JP3883371B2 - Reaction force measuring device - Google Patents

Reaction force measuring device Download PDF

Info

Publication number
JP3883371B2
JP3883371B2 JP2000261381A JP2000261381A JP3883371B2 JP 3883371 B2 JP3883371 B2 JP 3883371B2 JP 2000261381 A JP2000261381 A JP 2000261381A JP 2000261381 A JP2000261381 A JP 2000261381A JP 3883371 B2 JP3883371 B2 JP 3883371B2
Authority
JP
Japan
Prior art keywords
magnetic bearing
vibration
control
reaction force
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000261381A
Other languages
Japanese (ja)
Other versions
JP2002071532A5 (en
JP2002071532A (en
Inventor
真人 江口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2000261381A priority Critical patent/JP3883371B2/en
Publication of JP2002071532A publication Critical patent/JP2002071532A/en
Publication of JP2002071532A5 publication Critical patent/JP2002071532A5/ja
Application granted granted Critical
Publication of JP3883371B2 publication Critical patent/JP3883371B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0444Details of devices to control the actuation of the electromagnets

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、機械要素の反力測定装置に係り、例えば非接触環状シール等の流体力を計測するのに好適な測定装置に関する。
【0002】
【従来の技術】
ポンプ等の流体回転機械では、羽根車段間等からの流体の漏れを小さくし、効率を上げるために非接触環状シールを用いる。非接触環状シールは流体回転機械の振動特性に大きな影響を及ぼすので、高速回転で危険速度を超すような弾性ロータである場合、非接触環状シールの液膜により回転軸系に作用する不安定化流体力が原因で、回転軸系に自励振動が発生することがある。重大な事故を防止するためには、このような振動特性を設計時点で予測し回避しなければならない。そのためには、製品に搭載している非接触環状シールの動特性を実験的に調べ、評価する手段を確立しておく必要がある。そこで、非接触環状シールの流体反力を広範な運転条件下で精度良く計測できるシステムを開発することが望まれる。
【0003】
【発明が解決しようとする課題】
本発明は、上記従来技術の問題点に鑑みなされたもので、測定装置の回転体側や静止側に別途加振機や力検出器を取り付ける必要がなく、装置のコンパクト化が実現でき、従来の技術では実現できなかった完全非接触状態での計測が可能となり、計測精度の向上が実現でき、且つ広範な運転条件の設定や、そして、柔軟な機械要素の外周部の支持条件などの境界条件の設定を可能とし、精度良く計測できる機械要素の反力測定装置を提供することを目的とする。
【0004】
【課題を解決するための手段】
このようなシステムを実現する一手段として磁気軸受の利用が考えられる。磁気軸受は、軸受としてロータを完全非接触状態で支持することができるばかりでなく、加振指令信号を制御系に印加することで加振機として利用でき、また、制御信号を検出演算することで力検出器として利用することができる。このように磁気軸受に3つの機能を集約することで、計測システムに加振機や力検出器を取り付ける必要がなくなり、装置そのものをコンパクト化することができる。また、計測対象とする供試体の境界条件の設定などが容易になり柔軟な計測を可能とする。
【0005】
本発明は、フィードバック制御する磁気軸受ユニットを搭載して、それらの磁気軸受をそれぞれ独立に加振信号発生器からの加振指令信号を磁気軸受の制御系に印加することにより加振機として利用し、且つ、磁気軸受の制御電流等を磁気軸受用電力増幅器から検出する検出手段と、制御用の変位センサから信号増幅器を通じてロータの変位信号を検出する変位検出手段とにより、それらの信号から個々の磁気軸受が発生している電磁力である磁気軸受に作用する動荷重を算出する演算手段を備える力検出器を備え、磁気軸受の発生する電磁加振力に対して応答する計測の対象である機械要素の発生する反力について非接触状態で計測することを特徴とする機械要素の反力測定装置である。
【0006】
【発明の実施の形態】
以下、本発明の実施形態について添付図面を参照しながら説明する。
【0007】
図1は本発明の実施形態の測定装置の概要を示す。試験装置本体は、ベースフレームに立形で据え付けられている。ロータ11の6自由度のうち回転方向を除く5自由度を磁気軸受13,15,17によりフィードバック制御し、ロータ11が非接触浮上している。つまり、ラジアル直交2方向とスラスト方向の合計3つの並進運動と、ロータ重心回りのヨーイング運動とピッチング運動の合計2つの傾き運動に対して、制振制御することができる。また、ロータ11は、弾性軸継手で連結しているインバータ制御の誘導電動機により回転数制御を行うことができる。
【0008】
構造系は、上部に計測の対象である非接触環状シール21,23を組み込んだシールケーシング25と、下部にラジアル方向と軸方向を制御する磁気軸受ユニット13と45,15と46,17と47,48を搭載している上下対の2つの軸受ケーシング27,29とにより構成している。そして、磁気軸受ユニットは、次の3つの機能要素から構成されている。
第1に、磁気軸受の故障等が原因でロータと構造系部品との接触を防止するための保護軸受31,33,35。
第2に、磁気軸受位置における回転体の振動を監視する誘導型変位センサ45,46,47,48。
第3に、ロータに制御力や加振力を作用する対向に位置する(P極、N極と名づける)一組の電磁石13,15,17。
尚、ラジアル磁気軸受については、実際には電磁石と変位センサとは一断面に4個配置されていて、それぞれ回転方向に90°の位置関係にある。
【0009】
シールケーシングの中には、非接触環状シールの下流から磁気軸受ユニットや外部への流体の流れ込みを防止するための2個のオイルシール51,53と、非接触環状シール位置でのロータの静的な偏心量と振動振幅、位相とを検出する2組の渦電流式変位センサ41,42と、シール室の入口と出口における圧力を検出する4つの動ひずみ式圧力センサ55,57とが組み込まれている。その他に、回転パルス波を発生する回転センサを具備している。
【0010】
地下側に磁気軸受ケーシング27,29を地上側にシールケーシングなどの供試体を含有するケーシング25を具備し、回転側シールリングなど回転側摺動リングが回転軸の地上側に取り付けられている。これにより、磁気軸受の挿入されている軸受ケーシングはもちろんのこと、供試体を含有するケーシングを含む構造系とロータを分解することなく、回転側摺動リングと静止側摺動リングの脱着を共に、容易としている。また、供試体を含有するケーシングをラジアル方向にスライドさせる機構が設けられていて、該ケーシングの組み立ての際に、回転側摺動リングと静止側摺動リングとの間の芯出しを容易に行うことができる。
【0011】
次に、試験装置の配管系の概要を図2に示す。
加圧用多段遠心ポンプ61で循環水をシール部63へ供給する。このポンプは、設計点が全揚程300mで、流量0.6m/minであり、インバータによりその回転速度制御を行い、吐出圧と流量を負荷に応じて任意に変更可能である。このポンプにより加圧された流体が、2段の流量調整弁65,66、電磁流量計67を経て、実験装置内に流入する。実験装置内で上下2つのシール21,23の隙間に流体が押し込まれ、隙間で各種摩擦により減圧された後、戻り配管62,64を経て、貯水槽69に戻る。循環水の流量を制御することで、シールに加える負荷つまり、シール差圧を試験条件に応じて設定することができる。この配管系には、圧力計68,70、冷却装置71、差圧・流量調整装置72等を備えている。
【0012】
インバータにより回転制御を行える加圧ポンプ61と、ポンプに掛かる負荷を自在に変化させられる流量調整弁65,66を具備しており、特にその流量調整器72は、配管系に供試体に対して並列の位置関係に設けられており、循環系に流れる流体の流量の調整幅を広げることができるので、供試体の上流側と下流側との間の差圧や供試体への供給圧力を広域にかつ細かく調整可能である。加圧ポンプ61の回転数制御による差圧や供給圧の制御だけでは、低い圧力域での圧力制御が粗くなり、そのような計測ケースに精密な制御が望めない。そのため、供試体と並列な位置関係に流量・差圧調整器72を配管系に別途設けることで、流量の調整幅を広げて、差圧や供給圧の制御を容易にしている。また、流量・差圧調整器72は、加圧ポンプ61がミニフロー状態の運転とならないような役割も果たしている。
【0013】
図3は、本発明の実施形態の制御系の概要を示す。
そして、磁気軸受の制御系は、以下の構成要素からなる。
ラジアル及びスラストの変位センサ出力を増幅する制御センサ用アンプ81と、増幅された制御センサ信号を入力し、制御信号を電流アンプに出力する直列型PID制御回路ユニット(補償回路ユニット)82と、パルス幅変調(PWM)方式の大容量電流アンプ83と、加振指令信号を発生する関数発生器84と、その加振指令信号の周波数を制御するオシレータ85とから主として構成されている。
また、ロータの固有値で不安定化しないための対策として、PID制御回路中に、ノッチフィルター(図示しない)を直列に挿入している。このフィルターを制御対象に応じて交換することができ、これにより安定した計測環境を実現している。
【0014】
ここで、最終的な計測処理を行う環境は、A/Dボード86と、オペレーティングシステムとしてWindows95がインストールされているクロック数375MHzのパーソナルコンピュータ87とからなる。制御システム等からの信号は、全て同一仕様のカットオフ周波数10kHzのローパスフィルターを通過した後、このA/Dボードに取り込まれる。
【0015】
磁気軸受により非接触浮上した状態のロータ11を軸継手により連結している立形の誘導電動機で回転する。所定の運転回転数に到達後、磁気軸受の制御用補償回路ユニット82に加振指令信号(正弦波等)を関数発生器84から印加し、ロータ11を加振する。ここで、各制御軸ごとに加振指令信号を独立して印加しているので、信号それぞれの利得(ゲイン)と位相とを制御することで、図4(a)(b)(c)(d)に示すように、(a)直線加振、(b)パラレル加振、(c)コニカル加振、(d)縦直線加振を代表とする多様な加振形態を実現できる。
【0016】
パラレル加振と直線加振とは基本的にほぼ同一のばね定数や減衰係数を得ることができる。従って、これらの加振により発生する流体反力を導出し比較評価することで、その精度を確認することが可能である。また、パラレル加振に対し応答する流体反力と直線加振に対し応答する流体反力とは、フーリエ変換の結果得られる力の各成分(実部と虚部)の物理的な意味に違いがある。そのことからこの応答流体反力を和差することでロータに作用する力をロータダイナミクス的に意味のある成分により明確に分離することが可能になる。
【0017】
コニカル加振による振動特性を評価するに際して精度を上げるために、スラスト方向を制御する磁気軸受をコニカル加振の際の振動形状で節に相当するラジアル方向を制御する2組の磁気軸受ユニットの間に置いている。これにより、ラジアル方向とスラスト方向とを独立させた計測が必要となるケースの場合に、ラジアル方向への加振の際にスラスト方向制御用磁気軸受の干渉を最小限とし、また、スラスト方向への加振の際にラジアル方向制御用磁気軸受の干渉を最小限とすることができ、計測精度を向上させることができる。
【0018】
パラレル加振や直線加振の場合に、ロータ上部に機械要素が存在するとその軸受作用等によりオーバーハング構造であるがゆえにラジアル制御上部磁気軸受と下部磁気軸受との制御センサの信号の振幅に差異が生じ、計測精度に影響する場合がある。そのため、上部軸受と下部軸受との加振ゲインを制御センサ信号に差異が生じないように制御することで、計測精度の改善を行うことができる。
【0019】
更に、磁気軸受や供試体の組み立て誤差などに起因する振動波形等の位相情報の狂いを検出し評価する手段を具備し、各制御軸の磁気軸受の加振指令信号の位相間で補正する機構を有する。大型の計測装置になると個々の部品の加工精度や組み立て精度が確保しずらくなり、計測の際の出力信号間の位相のずれが生じるようになる。そのため、供試体を装着する前に、磁気軸受を加振し、その信号の位相を基準位相に対して、補正することで解消している。計測した力の情報からその回転軸系への作用の仕方で意味のある情報(例えば、直交座標系から回転座標系へ)に変換する必要がある。そのためには位相情報をより正確にモニターする必要がある。
【0020】
次に、加圧用の多段遠心ポンプ61を所定の運転回転数で運転して、循環ループ内の流体にエネルギーを供給する。エネルギーを得た流体は、非接触環状シール21,23の隙間に流入し、液膜が形成される。その液膜が、ロータの振動に応答し流体反力が回転軸系に作用する。この反力と釣り合ってロータが安定して回転するように、磁気軸受に制御力が働き、回転体の定常振れまわり軌道が実現できる。結果として、この定常振れまわり運動状態下で、軸受の動荷重を算出することにより、非接触環状シールの液膜が発生している流体反力を得ることができる。軸受の動荷重Wは、次式により算出することができる。
【0021】
【数1】

Figure 0003883371
ここで、K:磁極形状係数、μ:空気の透磁率(H/m)、N:コイルターン数、A:磁路断面積(m)、I:コイルに流れる電流値(A)、g:エアギャップ(m)である。
【0022】
この式から、磁気軸受で発生する電磁力は、磁気軸受の制御電流の2乗に比例し、エアギャップの2乗に反比例することが分かる。従って、エアギャップに対して、振幅が十分に小さい場合には、磁気軸受で発生する電磁力は、コイルに流れる制御電流の大きさで決まる。
そして、磁気軸受に印加する加振指令信号の周波数(以下、加振周波数)を掃引し、それぞれの加振周波数fに対する流体反力と、非接触環状シールの軸方向中心における変位センサ出力とを予め設定したサンプリングシートで記憶媒体に記録する。
【0023】
取り付けられた供試体21,23の長さに応じて、供試体の外側に取り付けている変位センサ41,42の出力信号に対して、供試体部の軸方向任意位置におけるロータの変位と供試体の発生する流体反力を演算する際に、自動的に補正が掛かる機構を具備している。この機能により別途計算する必要がなく、人為的なミスを防ぐばかりでなく、複数の供試体を具備した場合に、それぞれの供試体から発生している反力を同時に定量化することが可能になる。
【0024】
次に、液膜動特性係数の導出方法について説明する。
この流体反力は、シール隙間に対して十分に小さな振幅(この装置では、シール隙間の10%以下としている)で加振した場合には、加振角周波数(ω=2πf)に対して、線形多項式近似することが可能となる。従って、流体反力F、F(N)は、静的偏心量が0である場合には、次式のように、12個のロータダイナミクス係数により表すことができる。
【0025】
【数2】
Figure 0003883371
ここで、K:ばね定数直接項(N/m)、k:ばね定数連成項(N/m)、C:減衰係数直接項(Ns/m)、c:減衰係数連成項(Ns/m)、M:慣性係数直接項(Ns/m)、m:慣性係数連成項(Ns/m)である。
【0026】
ロータが真円の振れまわり軌道を描いている場合(x=y=r)に限定すると、式(2)を極座標変換し、回転座標系で表現し直すと、次式の様になる。
【0027】
【数3】
Figure 0003883371
この式において、r:振れまわり半径(m)、ω:加振角周波数(rad/s)、Fr:ロータをシール中心に引き戻そうとする復元力(N)、Fθ:ロータを回転方向に振れまわらせる(前振れまわり)接線力(N)である。
【0028】
この式から、ロータダイナミクス係数のうち、ばね定数直接項Kと減衰係数連成項cが正である場合には、ロータに復元力として作用する。慣性係数直接項Mが正である場合には、逆に、ロータを中心に引き離そうとする慣性力として作用する。次に、減衰係数直接項Cと慣性係数連成項mが正である場合には、ロータの振れまわりを回転方向と逆方向に運動させるような前振れまわりの制御力として作用する。一方、ばね定数連成項kが正である場合には、逆に、振れまわり運動を助長する接線力として作用する。このように、流体反力と加振周波数との間の線形な関係から機械要素設計に必要なロータダイナミクス係数を得ることができる。
【0029】
以上で記述した信号制御、データ処理に関する磁気軸受制御系と計測系の機能を整理すると、図5に示すようなブロック図になる。加振周波数に応じて、予め実測してある電磁力の校正値に基づいて磁気軸受の電磁加振力のキャリブレーションを自動化している。この機能により別途計算する必要がなく人為的なミスなどを防止している。また、供試体部や軸受部での許容振動値を超さないように加振指令信号の利得を制御する。許容振幅の制限は、磁気軸受の電磁力や流体反力の対振幅特性の非線形性が出現する機械要素や磁気軸受のクリアランスに対して最大で15〜20%としている。実測に基づいて、この値を設定している。
【0030】
計測装置は芯ずれなどがあるため、パラレル加振などを行う際に、スラスト軸受の影響や加振の対象であるロータの慣性の影響等が出て計測データに影響を及ぼす危惧がある。従って、その影響を事前に予測し、実測したデータに対して、補正を掛ける必要がある。
【0031】
更に例えば、計測中にロータから磁気軸受に作用している不釣り合い力に起因する回転同期成分(N成分)を抽出して検討している。この検討図は、浮上回転加振した状態下である一つの供試シールの試験を連続するなかで加振周波数を段階的に変えて採取したデータをプロットしている。もちろん加振周波数以外の他の計測条件は、変化していない。この結果、加振周波数によらずほぼ一定の不釣り合いが磁気軸受に作用しているか否かを検討することができる。このことから、ロータ及びケーシング等構造物の組み立てにおいて、がたなど測定精度に影響する要因がないことや計測時におけるロータ姿勢制御が良好で、精度良く加振できていることも推測できる。
【0032】
尚、反力計測中に他の要因で生じる動荷重成分、例えば、回転体の不釣り合い力に起因する回転同期成分を積極的に制御補償する手法もある。しかしながら、本測定装置では、ある許容値を超さない範囲(計測精度に影響を及ぼさない程度)では逆にこれらの動荷重成分の変動状態に基づいてシステムの健全性(制御系の故障や接触の有無、がたなど組み立て不良など)を診断し、計測精度が確保されているか確認する手段を採用している。
【0033】
【発明の効果】
以上説明したように本発明の測定装置によれば、非接触環状シールの液膜動特性を精度良く計測できる。
【0034】
即ち、磁気軸受を適用した結果、加振機や力検出器を必要としないことにより、従来困難であった装置のコンパクト化が達成できる。更に、非接触状態で回転体を支持していることから、回転体とケーシングとが非接触な状態下で計測でき、更に回転軸系に対する加振方法に柔軟性があるので、多様な軸振動を想定した計測が可能である。
【図面の簡単な説明】
【図1】本発明の実施形態の反力測定装置の全体構成を示す図である。
【図2】図1におけるシール流体の配管系の図である。
【図3】制御系及び信号系のフロー図である。
【図4】磁気軸受により実現できる加振形態例を示す図であり、(a)は直線加振、(b)はパラレル加振、(c)はコニカル加振、(d)は縦直線加振の例をそれぞれ示す。
【図5】シール流体力(動特性係数)の評価方法を示したブロック図である。
【図6】反力信号処理ダイアグラムの一例を示した図である。
【符号の説明】
11 ロータ
13,15 ラジアル磁気軸受
17 スラスト時期軸受
21,23 非接触環状シールリング(共試体)
25 シールケーシング
27 上部軸受ケーシング
29 下部軸受ケーシング
31,33,35 保護軸受
41,42 シール部の変位センサ
45,46,47,48 磁気軸受部の変位センサ
51,53 オイルシール
55,57 圧力センサ
61 ポンプ
62,64 シール部出口
63 高圧室入口
65,66 流量調整弁
67 電磁流量計
68,70 圧力計高圧室入口
72 差圧・流量調整装置
86 A/Dポート
87 コンピュータ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reaction force measuring device for a machine element, and more particularly to a measuring device suitable for measuring a fluid force such as a non-contact annular seal.
[0002]
[Prior art]
In a fluid rotary machine such as a pump, a non-contact annular seal is used in order to reduce the leakage of fluid from between the impeller stages and increase the efficiency. Since the non-contact annular seal has a great influence on the vibration characteristics of the fluid rotary machine, if it is an elastic rotor that exceeds the critical speed at high speed rotation, the liquid film of the non-contact annular seal will act on the rotating shaft system. Self-excited vibration may occur in the rotating shaft system due to fluid force. In order to prevent serious accidents, such vibration characteristics must be predicted and avoided at the design time. For this purpose, it is necessary to experimentally investigate and evaluate the dynamic characteristics of the non-contact annular seal mounted on the product. Therefore, it is desired to develop a system that can accurately measure the fluid reaction force of the non-contact annular seal under a wide range of operating conditions.
[0003]
[Problems to be solved by the invention]
The present invention has been made in view of the above-described problems of the prior art, and it is not necessary to separately attach a vibrator or a force detector to the rotating body side or the stationary side of the measuring apparatus, and the apparatus can be made compact. Measured in a completely non-contact state that could not be achieved with technology, improved measurement accuracy, set a wide range of operating conditions, and boundary conditions such as support conditions for the outer periphery of flexible machine elements It is an object of the present invention to provide a machine element reaction force measuring apparatus that can set the above-described values and can measure with high accuracy.
[0004]
[Means for Solving the Problems]
The use of magnetic bearings can be considered as one means for realizing such a system. Magnetic bearings can not only support the rotor as a bearing in a completely non-contact state, but also can be used as a shaker by applying a vibration command signal to the control system, and can detect and calculate the control signal. Can be used as a force detector. By consolidating the three functions in the magnetic bearing in this way, it is not necessary to attach a vibration exciter or a force detector to the measurement system, and the apparatus itself can be made compact. In addition, the setting of the boundary condition of the specimen to be measured is facilitated and flexible measurement is possible.
[0005]
The present invention is equipped with a magnetic bearing unit for feedback control, and uses these magnetic bearings as a vibration exciter by independently applying a vibration command signal from a vibration signal generator to the control system of the magnetic bearing. In addition, the detection means for detecting the control current of the magnetic bearing from the power amplifier for magnetic bearing and the displacement detection means for detecting the displacement signal of the rotor through the signal amplifier from the displacement sensor for control are individually detected from these signals. This is a target for measurement that responds to the electromagnetic excitation force generated by the magnetic bearing, with a force detector equipped with a calculation means for calculating the dynamic load acting on the magnetic bearing, which is the electromagnetic force generated by the magnetic bearing. A reaction force measuring apparatus for a machine element that measures a reaction force generated by a machine element in a non-contact state.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
[0007]
FIG. 1 shows an outline of a measuring apparatus according to an embodiment of the present invention. The test apparatus main body is vertically installed on the base frame. Of the six degrees of freedom of the rotor 11, five degrees of freedom excluding the rotation direction are feedback controlled by the magnetic bearings 13, 15, and 17, and the rotor 11 floats in a non-contact manner. In other words, vibration suppression control can be performed for a total of three translational motions in the two radial orthogonal directions and the thrust direction, and a total of two tilting motions including a yawing motion and a pitching motion around the rotor center of gravity. The rotor 11 can be controlled in rotational speed by an inverter-controlled induction motor connected by an elastic shaft joint.
[0008]
The structural system includes a seal casing 25 incorporating non-contact annular seals 21 and 23 to be measured at the upper part, and magnetic bearing units 13 and 45, 15 and 46, 17 and 47 which control the radial direction and the axial direction at the lower part. , 48 and two bearing casings 27 and 29 in a pair of upper and lower sides. The magnetic bearing unit is composed of the following three functional elements.
First, protective bearings 31, 33, 35 for preventing contact between the rotor and the structural components due to a failure of the magnetic bearing or the like.
Second, inductive displacement sensors 45, 46, 47, and 48 that monitor the vibration of the rotating body at the magnetic bearing position.
Third, a set of electromagnets 13, 15, and 17 that are positioned opposite to each other to apply a control force or an excitation force to the rotor (referred to as P-pole and N-pole).
In the radial magnetic bearing, actually, four electromagnets and displacement sensors are arranged in one section, and each has a 90 ° positional relationship in the rotation direction.
[0009]
In the seal casing, there are two oil seals 51 and 53 for preventing the flow of fluid from the downstream of the non-contact annular seal to the magnetic bearing unit and the outside, and the static of the rotor at the non-contact annular seal position. Two sets of eddy current type displacement sensors 41 and 42 for detecting the amount of eccentricity, vibration amplitude and phase, and four dynamic strain type pressure sensors 55 and 57 for detecting the pressure at the inlet and outlet of the seal chamber are incorporated. ing. In addition, a rotation sensor that generates a rotation pulse wave is provided.
[0010]
A magnetic bearing casing 27, 29 is provided on the underground side, and a casing 25 containing a specimen such as a seal casing is provided on the ground side, and a rotating side sliding ring such as a rotating side seal ring is attached to the ground side of the rotating shaft. As a result, not only the bearing casing in which the magnetic bearing is inserted but also the structural system including the casing containing the specimen and the rotor and the stationary sliding ring can be attached and detached without disassembling the rotor. Easy going. Also, a mechanism for sliding the casing containing the specimen in the radial direction is provided, and when the casing is assembled, centering between the rotating side sliding ring and the stationary side sliding ring is easily performed. be able to.
[0011]
Next, an outline of the piping system of the test apparatus is shown in FIG.
Circulating water is supplied to the seal portion 63 by the multistage centrifugal pump 61 for pressurization. The design point of this pump is a total lift of 300 m and a flow rate of 0.6 m 3 / min. The rotation speed is controlled by an inverter, and the discharge pressure and flow rate can be arbitrarily changed according to the load. The fluid pressurized by this pump flows into the experimental apparatus through the two-stage flow rate adjusting valves 65 and 66 and the electromagnetic flow meter 67. The fluid is pushed into the gap between the upper and lower seals 21 and 23 in the experimental apparatus, and after being depressurized by various frictions in the gap, the fluid returns to the water storage tank 69 through the return pipes 62 and 64. By controlling the flow rate of the circulating water, the load applied to the seal, that is, the seal differential pressure can be set according to the test conditions. The piping system includes pressure gauges 68 and 70, a cooling device 71, a differential pressure / flow rate adjusting device 72, and the like.
[0012]
A pressurizing pump 61 capable of controlling rotation by an inverter and flow rate adjusting valves 65 and 66 capable of freely changing the load applied to the pump are provided. In particular, the flow rate adjusting device 72 is connected to the specimen in the piping system. Since it is provided in a parallel positional relationship and the range of adjustment of the flow rate of the fluid flowing through the circulation system can be expanded, the differential pressure between the upstream side and the downstream side of the specimen and the supply pressure to the specimen can be adjusted over a wide area. And can be finely adjusted. By controlling only the differential pressure and supply pressure by controlling the rotational speed of the pressurizing pump 61, pressure control in a low pressure range becomes rough, and precise control cannot be expected for such a measurement case. Therefore, the flow rate / differential pressure adjuster 72 is separately provided in the piping system in a positional relationship in parallel with the specimen, thereby widening the adjustment range of the flow rate and facilitating the control of the differential pressure and the supply pressure. The flow rate / differential pressure regulator 72 also serves to prevent the pressurizing pump 61 from operating in the mini flow state.
[0013]
FIG. 3 shows an outline of a control system according to the embodiment of the present invention.
And the control system of a magnetic bearing consists of the following components.
A control sensor amplifier 81 that amplifies radial and thrust displacement sensor outputs, a serial PID control circuit unit (compensation circuit unit) 82 that receives the amplified control sensor signal and outputs the control signal to a current amplifier, and a pulse It is mainly composed of a large-capacity current amplifier 83 of a width modulation (PWM) system, a function generator 84 for generating an excitation command signal, and an oscillator 85 for controlling the frequency of the excitation command signal.
Further, as a countermeasure for preventing instability due to the eigenvalue of the rotor, a notch filter (not shown) is inserted in series in the PID control circuit. This filter can be exchanged according to the control target, thereby realizing a stable measurement environment.
[0014]
Here, the environment in which the final measurement processing is performed includes an A / D board 86 and a personal computer 87 with a clock frequency of 375 MHz in which Windows 95 is installed as an operating system. All signals from the control system and the like pass through a low-pass filter of the same specification with a cut-off frequency of 10 kHz, and then are taken into this A / D board.
[0015]
The rotor 11 in a state of non-contact levitation by a magnetic bearing is rotated by a vertical induction motor connected by a shaft coupling. After reaching a predetermined operation speed, an excitation command signal (such as a sine wave) is applied from the function generator 84 to the compensation circuit unit 82 for control of the magnetic bearing, and the rotor 11 is excited. Here, since the vibration command signal is independently applied to each control axis, the gain (gain) and phase of each signal are controlled, so that FIG. 4 (a) (b) (c) ( As shown in d), various vibration modes represented by (a) linear vibration, (b) parallel vibration, (c) conical vibration, and (d) vertical straight vibration can be realized.
[0016]
Parallel excitation and linear excitation can basically obtain substantially the same spring constant and damping coefficient. Therefore, it is possible to confirm the accuracy by deriving and comparing and evaluating the fluid reaction force generated by these vibrations. Also, the fluid reaction force responding to parallel excitation and the fluid reaction force responding to linear excitation differ in the physical meaning of each component (real part and imaginary part) of the force obtained as a result of Fourier transform. There is. Therefore, by adding and subtracting this response fluid reaction force, the force acting on the rotor can be clearly separated by a component that is meaningful in terms of rotor dynamics.
[0017]
In order to improve the accuracy when evaluating the vibration characteristics due to conical vibration, the magnetic bearing that controls the thrust direction is placed between two sets of magnetic bearing units that control the radial direction corresponding to the node with the vibration shape at the time of conical vibration. It is put in. This minimizes the interference of the magnetic bearing for thrust direction control when vibrating in the radial direction in cases where measurement is required independently of the radial direction and the thrust direction. When the vibration is applied, the interference of the radial direction control magnetic bearing can be minimized, and the measurement accuracy can be improved.
[0018]
In the case of parallel excitation or linear excitation, if there is a mechanical element at the top of the rotor, the bearing action will cause an overhang structure, so there is a difference in the signal amplitude of the control sensor between the radial control upper magnetic bearing and the lower magnetic bearing. May occur and may affect the measurement accuracy. Therefore, the measurement accuracy can be improved by controlling the excitation gain of the upper bearing and the lower bearing so that there is no difference between the control sensor signals.
[0019]
Further, a mechanism for detecting and evaluating a phase information error such as a vibration waveform caused by an assembly error of a magnetic bearing or a specimen, and correcting between the phases of the vibration command signals of the magnetic bearings of each control shaft Have When a large measuring device is used, it becomes difficult to ensure the processing accuracy and assembly accuracy of individual parts, and a phase shift occurs between output signals during measurement. Therefore, the magnetic bearing is vibrated and the phase of the signal is corrected with respect to the reference phase before mounting the specimen. It is necessary to convert the measured force information into meaningful information (for example, from an orthogonal coordinate system to a rotary coordinate system) depending on how it acts on the rotary axis system. For this purpose, it is necessary to monitor the phase information more accurately.
[0020]
Next, the multistage centrifugal pump 61 for pressurization is operated at a predetermined operation rotational speed to supply energy to the fluid in the circulation loop. The fluid that has obtained energy flows into the gap between the non-contact annular seals 21 and 23, and a liquid film is formed. The liquid film responds to the vibration of the rotor and a fluid reaction force acts on the rotating shaft system. A control force acts on the magnetic bearing so that the rotor rotates stably in balance with the reaction force, and a steady swinging trajectory of the rotating body can be realized. As a result, the fluid reaction force in which the liquid film of the non-contact annular seal is generated can be obtained by calculating the dynamic load of the bearing under the steady swing motion state. The dynamic load W of the bearing can be calculated by the following equation.
[0021]
[Expression 1]
Figure 0003883371
Here, K: magnetic pole shape factor, μ 0 : air permeability (H / m), N: number of coil turns, A: magnetic path cross-sectional area (m 2 ), I: current value (A) flowing through the coil, g: Air gap (m).
[0022]
From this equation, it can be seen that the electromagnetic force generated in the magnetic bearing is proportional to the square of the control current of the magnetic bearing and inversely proportional to the square of the air gap. Therefore, when the amplitude is sufficiently small with respect to the air gap, the electromagnetic force generated in the magnetic bearing is determined by the magnitude of the control current flowing in the coil.
Then, the frequency of the vibration command signal applied to the magnetic bearing (hereinafter referred to as vibration frequency) is swept, and the fluid reaction force with respect to each vibration frequency f and the displacement sensor output at the axial center of the non-contact annular seal are obtained. Recording is performed on a storage medium using a preset sampling sheet.
[0023]
According to the length of the attached specimens 21 and 23, the displacement of the rotor at the arbitrary position in the axial direction of the specimen part and the specimen with respect to the output signals of the displacement sensors 41 and 42 attached to the outside of the specimen When the fluid reaction force generated by the above is calculated, a mechanism is provided that automatically corrects the fluid reaction force. This function eliminates the need for separate calculations, and not only prevents human error, but also enables the simultaneous quantification of reaction forces generated from each specimen when multiple specimens are provided. Become.
[0024]
Next, a method for deriving the liquid film dynamic characteristic coefficient will be described.
When the fluid reaction force is vibrated with a sufficiently small amplitude with respect to the seal gap (in this apparatus, 10% or less of the seal gap), with respect to the excitation angular frequency (ω = 2πf), Linear polynomial approximation can be performed. Accordingly, when the static eccentricity is zero, the fluid reaction forces F x and F y (N) can be expressed by 12 rotor dynamic coefficients as in the following equation.
[0025]
[Expression 2]
Figure 0003883371
Here, K: spring constant direct term (N / m), k: spring constant coupled term (N / m), C: damping coefficient direct term (Ns / m), c: damping coefficient coupled term (Ns / m), M: inertia coefficient direct term (Ns 2 / m), m: inertia coefficient coupled term (Ns 2 / m).
[0026]
In the case where the rotor draws a round orbit of a perfect circle (x = y = r), when the equation (2) is converted into a polar coordinate and re-expressed in the rotating coordinate system, the following equation is obtained.
[0027]
[Equation 3]
Figure 0003883371
In this equation, r: swing radius (m), ω: excitation angular frequency (rad / s), Fr: restoring force (N) for pulling the rotor back to the center of the seal, Fθ: swinging the rotor in the rotational direction It is the tangential force (N) that is applied (forward swing).
[0028]
From this equation, when the spring constant direct term K and the damping coefficient coupling term c are positive among the rotor dynamics coefficients, the rotor acts as a restoring force. On the contrary, when the inertia coefficient direct term M is positive, it acts as an inertial force that tries to separate the rotor around the center. Next, when the damping coefficient direct term C and the inertia coefficient coupled term m are positive, it acts as a control force for the forward swing that causes the swing of the rotor to move in the direction opposite to the rotational direction. On the other hand, when the spring constant coupling term k is positive, it acts as a tangential force that promotes the swinging motion. Thus, the rotor dynamics coefficient required for the mechanical element design can be obtained from the linear relationship between the fluid reaction force and the excitation frequency.
[0029]
When the functions of the magnetic bearing control system and the measurement system related to the signal control and data processing described above are arranged, a block diagram as shown in FIG. 5 is obtained. In accordance with the excitation frequency, the calibration of the electromagnetic excitation force of the magnetic bearing is automated based on the electromagnetic force calibration value measured in advance. This function eliminates the need for separate calculations and prevents human error. Further, the gain of the vibration command signal is controlled so as not to exceed the allowable vibration value in the specimen part and the bearing part. The limit of the allowable amplitude is set to 15 to 20% at maximum with respect to the clearance of the mechanical element and the magnetic bearing in which the nonlinearity of the electromagnetic force and the fluid reaction force versus the amplitude characteristic of the magnetic bearing appears. This value is set based on actual measurement.
[0030]
Since the measuring device has misalignment and the like, there is a risk that when performing parallel excitation or the like, the influence of the thrust bearing or the inertia of the rotor that is the subject of the excitation may affect the measurement data. Therefore, it is necessary to predict the influence in advance and to correct the actually measured data.
[0031]
Further, for example, a rotation synchronization component (N component) caused by an unbalance force acting on the magnetic bearing from the rotor during measurement is extracted and studied. This study plots the data collected by changing the excitation frequency step by step in the test of one test seal under the condition of floating and rotating vibration. Of course, other measurement conditions other than the excitation frequency have not changed. As a result, it is possible to examine whether or not a substantially constant imbalance is acting on the magnetic bearing regardless of the excitation frequency. From this, it can be inferred that in the assembly of the structure such as the rotor and casing, there is no factor that affects the measurement accuracy such as rattling, and that the rotor attitude control during measurement is good and the vibration can be accurately performed.
[0032]
There is also a method of actively controlling and compensating for a dynamic load component caused by other factors during reaction force measurement, for example, a rotation synchronization component due to an unbalanced force of a rotating body. However, in this measuring device, the soundness of the system (control system failure or contact) is conversely determined based on the fluctuation state of these dynamic load components within a range that does not exceed a certain allowable value (a level that does not affect the measurement accuracy). This is a means of diagnosing the presence or absence of assembly, assembly defects such as rattling), and confirming whether measurement accuracy is ensured.
[0033]
【The invention's effect】
As described above, according to the measuring apparatus of the present invention, the liquid film dynamic characteristics of the non-contact annular seal can be accurately measured.
[0034]
That is, as a result of applying the magnetic bearing, the vibration reduction device and the force detector are not required, thereby making it possible to achieve a compact device which has been difficult in the past. Furthermore, since the rotating body is supported in a non-contact state, measurement can be performed in a state where the rotating body and the casing are not in contact with each other, and the vibration method for the rotating shaft system is flexible, so that various shaft vibrations are possible. Can be measured.
[Brief description of the drawings]
FIG. 1 is a diagram showing an overall configuration of a reaction force measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a diagram of a piping system for a sealing fluid in FIG.
FIG. 3 is a flowchart of a control system and a signal system.
FIGS. 4A and 4B are diagrams showing examples of vibration forms that can be realized by a magnetic bearing. FIG. 4A is a linear vibration, FIG. 4B is a parallel vibration, FIG. 4C is a conical vibration, and FIG. Examples of shaking are shown below.
FIG. 5 is a block diagram showing a method for evaluating a sealing fluid force (dynamic characteristic coefficient).
FIG. 6 is a diagram showing an example of a reaction force signal processing diagram.
[Explanation of symbols]
11 Rotors 13 and 15 Radial magnetic bearings 17 Thrust timing bearings 21 and 23 Non-contacting annular seal rings (joint specimens)
25 Seal casing 27 Upper bearing casing 29 Lower bearing casing 31, 33, 35 Protective bearings 41, 42 Displacement sensors 45, 46, 47, 48 of the seal part Displacement sensors 51, 53 of the magnetic bearing part Oil seal 55, 57 Pressure sensor 61 Pump 62, 64 Seal part outlet 63 High pressure chamber inlet 65, 66 Flow rate adjustment valve 67 Electromagnetic flow meter 68, 70 Pressure gauge high pressure chamber inlet 72 Differential pressure / flow rate adjustment device 86 A / D port 87 Computer

Claims (4)

フィードバック制御する複数の磁気軸受ユニットを搭載して、磁気軸受をそれぞれ独立に加振信号発生器からの加振指令信号を制御系に印加することにより加振機として利用し、且つ、磁気軸受の制御電流を磁気軸受用電力増幅器から検出する検出手段と、変位センサから信号増幅器を通じてロータの変位信号を検出する変位検出手段とにより、それぞれの磁気軸受が発生している電磁力である磁気軸受に作用する動荷重を算出する力検出器を備え、
ラジアル方向を制御する磁気軸受とスラスト方向を制御する磁気軸受とを独立し加振するときに相互の電磁力における干渉を最小限とならしめるため、スラスト方向を制御する磁気軸受ユニットをラジアル方向を制御する2組の磁気軸受ユニットの間に配置し、
磁気軸受の発生する電磁加振力に対して発生する反力について非接触状態で計測することを特徴とする反力測定装置。
A plurality of magnetic bearing units for feedback control are mounted, and each magnetic bearing is used as a vibration exciter by independently applying a vibration command signal from a vibration signal generator to the control system. By means of detection means for detecting the control current from the magnetic bearing power amplifier and displacement detection means for detecting the displacement signal of the rotor from the displacement sensor through the signal amplifier, the magnetic bearings that are electromagnetic forces generated by the respective magnetic bearings Equipped with a force detector to calculate the dynamic load acting
In order to minimize the interference in the electromagnetic force between the magnetic bearing that controls the radial direction and the magnetic bearing that controls the thrust direction independently, the magnetic bearing unit that controls the thrust direction is Placed between two sets of magnetic bearing units to be controlled,
A reaction force measuring apparatus for measuring a reaction force generated against an electromagnetic excitation force generated by a magnetic bearing in a non-contact state.
請求項1記載の測定装置において、計測の対象である非接触環状シールを組み込んだシールケーシングと、該シールケーシングのシール部に循環水を供給する試験装置の配管系を備え、該配管系には回転速度制御が可能なインバータを備えたポンプと、流量調整弁および流量・差圧調整器とを備え、供試体への流量および供給圧力を調整可能としたことを特徴とする反力測定装置。The measuring apparatus according to claim 1, further comprising: a seal casing incorporating a non-contact annular seal that is a measurement target; and a piping system of a test apparatus that supplies circulating water to a seal portion of the sealing casing. a pump having a rotational speed control is possible inverter, and a flow control valve and flow-differential pressure regulator, a reaction force measuring device comprising an adjustable and lower subsidiary flow and supply pressure to the specimen . 請求項1記載の測定装置において、磁気軸受の制御用補償回路ユニットに、関数発生器を備え、該関数発生器から、直線加振、パラレル加振、コニカル加振、又は直線加振の加振形態を含む加振信号を独立して磁気軸受に印加する手段を具備していることを特徴とする反力測定装置。2. The measuring apparatus according to claim 1, wherein the compensation circuit unit for controlling the magnetic bearing is provided with a function generator, from which linear vibration, parallel vibration, conical vibration, or vertical straight line vibration is applied. a reaction force measuring device characterized in that it comprises means you mark pressurizing the magnetic bearing independently vibration signal including a vibration form. 請求項1記載の測定装置において、直線加振又はパラレル加振を行う際に、機械要素の動特性の影響で、ラジアル方向制御用上部磁気軸受と下部磁気軸受の制御用変位センサで異なる振動振幅が検出される場合に、これらの制御用変位センサ信号に差が生じないように磁気軸受の各制御軸における加振ゲインを調整する手段を具備していることを特徴とする反力測定装置。  2. The measuring apparatus according to claim 1, wherein, when performing linear vibration or parallel vibration, vibration amplitudes differ between the radial displacement control upper magnetic bearing and the lower magnetic bearing control displacement sensor due to the influence of the dynamic characteristics of the machine element. A reaction force measuring device comprising means for adjusting an excitation gain in each control shaft of a magnetic bearing so that a difference does not occur between these control displacement sensor signals when the signal is detected.
JP2000261381A 2000-08-30 2000-08-30 Reaction force measuring device Expired - Lifetime JP3883371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261381A JP3883371B2 (en) 2000-08-30 2000-08-30 Reaction force measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261381A JP3883371B2 (en) 2000-08-30 2000-08-30 Reaction force measuring device

Publications (3)

Publication Number Publication Date
JP2002071532A JP2002071532A (en) 2002-03-08
JP2002071532A5 JP2002071532A5 (en) 2004-11-25
JP3883371B2 true JP3883371B2 (en) 2007-02-21

Family

ID=18749227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261381A Expired - Lifetime JP3883371B2 (en) 2000-08-30 2000-08-30 Reaction force measuring device

Country Status (1)

Country Link
JP (1) JP3883371B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706681A (en) * 2012-06-08 2012-10-03 武汉中岩科技有限公司 Bailey sheet detecting device and method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005040445A1 (en) * 2005-08-26 2007-03-01 Bayerische Motoren Werke Ag Test rig and method for aerodynamic measurements on an object
JP5827492B2 (en) 2011-04-28 2015-12-02 株式会社日立製作所 Vibration characteristic measuring apparatus and vibration characteristic measuring method
JP6038997B2 (en) * 2015-04-22 2016-12-07 株式会社日立製作所 Vibration characteristic measuring apparatus and vibration characteristic measuring method
JP2019209399A (en) * 2018-05-31 2019-12-12 国立大学法人 鹿児島大学 Main spindle system of machine tool
CN112649192B (en) * 2020-11-27 2023-03-14 陕西理工大学 Dynamic electromagnetic force control system and control method of electromagnetic loading device
CN114563173A (en) * 2022-03-10 2022-05-31 中国航空发动机研究院 Rotor system mode identification device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102706681A (en) * 2012-06-08 2012-10-03 武汉中岩科技有限公司 Bailey sheet detecting device and method
CN102706681B (en) * 2012-06-08 2014-10-15 武汉中岩科技有限公司 Bailey sheet detecting device and method

Also Published As

Publication number Publication date
JP2002071532A (en) 2002-03-08

Similar Documents

Publication Publication Date Title
Orcutt et al. The steady-state and dynamic characteristics of a full circular bearing and a partial arc bearing in the laminar and turbulent flow regimes
US8272265B2 (en) System and method for active detection of asymmetry in rotating structures
JP2000515231A (en) Hydrostatic bearings for supporting rotating equipment, associated fluid treatment systems, control systems therefor, and methods and apparatus
US10823632B2 (en) Method for measuring the unbalance of flexible rotors by means of position-measuring sensors
US20120192631A1 (en) Axial loading device and method for magnetically-supported rotor systems
CN105699074A (en) Fluid-structure interaction dynamic property testing device for blade-rotor system
JP3883371B2 (en) Reaction force measuring device
Tiwari et al. An innovative virtual trial misalignment approach for identification of unbalance, sensor and active magnetic bearing misalignment along with its stiffness parameters in a magnetically levitated flexible rotor system
Fan et al. Experimental study on the whip elimination of rotor-bearing systems with electromagnetic exciters
Jongh et al. Application Of A Heat Barrier Sleeve To Prevent Synchronous Rotor Instability.
De Jongh et al. The synchronous instability of a compressor rotor due to bearing journal differential heating
Franz Experimental investigation of the effect of cavitation on the rotordynamic forces on a whirling centrifugal pump impeller
Wright Air model tests of labyrinth seal forces on a whirling rotor
De Jongh et al. The synchronous instability of a compressor rotor due to bearing journal differential heating
Vannini et al. Rotordynamic Evaluation of a Large High-Speed Rotor Equipped with Flexure Pivot Journal Bearings and Integral Squeeze Film Damper
Zhu et al. Rotordynamic performance of flexure pivot hydrostatic gas bearings for oil-free turbomachinery
Shultz et al. Magnetic bearings for supercritical CO2 turbomachinery
Yabui et al. Control Performance Improvement of Excitation System with Active Magnetic Bearing for Measurement of Rotordynamic Forces
Licht The Dynamic Characteristics of a Turborotor Simulator Supported on Gas-Lubricated Foil Bearings—Part 1: Response to Rotating Imbalance and Unidirectional Excitation
Allaire et al. Magnetic bearing/damper effects on unbalance response of flexible rotors
Kumar et al. Identification in a magnetically levitated rigid rotor system integrated with misaligned sensors and active magnetic bearings
Diaz et al. Orbit-Based Identification of Damping Coefficients for a Rotor Mounted on Off-Centered Squeeze Film Dampers and Including Support Flexibility
Kalista A proposal of the methodology for dynamic force coefficients identification of labyrinth seal with use of active magnetic bearings
Higuchi et al. Balancing measurement system using magnetic bearings
Norrbin et al. A Novel Controlled-Motion Test Rig to Evaluate Effect of Synchronous and Subsynchronous Lateral Vibration on Reliability and Performance of Mechanical Seals in Pumps

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060904

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061114

R150 Certificate of patent or registration of utility model

Ref document number: 3883371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131124

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term