JP3881961B2 - Pile embedding method and excavator used for the method - Google Patents

Pile embedding method and excavator used for the method Download PDF

Info

Publication number
JP3881961B2
JP3881961B2 JP2003008028A JP2003008028A JP3881961B2 JP 3881961 B2 JP3881961 B2 JP 3881961B2 JP 2003008028 A JP2003008028 A JP 2003008028A JP 2003008028 A JP2003008028 A JP 2003008028A JP 3881961 B2 JP3881961 B2 JP 3881961B2
Authority
JP
Japan
Prior art keywords
pipe
earth
pile
sand
excavation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003008028A
Other languages
Japanese (ja)
Other versions
JP2004218303A (en
Inventor
義忠 三宅
Original Assignee
義忠 三宅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義忠 三宅 filed Critical 義忠 三宅
Priority to JP2003008028A priority Critical patent/JP3881961B2/en
Publication of JP2004218303A publication Critical patent/JP2004218303A/en
Application granted granted Critical
Publication of JP3881961B2 publication Critical patent/JP3881961B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、杭の埋設方法及びその方法に用いる掘削装置に関する。詳しくは、無排土工法による杭の埋設方法及びその無排土工法に用いる土砂の掘削装置に関する。さらに詳しくは、鋼管を使用し、また外管(ケーシング)と内管を用い、「土砂の収容部を地中に設けた無排土工法」ともいうべき基礎杭の埋設方法及びその基礎杭の埋設方法に用いる土砂の掘削装置に関する。本発明は、既製杭の埋設だけでなく、鋼管杭や現場造成杭の施工にも適用できる。
【0002】
【従来の技術】
【特許文献1】
特開2002−155531号公報
【0003】
既製杭(コンクリートパイル)の埋設には、通常はオーガーを使用する。この場合、掘削によって生じる土砂(礫を含む)は、ロッドに設けたスパイラルスクリューなどの土砂排出機構を伝って排出される。そして、計画深度まで掘削した後、杭を回転させながら所定の深度まで建て込む。したがって、オーガーを使用すると相当量の土砂の排出を避けることができない。
【0004】
近時、構造物の大型化と高層化に伴い、基礎杭も大口径のものに移行しつつある。このため、杭の埋設によって排出される土砂も大量となり、産業廃棄物としての土砂(残土)の処理が大きな社会問題となっている。
また、土砂の処理のための労力と経費も増大している。例えば、大きなビルを建築する場合、基礎工事に際して排出される土砂の量は、5千ないし1万立法メートル程度になるため、この場合の土砂処理費は7千万円ないし1億数千万円にも達する。これを全国規模で考えると、土砂処理のために年間1千億円程度の費用が投じられていることになる。
【0005】
このような事情から、土砂を排出させない、すなわち無排土による杭の埋設方法について多くの研究がなされており、特許出願も散見される。しかしながら、従来の無排土工法と称する工法は、杭の先端部に掘削用の金具を取り付けてこれによって掘削するか、或いはこれを少し改良した程度の装置を用いる工法が主となっており、いずれも未だ開発途上のもので、完成された無排土工法とは言いがたい。例えば、地盤が軟弱であるとか、埋設する杭が短いとか、杭径が小さいなどの場合は施工が可能であるが、硬い地盤、長い杭、大きな杭径などの場合には施工が困難となることが多い。また、土砂を掘削するために、オーガー先端には掘削刃を取り付けるが、この掘削刃は全て消耗品となるので、このための経済負担は極めて大きいものとなっている。
【0006】
また現在、既製杭の施工は、大半が「セメントミルク根固め拡大工法」(認定工法)である。全ての認定工法に共通している問題は、オーガーによって掘削した後、セメントミルクなどの硬化材を注入して周辺の固定をおこない、また、掘削された孔壁の崩壊を防止するためにベントナイトなどの固化材を注入し、その後、杭を回転させながら建て込み、埋設する工法を採っていることである。この方法では、セメントミルクやベントナイトなどの硬化材や固化材と掘削された土砂が混合して泥状化し、この泥状物が掘削孔内に充満し、杭頭部より溢流するという産業廃棄物の問題が生じている。このような状態になると、施工後に杭位置の確認が困難となるが、特に砂礫層をはじめ逃水層、或いは逸水の激しい層を有する地盤においては、施工終了時にはセメントミルクによって満杯であった掘削孔内が時間の経過と共に沈下現象を起こし、そのため、杭の水平力に関して最も重要部分である杭頭部に対し、十分な周辺固定が保たれているかどうか未確認のままで施工終了となっているのが現状である。杭の水平力は、その頭部近辺が最大であるため、杭頭部の周辺固定が不十分であると、非常時に問題を起こすことが懸念される。
【0007】
上記基礎杭の埋設方法の現状に鑑み、本発明者は、無排土による杭の埋設方法を開発すべく長年にわたって研究を続け、鋼管を使用し、そして外管(ケーシング)と内管を併用するという、従来とは全く発想を異にする工法によって完全な無排土を実現できる埋設方法を発明して、先に特願2000−354183として特許出願し、特開2002−155531号公報として開示されている。本発明は、この先願発明をさらに改良したもので、掘削した土砂の収容部を地中に設けることによって、いっそう完全な無排土工法を実現するものである。
【0008】
【発明が解決しようとする課題】
すなわち、本発明は、既製杭、鋼管杭、現場造成杭など、杭の種類や大きさにかかわらず、どのような杭であっても、無排土の状態(土砂や礫を地表に残さない状態)で埋設できる新規な方法を提供することを第一の課題とする。また、本発明は、ベントナイトなどの固化材を必要とせず、かつセメントミルクなどの硬化材も使用しないか又は使用量を低減でき、もって環境汚染を回避できる杭の埋設方法を提供することを第二の課題とする。さらに、本発明は、施工終了後に杭頭の確認を確実におこなうことができ、杭の水平力を担保できる杭の埋設方法を提供することを第三の課題とする。さらに、本発明は、上記第一から第三までの各課題を解決するのに好適に使用できる新規な掘削装置を提供することを第四の課題とする。
【0009】
上記の諸課題を解決するために開発された本発明のうち請求項1に記載する発明は、鋼管製の外管と複数の排土口を設けてある鋼管製の内管を同心円上に配置し、外管の先端には掘削ヘッドを装着し、内管と外管の間隙には掘削した土砂を収容する収容部を設け、外管の下部は外管の上部に対し口径を絞り込んで縮小してあり、外管の上部と下部は下窄まりのテーパー状部を有する連結管で結続し、内管の下端は固定することなく連結管の上に載置し、外管の上部と内管を固定し、内管の内方にオーガーを挿入して掘削を始め、土砂の大半を排土口から収容部へ収容しながら掘削を進め、所定の深度まで掘削した後、オーガーを引き揚げて内管の内方に杭を建て込み、内管と外管の固定を解除し、内管を引き揚げて収容部内の土砂で杭の周囲を埋め、次いで外管とそれに結続した全パーツを引き揚げて無用の土砂や礫を地表に残さないようにする杭の埋設方法である。
【0010】
また、本発明のうち請求項2に記載する発明は、下部の先端に掘削ヘッドを装着すると共に下部の口径を上部の口径に対して絞り込んで縮小してあり上部と下部の間は下窄まりのテーパー状部を有する連結管によって結続してある鋼管製の外管と、複数の排土口を設けてある鋼管製の内管とを同心円上に配置し、内管と外管の間隙には掘削した土砂を収容する収容部を設け、内管の下端は固定することなく連結管の上に載置し、外管の上部と内管を固縛し、内管の内方にオーガーを挿入して掘削地点に立ち上げ、内管・外管の固縛体とオーガーとを互いに逆方向に回転させながら掘削を始め、掘削した土砂をオーガーのスクリューで上方へ運び、土砂の大半を排土口から収容部へ収容しながら掘削を進め、所定の深度まで掘削した後、オーガーを引き揚げて内管の内方に杭を建て込み、内管と外管の固縛を解除し、内管を地上に引き揚げて収容部内の土砂で杭の周囲を埋め、次いで外管とそれに結続した全パーツを引き揚げて、無用の土砂や礫を地表に残さないようにする杭の埋設方法である。
【0011】
また、本発明のうち請求項3に記載する発明は、外管の上部の下端を固定する外輪板と内管の下端に嵌合する内輪板とを有すると共に外輪板と内輪板の間は間隔をあけて配設した複数の鉄筋で連結してある連結板を、上端に取り付けてある連結管を用いる請求項1又は2に記載の杭の埋設方法である。
【0012】
さらに、本発明のうち請求項4に記載する発明は、下部の先端に掘削ヘッドを装着すると共に下部の口径を上部の口径に対して絞り込んで縮小してあり上部と下部の間は下窄まりのテーパー状部を有する連結管によって結続してある鋼管製の外管と、複数の排土口を設けてある鋼管製の内管とを同心円上に配置し、排土口からの土砂を収容する収容部を内管と外管の間隙に形成すると共に、内管の下端は固定することなく連結管の上に載置してある掘削装置である。
【0013】
さらに、本発明のうち請求項5に記載する発明は、外管の上部の下端を固定する外輪板と内管の下端に嵌合する内輪板とを有すると共に外輪板と内輪板の間は間隔をあけて配設した複数の鉄筋で連結してある連結板を、連結管の上端に取り付けてある請求項4に記載の掘削装置である。
【0014】
【作用】
本発明に係る杭の埋設方法及びその方法に使用する掘削装置は、上記の構成からなり、外管と内管の間隙に土砂の収容部を形成してあるので、掘削された土砂の大半は、オーガーロッドを伝って上方に運ばれ、各排土口から収容部に収容される。したがって、掘削された土砂の大半は、いわば「地中の収容部」に収容されることとなり、地表に排出される土砂や礫を極めて少量にすることができる。
【0015】
また、本発明に係る杭の埋設方法及びその方法に使用する掘削装置は、内管の下端を固定させることなく連結管の上に載置してあるので、杭を建て込んだ後、内管を地上に引き揚げることによって土砂の収容部の容量を容易に拡大することができる。したがって、一見すると土砂の収容量が不足するように思えても、最終的には、地表に排出された土砂や礫を含めて掘削した土砂や礫の全量を掘削孔の内方に収容できるので、完全な無排土による杭の埋設を実現できる。
【0016】
以下、本発明に係る杭の埋設方法及びその方法に使用する土砂の掘削装置について、実施例及び図面に基づいてさらに詳細に説明する。
図1は、本発明に係る杭の埋設方法の一実施例(実施例1)に使用する土砂の掘削装置の側面断面図であり、図2は、その装置を3つのパーツに分解した状態を示す側面断面図である。また、図3は、実施例1で用いる連結板Pの平面図である。さらに、図4は、実施例1の土砂の掘削装置を使用して杭aを埋設する方法の施工過程を示す説明図である。
【0017】
【実施例1】
<土砂の掘削装置の説明>
本実施例では、杭径、杭長に応じ、外管(ケーシング)に使用するオーガー容量は100HP〜200HP、また、オーガーマシンに装着されるオーガー容量は80HP〜160HPの装置であり、併せて180HP〜360HP程度の容量である。これに相当する杭打機は70トン〜120トン級のものを使用する。
また、本実施例の土砂の掘削装置の施工能力は、地盤から見た場合、N値は200前後、礫径は400mmまで掘削可能であり、杭から見た場合、杭径1000mm、杭長50mまでは施工可能である。
【0018】
本実施例の土砂の掘削装置は、使用しないときは、図2に示すように、外管上部11と内管2からなる二重管部A、連結板Pを取り付けた連結管B、外管下部12と掘削ヘッド10(図1に示す)からなる掘削管部Cの3つのパーツに分解できるが、掘削に使用するときは、これらの全パーツを一体的に結続して 図1のように構成し、掘削地点の地表に立ち上げて、内管2の内方にオーガー5を挿入し、いわゆるダブルオーガーの状態で土砂を掘削する。
【0019】
図1及び図2において、1は、掘削孔径に相当する外径を有する鋼管製の外管であり、外管上部11と外管下部12とで構成されていて、外管下部12の先端には掘削ヘッド10を装着してある。また、外管下部12の口径は外管上部11の口径に対して絞り込んで縮小してあり、外管上部11と外管下部12の間は、下窄まりのテーパー状の連結管B(鋼管製)によって結続してある。
2は、側壁に複数の排土口H2・H3・H4・・を形成してあり、外管1の同心円上に配置した鋼管製の内管である。外管1と内管2の間隙には、連結管Bの排土口H1や内管2の排土口H2・H3・H4・・・から送り込まれた土砂を収容する収容部3を設けてある。内管2の下端は、固定させることなく、連結管Bに取り付けた連結板Pの上に載置してある。
【0020】
連結板Pは、連結管Bの上端に取り付けてあり、図3に示すように、外管上部11の下端に結続・固定する外輪板1’と内管2の下端に嵌合する内輪板2’とを有し、外輪板1’と内輪板2’の間は、間隔をあけて配設した複数の鉄筋R・R・・で連結して固定してある。
【0021】
連結管Bは、下窄まりのテーパー状の鋼管であり、図2に示すように、連結板Pの外輪板1’を支持し、連結管Bの側壁を兼ねる支持管B1と内輪板2’を支持し、やや上窄まりのテーパー状にしてある支持管B2を備えている。また、支持管B2には、排土口H1が設けられている。連結板Pの下面と連結管Bの上端とは、外輪板1’と支持管B1、内輪板2’と支持管B2とをそれぞれ溶接など適宜の方法により連結して固定してある。さらに、連結板Pの内輪板2’の上面には、内管2の下端に嵌合する切り込み部が設けてある。
すなわち、連結管Bの支持軸は外管1であり、そのため、内管2を引き抜いても何らの問題は生じない。また、連結管Bの下端は、支持管B1・B2が一体化して、外管下部12の上端に結続して固定している。
【0022】
なお、本実施例の連結管Bは、側壁全体の形状(すなわち支持管B1の形状)を「下窄まりのテーパー状」にしてあるが、本発明で用いる連結管はこの形状に限るものではなく、側壁の一部を「下窄まりのテーパー状」に形成したものでもよい、要は、本発明の連結管は「下窄まりのテーパー状部」を有し、大きい口径の外管上部と小さい口径の外管下部とを一体的に結続して固定できる形状のものであればよい。
【0023】
連結管Bの排土口HIの口径は300mm程度、内管2の排土口H2・H3・H4・・は、それぞれ口径200mm程度とし、各排土口には20mmの鉄筋を約50mm間隔で取り付けてあり、50mm以上の礫や土塊が収容部3へ混入しないようにしてある。
【0024】
上記の構成からなる掘削装置は、3つのパーツに分解された状態のものを使用するとき、内管2を連結管Bの連結板Pの上に載置してその切り込み部に内管2の下端を嵌合すると共に、外管上部11と連結管B(上端に連結板Pを取り付けてある。)と外管下部12とを溶接その他の方法によって一体的に結続・固定する。そうすると、内管2の下端は連結管Bの連結板Pに設けてある切り込み部に載置して嵌め込んであるだけであるから、内管2を引き揚げると連結板Pとの結合が自動的に解除され、内管2は連結管Bから容易に離反する。しかし、外管上部11と連結板Pと連結管Bと外管下部12と掘削ヘド10とはそれぞれ一体的に結続・固定してあるので、外管上部11を引き揚げると、これに結続されている上記全てのパーツも連なったままで引き揚げられることになる。したがって、施工完了に伴って外管上部11を回転させながら引き揚げると、連結板P、連結管B、外管下部12及び掘削ヘッド10がそれぞれ連結された状態のまま連結管Bの支持管B2に設けた排土口H1から土砂を下方に排出しながら、外管上部11と同時に回転しながら地上に引き揚げられる。
【0025】
外管上部11と内管2とは、両管の上部にそれぞれ複数の小孔をあけ、この小孔に横振れ防止鉄筋4を通して、回転によって生じる横振れや掘削時に発生する振動や管の浮き上がりなどを抑えるようにしっかりと固縛定している。
また、掘削装置全体の外面(外管上部11、連結管B、外管下部12)の表面には、それぞれ、掘削に伴う土砂の摩擦抵抗や引き揚げるときの摩擦抵抗を減少させるために摩擦カット鉄筋9をスパイラル状に巻装してある。
【0026】
本実施例で使用するオーガー5のロッド6には、図1に示すように、その先端から5mまではスパイラルスクリュー7を着装してあるが、その後は、スパイラルスクリュー7を着装していない箇所(オーガーロッド6のみの箇所)が2m、スパイラルスクリュー7を着装してある箇所が3mというように交互に組み合わせてスパイラルスクリュー7をロッド6のところどころに着装するようにしてある。しかし、この着装位置の組み合わせは、地盤などの事情によって任意に変更して差し支えない。
【0027】
<杭の埋設方法の説明>
図1、図2及び図4に基づいて、本実施例の杭の埋設方法について説明する。
図2に示すように3つに分解されている各パーツ(二重管部A、連結板Pを取り付けた連結管B、掘削管部C)を、図1に示すように一体的に組み立てて掘削装置を構成し、外管上部11と内管2とが同じ方向に回転するように、また、回転に伴う横振れや振動に耐えられるように固縛されているかどうかを確認した上で掘削地点の地表に立ち上げる。これと前後して、内管2の孔内にオーガー5を挿入し、図4(イ)に示すように、掘削装置共々、オーガーヘッド8を杭aの埋設地点に突き立てる。これで施工の準備は完了する。
【0028】
施工位置に配置された掘削装置は、杭打機(図示せず)によってセットされ、杭打機に装備されたオーガーマシンによって回転させられながら土砂の掘削を始め、また、オーガー5を始動させて掘削装置(内管・外管の固縛体)とは逆の方向にオーガーヘッド8を回転させながら土砂の掘削を始め、発生するトルクを互いに相殺しながら、「ダブルオーガー」工法により、図4(ロ)に示すように、土中深くまで掘削を進行させる。
【0029】
掘削された土砂bは、ロッド6に設けてあるスパイラルスクリュー7によって上方へ押し上げられ、土砂の一部は、図4(ロ)に示すように、連結管Bに設けてある排土口H1より外管1と内管2の間隙に形成された土砂の収容部3へ収容される。残りの土砂や礫はオーガースクリュー7によってさらに押し上げられ、内管2に設けた排土口H2・H3・H4・・より収容部3へ収容される。したがって、掘削された土砂bの大半は、収容部3へ収容されることになるが、一部の土砂や大きい礫などは、オーガーロッド6を伝って地表に排出される。しかし、後記するように、この現象は何ら問題ではない。地表に排出された土砂や礫は、埋め戻しに不適と判断された大きな礫などを除いて、最終的には全量を掘削孔に戻すことができる。
【0030】
計画深度まで掘削した後、図4(ハ)に示すように、オーガーヘッド8の先端からセメントミルクcを噴出する。続いて、オーガー5を引き揚げ、図4(ニ)に示すように、内管2の孔内に杭aを建て込む。杭aの先端は開放型となっているが、先端の根固めのためにオーガーヘッド8から注入したセメントミルクcによって、建て込んだ杭aの先端は閉塞された状態となる。したがって、セメントミルクcが杭aの孔内に入り込むことがなく、セメントミルクcの使用量を大幅に節減できる。また、土砂bとセメントミルクcとが混合して形成された泥状物dが杭aの孔内に入り込まないので、泥状物dが杭頭部から地表へ溢流することがなく、そのため、施工完了後に杭頭を確実に確認でき、耐震に必要な杭の水平力について点検と確認を十分におこなうことができる。
【0031】
次いで、外管上部11と内管2とを固縛している鉄筋4を取り外す。
杭aの建て込み状態を確認した上で、内管2を地上へ引き揚げるが、前記のとおり、内管2は、連結管Bに取り付けた連結板Pの切り込み部に載置しただけの状態となっているので、内管2を徐々に引き揚げると、内管2と連結管Bとは自動的に離反する。
【0032】
内管2を引き揚げると、図4(ホ)に示すように、外管1と内管2の間隙に設けた収容部3に充満している土砂bは、内管2を引き抜くことによって、内管2の厚さを含めて杭aの外径まで土砂の収容部が拡大するので、収容部3に充満していた土砂bは、杭aの周辺に落ち込み、一部は下方へ移動する。この状態をさらに詳細に説明すると、以下のとおりである。
【0033】
オーガー5によって掘削された土砂bの大半は、掘削装置に設けた排土口H1・H2・H3・H4・・のいずれかを経て、外管1と内管2の間隙に設けた収容部3に収容されるが、この状態は土砂の一次収容である。
次に、杭aの建て込みが完了した後、内管2を引き揚げるが、内管2の引き抜きによって内管2の厚みを含めて杭aの外径までが土砂の収容部となるので、この状態が土砂の二次収容である。
以上のとおり、一次収容だけでは掘削した土砂bによって満杯となり、一見すると収容不足を生じるように思える。この収容不足分は、50mmを越えた礫などと共にオーガーロッド6を伝って地表へ排出されるが、上記のとおり、杭aを建て込んでから内管2を引き揚げた後の土砂の収容部の拡大に伴い、掘削孔の上部周辺には空隙が生じるので、一旦は地表に排出された土砂bの全量(埋め戻しには不適と判断された礫などは除去する。)を掘削孔へ埋め戻すことができる。この場合、(1)外管1と内管2の間隙に設けた収容部3と(2)内管2の厚みを含めた内壁と杭aの外径との間隙の収容部は、収容量において概ね等しい。したがって、一次収容で満杯となっていた掘削量は、内管2の引き揚げによって拡大された収容部、すなわち、二次収容により杭aの周辺の土砂の量的な高さはおよそ半減する。この半減によって収容部の上部の約半分は空白となり、ここに地表に排出した土砂を収容することができ、掘削と収容の均衡が保たれた無排土工法が達成できるのである。この状態は、図4(ホ)に示されている。
【0034】
内管2に続いて、外管上部11及びそれに結続・固定してある全パーツ、すなわち連結板P、連結管B、外管下部12及び掘削ヘッド10を連ねた状態で回転させながら地上に引き揚げる。そうすると、掘削孔に空隙ができるので、地表に排出した土砂や礫を所要に応じて掘削孔内に埋め戻す。この埋め戻しによって、図4(ヘ)に示すように、土砂や礫を地表に残すことなく、杭aが埋設された状態となり、本実施例の杭の埋設工事は終了する。なお、この工程は、地表に排出した土砂や礫を掘削孔内に埋め戻した後、外管上部11を引き揚げるようにしてもよい。要は、最終的に、掘削した土砂や礫の全量を掘削孔内に埋め戻すようにすればよい。
【0035】
本実施例では、杭径600mmで杭長30mの杭の埋設について検討した。この場合、30mの杭長に対して連結管Bの設置位置を杭の先端から2mの部分としたが、連結管Bは、地盤や杭径などに応じて任意の位置に設置して差し支えない。また、掘削装置の外径をさらに拡大するか又は収容部を長くすることによって土砂の収容量を適宜増加(ないしは減少)することも可能である。
【0036】
なお、本実施例では、図1や図4に示すように、連結管Bの支持管B2をやや上窄まりのテーパー状に形成してあるが、支持管B2をテーパー形状にすると、外管1と内管2で囲まれた土砂の収容部3の容積を大きくすることができ、土砂の収容量を上げることができる。
【0037】
上記の実施例では、二重管部A(外管上部11と内管2)、連結板Pを取り付けた連結管B及び掘削管部C(外管下部12と掘削ヘッド10)の3つのパーツに分解できる掘削装置を使用したが、本発明で用いる掘削装置はこのように分解できるものに限るのではなく、外管と複数の排土口を側壁に設けた内管とを組み合わせて土砂の収容部を地中に設けることができる構造であり、かつ、内管を容易に引き抜くことができる構造であればよく、必ずしも上記3つのパーツで構成されたり又は3つのパーツに分解できる装置でなくてよい。しかしながら、本発明に係る掘削装置は、相当の重量・規模になることが多いので、掘削を終了して地表に引き揚げた後、運搬や保管を容易にするために、3つないし4つ程度の適宜のパーツに分解できる構造のものであることが望ましい。
【0038】
さらに、上記の実施例では、外管上部11と内管2を固縛する手段として両管の上部にそれぞれ複数の小孔をあけて、この小孔に鉄筋4を通して固縛したが、本発明における外管上部と内管の固縛は、必ずしもこのような手段に限定するものではなく、回転に伴う外管と内管の横振れを防止し、また、掘削によって生じる振動などを抑えるように固定できるのであれば、任意の手段を採って差し支えない。
【0039】
本発明において、掘削による土砂の発生量とその収容量とは、以下のようにして計算する。
すなわち、土砂の発生量は「掘削面積(内管の内径)×内管の長さ」によって算出し、一方、土砂の収容量は「外管の内径×長さと使用する杭の内径×長さの合計」で算出される。
しかし、掘削容量が増加する要因として、オーガーによって破砕された礫が小片礫となり、掘削前の原形に比べ、容積は増加する。また、地盤によって含水量は大きく変化する。さらに地盤を形成する粘土、砂、礫などの混合状態などによっても容積は変化する。このため、掘削によって容積量の増加を予測することは極めて困難である。同時に、掘削された土砂の中には、地中に収容するには不適と考えられる礫の存在もある。したがって、本発明では、掘削によって容積量は20%増加するものとし、その中の10%分は地中に収容するが、残りの10%分は地中での収容は不適であると考え、別途処理する方法を採っている。
以上のとおり、掘削量に対して収容量は10%増えると想定し、試算するが、具体的には次の計算方法による。
【0040】
例えば、杭径600mm(厚さ90mm)、杭長30mの場合について検討すると、無排土とするために使用する外管(ケーシング)は内径940mm、内管は内径740mmである。そうすると、
掘削側(内管の孔径 740mm)
土砂の発生量 3.14 × 0.37 × 0.37 × 30 m = 12.89 m3
増加量 (10%) 12.89 × 10% = 1.28 m3
すなわち、合計 14.17 m3 が土砂の発生量である。これに対し、
収容側(外管 940mmと先端部740mm )
土砂の収容量 3.14 × 0.47 × 0.47 × 28 m = 19.42 m3
土砂の収容量 3.14 × 0.37 × 0.37 × 2 m= 0.85 m3
すなわち、合計 20.27 m3が土砂の収容量である。
以上の計算により、掘削量14.17m3に対して収容量は20.27m3となり、収容側が6.10m3だけ大きいが、これより、埋設する杭の体積4.32m3を差し引いても、1.78m3 収納側が大きく、したがって、掘削と収納の関係から検討しても、本発明によって無排土工法が達成できることは明らかである。
【0041】
【発明の効果】
以上、詳しく説明したとおり、本発明の杭の埋設方法及びその方法に使用する掘削装置によれば、どのような杭であっても、完全無排土工法によって埋設できる。したがって、本発明の社会的、経済的意義は極めて大きい。
すなわち、本発明の杭の埋設方法は、残土や泥状物を出さないので、産業廃棄物を減少するという社会的懸案事項を解決できる上、残土処理の費用が不要となるので、その経済的効果は極めて大きい。さらに、本発明の方法では、外管によって掘削孔の壁を抑えているので、従来の工法で使用されているベントナイトなどの固化材を使用する必要がなく、さらにセメントミルクなどの硬化材も全く使用しないか又はその使用量を大幅に低減できるので、この面についての経済的効果も大きい。また、施工現場及びその周辺やその地下水などの環境を汚染することがない。さらに、本発明の杭の埋設方法は、施工終了後に杭頭を確実に確認できるので、杭の水平力の点検を確実におこなうことができる。このように、本発明の杭の埋設方法は、経済性、環境性、安全性の面で極めて大きい効果を上げることができる工法である。
【0042】
さらに、本発明に用いる掘削装置は、先端に掘削ヘッドを装備した外管(ケーシング)とオーガーとを併用する「ダブルオーガー」の工法を採るために、従来の掘削装置に比べると、施工精度は飛躍的に向上する。
また、本発明の杭の埋設方法によれば、小口径の杭から大口径のものまで、幅広い施工が可能であり、本発明では口径1000mmの杭の施工が可能である。したがって、本発明は、既製杭の埋設だけではなく、鋼管杭や現場造成杭の施工にも適用できる。
このように、本発明に係る杭の埋設方法は、従来工法の諸欠点を是正できる画期的な工法である。また、本発明に係る掘削装置も画期的なものである。
【図面の簡単な説明】
【図1】本発明の実施例1に使用する土砂の掘削装置の側面断面図である。
【図2】本発明の実施例1に使用する土砂の掘削装置を3つのパーツに分解した状態を示す側面断面図である。
【図3】実施例1で用いる連結板の平面図である。
【図4】実施例1の掘削装置を用いた杭の埋設方法の施工過程を示す説明図である。
【符号の説明】
1・・・・外管
11・・・外管上部
12・・・外管下部
2・・・・内管
3・・・・土砂の収容部
4・・・・横振れ防止鉄筋
5・・・・オーガー
6・・・・オーガーロッド
7・・・・スパイラルスクリュー
8・・・・オーガーヘッド
9・・・・摩擦カット鉄筋
10・・・掘削ヘッド
1’・・・連結板の外輪板
2’・・・連結板の内輪板
A・・・・二重管部
B・・・・連結管
B1・B2・・・連結管の支持管
C・・・・掘削管部
H1・・・連結管に設けた排土口
H2・H3・H4・・・内管に設けた排土口
P・・・・連結板
a・・・・杭
b・・・・土砂
c・・・・セメントミルク
d・・・・土砂とセメントミルクが混合した泥状物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pile burying method and an excavator used in the method. Specifically, the present invention relates to a pile burying method by a non-exhaust earth method and an earth and sand excavating apparatus used for the non-exhaust earth method. More specifically, using a steel pipe, and using an outer pipe (casing) and an inner pipe, a foundation pile embedding method that should also be referred to as “a non-exhaust earth construction method with an earth and sand container in the ground” and the foundation pile The present invention relates to earth and sand excavation equipment used in the burying method. The present invention can be applied not only to burying off-the-shelf piles, but also to construction of steel pipe piles and site-built piles.
[0002]
[Prior art]
[Patent Document 1]
JP 2002155553 A
[0003]
An auger is usually used to bury prefabricated piles (concrete piles). In this case, earth and sand (including gravel) generated by excavation is discharged through a earth and sand discharging mechanism such as a spiral screw provided on the rod. Then, after excavating to the planned depth, the pile is built to a predetermined depth while rotating. Therefore, when an auger is used, discharge of a considerable amount of earth and sand cannot be avoided.
[0004]
Recently, with the increase in size and height of structures, foundation piles are shifting to large diameters. For this reason, the amount of earth and sand discharged by burying piles is also large, and the treatment of earth and sand (residual soil) as industrial waste has become a major social problem.
In addition, the labor and cost for disposal of earth and sand is increasing. For example, when building a large building, the amount of earth and sand discharged during foundation work is about 5,000 to 10,000 cubic meters, and in this case the earth and sand disposal cost is 70 to 100 million yen. Also reach. Considering this on a nationwide scale, approximately 100 billion yen is spent annually for soil disposal.
[0005]
Under such circumstances, many studies have been made on pile burying methods that do not discharge soil, that is, non-exhaust soil, and patent applications are occasionally found. However, the construction method called the conventional soil-free construction method is mainly a construction method in which a metal fitting for excavation is attached to the tip of the pile and excavated by this, or using a device with a slightly improved degree of this, Both are still under development, and it is hard to say that they have been completed. For example, if the ground is soft, the pile to be buried is short, the pile diameter is small, etc., construction is possible, but construction is difficult in the case of hard ground, long pile, large pile diameter, etc. There are many cases. Moreover, in order to excavate earth and sand, a drilling blade is attached to the tip of the auger. However, since these drilling blades are all consumables, the economic burden for this is extremely large.
[0006]
Currently, most of the construction of ready-made piles is the “cement milk rooting expansion method” (certified method). Problems common to all certified methods include drilling with an auger, then injecting a hardener such as cement milk to fix the surrounding area, and bentonite to prevent the drilled hole wall from collapsing. The solidification material is injected, and then the pile is rotated while being built and buried. In this method, hardened or solidified materials such as cement milk and bentonite are mixed with the excavated earth and sand to form mud, which fills the borehole and overflows from the pile head. There is a problem with things. In such a state, it becomes difficult to confirm the pile position after construction, but especially in the ground with a gravel layer, a drainage layer, or a severe layer of drainage, it was filled with cement milk at the end of construction. The subsidence phenomenon occurred in the borehole over time, so the construction was completed without confirming whether or not sufficient peripheral fixation was maintained for the pile head, which is the most important part of the horizontal force of the pile. The current situation is. Since the horizontal force of the pile is the maximum in the vicinity of the head, there is a concern that problems may arise in an emergency if the periphery of the pile head is insufficiently fixed.
[0007]
In light of the current state of the above-mentioned foundation pile laying method, the present inventor has continued research for many years to develop a pile burying method using non-draining soil, uses a steel pipe, and uses both an outer pipe (casing) and an inner pipe. Invented a burying method that can realize complete soil-free soiling by a construction method that is completely different from the conventional idea, filed a patent application as Japanese Patent Application No. 2000-354183, and disclosed as Japanese Patent Application Laid-Open No. 2002-155331 Has been. The present invention is a further improvement of the invention of the prior application, and realizes a more complete soil-free construction method by providing an excavated earth and sand container in the ground.
[0008]
[Problems to be solved by the invention]
In other words, the present invention is a soil-free state (no sediment or gravel remains on the ground surface) regardless of the type or size of the pile, such as ready-made pile, steel pipe pile, and site-built pile. The first problem is to provide a new method that can be embedded in a state). The present invention also provides a pile burying method that does not require a solidifying material such as bentonite, does not use a hardening material such as cement milk, or can reduce the amount used, thereby avoiding environmental pollution. The second issue Furthermore, this invention makes it a 3rd subject to provide the pile embedding method which can confirm a pile head reliably after completion | finish of construction, and can ensure the horizontal force of a pile. Furthermore, this invention makes it the 4th subject to provide the novel excavation apparatus which can be used conveniently for solving each said subject from 1st to 3rd.
[0009]
  The invention described in claim 1 among the present inventions developed to solve the above-mentioned problems is that a steel pipe outer pipe and a steel pipe inner pipe provided with a plurality of earth discharge ports are arranged on a concentric circle. An excavation head is attached to the tip of the outer pipe, and a space for accommodating excavated earth and sand is provided in the gap between the inner pipe and the outer pipe, and the lower part of the outer pipe is reduced in diameter to the upper part of the outer pipe. The upper and lower parts of the outer pipe are connected by a connecting pipe having a tapered portion with a constriction.Bottom edge ofIs placed on the connecting pipe without fixing,Fix the top of the outer tube and the inner tube,Drilling is started by inserting an auger into the inner pipe, and the excavation is carried out while accommodating most of the soil from the discharge port to the receiving part. After drilling to the specified depth, the auger is lifted to move the inner part of the inner pipe. Built a pile inUnfix the inner and outer pipes,Pull up the inner pipe and fill the periphery of the pile with earth and sand in the housing, then the outer pipeAnd all the parts connected to itThis is a method of burying piles that will lift up the soil and leave no unnecessary earth and sand or gravel on the surface.
[0010]
In the invention according to claim 2 of the present invention, the excavation head is mounted at the lower end and the lower diameter is reduced by reducing the upper diameter relative to the upper diameter so that the gap between the upper and lower parts is reduced. A steel pipe outer pipe connected by a connecting pipe having a tapered portion and a steel pipe inner pipe provided with a plurality of earth discharge ports are arranged concentrically, and a gap between the inner pipe and the outer pipe is arranged. Is provided with a storage section for storing the excavated earth and sand, the lower end of the inner pipe is placed on the connecting pipe without being fixed, the upper part of the outer pipe and the inner pipe are secured, and the auger is placed inside the inner pipe. And start up excavation while rotating the inner and outer pipes and the auger in opposite directions, carrying the excavated earth and sand upward with the auger screw. The excavation is carried out while being accommodated in the accommodating part from the earth discharge port, and after excavating to a predetermined depth, The pile is built inside the inner pipe, the lashing of the inner pipe and the outer pipe is released, the inner pipe is lifted to the ground, and the surroundings of the pile are filled with earth and sand in the housing, and then the outer pipe and the pipe are connected to it. It is a pile burying method that pulls up all the parts that have been continued so as not to leave unnecessary earth and sand or gravel on the ground.
[0011]
According to a third aspect of the present invention, an invention includes an outer ring plate that fixes the lower end of the upper portion of the outer tube and an inner ring plate that is fitted to the lower end of the inner tube, and a gap is provided between the outer ring plate and the inner ring plate. The pile embedding method according to claim 1 or 2, wherein a connecting plate is attached to the upper end of the connecting plates connected by a plurality of reinforcing bars.
[0012]
Further, according to the invention described in claim 4 of the present invention, the excavation head is mounted at the lower end, and the lower diameter is reduced by narrowing the upper diameter relative to the upper diameter, and the gap between the upper and lower portions is reduced. An outer pipe made of steel pipe connected by a connecting pipe having a tapered portion and an inner pipe made of steel pipe provided with a plurality of drainage openings are arranged concentrically, and the earth and sand from the drainage outlet is removed. In the excavator, an accommodating portion to be accommodated is formed in the gap between the inner tube and the outer tube, and the lower end of the inner tube is placed on the connecting tube without being fixed.
[0013]
Furthermore, the invention described in claim 5 of the present invention has an outer ring plate for fixing the lower end of the upper part of the outer tube and an inner ring plate fitted to the lower end of the inner tube, and a gap is provided between the outer ring plate and the inner ring plate. The excavator according to claim 4, wherein a connecting plate connected by a plurality of reinforcing bars is attached to an upper end of the connecting pipe.
[0014]
[Action]
The pile embedding method according to the present invention and the excavation apparatus used in the method have the above-described configuration, and since the earth and sand accommodating portion is formed in the gap between the outer pipe and the inner pipe, most of the excavated earth and sand is Then, it is transported upward along the auger rod, and is accommodated in the accommodating portion from each earth discharge port. Therefore, most of the excavated earth and sand is accommodated in a so-called “underground accommodation part”, so that the amount of earth and sand and gravel discharged to the ground surface can be extremely small.
[0015]
In addition, since the pile embedding method according to the present invention and the excavator used in the method are placed on the connecting pipe without fixing the lower end of the inner pipe, It is possible to easily expand the capacity of the earth and sand container by pulling up the ground. Therefore, even if it seems that there is a shortage of earth and sand at first glance, the entire volume of excavated earth and sand and gravel, including the earth and sand discharged on the surface, can be accommodated inside the excavation hole. It is possible to bury the piles with complete soil-free soiling.
[0016]
Hereinafter, the pile embedding method according to the present invention and the earth and sand excavation device used in the method will be described in more detail based on examples and drawings.
FIG. 1 is a side sectional view of an earth and sand excavation device used in one embodiment (Example 1) of a pile embedding method according to the present invention, and FIG. 2 shows a state in which the device is disassembled into three parts. FIG. FIG. 3 is a plan view of the connecting plate P used in the first embodiment. Furthermore, FIG. 4 is explanatory drawing which shows the construction process of the method of burying the pile a using the earth and sand excavation apparatus of Example 1. FIG.
[0017]
[Example 1]
<Description of earth and sand excavator>
In this embodiment, depending on the pile diameter and pile length, the auger capacity used for the outer pipe (casing) is 100 HP to 200 HP, and the auger capacity mounted on the auger machine is 80 HP to 160 HP. The capacity is about ~ 360HP. Corresponding pile drivers are 70 to 120 tons.
In addition, the construction capacity of the earth and sand excavating apparatus of this example is such that when viewed from the ground, the N value is about 200 and the gravel diameter is 400 mm, and when viewed from the pile, the pile diameter is 1000 mm and the pile length is 50 m. Up to can be constructed.
[0018]
  When the earth and sand excavating apparatus of this embodiment is not used, as shown in FIG. 2, a double pipe portion A composed of an outer pipe upper portion 11 and an inner pipe 2, a connecting pipe B to which a connecting plate P is attached, an outer pipe. beneath12And the excavation head 10 (shown in FIG. 1) can be disassembled into three parts of the excavation pipe section C. When used for excavation, all these parts are connected together and configured as shown in FIG. The auger 5 is inserted inward of the inner pipe 2 and the earth and sand are excavated in a so-called double auger state.
[0019]
1 and 2, reference numeral 1 denotes an outer tube made of a steel pipe having an outer diameter corresponding to the diameter of the excavation hole, and is composed of an outer tube upper portion 11 and an outer tube lower portion 12. Is equipped with a drilling head 10. Further, the diameter of the outer pipe lower portion 12 is reduced to be reduced with respect to the diameter of the outer pipe upper portion 11, and the tapered connecting pipe B (steel pipe) is formed between the outer pipe upper portion 11 and the outer tube lower portion 12. Connected).
Reference numeral 2 denotes an inner pipe made of a steel pipe having a plurality of earth discharge openings H2, H3, H4,... Formed on a side wall and arranged on a concentric circle of the outer pipe 1. In the gap between the outer pipe 1 and the inner pipe 2, there is provided a receiving portion 3 for receiving the earth and sand sent from the discharging port H1 of the connecting pipe B and the discharging ports H2, H3, H4. is there. The lower end of the inner tube 2 is placed on the connecting plate P attached to the connecting tube B without being fixed.
[0020]
The connecting plate P is attached to the upper end of the connecting tube B, and as shown in FIG. 3, the outer ring plate 1 ′ connected and fixed to the lower end of the upper portion of the outer tube 11 and the inner ring plate fitted to the lower end of the inner tube 2. 2 ′, and the outer ring plate 1 ′ and the inner ring plate 2 ′ are connected and fixed by a plurality of reinforcing bars R, R,.
[0021]
The connecting pipe B is a tapered steel pipe with a constriction, and as shown in FIG. 2, supports the outer ring plate 1 ′ of the connecting plate P, and supports the inner ring plate 2 ′ which also serves as the side wall of the connecting pipe B. And a support tube B2 having a slightly constricted taper shape. Further, the support pipe B2 is provided with a discharge port H1. The lower surface of the connecting plate P and the upper end of the connecting tube B are fixed by connecting the outer ring plate 1 'and the support tube B1, and the inner ring plate 2' and the support tube B2 by an appropriate method such as welding. Furthermore, the upper surface of the inner ring plate 2 ′ of the connecting plate P is provided with a cut portion that fits into the lower end of the inner tube 2.
That is, the support shaft of the connecting pipe B is the outer pipe 1, and therefore no problem occurs even if the inner pipe 2 is pulled out. Further, the lower end of the connecting pipe B is integrated with the support pipes B1 and B2, and is connected and fixed to the upper end of the lower part 12 of the outer pipe.
[0022]
In addition, although the connection pipe B of the present embodiment has a shape of the entire side wall (that is, the shape of the support pipe B1) having a “conical taper”, the connection pipe used in the present invention is not limited to this shape. Alternatively, a part of the side wall may be formed in a “squeezed tapered shape”. In short, the connecting pipe of the present invention has a “squeezed tapered part” and an upper portion of the outer pipe having a large diameter. Any shape can be used as long as the outer tube lower portion having a small diameter can be integrally connected and fixed.
[0023]
The diameter of the discharge port HI of the connecting pipe B is about 300 mm, and the discharge ports H2, H3, H4, etc. of the inner pipe 2 are about 200 mm in diameter, and 20 mm rebars are spaced at intervals of about 50 mm at each discharge port. It is attached so that gravels and soil blocks of 50 mm or more are not mixed into the housing part 3.
[0024]
  When the excavator having the above-described configuration is used in a state of being disassembled into three parts, the inner tube 2 is placed on the connecting plate P of the connecting tube B, and the inner tube 2 is inserted into the cut portion. While fitting the lower end, the outer tube upper portion 11, the connecting tube B (the connecting plate P is attached to the upper end), and the outer tube lower portion 12 are integrally connected and fixed by welding or other methods. Then, since the lower end of the inner tube 2 is only placed and fitted in a notch provided in the connection plate P of the connection tube B, the connection with the connection plate P is automatically performed when the inner tube 2 is lifted. The inner tube 2 is easily separated from the connecting tube B. However, the outer pipe upper part 11, the connecting plate P, the connecting pipe B, the outer pipe lower part 12, and the excavation headTsuSince the outer tube upper part 11 is lifted up, all the parts connected to the outer pipe 11 are pulled up while being connected together. Therefore, when the outer pipe upper part 11 is rotated while being rotated, the connecting plate P, the connecting pipe B, the outer pipe lower part 12 and the excavation head 10 are respectively connected to the support pipe B2 of the connecting pipe B. While discharging the earth and sand downward from the provided discharge port H1, it is pulled up to the ground while rotating simultaneously with the outer pipe upper part 11.
[0025]
The outer pipe upper portion 11 and the inner pipe 2 are each provided with a plurality of small holes in the upper portions of both pipes, and through the horizontal vibration preventing rebar 4 through the small holes, the horizontal vibration caused by the rotation, the vibration generated during excavation, and the floating of the pipe It is firmly secured to suppress such things.
In addition, the surface of the outer surface of the entire excavator (the outer pipe upper part 11, the connecting pipe B, the outer pipe lower part 12) is a friction-cut reinforcing bar in order to reduce the frictional resistance of the earth and sand accompanying the excavation and the frictional resistance during the lifting. 9 is wound spirally.
[0026]
As shown in FIG. 1, the spiral screw 7 is attached to the rod 6 of the auger 5 used in the present embodiment up to 5 m from the tip, and thereafter, the portion where the spiral screw 7 is not attached ( The spiral screw 7 is attached to some places of the rod 6 by alternately combining the portion where only the auger rod 6 is 2 m and the portion where the spiral screw 7 is attached is 3 m. However, the combination of the wearing positions may be arbitrarily changed depending on circumstances such as the ground.
[0027]
<Description of pile burying method>
A pile embedding method according to this embodiment will be described with reference to FIGS. 1, 2, and 4.
As shown in FIG. 2, each part (double pipe part A, connecting pipe B to which connecting plate P is attached, excavating pipe part C) that is disassembled into three parts is assembled as shown in FIG. Excavation is made after confirming whether or not the upper pipe 11 and the inner pipe 2 are secured so that the outer pipe 11 and the inner pipe 2 rotate in the same direction and can withstand lateral vibration and vibration accompanying rotation. Launch on the surface of the point. Before and after this, the auger 5 is inserted into the hole of the inner pipe 2, and as shown in FIG. 4 (a), the auger head 8 is pushed to the burial point of the pile a together with the excavator. This completes the preparation for construction.
[0028]
The excavator placed at the construction position is set by a pile driver (not shown), starts excavating earth and sand while being rotated by an auger machine equipped on the pile driver, and starts the auger 5 With the “double auger” construction method, excavation of earth and sand is started while rotating the auger head 8 in the direction opposite to that of the excavation device (inner tube / outer tube tying body), and the generated torques are offset each other. As shown in (b), the excavation proceeds deep into the soil.
[0029]
The excavated earth and sand b is pushed upward by a spiral screw 7 provided on the rod 6, and a part of the earth and sand is, as shown in FIG. It is accommodated in the earth and sand accommodating portion 3 formed in the gap between the outer tube 1 and the inner tube 2. The remaining earth and sand and gravel are further pushed up by the auger screw 7 and are accommodated in the accommodating portion 3 from the earth discharge ports H2, H3, H4,. Therefore, most of the excavated earth and sand b is accommodated in the accommodating part 3, but part of the earth and sand, large gravel, etc. are discharged to the ground via the auger rod 6. However, as will be described later, this phenomenon is not a problem. Sediment and gravel discharged to the surface can be finally returned to the excavation hole, except for large gravel that is judged to be unsuitable for backfilling.
[0030]
After excavation to the planned depth, cement milk c is ejected from the tip of the auger head 8 as shown in FIG. Subsequently, the auger 5 is pulled up, and the pile a is built in the hole of the inner pipe 2 as shown in FIG. The tip of the pile a is an open type, but the tip of the built-in pile a is closed by the cement milk c injected from the auger head 8 to solidify the tip. Therefore, the cement milk c does not enter the hole of the pile a, and the usage amount of the cement milk c can be greatly reduced. Moreover, since the muddy material d formed by mixing the earth and sand b and the cement milk c does not enter the hole of the pile a, the muddy material d does not overflow from the pile head to the ground surface. After the completion of construction, the pile head can be confirmed reliably, and the pile horizontal force required for earthquake resistance can be sufficiently inspected and confirmed.
[0031]
Next, the reinforcing bars 4 that secure the upper portion 11 of the outer tube and the inner tube 2 are removed.
After confirming the built-in state of the pile a, the inner pipe 2 is lifted to the ground. As described above, the inner pipe 2 is only placed on the notch portion of the connecting plate P attached to the connecting pipe B. Therefore, when the inner pipe 2 is gradually lifted, the inner pipe 2 and the connecting pipe B are automatically separated.
[0032]
When the inner pipe 2 is pulled up, as shown in FIG. 4 (e), the earth and sand b filled in the accommodating portion 3 provided in the gap between the outer pipe 1 and the inner pipe 2 is removed by pulling out the inner pipe 2. Since the earth and sand accommodating part expands to the outer diameter of the pile a including the thickness of the pipe 2, the earth and sand b filled in the accommodating part 3 falls to the periphery of the pile a, and a part moves downward. This state will be described in more detail as follows.
[0033]
Most of the earth and sand b excavated by the auger 5 passes through any one of the discharge ports H1, H2, H3, H4,... Provided in the excavator, and the accommodating portion 3 provided in the gap between the outer pipe 1 and the inner pipe 2. This state is the primary containment of earth and sand.
Next, after the construction of the pile a is completed, the inner pipe 2 is lifted up. However, since the inner pipe 2 is pulled out to the outer diameter of the pile a including the thickness of the inner pipe 2, The state is secondary containment of earth and sand.
As described above, the primary containment alone is filled with excavated earth and sand b, and at first glance, it seems that the accommodation is insufficient. This lack of accommodation is discharged to the ground surface along with the auger rod 6 together with gravel etc. exceeding 50 mm, but as described above, after the pile a is built and the inner pipe 2 is lifted, Along with the expansion, a gap is formed around the upper part of the excavation hole, so that the entire amount of earth and sand b once discharged to the surface (removing gravel and the like determined to be inappropriate for backfilling) is backfilled into the excavation hole. be able to. In this case, (1) the accommodating portion 3 provided in the gap between the outer tube 1 and the inner tube 2 and (2) the accommodating portion in the gap between the inner wall including the thickness of the inner tube 2 and the outer diameter of the pile a are Is roughly equal. Therefore, the amount of excavation that has been filled in the primary accommodation is about half the height of the sediment around the pile a due to the accommodation portion expanded by the lifting of the inner pipe 2, that is, the secondary accommodation. This half cuts about half of the upper part of the storage space, allowing the earth and sand discharged on the surface to be stored in this space, and achieving a soil-free construction method that maintains a balance between excavation and storage. This state is shown in FIG.
[0034]
Following the inner pipe 2, the outer pipe upper part 11 and all the parts connected and fixed thereto, that is, the connecting plate P, the connecting pipe B, the outer pipe lower part 12 and the excavation head 10 are rotated and connected to the ground. Pull it up. Then, since a void is formed in the excavation hole, earth and sand or gravel discharged to the ground surface is backfilled in the excavation hole as necessary. By this backfilling, as shown in FIG. 4 (f), the pile a is buried without leaving earth and sand or gravel on the ground surface, and the pile embedding work of this embodiment is completed. In this step, the outer pipe upper part 11 may be lifted after the earth and sand discharged on the surface of the earth are buried in the excavation hole. In short, the entire amount of excavated sediment and gravel should be finally backfilled in the excavation hole.
[0035]
In this example, the burying of a pile having a pile diameter of 600 mm and a pile length of 30 m was examined. In this case, although the installation position of the connection pipe B is set to a portion 2 m from the tip of the pile with respect to a 30 m pile length, the connection pipe B may be installed at an arbitrary position according to the ground or the pile diameter. . It is also possible to appropriately increase (or decrease) the amount of earth and sand accommodated by further expanding the outer diameter of the excavator or lengthening the accommodating portion.
[0036]
In this embodiment, as shown in FIGS. 1 and 4, the support tube B2 of the connecting tube B is formed in a slightly tapered shape, but if the support tube B2 is tapered, the outer tube The volume of the earth and sand container 3 surrounded by 1 and the inner pipe 2 can be increased, and the volume of earth and sand can be increased.
[0037]
In the above embodiment, the three parts of the double pipe part A (the outer pipe upper part 11 and the inner pipe 2), the connection pipe B to which the connection plate P is attached, and the excavation pipe part C (the outer pipe lower part 12 and the excavation head 10). However, the excavator used in the present invention is not limited to the one that can be disassembled in this way, and the combination of the outer pipe and the inner pipe provided with a plurality of discharge ports on the side wall It is only necessary to have a structure in which the housing portion can be provided in the ground and the inner tube can be easily pulled out, and is not necessarily a device that is composed of the above three parts or can be disassembled into three parts. It's okay. However, since the excavating apparatus according to the present invention often has a considerable weight and scale, after excavation is finished and it is pulled up to the ground surface, about 3 to 4 are provided to facilitate transportation and storage. It is desirable for the structure to be disassembled into appropriate parts.
[0038]
Further, in the above embodiment, a plurality of small holes are formed in the upper portions of both pipes as means for securing the outer pipe upper portion 11 and the inner pipe 2 and the small holes are secured through the reinforcing bars 4. Securing the upper and inner pipes of the outer pipe is not necessarily limited to such means, but to prevent lateral vibration of the outer and inner pipes caused by rotation, and to suppress vibrations caused by excavation. Any means may be used as long as it can be fixed.
[0039]
In the present invention, the amount of earth and sand generated by excavation and the amount thereof are calculated as follows.
That is, the amount of earth and sand generated is calculated by “excavation area (inner pipe inner diameter) × inner pipe length”, while the amount of earth and sand contained is “outer pipe inner diameter × length and pile inner diameter × length. It is calculated by “total of”.
However, as a factor that increases the excavation capacity, the gravel crushed by the auger becomes a small piece of gravel, and the volume increases compared to the original shape before excavation. The water content varies greatly depending on the ground. Furthermore, the volume changes depending on the mixing state of clay, sand, gravel, etc. that form the ground. For this reason, it is extremely difficult to predict an increase in volume by excavation. At the same time, some excavated earth and sand are considered to be unsuitable for storage in the ground. Therefore, in the present invention, it is assumed that the volume is increased by 20% by excavation, and 10% of the volume is accommodated in the ground, but the remaining 10% is considered unsuitable for storage in the ground. A separate processing method is adopted.
As described above, the estimated amount is assumed to increase by 10% with respect to the excavation amount.
[0040]
For example, when considering the case of a pile diameter of 600 mm (thickness of 90 mm) and a pile length of 30 m, the outer tube (casing) used for making no soil has an inner diameter of 940 mm and the inner tube has an inner diameter of 740 mm. Then
Drilling side (inner pipe hole diameter 740mm)
Sediment generation 3.14 × 0.37 × 0.37 × 30 m = 12.89 mThree
Increase (10%) 12.89 × 10% = 1.28 mThree
That is, total 14.17 mThree Is the amount of earth and sand generated. In contrast,
Accommodation side (outer tube 940mm and tip 740mm)
Sediment capacity 3.14 × 0.47 × 0.47 × 28 m = 19.42 mThree
Sediment capacity 3.14 × 0.37 × 0.37 × 2 m = 0.85 mThree
That is, total 20.27 mThreeIs the capacity of earth and sand.
Based on the above calculation, excavation amount is 14.17mThreeCapacity is 20.27mThreeThe accommodation side is 6.10mThreeThe volume of piles to be buried is 4.32m.Three1.78m even if you subtractThree Since the storage side is large, it is clear that the soil-free construction method can be achieved by the present invention even when considering the relationship between excavation and storage.
[0041]
【The invention's effect】
As described above in detail, according to the pile embedding method of the present invention and the excavation apparatus used for the method, any pile can be embedded by a complete soil-free construction method. Therefore, the social and economic significance of the present invention is extremely great.
That is, since the pile burying method of the present invention does not produce residual soil and mud, it can solve the social concern of reducing industrial waste and eliminates the cost of residual soil treatment. The effect is extremely large. Furthermore, in the method of the present invention, the wall of the excavation hole is suppressed by the outer pipe, so there is no need to use a solidifying material such as bentonite used in the conventional construction method, and there is no hardening material such as cement milk. Since it is not used or its usage can be greatly reduced, the economic effect on this aspect is also great. Moreover, it does not pollute the environment such as the construction site, its surroundings and its groundwater. Furthermore, since the pile burying method of the present invention can surely check the pile head after completion of construction, the pile horizontal force can be reliably checked. As described above, the pile embedding method of the present invention is a construction method that can achieve extremely great effects in terms of economy, environment, and safety.
[0042]
Furthermore, since the excavator used in the present invention adopts a “double auger” method in which an outer tube (casing) equipped with an excavation head at the tip and an auger is used, the construction accuracy is lower than that of a conventional excavator. Improve dramatically.
Moreover, according to the pile embedding method of the present invention, a wide range of construction is possible from a small-diameter pile to a large-diameter pile. In the present invention, construction of a pile having a diameter of 1000 mm is possible. Therefore, the present invention can be applied not only to the laying of ready-made piles, but also to the construction of steel pipe piles and site-built piles.
Thus, the pile embedding method according to the present invention is an epoch-making method capable of correcting various drawbacks of the conventional method. The excavator according to the present invention is also epoch-making.
[Brief description of the drawings]
FIG. 1 is a side sectional view of an earth and sand excavating apparatus used in Example 1 of the present invention.
FIG. 2 is a side sectional view showing a state in which the earth and sand excavation device used in Example 1 of the present invention is disassembled into three parts.
3 is a plan view of a connecting plate used in Example 1. FIG.
FIG. 4 is an explanatory view showing a construction process of a pile burying method using the excavator of Example 1;
[Explanation of symbols]
1. Outer pipe
11 ... Upper part of outer pipe
12 ... Lower part of outer pipe
2 ... Inner pipe
3 ··· Earth and sand container
4 .... Reverse reinforcing bars
5 ... Auger
6 .... Auger rod
7 ... Spiral screw
8 .... Auger head
9. Friction cut reinforcing bar
10 ... Drilling head
1 '... outer ring plate of connecting plate
2 '... inner ring plate of connecting plate
A ... Double pipe
B ... Connection pipe
B1, B2 ... Support pipe for connecting pipe
C ... Drilling pipe
H1 ... Soil outlet provided in the connecting pipe
H2 / H3 / H4 ... Drainage port provided in the inner pipe
P ・ ・ ・ ・ Connecting plate
a ... Pile
b ... Sediment
c ... Cement milk
d ・ ・ ・ ・ Muddy material mixed with earth and cement milk

Claims (5)

鋼管製の外管と複数の排土口を設けてある鋼管製の内管を同心円上に配置し、外管の先端には掘削ヘッドを装着し、内管と外管の間隙には掘削した土砂を収容する収容部を設け、外管の下部は外管の上部に対し口径を絞り込んで縮小してあり、外管の上部と下部は下窄まりのテーパー状部を有する連結管で結続し、内管の下端は固定することなく連結管の上に載置し、外管の上部と内管を固定し、内管の内方にオーガーを挿入して掘削を始め、土砂の大半を排土口から収容部へ収容しながら掘削を進め、所定の深度まで掘削した後、オーガーを引き揚げて内管の内方に杭を建て込み、内管と外管の固定を解除し、内管を引き揚げて収容部内の土砂で杭の周囲を埋め、次いで外管とそれに結続した全パーツを引き揚げて無用の土砂や礫を地表に残さないようにする杭の埋設方法。The outer pipe made of steel pipe and the inner pipe made of steel pipe provided with a plurality of discharge ports are arranged concentrically, a drilling head is attached to the tip of the outer pipe, and the gap between the inner pipe and the outer pipe is drilled A storage section is provided to store earth and sand, and the lower part of the outer pipe is reduced by reducing the diameter with respect to the upper part of the outer pipe, and the upper and lower parts of the outer pipe are connected by a connecting pipe having a tapered portion with a constriction. The lower end of the inner pipe is placed on the connecting pipe without being fixed, the upper part of the outer pipe and the inner pipe are fixed , the auger is inserted into the inner pipe, and excavation is started. The excavation is carried out while being housed in the housing part from the soil discharge port, and after excavating to a predetermined depth, the auger is lifted and a pile is built inward of the inner pipe, and the inner pipe and the outer pipe are unfixed, and the inner pipe is released. fill around the piles in sediment in the storage unit salvaged, then useless soil or gravel to withdraw all part Yuizoku and therewith outer tube to the surface Burying method piles to avoid the. 下部の先端に掘削ヘッドを装着すると共に下部の口径を上部の口径に対して絞り込んで縮小してあり上部と下部の間は下窄まりのテーパー状部を有する連結管によって結続してある鋼管製の外管と、複数の排土口を設けてある鋼管製の内管とを同心円上に配置し、内管と外管の間隙には掘削した土砂を収容する収容部を設け、内管の下端は固定することなく連結管の上に載置し、外管の上部と内管を固縛し、内管の内方にオーガーを挿入して掘削地点に立ち上げ、内管・外管の固縛体とオーガーとを互いに逆方向に回転させながら掘削を始め、掘削した土砂をオーガーのスパイラルスクリューで上方へ運び、土砂の大半を排土口から収容部へ収容しながら掘削を進め、所定の深度まで掘削した後、オーガーを引き揚げて内管の内方に杭を建て込み、内管と外管の固縛を解除し、内管を地上に引き揚げて収容部内の土砂で杭の周囲を埋め、次いで外管とそれに結続した全パーツを引き揚げて、無用の土砂や礫を地表に残さないようにする杭の埋設方法。A steel pipe with an excavation head attached to the lower end and reduced in diameter by lowering the lower caliber relative to the upper caliber, and connected between the upper and lower parts by a connecting pipe having a tapered tapered portion. An outer pipe made of steel and an inner pipe made of steel pipe provided with a plurality of earth discharge ports are concentrically arranged, and an accommodation portion for accommodating excavated earth and sand is provided in the gap between the inner pipe and the outer pipe. The lower end of the pipe is placed on the connecting pipe without being fixed, the upper part of the outer pipe and the inner pipe are secured, the auger is inserted inward of the inner pipe, and it is raised to the excavation point. The excavation was started while rotating the fixed body and the auger in opposite directions, carrying the excavated earth and sand with the spiral screw of the auger, and proceeding with the excavation while accommodating most of the earth and sand from the discharge port to the accommodation part, After excavating to the prescribed depth, the auger is pulled up and a pile is built inside the inner pipe Unlock the inner and outer pipes, lift the inner pipe to the ground, fill the periphery of the pile with the earth and sand in the housing, then lift the outer pipe and all the parts connected to it, A method of burying piles so that gravel does not remain on the surface. 外管の上部の下端を固定する外輪板と内管の下端に嵌合する内輪板とを有すると共に外輪板と内輪板の間は間隔をあけて配設した複数の鉄筋で連結してある連結板を、上端に取り付けてある連結管を用いる請求項1又は2に記載の杭の埋設方法。A connecting plate having an outer ring plate for fixing the lower end of the upper portion of the outer tube and an inner ring plate fitted to the lower end of the inner tube and connected by a plurality of reinforcing bars arranged at intervals between the outer ring plate and the inner ring plate. The pile embedding method according to claim 1 or 2, wherein a connecting pipe attached to the upper end is used. 下部の先端に掘削ヘッドを装着すると共に下部の口径を上部の口径に対して絞り込んで縮小してあり上部と下部の間は下窄まりのテーパー状部を有する連結管によって結続してある鋼管製の外管と、複数の排土口を設けてある鋼管製の内管とを同心円上に配置し、排土口からの土砂を収容する収容部を内管と外管の間隙に形成すると共に、内管の下端は固定することなく連結管の上に載置してある掘削装置。A steel pipe with an excavation head attached to the lower end and reduced in diameter by lowering the lower caliber relative to the upper caliber, and connected between the upper and lower parts by a connecting pipe having a tapered tapered portion. The outer pipe made of steel and the inner pipe made of steel pipe provided with a plurality of drainage openings are concentrically arranged, and an accommodating portion for accommodating the earth and sand from the drainage outlet is formed in the gap between the inner pipe and the outer pipe. The excavator is mounted on the connecting pipe without fixing the lower end of the inner pipe. 外管の上部の下端を固定する外輪板と内管の下端に嵌合する内輪板とを有すると共に外輪板と内輪板の間は間隔をあけて配設した複数の鉄筋で連結してある連結板を、連結管の上端に取り付けてある請求項4に記載の掘削装置。A connecting plate having an outer ring plate for fixing the lower end of the upper portion of the outer tube and an inner ring plate fitted to the lower end of the inner tube and connected by a plurality of reinforcing bars arranged at intervals between the outer ring plate and the inner ring plate. The excavator according to claim 4, wherein the excavator is attached to an upper end of the connecting pipe.
JP2003008028A 2003-01-16 2003-01-16 Pile embedding method and excavator used for the method Expired - Fee Related JP3881961B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003008028A JP3881961B2 (en) 2003-01-16 2003-01-16 Pile embedding method and excavator used for the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003008028A JP3881961B2 (en) 2003-01-16 2003-01-16 Pile embedding method and excavator used for the method

Publications (2)

Publication Number Publication Date
JP2004218303A JP2004218303A (en) 2004-08-05
JP3881961B2 true JP3881961B2 (en) 2007-02-14

Family

ID=32897950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003008028A Expired - Fee Related JP3881961B2 (en) 2003-01-16 2003-01-16 Pile embedding method and excavator used for the method

Country Status (1)

Country Link
JP (1) JP3881961B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005248439A (en) * 2004-03-01 2005-09-15 Yoshitada Miyake Pile embedding method
JP4928192B2 (en) * 2006-08-15 2012-05-09 ジャパンパイル株式会社 Construction method of expansion head pile
JP2008075266A (en) * 2006-09-19 2008-04-03 Hokukon Material Kk Method of constructing pile
KR101416869B1 (en) * 2012-06-27 2014-08-06 스키너스 주식회사 Boring apparatus for complex pile and foundation method using the same
KR101441929B1 (en) * 2014-02-03 2014-09-22 스키너스 주식회사 Foundation method for complex pile

Also Published As

Publication number Publication date
JP2004218303A (en) 2004-08-05

Similar Documents

Publication Publication Date Title
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
JP5265500B2 (en) Pile digging method, foundation pile structure
JP6987559B2 (en) Construction method of continuous underground wall and steel pipe pile
JP2008057184A (en) Method of constructing underground wall by using h-shaped pc pile
JP4974364B2 (en) Pile burying method
KR20110041391A (en) Pile structure
JP2008231810A (en) Underground structure construction method
JP3881961B2 (en) Pile embedding method and excavator used for the method
JP2014088687A (en) Method for creating pile body
JP4872561B2 (en) Construction method of ready-made piles
JP2010209645A (en) Foundation pile structure and construction method for the foundation pile
JP4440497B2 (en) Construction method of underground continuous wall and construction method of underground structure
JP2008031772A (en) Construction method of precast pile, and cover for use in the construction method
JP2005282063A (en) Composite field preparation pile, its construction method and device for preparing composite field preparation pile
JP4313070B2 (en) Sludge treatment method in ready-made pile construction and ground reinforcement structure obtained by the treatment method
JP2006219850A (en) Construction method for field-created pile
JP4311676B2 (en) Construction method using casing
JP4057873B2 (en) Foundation pile structure on support ground and construction method of foundation pile
JP2002097636A (en) Construction method for foundation pile improving ground around pile head, formation method for expanded head part of pile hole, and digging rod
KR101047257B1 (en) Construction method of earth wall using composite sheet pile
JP2002054137A (en) Method for constructing cast-in-plate concrete pile
JP2002155531A (en) Pile burial method
JPH11269874A (en) Pile construction method for foundation pile
JP4200237B2 (en) Construction method of foundation pile
JP2000154540A (en) Bored pile, its work execution method, work execution device, and existing pile for bored pile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061113

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees