JP3882039B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3882039B2
JP3882039B2 JP2003081375A JP2003081375A JP3882039B2 JP 3882039 B2 JP3882039 B2 JP 3882039B2 JP 2003081375 A JP2003081375 A JP 2003081375A JP 2003081375 A JP2003081375 A JP 2003081375A JP 3882039 B2 JP3882039 B2 JP 3882039B2
Authority
JP
Japan
Prior art keywords
fuel cell
fuel
catalyst
polymer electrolyte
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003081375A
Other languages
Japanese (ja)
Other versions
JP2004288551A (en
Inventor
直子 藤原
和明 安田
義憲 宮崎
哲彦 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003081375A priority Critical patent/JP3882039B2/en
Publication of JP2004288551A publication Critical patent/JP2004288551A/en
Application granted granted Critical
Publication of JP3882039B2 publication Critical patent/JP3882039B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【従来の技術】
固体高分子形燃料電池は、低温作動で高電流密度が得られること、小型化が可能などの理由により、電気自動車、宇宙航空機器などの輸送機器用の電源、携帯用の小型電源などとして研究開発が進められている。固体高分子形燃料電池に供給される燃料としては、天然ガスやメタノール、或いはガソリンなどの改質により製造された水素ガスが用いられることが多い。
【0002】
一方、貯蔵、運搬などに際しての液体燃料としての利便性から、メタノールを燃料として直接供給する固体高分子形燃料電池(ダイレクトメタノール燃料電池)も近年注目を集めている。特に、携帯機器用の小型電源や充電器の用途では、メタノール燃料電池が主流となっている。
【0003】
メタノールの他にも、エタノール(非特許文献1)、グリコール(特許文献1)を始めとする種々のアルコール類を燃料とする直接型燃料電池の研究が行われている。
【0004】
しかし、純水素、改質ガス、メタノールをはじめ、上記に挙げた何れの燃料を用いた固体高分子形燃料電池の場合にも、燃料電池の作動温度範囲(室温から100℃程度)において燃料を酸化するための触媒をアノード(燃料極)に使用する必要がある。水素ガスを燃料として使用する場合には、固体高分子形燃料電池の開発当初から白金が用いられてきている。また、微量のCOを含む改質ガスやメタノール等のアルコール燃料の場合には、白金触媒が被毒されて、燃料電池性能が著しく低下する現象が知られており、これを克服するために夥しい数の研究が報告されている。これまで、白金系合金触媒や有機金属錯体などが提案されているが、1960年代から知られている白金−ルテニウム合金の活性を大幅に上回る触媒は、依然として見出されていない。
【0005】
さらに、ギ酸を燃料とした燃料電池(特許文献2および特許文献3)においても、白金系触媒がアノードとして使用されている。
【0006】
ギ酸およびその誘導体については、酸化過程における白金電極の被毒がメタノールの場合に比べて少ないことが報告されている。例えば、白金或いは白金−ルテニウムをアノード触媒に用いたギ酸燃料電池の研究(非特許文献2)において、その燃料電池性能がメタノール燃料電池の場合と比較されている。ギ酸を燃料とすることでアノード電位が約100 mV低下し、燃料電池の高性能化が図れることが示されている。しかしながら、ここに報告された燃料電池においても、アノード触媒として、白金系触媒を必要とすることに変わりはない。
【0007】
以上を要約すると、公知の固体高分子形燃料電池のアノードには、貴金属触媒が必須であることが共通の認識となっている。
【0008】
燃料の種類の如何を問わず、固体高分子形燃料電池の実用化と普及に際しての大きな障害の一つに、白金触媒、白金−ルテニウム合金触媒などの高価な貴金属触媒が必要であることが挙げられる。換言すれば、燃料電池システム全体に占める貴金属触媒のコストの割合が大きいので、固体高分子形燃料電池の実用化と普及のためには、アノード触媒の省貴金属化或いは脱貴金属化が大きな課題となっている。
【0009】
【非特許文献1】
C. Lamy, E.M. Belgsir, and J.-M. Leger, J. Appl. Electrochem., 31, 799 (2001)
【0010】
【非特許文献2】
M. Weber, J.-T. Wang, S. Wasmus, and R.F. Savinell, J. Electrochem. Soc., 143, L158 (1996)
【0011】
【特許文献1】
特開2002-151132号公報
【0012】
【特許文献2】
特表平10-507572号公報
【0013】
【特許文献3】
特開2001-219271号公報
【0014】
【発明が解決しようとする課題】
従って、本発明は、固体高分子形燃料電池において、アノード触媒の省貴金属化或いは脱貴金属化を達成することを主な目的とする。
【0015】
【課題を解決するための手段】
本発明者は、上記の様な従来技術の現状に鑑みて、研究を進めた結果、特にギ酸とその塩およびその誘導体から選ばれる少なくとも一種の化合物を燃料とする場合には、アノード(燃料極)に電極触媒を使用することなく、固体高分子形燃料電池を作動させることが出来ることを見出した。
【0016】
すなわち、本発明は、「無触媒のアノードを使用し、ギ酸とその塩、およびその誘導体から選ばれる少なくとも一種の化合物を燃料として直接作動させることを特徴とする固体高分子形燃料電池」を提供する。
【0017】
【発明の実施の形態】
本発明の燃料電池は、ギ酸とその塩およびその誘導体から選ばれる少なくとも一種の化合物を燃料として供給し、燃料極(アノード)に触媒を用いずに作動させることを特徴とする。
【0018】
ギ酸の塩としては、ギ酸ナトリウム、ギ酸カリウム、ギ酸アンモニウムなどが例示され、誘導体としては、ギ酸メチル、ギ酸エチルなどが例示される。
本発明の燃料電池には、アノード触媒を使用しない以外の点では、通常の固体高分子形燃料電池に用いられる既知の高分子電解質膜、電極触媒、膜−電極接合体およびセル構造を適用することができる。
【0019】
アノード側には触媒を用いず、そのまま集電体を押し当てて使用する。
【0020】
一方、カソード側には、触媒金属として従来から知られている種々の金属、および金属合金などを使用することができる。例えば、白金、パラジウム、イリジウム、ロジウム、ルテニウム、白金−ルテニウムをはじめとする各種金属触媒、またはこれらの触媒微粒子をカーボンなどの担体上に分散させた担持触媒などが挙げられる。
【0021】
高分子電解質膜としては、パーフルオロカーボン系、スチレン−ジビニルベンゼン共重合体系、ポリベンズイミダゾール系をはじめとする、各種イオン交換樹脂膜を使用することができる。
【0022】
固体高分子電解質膜とカソード触媒との接合体は、公知の方法により作製される。例えば、触媒粉末と電解質溶液とを混合して作製した触媒インクを薄膜化させた後、電解質膜上にホットプレスする方法、あるいは直接高分子膜上に塗布・乾燥する方法などが適用される。その他にも、吸着還元法、無電解めっき法やスパッタ、CVDなどの方法で固体高分子膜に直接触媒を取り付けることもできる。また、ガス拡散層や集電体に直接触媒インクを塗布・乾燥する、あるいは前駆体となる金属錯体を含浸・還元するなどの方法によって電極を作製しても構わない。
【0023】
得られた膜−電極接合体の両面をカーボンペーパーまたはカーボンクロスなどの集電体で挟んでセルに組み込み、燃料電池セルを作製する。
【0024】
燃料電池の作動に際しては、アノード側には、ギ酸とその塩およびその誘導体から選ばれる少なくとも一種の化合物を10-4 M〜5 M程度(より好ましくは10-3 M〜2 M)の溶液の形態で供給し、カソード側には空気または酸素を供給あるいは自然拡散させる。本発明の燃料電池の作動温度は、使用する電解質膜によって異なるが、通常0℃〜150℃程度であり、より好ましくは10℃〜100℃程度である。
【0025】
【実施例】
以下に実施例および比較例を示し、本発明をさらに具体的に説明する。
実施例1
カソード触媒としてポリテトラフルオロエチレンで撥水化処理した白金ブラックを用いて、高分子電解質の溶液(“Nafion溶液”、アルドリッチ社製)と混合して触媒インクとし、薄膜化させて電極シートを作製した後、高分子電解質膜(“Nafion-117”、デュポン社製)の片面にホットプレスして、膜−電極接合体を得た。
【0026】
この膜−電極接合体の両面をカーボンクロスで挟んで燃料電池セルを組み立て、アノードにはギ酸水溶液を供給し、カソードには空気を自然拡散させ、室温で燃料電池の発電性能を評価した。
【0027】
図1に0.5 Mおよび1.0 Mのギ酸水溶液を燃料として用いた場合の電流−電圧特性を示す。
【0028】
図1は、アノードに触媒を用いない場合にもギ酸の酸化反応が進行し、燃料電池が作動することを示しており、本発明によれば、アノード側に貴金属触媒を用いなくても燃料電池発電が可能となる。
比較例1
実施例1で作製した燃料電池セルのアノード側に1 Mメタノール溶液を供給し、発電性能を評価した。実施例1の様にアノード触媒を用いない電池においては、メタノールを燃料として、燃料電池を作動させることができなかった。
【図面の簡単な説明】
【図1】 実施例1で得られたギ酸を燃料とする固体高分子形燃料電池の電流−電圧特性を示すグラフである。
[0001]
[Prior art]
Solid polymer fuel cells are researched as a power source for transportation equipment such as electric vehicles and aerospace equipment, and a portable small power source, etc. Development is underway. As the fuel supplied to the polymer electrolyte fuel cell, hydrogen gas produced by reforming natural gas, methanol, gasoline or the like is often used.
[0002]
On the other hand, a polymer electrolyte fuel cell (direct methanol fuel cell) that directly supplies methanol as a fuel has been attracting attention in recent years because of its convenience as a liquid fuel for storage and transportation. In particular, methanol fuel cells are the mainstream for small power supplies and chargers for portable devices.
[0003]
In addition to methanol, direct fuel cells using various alcohols such as ethanol (Non-patent Document 1) and glycol (Patent Document 1) as fuels have been studied.
[0004]
However, in the case of a polymer electrolyte fuel cell using any of the above-mentioned fuels including pure hydrogen, reformed gas, and methanol, the fuel is operated within the operating temperature range of the fuel cell (room temperature to about 100 ° C.). It is necessary to use a catalyst for oxidation in the anode (fuel electrode). In the case of using hydrogen gas as a fuel, platinum has been used from the beginning of the development of a polymer electrolyte fuel cell. Also, in the case of reformed gas containing a small amount of CO or alcohol fuel such as methanol, it is known that the platinum catalyst is poisoned and the fuel cell performance is significantly reduced. A number of studies have been reported. So far, platinum-based alloy catalysts, organometallic complexes, and the like have been proposed, but no catalyst has been found that greatly exceeds the activity of platinum-ruthenium alloys known since the 1960s.
[0005]
Furthermore, platinum-based catalysts are also used as anodes in fuel cells using formic acid as fuel (Patent Documents 2 and 3).
[0006]
As for formic acid and its derivatives, it has been reported that the platinum electrode is less poisoned in the oxidation process than methanol. For example, in the study of formic acid fuel cells using platinum or platinum-ruthenium as an anode catalyst (Non-Patent Document 2), the fuel cell performance is compared with that of methanol fuel cells. It has been shown that the use of formic acid as a fuel reduces the anode potential by about 100 mV, thereby improving the performance of the fuel cell. However, the fuel cell reported here still requires a platinum-based catalyst as the anode catalyst.
[0007]
In summary, it is a common recognition that noble metal catalysts are essential for the anodes of known polymer electrolyte fuel cells.
[0008]
Regardless of the type of fuel, one of the major obstacles to the practical application and spread of polymer electrolyte fuel cells is the need for expensive noble metal catalysts such as platinum catalysts and platinum-ruthenium alloy catalysts. It is done. In other words, since the cost ratio of the noble metal catalyst in the entire fuel cell system is large, it is important to reduce or eliminate the noble metal for the anode catalyst in order to put the polymer electrolyte fuel cell to practical use and spread. It has become.
[0009]
[Non-Patent Document 1]
C. Lamy, EM Belgsir, and J.-M. Leger, J. Appl. Electrochem., 31, 799 (2001)
[0010]
[Non-Patent Document 2]
M. Weber, J.-T. Wang, S. Wasmus, and RF Savinell, J. Electrochem. Soc., 143, L158 (1996)
[0011]
[Patent Document 1]
JP 2002-151132 A [0012]
[Patent Document 2]
Japanese National Patent Publication No. 10-507572 [0013]
[Patent Document 3]
JP 2001-219271 A [0014]
[Problems to be solved by the invention]
Accordingly, the main object of the present invention is to achieve the noble metallization or denomination metallization of the anode catalyst in the polymer electrolyte fuel cell.
[0015]
[Means for Solving the Problems]
The present inventor has conducted research in view of the current state of the prior art as described above. As a result, the anode (fuel electrode) is used particularly when at least one compound selected from formic acid, a salt thereof, and a derivative thereof is used as a fuel. It was found that a polymer electrolyte fuel cell can be operated without using an electrode catalyst.
[0016]
That is, the present invention provides a “solid polymer fuel cell characterized by using a non-catalytic anode and directly operating as a fuel at least one compound selected from formic acid, a salt thereof, and a derivative thereof” To do.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The fuel cell of the present invention is characterized in that at least one compound selected from formic acid, a salt thereof, and a derivative thereof is supplied as a fuel, and the fuel electrode (anode) is operated without using a catalyst.
[0018]
Examples of the salt of formic acid include sodium formate, potassium formate, and ammonium formate, and examples of the derivative include methyl formate and ethyl formate.
In the fuel cell of the present invention, known polymer electrolyte membranes, electrode catalysts, membrane-electrode assemblies, and cell structures used in ordinary solid polymer fuel cells are applied except that no anode catalyst is used. be able to.
[0019]
A catalyst is not used on the anode side, but a current collector is pressed as it is.
[0020]
On the other hand, various metals conventionally known as catalyst metals, metal alloys, and the like can be used on the cathode side. Examples thereof include various metal catalysts such as platinum, palladium, iridium, rhodium, ruthenium, and platinum-ruthenium, or supported catalysts in which these catalyst fine particles are dispersed on a carrier such as carbon.
[0021]
As the polymer electrolyte membrane, various ion exchange resin membranes including perfluorocarbon, styrene-divinylbenzene copolymer, and polybenzimidazole can be used.
[0022]
The joined body of the solid polymer electrolyte membrane and the cathode catalyst is produced by a known method. For example, a method in which a catalyst ink produced by mixing catalyst powder and an electrolyte solution is thinned and then hot-pressed on the electrolyte membrane or directly applied and dried on the polymer membrane is applied. In addition, the catalyst can be directly attached to the solid polymer film by a method such as adsorption reduction, electroless plating, sputtering, or CVD. Further, the electrode may be produced by a method such as applying and drying the catalyst ink directly on the gas diffusion layer or the current collector, or impregnating or reducing the metal complex as the precursor.
[0023]
Both sides of the obtained membrane-electrode assembly are sandwiched between current collectors such as carbon paper or carbon cloth and incorporated into a cell to produce a fuel cell.
[0024]
During the operation of the fuel cell, at least one compound selected from formic acid, a salt thereof and a derivative thereof is contained in a solution of about 10 −4 M to 5 M (more preferably 10 −3 M to 2 M) on the anode side. It is supplied in the form, and air or oxygen is supplied or naturally diffused on the cathode side. The operating temperature of the fuel cell of the present invention varies depending on the electrolyte membrane used, but is usually about 0 ° C to 150 ° C, more preferably about 10 ° C to 100 ° C.
[0025]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples.
Example 1
Using platinum black water-repellent treated with polytetrafluoroethylene as a cathode catalyst, mixed with a polymer electrolyte solution (“Nafion solution”, manufactured by Aldrich) to form a catalyst ink, and thinned to produce an electrode sheet After that, hot pressing was performed on one side of a polymer electrolyte membrane (“Nafion-117”, manufactured by DuPont) to obtain a membrane-electrode assembly.
[0026]
A fuel cell was assembled by sandwiching both surfaces of this membrane-electrode assembly with carbon cloth, an aqueous formic acid solution was supplied to the anode, air was naturally diffused to the cathode, and the power generation performance of the fuel cell was evaluated at room temperature.
[0027]
FIG. 1 shows current-voltage characteristics when 0.5 M and 1.0 M formic acid aqueous solutions are used as fuel.
[0028]
FIG. 1 shows that the oxidation reaction of formic acid proceeds even when no catalyst is used for the anode and the fuel cell operates. According to the present invention, the fuel cell can be used without using a noble metal catalyst on the anode side. Power generation is possible.
Comparative Example 1
A 1 M methanol solution was supplied to the anode side of the fuel cell produced in Example 1, and power generation performance was evaluated. In a battery that does not use an anode catalyst as in Example 1, the fuel cell could not be operated using methanol as a fuel.
[Brief description of the drawings]
FIG. 1 is a graph showing current-voltage characteristics of a polymer electrolyte fuel cell using formic acid obtained in Example 1 as a fuel.

Claims (1)

無触媒のアノードを使用し、ギ酸とその塩、およびその誘導体から選ばれる少なくとも一種の化合物を燃料として直接作動させることを特徴とする固体高分子形燃料電池。A solid polymer fuel cell characterized by using a non-catalytic anode and directly operating as a fuel at least one compound selected from formic acid, a salt thereof, and a derivative thereof.
JP2003081375A 2003-03-24 2003-03-24 Polymer electrolyte fuel cell Expired - Lifetime JP3882039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003081375A JP3882039B2 (en) 2003-03-24 2003-03-24 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003081375A JP3882039B2 (en) 2003-03-24 2003-03-24 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2004288551A JP2004288551A (en) 2004-10-14
JP3882039B2 true JP3882039B2 (en) 2007-02-14

Family

ID=33294961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003081375A Expired - Lifetime JP3882039B2 (en) 2003-03-24 2003-03-24 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3882039B2 (en)

Also Published As

Publication number Publication date
JP2004288551A (en) 2004-10-14

Similar Documents

Publication Publication Date Title
Yamada et al. Effect of anode electrocatalyst for direct hydrazine fuel cell using proton exchange membrane
Baglio et al. Investigation of bimetallic Pt–M/C as DMFC cathode catalysts
Aslam et al. Overview on direct formic acid fuel cells (DFAFCs) as an energy sources
Vigier et al. Development of anode catalysts for a direct ethanol fuel cell
JP4083721B2 (en) High concentration carbon supported catalyst, method for producing the same, catalyst electrode using the catalyst, and fuel cell using the same
US6368492B1 (en) Hydrogen generation by electrolysis of aqueous organic solutions
Li et al. Direct dimethyl ether fuel cell with much improved performance
Spinacé et al. Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process
US20140186742A1 (en) Catalyst for fuel cell, and electrode for fuel cell, membrane-electrode assembly for fuel cell, and fuel cell system including same
US20050095465A1 (en) Fuel cell
JP5219121B2 (en) Direct fuel cell
Neto et al. Preparation of PtRu/C electrocatalysts using citric acid as reducing agent and OH-ions as stabilizing agent for direct alcohol fuel cell (DAFC)
Hauenstein et al. Impact of catalyst loading, ionomer content, and carbon support on the performance of direct isopropanol fuel cells
Pramanik et al. Studies of some operating parameters and cyclic voltammetry for a direct ethanol fuel cell
JP2008210581A (en) Fuel cell
JP2002343403A (en) Operation method of fuel cell
Choi et al. Electrochemical Characterization of Pt–Ru–Pd Catalysts for Methanol Oxidation Reaction in Direct Methanol Fuel Cells
JP3844022B2 (en) Direct methanol fuel cell with solid polymer electrolyte
JP4238364B2 (en) Polymer electrolyte fuel cell
WO2012102715A1 (en) A membrane electrode assembly for fuel cells
Castro Luna et al. Investigation of a Pt–Fe/C catalyst for oxygen reduction reaction in direct ethanol fuel cells
JP5229872B2 (en) Fuel cell
JP3882039B2 (en) Polymer electrolyte fuel cell
Neto et al. Electro-oxidation of ethylene glycol on PtSn/C and PtSnNi/C electrocatalysts
JP3788491B2 (en) Direct methanol fuel cell with solid polymer electrolyte and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

R150 Certificate of patent or registration of utility model

Ref document number: 3882039

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term