用いることも可能となり、より高精度に二重露光のかぶり露光量の測定ができる。
【0049】
このように、本発明の実施の形態の変形例によれば、二重露光工程のかぶりの影響を簡便にかつ高精度で再現性良く測定できる。
【0050】
(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者にはさまざまな代替実施の形態、実施例及び運用技術が明らかとなろう。
【0051】
本発明の実施の形態において、露光光の透過率の分布を持たせるために、回折格子の開口率を所望の割合で変化させた露光パターンを用いたが、回折格子に限らず、他の方法により露光光の透過率の分布を持たせることができれば、いかなる方法でもよいことは勿論である。例えば、図12(a)及び(b)に示すように、レチクル4bに用いる第1の露光モニタパターン106として、透明基板5b上に、複数の遮光膜106a〜106mを一定幅で、厚さを一定の割合で変化させて配置している。金属であっても薄膜とすれば光透過性が生じるので、遮光膜106a〜106mとして使用している金属を、厚さの分布を持たせて堆積すれば光の透過率を可変にできる。遮光膜106aから遮光膜106mに向かって各遮光膜の厚さはステップ状に増加させてある。したがって、遮光膜106aの紙面に向かって右側は透過率:100%に近い最大値であり、遮光膜106mでは透過率:0%となる。このように、遮光膜の厚さをステップ状に変化させた構造を、本発明の実施の形態及び変形例で説明した露光モニタに適用できることは、勿論である。また、遮光膜の厚さを一定方向に連続的に変化させた構造でも、露光モニタが可能である。更に、光透過率を可変にするため、遮光材料を粒子状にして粒子密度を変化させた構造でも、同様の効果が得られることは、勿論である。
【0052】
また、本発明の実施の形態においては、一枚のレチクルにより二重露光を行う例を用いて説明した。複数のレチクルを用いて多重露光を行う場合にも、複数の露光過程のかぶり露光を、同様に評価できることは、勿論である。
【0053】
また、本発明の実施の形態においては、説明の便宜上、KrFエキシマレーザ縮小投影露光装置を用いているが、光源として、i線やg線等の紫外線、他のエキシマレーザ、あるいは、電子ビームやX線等を用いてもよいことは勿論である。また、コンタクト方式、プロキシミティ方式あるいはミラープロジェクション方式などの露光装置を用いてもよい。
【0054】
このように、本発明はここでは記載していないさまざまな実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。
【0055】
【発明の効果】
本発明によれば、多重露光過程における実効的な露光量を高精度にモニタすることができるレチクル、露光モニタ方法、及び露光モニタ方法を適用した露光方法、半導体装置の製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態に係るレチクルの一例を示すレイアウト図である。
【図2】本発明の実施の形態に係るレチクルの一例を示す平面図である。
【図3】本発明の実施の形態に係るレチクルの一例を示す断面図である。
【図4】本発明の実施の形態に係る二重露光工程での、第1及び第2の変位モニタの重ね合わせの一例を示す図である。
【図5】本発明の実施の形態に係るモニタ方法に用いる露光装置の概略構成図である。
【図6】本発明の実施の形態に係るレチクルの一例を示す、(a)平面図、及び(b)断面図である。
【図7】本発明の実施の形態に係るモニタ方法の説明のための、(a)レチクルの断面図、(b)露光光の透過特性を示す図、及び(c)形成されるレジストパターンの断面図の一例である。
【図8】本発明の実施の形態に係るモニタ方法を説明するための露光工程断面図である。
【図9】本発明の実施の形態に係るモニタ方法による露光量差に対する変位を示すグラフである。
【図10】本発明の実施の形態に係るモニタ方法を説明するための工程断面図の一例である。
【図11】本発明の実施の形態の変形例に係るレチクルの一例を示す平面図である。
【図12】本発明のその他の実施の形態に係るレチクルの一例を示す、(a)平面図、及び(b)断面図である。
【符号の説明】
1 半導体基板
3 配線パターン
4、4a、4b レチクル
5、5a、5b 透明基板
6、106 第1の露光モニタパターン
6a〜6m、7a〜7m、8a〜8m、9a〜9m、106a〜106m 遮光膜
7 第2の露光モニタパターン
8 第3の露光モニタパターン
9 第4の露光モニタパターン
11a 第1の窓部
11b 第2の窓部
12a 第3の窓部
12b 第4の窓部
13 配線遮光部
14a 第1のマスク部
14b 第2のマスク部
15 露光テストパターン
16、65 第1の遮光部
17a、17b 配線窓部
18、85 第2の遮光部
20 傾斜側壁
21 第1の回路パターン領域
22 第2の回路パターン領域
23 配線レジスト膜
26 第1のモニタレジスト膜
27 第2のモニタレジスト膜
28 第3のモニタレジスト膜
29 第4のモニタレジスト膜
31 レジスト
32、32a 露光レジスト
33 配線潜像
36、36a 第1のモニタ潜像
37、37a 第2のモニタ潜像
38 第3のモニタ遮光部
38a 第3のモニタ潜像
39 第4のモニタ遮光部
39a 第4のモニタ潜像
40 照明光学系
41 光源
42 シャッタ
44 照明レンズ系
46 投影光学系
48 ステージ
50 露光装置
51、53 第1の変位モニタ
52、54 第2の変位モニタ
60 第1の露光モニタボックス
61、71、81、91 第1のモニタ
62、72、82、92 第2のモニタ
63、73、83、93 第3のモニタ
64、74、84、94 第4のモニタ
70 第2の露光モニタボックス
80 第3の露光モニタボックス
90 第4の露光モニタボックス

Claims (15)

  1. レジスト上に、第1の遮光部に設けられた第1の窓部から第1の露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写するステップと、
    前記レジストの未露部に、前記第1の遮光部に設けられた第2の窓部から前記第1の露光量で、前記一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写するステップと、
    前記レジストの未露光部に、前記第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、前記一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写するステップと、
    前記レジストの未露光部に、前記第1の遮光部に対応する位置の前記第2の遮光部に設けられた第4の窓部から前記可変露光量で、前記逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写するステップと、
    前記第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる前記第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる前記第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2のパターン変位を測定するステップと、
    前記第1の露光量及び前記可変露光量間の露光量差に対する前記第1及び第2のパターン変位間の変位差を求めるステップと、
    新たなレジスト上に、前記第1の窓部から前記第1の露光量と異なる検査露光量で、前記第1の露光モニタパターンを転写するステップと、
    前記新たなレジストの未露光部に、前記第2の窓部から前記検査露光量で、前記第2の露光モニタパターンを転写するステップと、
    前記新たなレジストの未露光部に、前記第3の窓部から前記検査露光量で、前記第3の露光モニタパターンを転写するステップと、
    前記新たなレジストの未露光部に、前記第4の窓部から前記検査露光量で、前記第4の露光モニタパターンを転写するステップと、
    前記第1及び第3の露光モニタパターンが前記新たなレジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが前記新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定するステップと、
    前記露光量差と前記変位差との関係を用いて、前記新たな第1及び第2のパターン変位間の新たな変位差値から前記検査露光量による実効かぶり露光量を算出するステップ
    とを含むことを特徴とする露光モニタ方法。
  2. 前記変位差は、前記露光量差に関する2次の近似式で表わされることを特徴とする請求項1に記載の露光モニタ方法。
  3. 前記第1〜第4の露光モニタパターンが、回折格子で形成されることを特徴とする請求項1又は2に記載の露光モニタ方法。
  4. 前記回折格子のピッチは、前記露光に用いる光源の波長と、レンズの開口数と、光学系のコヒーレンスファクタにより定まる幅より小さいことを特徴とする請求項3に記載の露光モニタ方法。
  5. 前記幅は、前記波長を、前記コヒーレンスファクタと1との和及び前記開口数で割った値であることを特徴とする請求項3又は4に記載の露光モニタ方法。
  6. 検査用レジストを用いて、第1のマスク部を露光する第1の露光量に対して、前記検査用レジスト上に、前記第1のマスク部に設けられ、第1の遮光部に設けられた第1の窓部から前記第1の露光量と異なる一定露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写する段階、前記検査用レジストの未露後部に、前記第1の遮光部に設けられた第2の窓部から前記一定露光量で、前記一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写する段階、前記検査用レジストの未露光部に、第2のマスク部に設けられ、前記第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、前記一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写する段階、前記検査用レジストの未露光部に、前記第1の遮光部に対応する位置の前記第2の遮光部に設けられた第4の窓部から前記可変露光量で、前記逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写する段階、前記第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる前記第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる前記第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2のパターン変位を測定する段階、前記一定露光量及び前記可変露光量間の露光量差に対する前記第1及び第2のパターン変位間の変位差を求める段階、新たな検査用レジスト上に、前記第1の窓部から前記第1の露光量で、前記第1の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第2の窓部から前記第1の露光量で、前記第2の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第3の窓部から前記第1の露光量で、前記第3の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第4の窓部から前記第1の露光量で、前記第4の露光モニタパターンを転写する段階、前記第1及び第3の露光モニタパターンが前記新たな検査用レジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが前記新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定する段階、及び、前記露光量差と前記変位差との関係を用いて、前記新たな第1及び第2のパターン変位間の新たな変位差値から前記第1の露光量による実効かぶり露光量を算出する段階より、第1の実効かぶり露光量を得るステップと、
    前記第1のマスク部に重ねて第2のマスク部を露光する第2の露光量に対して、更に新たな検査用レジストを用いて、前記第1のマスク部を前記第2の露光量で露光し、更に、前記第2のマスク部を前記第2の露光量で露光して、新たな変位差値を求めて前記第2の露光量による新たな実効かぶり露光量を算出することにより、第2の実効かぶり露光量を得るステップと、
    前記第1のマスク部を含むレチクルと被露光基板を準備するステップと、
    前記被露光基板に前記第1のマスク部を前記第1の露光量から前記第2の実効かぶり露光量を差し引いた露光量で露光するステップと、
    前記第2のマスク部を含むレチクルを準備するステップと、
    前記被露光基板に前記第2のマスク部を前記第2の露光量から前記第1の実効かぶり露光量を差し引いた露光量で露光するステップ
    とを含むことを特徴とする露光方法。
  7. 前記変位差は、前記露光量差に関する2次の近似式で表わされることを特徴とする請求項6に記載の露光方法。
  8. 前記第1〜第4の露光モニタパターンが、回折格子で形成されることを特徴とする請求項6又は7に記載の露光方法。
  9. 前記回折格子のピッチは、前記露光に用いる光源の波長と、レンズの開口数と、光学系のコヒーレンスファクタにより定まる幅より小さいことを特徴とする請求項8に記載の露光方法。
  10. 前記幅は、前記波長を、前記コヒーレンスファクタと1との和及び前記開口数で割った値であることを特徴とする請求項8又は9に記載の露光方法。
  11. 検査用レジストを用いて、第1のマスク部を露光する第1の露光量に対して、前記検査用レジスト上に、前記第1のマスク部に設けられ、第1の遮光部に設けられた第1の窓部から前記第1の露光量と異なる一定露光量で、一方向に露光量を傾斜分布させて第1の露光モニタパターンを転写する段階、前記検査用レジストの未露後部に、前記第1の遮光部に設けられた第2の窓部から前記一定露光量で、前記一方向の逆方向に露光量を傾斜分布させて第2の露光モニタパターンを転写する段階、前記検査用レジストの未露光部に、第2のマスク部に設けられ、前記第1の遮光部に対応する位置の第2の遮光部に設けられた第3の窓部から可変露光量で、前記一方向に露光量を傾斜分布させて第3の露光モニタパターンを転写する段階、前記検査用レジストの未露光部に、前記第1の遮光部に対応する位置の前記第2の遮光部に設けられた第4の窓部から前記可変露光量で、前記逆方向に露光量を傾斜分布させて第4の露光モニタパターンを転写する段階、前記第1及び第3の露光モニタパターンが転写された第1及び第3のモニタレジスト膜のパターン中心のそれぞれで生じる前記第1及び第3の露光モニタパターンのパターン中心に対応する位置からの第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが転写された第2及び第4のモニタレジスト膜のパターン中心のそれぞれで生じる前記第2及び第4の露光モニタパターンのパターン中心に対応する位置からの第2のパターン変位を測定する段階、前記一定露光量及び前記可変露光量間の露光量差に対する前記第1及び第2のパターン変位間の変位差を求める段階、新たな検査用レジスト上に、前記第1の窓部から前記第1の露光量で、前記第1の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第2の窓部から前記第1の露光量で、前記第2の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第3の窓部から前記第1の露光量で、前記第3の露光モニタパターンを転写する段階、前記新たな検査用レジストの未露光部に、前記第4の窓部から前記第1の露光量で、前記第4の露光モニタパターンを転写する段階、前記第1及び第3の露光モニタパターンが前記新たな検査用レジストに転写された新たな第1及び第3のモニタレジスト膜の新たな第1のパターン変位、及び、前記第2及び第4の露光モニタパターンが前記新たなレジストに転写された新たな第2及び第4のモニタレジスト膜の新たな第2のパターン変位を測定する段階、及び、前記露光量差と前記変位差との関係を用いて、前記新たな第1及び第2のパターン変位間の新たな変位差値から前記第1の露光量による実効かぶり露光量を算出する段階より、第1の実効かぶり露光量を得るステップと、
    前記第1のマスク部に重ねて第2のマスク部を露光する第2の露光量に対して、更に新たな検査用レジストを用いて、前記第1のマスク部を前記第2の露光量で露光し、更に、前記第2のマスク部を前記第2の露光量で露光して、新たな変位差値を求めて前記第2の露光量による新たな実効かぶり露光量を算出することにより、第2の実効かぶり露光量を得るステップと、
    半導体基板上に、レジストを塗布する工程と、
    前記半導体基板と前記第1のマスク部を含むレチクルを露光装置に装着する工程と、
    前記半導体基板に前記第1のマスク部を前記第1の露光量から前記第2の実効かぶり露光量を差し引いた露光量で露光する工程と、
    前記第2のマスク部を含むレチクルを前記露光装置に装着する工程と、
    前記半導体基板に前記第2のマスク部を前記第2の露光量から前記第1の実効かぶり露光量を差し引いた露光量で露光する工程
    とを含むことを特徴とする半導体装置の製造方法。
  12. 前記変位差は、前記露光量差に関する2次の近似式で表わされることを特徴とする請求項11に記載の半導体装置の製造方法。
  13. 前記第1〜第4の露光モニタパターンが、回折格子で形成されることを特徴とする請求項11又は12に記載の半導体装置の製造方法。
  14. 前記回折格子のピッチは、前記露光に用いる光源の波長と、レンズの開口数と、光学系のコヒーレンスファクタにより定まる幅より小さいことを特徴とする請求項13に記載の半導体装置の製造方法。
  15. 前記幅は、前記波長を、前記コヒーレンスファクタと1との和及び前記開口数で割った値であることを特徴とする請求項13又は14に記載の半導体装置の製造方法。
JP2002342798A 2002-11-26 2002-11-26 レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法 Expired - Fee Related JP3884371B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002342798A JP3884371B2 (ja) 2002-11-26 2002-11-26 レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法
US10/721,903 US7092068B2 (en) 2002-11-26 2003-11-26 Reticle, exposure monitoring method, exposure method and manufacturing method for semiconductor device
CNB2003101155001A CN1312530C (zh) 2002-11-26 2003-11-26 原版、曝光监测方法、曝光方法和半导体器件的制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002342798A JP3884371B2 (ja) 2002-11-26 2002-11-26 レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法

Publications (2)

Publication Number Publication Date
JP2004177611A JP2004177611A (ja) 2004-06-24
JP3884371B2 true JP3884371B2 (ja) 2007-02-21

Family

ID=32704751

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002342798A Expired - Fee Related JP3884371B2 (ja) 2002-11-26 2002-11-26 レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法

Country Status (3)

Country Link
US (1) US7092068B2 (ja)
JP (1) JP3884371B2 (ja)
CN (1) CN1312530C (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2379284A (en) * 2001-09-01 2003-03-05 Zarlink Semiconductor Ltd Multiple level photolithography
SG10201803122UA (en) 2003-04-11 2018-06-28 Nikon Corp Immersion lithography apparatus and device manufacturing method
TWI518742B (zh) 2003-05-23 2016-01-21 尼康股份有限公司 A method of manufacturing an exposure apparatus and an element
JP2005197362A (ja) * 2004-01-05 2005-07-21 Toshiba Corp 露光処理システムおよび露光処理方法
DE102004020983A1 (de) * 2004-04-23 2005-11-17 Carl Zeiss Smt Ag Verfahren zur Strukturbelichtung einer lichtempfindlichen Schicht
JP5145530B2 (ja) * 2005-10-07 2013-02-20 株式会社ブイ・テクノロジー フォトマスク及びそれを用いた露光方法
US20070146670A1 (en) * 2005-12-27 2007-06-28 Asml Netherlands B.V. Lithographic apparatus, patterning device and device manufacturing method
US20080138447A1 (en) * 2006-12-06 2008-06-12 Erin John Riggins Method for administering appetite suppressant and composition thereof
CN102402122B (zh) * 2010-09-07 2013-09-18 无锡华润上华半导体有限公司 光刻机漏光检测方法及***
US9046783B2 (en) 2012-03-27 2015-06-02 Panasonic Intellectual Property Management Co., Ltd. Photomask, and pattern formation method and exposure apparatus using the photomask
WO2013145044A1 (ja) * 2012-03-27 2013-10-03 パナソニック株式会社 フォトマスク、それを用いたパターン形成方法及び露光装置
CN107037694A (zh) * 2017-05-25 2017-08-11 苏州灯龙光电科技有限公司 一种检测显示性能的检测板及其检测方法
EP3531206A1 (en) * 2018-02-23 2019-08-28 ASML Netherlands B.V. Systems and methods for improving resist model predictions
CN115145127B (zh) * 2022-09-05 2022-11-25 上海传芯半导体有限公司 套刻精度的检测结构及其制备方法、套刻精度的检测方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3297545B2 (ja) * 1994-09-02 2002-07-02 キヤノン株式会社 露光条件及び投影光学系の収差測定方法
US5805290A (en) * 1996-05-02 1998-09-08 International Business Machines Corporation Method of optical metrology of unresolved pattern arrays
JPH1055946A (ja) * 1996-08-08 1998-02-24 Nikon Corp 露光条件測定方法
US5976740A (en) * 1997-08-28 1999-11-02 International Business Machines Corporation Process for controlling exposure dose or focus parameters using tone reversing pattern
US5976741A (en) * 1997-10-21 1999-11-02 Vsli Technology, Inc. Methods for determining illumination exposure dosage
JP3556472B2 (ja) * 1998-06-18 2004-08-18 株式会社東芝 露光量測定方法と露光量測定用マスク
JP3761357B2 (ja) 1999-02-22 2006-03-29 株式会社東芝 露光量モニタマスク、露光量調整方法及び半導体装置の製造方法
JP3949853B2 (ja) * 1999-09-28 2007-07-25 株式会社東芝 露光装置の制御方法及び半導体製造装置の制御方法
JP2001319871A (ja) * 2000-02-29 2001-11-16 Nikon Corp 露光方法、濃度フィルタの製造方法、及び露光装置
JP4160239B2 (ja) 2000-07-07 2008-10-01 株式会社東芝 露光量測定方法及び露光量測定装置
JP3971255B2 (ja) * 2002-07-03 2007-09-05 株式会社東芝 露光量モニタ方法及び半導体デバイスの製造方法

Also Published As

Publication number Publication date
US7092068B2 (en) 2006-08-15
CN1503055A (zh) 2004-06-09
JP2004177611A (ja) 2004-06-24
CN1312530C (zh) 2007-04-25
US20050105068A1 (en) 2005-05-19

Similar Documents

Publication Publication Date Title
KR100714480B1 (ko) 포토마스크의 테스트 패턴 이미지로부터 인쇄된 테스트피쳐들을 이용하는 포토리소그래피 공정에 있어서 초점변화를 측정하는 시스템 및 방법
JP3843308B2 (ja) マスクパターン画像形成装置
US7855047B2 (en) Reticle set, method for designing a reticle set, exposure monitoring method, inspection method for reticle set and manufacturing method for a semiconductor device
US7327436B2 (en) Method for evaluating a local flare, correction method for a mask pattern, manufacturing method for a semiconductor device and a computer program product
JP3037887B2 (ja) リソグラフ露光の監視方法および装置
JP3884371B2 (ja) レチクル、露光モニタ方法、露光方法、及び半導体装置の製造方法
JP2004520723A (ja) デバイスを製造するリソグラフィック方法
JP2002329653A (ja) 露光装置の照度むらの測定方法、照度むらの補正方法、半導体デバイスの製造方法及び露光装置
JP3848301B2 (ja) レジスト感度の評価方法及びレジストの製造方法
JP3177948B2 (ja) 露光用フォトマスク
JP2007534974A (ja) 計測学ツール較正方法および装置
JP3302966B2 (ja) 露光装置の検査方法及び露光装置検査用フォトマスク
TWI752647B (zh) 用於推斷例如聚焦之處理參數之方法與相關聯之設備及製造方法
JP2001296646A (ja) フォトマスク、フォトマスクの製造方法、露光方法及び露光装置
JP3082747B2 (ja) 露光装置の評価方法
JP3050208B2 (ja) 露光方泡及び該方法を用いる素子製造方法
JP3050210B2 (ja) 露光方泡および該方法を用いる素子製造方法
US20090269681A1 (en) Method of detecting exposure boundary position, and method of fabricating semiconductor device
JP3099826B2 (ja) 露光装置、露光方法、及び素子製造方法
JP2009088246A (ja) 露光装置およびデバイス製造方法
JP3085288B2 (ja) 露光方法、及び該方法を用いる素子製造方法
JPH08320572A (ja) 露光方法
JP3031316B2 (ja) 露光方法
JP3031347B2 (ja) 露光方法
JP2006120899A (ja) 投影光学系、投影光学系の調整方法、投影露光装置、投影露光方法、および投影露光装置の調整方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061116

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees