JP3880694B2 - Hydrostatic air bearing spindle - Google Patents

Hydrostatic air bearing spindle Download PDF

Info

Publication number
JP3880694B2
JP3880694B2 JP21195897A JP21195897A JP3880694B2 JP 3880694 B2 JP3880694 B2 JP 3880694B2 JP 21195897 A JP21195897 A JP 21195897A JP 21195897 A JP21195897 A JP 21195897A JP 3880694 B2 JP3880694 B2 JP 3880694B2
Authority
JP
Japan
Prior art keywords
bearing
graphite
coating layer
glassy carbon
bearing sleeve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21195897A
Other languages
Japanese (ja)
Other versions
JPH1151052A (en
Inventor
静 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP21195897A priority Critical patent/JP3880694B2/en
Publication of JPH1151052A publication Critical patent/JPH1151052A/en
Application granted granted Critical
Publication of JP3880694B2 publication Critical patent/JP3880694B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Ceramic Products (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は静圧空気軸受スピンドルに関し、詳しくは、穴加工機、精密加工機、静電塗装機などのスピンドル装置に利用され、主軸を非接触支持する静圧空気軸受スピンドルに関する。
【0002】
【従来の技術】
例えば、穴加工機、精密加工機、静電塗装機などのスピンドル装置に利用される静圧空気軸受スピンドルは、主軸の外径面と微小な軸受隙間をもって対向する軸受面を有する軸受スリーブを具備し、その軸受スリーブの軸受面に開口する給気ノズル又は給気スリットから圧縮空気を軸受隙間に供給することにより主軸を非接触支持する。この軸受スリーブや主軸の材質としては、耐焼付性が良好な点から黒鉛を使用する場合があった(実公平6−13377号公報)。
【0003】
【発明が解決しようとする課題】
ところで、前述したように例えば軸受スリーブを組成する黒鉛は、積層構造を持った結晶であって六方晶系に属する。そのため、黒鉛を組成する六角層平面内の炭素原子はお互いに強い共役二重結合で結ばれているが、六角層間は弱いファンデルワールス力で結ばれているのみであるため、外圧に対して容易にスリップしたりして剥離しやすい。
【0004】
このように軸受スリーブを組成する黒鉛が剥離に対して弱いと、その軸受スリーブの加工及び組込み時、軸受スリーブの表面からの剥離により汚れや埃が発生しやすく、また、これら汚れや埃が非常に小さいものであるため、軸受スリーブを清掃してその表面から完全に除去することが困難である。
【0005】
その結果、軸受スリーブを組み込んだ状態でその軸受隙間に圧縮空気を供給すると、前述した埃が排気に混入したり、作業者の手や軸受スリーブが組み込まれるハウジングに付着したりして、ディスクのマスタリング装置や検査装置などのようにクリーンルーム内で使用される装置への適用が問題となる可能性があった。
【0006】
そこで、本発明は上記問題点に鑑みて提案されたもので、その目的とするところは、軸受スリーブ等の黒鉛を主成分とする材料からなる部材の材質特性を改善してその加工及び組込み時に軸受スリーブ表面に汚れや埃が発生することを抑止し得る静圧空気軸受スピンドルを提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するための技術的手段として、本発明に係る静圧空気軸受スピンドルは、回転部材と微小な軸受隙間をもって対向する軸受面を有すると共に前記軸受面に開口する給気絞りが形成された軸受部材を具備し、前記回転部材及び軸受部材のうち少なくとも一方が黒鉛を主成分とする材料からなり、前記給気絞りから圧縮空気を軸受隙間に供給することにより前記回転部材を前記軸受面に対して非接触支持するものであって、黒鉛を主成分とする材料からなる前記部材の表面にガラス状カーボンの被膜層を形成し、前記被膜層の下地として、黒鉛粒子をガラス状カーボンで被覆した下地層を含浸により形成したことを特徴とする。
【0009】
尚、前記下地層は、高温加熱によりガラス状カーボンとなり得る素材を、黒鉛を主成分とする材料からなる前記部材の表面から含浸させ、不活性雰囲気中での高温加熱処理により炭素化することにより形成し、前記被膜層は、前記素材を前記下地層の上に塗布し、不活性雰囲気中での高温加熱処理により炭素化することにより形成することが望ましい。
【0010】
【発明の実施の形態】
本発明に係る静圧空気軸受スピンドルの実施形態を以下に詳述する。
【0011】
この実施形態の静圧空気軸受スピンドルは、図1及び図2に示すように回転軸1及びスラスト板2からなる回転部材である主軸部材3と、後述する給気通路が形成された円筒状ハウジング4と、ハウジング4に固定された軸受部材である軸受スリーブ5とで構成される。
【0012】
主軸部材3を構成するスラスト板2は、回転軸1の端面にネジ(図示せず)により一体的に固着されている。また、ハウジング4には、一端が給気ホース6と連通し、他端が軸受スリーブ5の給気絞り13,14と連通した給気通路7が形成され、かつ、排気通路8が形成されている。
【0013】
一方、軸受スリーブ5は、一対として、ハウジング4の両端部に固定され、それぞれ、回転軸1と微小なジャーナル軸受隙間をもって対向するジャーナル軸受面9を有する筒状部10と、スラスト板2と微小なスラスト軸受隙間をもって対向するスラスト軸受面11を有するフランジ部12とを一体的に形成したものである。
【0014】
この筒状部10及びフランジ部12のそれぞれには、ハウジング4の給気通路7と連通する給気絞り13,14が設けられ、各給気絞り13,14は先端が孔状又はスリット状の絞り形状をなし、ジャーナル軸受面9及びスラスト軸受面11のそれぞれに開口する。また、筒状部10には、排気通路15が形成されている。
【0015】
この静圧空気軸受スピンドルでは、給気ホース6から供給される圧縮空気をハウジング4の給気通路7を介して軸受スリーブ5の給気絞り13,14から軸受隙間に吐出させることより主軸部材3をラジアル方向及びスラスト方向に回転自在に非接触支持する。
【0016】
ここで、前述の軸受スリーブ5及び主軸部材3のうち少なくとも一方は、耐焼付性が良好な点から黒鉛を材質とすることが好ましいが、黒鉛は積層構造を持った結晶であって六方晶系に属する。そのゆえに、六角層平面内の炭素原子はお互いに強い共役二重結合で結ばれているが、六角層間は弱いファンデルワールス力で結ばれているのみであるため、外圧に対して容易にスリップしたりして剥離しやすい。
【0017】
そこで、この実施形態では、軸受スリーブ5が黒鉛を主成分とする材料からなる場合について説明し、図3(a)の模式図で示すように軸受スリーブ5の全表面及びその直下の黒鉛粒子16をガラス状カーボン17で被覆して下地層18aを形成し、更に、同図(b)に示すようにこの下地層18aの上にガラス状カーボンの被膜層18bを形成してある。
【0018】
まず、黒鉛を主成分とする材料からなる軸受スリーブ5をハウジング4に焼嵌め等し得る所定の寸法に加工すると共に給気絞り13,14を加工する。この軸受スリーブ5の加工後、黒鉛粒子16をガラス状カーボン17で被覆した下地層18aは以下の要領でもって形成する。
【0019】
フェノール、フラン樹脂やセルロース等のように高温加熱によりガラス状カーボンとなり得る所定の素材を溶かして軸受スリーブ5の全表面(給気絞り13,14の内表面を含む)から含浸させる。その後、乾燥させた上で不活性雰囲気中にて約600℃以上の高温加熱処理により炭素化することにより、前述の素材をガラス状カーボンに熱硬化させる。これにより、図3(a)に示すように軸受スリーブ5の全表面(給気絞り13,14の内表面を含む)及びその直下の黒鉛粒子16がガラス状カーボン17で被覆された組織構造の下地層18aとなる。
【0020】
次に、前述の下地層18aの上に前述の素材を塗布し、その後、乾燥させた上で不活性雰囲気中にて約600℃以上の高温加熱処理により炭素化することにより、図3(b)に示すように素材をガラス状カーボンに熱硬化させて被膜層18bを下地層18aの上に形成する。
【0021】
この下地層18aは、軸受スリーブ5の表面層の黒鉛粒子16をガラス状カーボン17で被覆することとなり、例えば、0.5〜1.0mm程度の深さまで形成することが望ましく、また、被膜層18bは、例えば、数μm程度の膜厚とすることが望ましい。ガラス状カーボンは黒鉛と異なり、非晶質であるため、埃などの発生が少なく、高強度の性質を有する。
【0022】
以上のようにして製作された軸受スリーブ5をハウジング4に焼嵌めし、そのジャーナル軸受面9及びスラスト軸受面11の仕上げ加工を行った上で回転軸1及びスラスト板2を組み付けて最終的に静圧空気軸受スピンドルを完成させる。
【0023】
尚、前述した軸受スリーブ5のジャーナル軸受面9及びスラスト軸受面11の仕上げ加工において、下地層18aを加工代以上の深さまで形成しておくことにより、仕上げ加工後において、被膜層18bが除去されたとしても、ジャーナル軸受面9及びスラスト軸受面11に所望深さの下地層18aを残すことができる。
【0024】
また、被膜層18bが除去され、かつ、その下部に位置する下地層18aの一部が削り取られたとしても、その加工面以外の部分はガラス状カーボン17で被覆されているので、まったくガラス状カーボンで被覆されていない黒鉛粒子と比較すれば、埃などが発生しにくい。
【0025】
更に、下地層18a及び被膜層18bを、軸受スリーブ5のジャーナル軸受面9及びスラスト軸受面11等の圧縮空気が接触する表面以外の表面、例えば、軸受スリーブ5の外径面や端面も含めて軸受スリーブ5の表面全体に形成してあるため、軸受スリーブ5の表面からの汚れや埃が発生しにくいだけでなく、供給された圧縮空気が黒鉛粒子間から漏れて外部に出にくくなって空気圧力が低下することなく、空気軸受としての機能をより一層充分に発揮させることができる。
【0026】
尚、前述では、含浸により黒鉛粒子16をガラス状カーボン17で被覆した組織構造の下地層18aを下地として、その上にガラス状カーボンの被膜層18bを形成した場合について説明したが、ガラス状カーボンの被膜層18bを軸受スリーブ5の表面に直接的に形成することが可能であれば、前述の下地層18aを省略することも可能である。
【0027】
また、以上の実施形態では、軸受スリーブ5が黒鉛を主成分とする材料からなる場合について説明したが、本発明はこれに限定されることなく、主軸部材3が黒鉛を主成分とする材料からなる場合、或いは、軸受スリーブ5及び主軸部材3の双方がそのような材料からなる場合についても同様に適用可能である。更に、主軸部材3又は/及び軸受スリーブ5の材質は黒鉛を主成分とし、その他に潤滑特性の向上のため、アンチモンや二硫化モリブデン等を混合させたものであってもよい。
【0028】
また、前述の実施形態は、ハウジング4の両端に二つの軸受スリーブ5を設け、これら軸受スリーブ5により回転軸1の両端で非接触支持した場合であるが、これ以外にも一つの軸受スリーブにより回転軸1の全体を非接触支持する構造であっても適用可能である。
【0029】
更に、軸受スリーブを固定軸に装着すると共に、その軸受面に開口した給気絞りに固定軸側に設けた給気通路を介して圧縮空気を供給することによって、円筒状の回転部材を軸受面に対して非接触支持する構成の静圧空気軸受スピンドルにも適用することができる。その場合、軸受スリーブ又は/及び円筒状の回転部材を、黒鉛を主成分とする材料で構成する。
【0030】
【発明の効果】
本発明によれば、黒鉛を主成分とする材料からなる軸受部材又は/及び回転部材の材質特性を改善することにより、これら部材の加工及び組込み時に部材表面に汚れや埃が発生することを抑止することが容易となり、ディスクのマスタリング装置や検査装置などのようにクリーンルーム内で使用される装置への適用が実現容易となり、また、圧縮空気の抜けを未然に防止できてその空気圧力が低下することが抑止できて、空気軸受としての機能をより一層充分に発揮させることができる。
【図面の簡単な説明】
【図1】本発明に係る静圧空気軸受スピンドルの実施形態を示す断面図
【図2】図1の軸受スリーブを示す要部拡大断面図
【図3】(a)は軸受スリーブの表面及びその直下の黒鉛粒子をガラス状カーボンで被覆した組織構造の下地層を示す拡大断面図
(b)は(a)の下地層の上にガラス状カーボンの被膜層を形成した状態を示す拡大断面図
【符号の説明】
3 主軸部材
5 軸受スリーブ
9 軸受面(ジャーナル軸受面)
11 軸受面(スラスト軸受面)
13,14 給気絞り
16 黒鉛粒子
17 ガラス状カーボン
18a 下地層
18b 被膜層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrostatic air bearing spindle, and more particularly, to a hydrostatic air bearing spindle that is used in a spindle device such as a hole machining machine, a precision machining machine, and an electrostatic coating machine and supports a main shaft in a non-contact manner.
[0002]
[Prior art]
For example, a hydrostatic air bearing spindle used in a spindle device such as a hole processing machine, a precision processing machine, or an electrostatic coating machine has a bearing sleeve having a bearing surface facing the outer diameter surface of the main shaft with a minute bearing gap. Then, the main shaft is supported in a non-contact manner by supplying compressed air to the bearing gap from an air supply nozzle or an air supply slit that opens on the bearing surface of the bearing sleeve. As a material for the bearing sleeve and the main shaft, graphite is sometimes used from the viewpoint of good seizure resistance (Japanese Utility Model Publication No. 6-13377).
[0003]
[Problems to be solved by the invention]
Incidentally, as described above, for example, graphite composing the bearing sleeve is a crystal having a laminated structure and belongs to the hexagonal system. Therefore, carbon atoms in the plane of the hexagonal layer composing graphite are connected to each other by a strong conjugated double bond, but the hexagonal layer is only connected by a weak van der Waals force. Easily slips and peels easily.
[0004]
When the graphite constituting the bearing sleeve is weak against peeling, dirt and dust are likely to be generated due to peeling from the surface of the bearing sleeve when the bearing sleeve is processed and assembled. Therefore, it is difficult to clean the bearing sleeve and remove it completely from its surface.
[0005]
As a result, if compressed air is supplied to the bearing gap in a state where the bearing sleeve is incorporated, the dust described above may be mixed into the exhaust, or may adhere to the operator's hand or the housing in which the bearing sleeve is incorporated, and the disk There is a possibility that application to a device used in a clean room such as a mastering device or an inspection device becomes a problem.
[0006]
Therefore, the present invention has been proposed in view of the above problems, and its object is to improve the material characteristics of a member made of a graphite-based material, such as a bearing sleeve, during processing and incorporation. An object of the present invention is to provide a hydrostatic air bearing spindle capable of suppressing the occurrence of dirt and dust on the surface of the bearing sleeve.
[0007]
[Means for Solving the Problems]
As a technical means for achieving the above object, a hydrostatic air bearing spindle according to the present invention has a bearing surface facing a rotating member with a minute bearing gap, and an air supply throttle opening to the bearing surface is formed. A bearing member, and at least one of the rotating member and the bearing member is made of a material mainly composed of graphite, and the compressed member is supplied to the bearing gap from the air supply restrictor so that the rotating member is moved to the bearing surface. A glassy carbon coating layer is formed on the surface of the member made of a material mainly composed of graphite, and the graphite particles are made of glassy carbon as a base of the coating layer. The coated underlayer is formed by impregnation .
[0009]
The underlayer is formed by impregnating a material that can become glassy carbon by high-temperature heating from the surface of the member made of a material mainly composed of graphite, and carbonizing by high-temperature heat treatment in an inert atmosphere. Preferably, the coating layer is formed by applying the material on the base layer and carbonizing the coating layer by high-temperature heat treatment in an inert atmosphere.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a hydrostatic air bearing spindle according to the present invention will be described in detail below.
[0011]
As shown in FIGS. 1 and 2, the hydrostatic air bearing spindle of this embodiment is a cylindrical housing in which a main shaft member 3 which is a rotating member including a rotating shaft 1 and a thrust plate 2 and an air supply passage which will be described later are formed. 4 and a bearing sleeve 5 which is a bearing member fixed to the housing 4.
[0012]
The thrust plate 2 constituting the main shaft member 3 is integrally fixed to the end surface of the rotating shaft 1 with screws (not shown). Further, the housing 4 is formed with an air supply passage 7 having one end communicating with the air supply hose 6 and the other end communicating with the air supply throttles 13 and 14 of the bearing sleeve 5 and an exhaust passage 8. Yes.
[0013]
On the other hand, the bearing sleeve 5 is fixed to both ends of the housing 4 as a pair, and a cylindrical portion 10 having a journal bearing surface 9 facing the rotary shaft 1 with a minute journal bearing gap, and a thrust plate 2 and a minute amount, respectively. A flange portion 12 having a thrust bearing surface 11 facing each other with a large thrust bearing gap is integrally formed.
[0014]
Each of the cylindrical portion 10 and the flange portion 12 is provided with air supply throttles 13 and 14 communicating with the air supply passage 7 of the housing 4. Each of the air supply throttles 13 and 14 has a hole or a slit at the tip. It has a throttle shape and opens in each of the journal bearing surface 9 and the thrust bearing surface 11. Further, an exhaust passage 15 is formed in the tubular portion 10.
[0015]
In this hydrostatic air bearing spindle, the compressed air supplied from the air supply hose 6 is discharged from the air supply throttles 13 and 14 of the bearing sleeve 5 into the bearing gap via the air supply passage 7 of the housing 4. Is supported in a non-contact manner so as to be rotatable in a radial direction and a thrust direction.
[0016]
Here, it is preferable that at least one of the bearing sleeve 5 and the main shaft member 3 is made of graphite from the viewpoint of good seizure resistance. However, the graphite is a crystal having a laminated structure and is hexagonal. Belonging to. Therefore, the carbon atoms in the hexagonal layer plane are connected to each other by a strong conjugated double bond, but the hexagonal layer is only connected by a weak van der Waals force, so it easily slips against external pressure. It is easy to peel off.
[0017]
Therefore, in this embodiment, the case where the bearing sleeve 5 is made of a material containing graphite as a main component will be described. As shown in the schematic view of FIG. 3A, the entire surface of the bearing sleeve 5 and the graphite particles 16 immediately below the entire surface. Is coated with glassy carbon 17 to form a base layer 18a, and a glassy carbon coating layer 18b is formed on the base layer 18a as shown in FIG.
[0018]
First, the bearing sleeve 5 made of a material containing graphite as a main component is processed into a predetermined size that can be shrink-fitted into the housing 4 and the air supply throttles 13 and 14 are processed. After the processing of the bearing sleeve 5, the underlayer 18a in which the graphite particles 16 are covered with the glassy carbon 17 is formed as follows.
[0019]
A predetermined material, such as phenol, furan resin, or cellulose, that can become glassy carbon by high temperature heating is melted and impregnated from the entire surface of the bearing sleeve 5 (including the inner surfaces of the air supply throttles 13 and 14). Then, after drying, the above-mentioned raw material is thermoset to glassy carbon by carbonizing by high temperature heat treatment at about 600 ° C. or higher in an inert atmosphere. As a result, as shown in FIG. 3A, the entire structure of the bearing sleeve 5 (including the inner surfaces of the air supply throttles 13 and 14) and the graphite particles 16 directly below the entire surface are covered with the glassy carbon 17. It becomes the underlayer 18a.
[0020]
Next, the above-mentioned raw material is applied on the above-mentioned underlayer 18a, and then dried, and then carbonized by high-temperature heat treatment at about 600 ° C. or higher in an inert atmosphere, whereby FIG. ), The material is thermally cured to glassy carbon to form the coating layer 18b on the underlying layer 18a.
[0021]
The underlayer 18a is formed by coating the graphite particles 16 on the surface layer of the bearing sleeve 5 with the glassy carbon 17, and is preferably formed to a depth of, for example, about 0.5 to 1.0 mm. For example, the thickness 18b is preferably about several μm. Glassy carbon, unlike graphite, is amorphous and therefore has less dust and has high strength properties.
[0022]
The bearing sleeve 5 manufactured as described above is shrink-fitted into the housing 4, the journal bearing surface 9 and the thrust bearing surface 11 are finished, and the rotary shaft 1 and the thrust plate 2 are assembled and finally assembled. Complete the hydrostatic air bearing spindle.
[0023]
In the finishing process of the journal bearing surface 9 and the thrust bearing surface 11 of the bearing sleeve 5 described above, the coating layer 18b is removed after the finishing process by forming the base layer 18a to a depth greater than the machining allowance. Even so, the base layer 18a having a desired depth can be left on the journal bearing surface 9 and the thrust bearing surface 11.
[0024]
Further, even if the coating layer 18b is removed and a part of the underlying layer 18a located under the coating layer 18b is scraped off, the portion other than the processed surface is covered with the glassy carbon 17, so that it is completely glassy. Compared with graphite particles not coated with carbon, dust and the like are less likely to occur.
[0025]
Further, the base layer 18a and the coating layer 18b include the surfaces other than the surfaces such as the journal bearing surface 9 and the thrust bearing surface 11 of the bearing sleeve 5 that come into contact with the compressed air, for example, the outer diameter surface and the end surface of the bearing sleeve 5. Since it is formed on the entire surface of the bearing sleeve 5, not only dirt and dust are hardly generated from the surface of the bearing sleeve 5, but also the supplied compressed air is difficult to leak out between the graphite particles and to the outside. The function as an air bearing can be more fully exhibited without a pressure drop.
[0026]
In the above description, the case where the glassy carbon coating layer 18b is formed on the base layer 18a having a structure in which the graphite particles 16 are coated with the glassy carbon 17 by impregnation has been described. If it is possible to directly form the coating layer 18b on the surface of the bearing sleeve 5, the above-described underlayer 18a can be omitted.
[0027]
In the above embodiment, the case where the bearing sleeve 5 is made of a material containing graphite as a main component has been described. However, the present invention is not limited to this, and the main shaft member 3 is made of a material containing graphite as a main component. The present invention is also applicable to the case where both the bearing sleeve 5 and the main shaft member 3 are made of such a material. Further, the material of the main shaft member 3 and / or the bearing sleeve 5 may be mainly composed of graphite, and may be mixed with antimony, molybdenum disulfide, or the like in order to improve lubrication characteristics.
[0028]
The above-described embodiment is a case where two bearing sleeves 5 are provided at both ends of the housing 4 and non-contact support is provided at both ends of the rotating shaft 1 by these bearing sleeves 5. Even a structure that supports the entire rotating shaft 1 in a non-contact manner is applicable.
[0029]
Further, the cylindrical rotating member is attached to the bearing surface by mounting the bearing sleeve on the fixed shaft and supplying compressed air to the air supply opening opened on the bearing surface through the air supply passage provided on the fixed shaft side. However, the present invention can also be applied to a hydrostatic air bearing spindle that is supported in a non-contact manner. In that case, the bearing sleeve or / and the cylindrical rotating member are made of a material whose main component is graphite.
[0030]
【The invention's effect】
According to the present invention, by improving the material properties of bearing members and / or rotating members made of graphite-based materials, it is possible to prevent dirt and dust from being generated on the member surface during processing and assembly of these members. This makes it easy to apply to a device used in a clean room, such as a disc mastering device or inspection device, and also prevents compressed air from coming out and reduces its air pressure. Can be suppressed, and the function as an air bearing can be more fully exhibited.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an embodiment of a hydrostatic air bearing spindle according to the present invention. FIG. 2 is an enlarged cross-sectional view of a main part showing the bearing sleeve of FIG. 1. FIG. (B) is an enlarged cross-sectional view showing an underlayer having a structure in which graphite particles directly below are coated with glassy carbon. (B) is an enlarged cross-sectional view showing a state in which a glassy carbon coating layer is formed on the underlayer of (a). Explanation of symbols]
3 Main shaft member 5 Bearing sleeve 9 Bearing surface (journal bearing surface)
11 Bearing surface (Thrust bearing surface)
13, 14 Supply throttle 16 Graphite particles 17 Glassy carbon 18a Underlayer 18b Coating layer

Claims (2)

回転部材と微小な軸受隙間をもって対向する軸受面を有すると共に前記軸受面に開口する給気絞りが形成された軸受部材を具備し、前記回転部材及び軸受部材のうち少なくとも一方が黒鉛を主成分とする材料からなり、前記給気絞りから圧縮空気を軸受隙間に供給することにより前記回転部材を前記軸受面に対して非接触支持するものであって、黒鉛を主成分とする材料からなる前記部材の表面にガラス状カーボンの被膜層を形成し、前記被膜層の下地として、黒鉛粒子をガラス状カーボンで被覆した下地層を含浸により形成したことを特徴とする静圧空気軸受スピンドル。A bearing member having a bearing surface facing the rotating member with a minute bearing gap and having an air supply aperture formed in the bearing surface is provided, and at least one of the rotating member and the bearing member is mainly composed of graphite. The rotating member is supported in a non-contact manner with respect to the bearing surface by supplying compressed air from the air supply throttle to the bearing gap, and the member is made of a material mainly composed of graphite. A hydrostatic air bearing spindle , wherein a glassy carbon coating layer is formed on the surface of the coating layer, and a base layer in which graphite particles are coated with glassy carbon is impregnated as a base of the coating layer . 前記下地層は、高温加熱によりガラス状カーボンとなり得る素材を、黒鉛を主成分とする材料からなる前記部材の表面から含浸させ、不活性雰囲気中での高温加熱処理により炭素化することにより形成し、前記被膜層は、前記素材を前記下地層の上に塗布し、不活性雰囲気中での高温加熱処理により炭素化することにより形成したことを特徴とする請求項1記載の静圧空気軸受スピンドル。The underlayer is formed by impregnating a material that can become glassy carbon by high-temperature heating from the surface of the member made of a material mainly composed of graphite, and carbonizing by high-temperature heat treatment in an inert atmosphere. 2. The hydrostatic air bearing spindle according to claim 1 , wherein the coating layer is formed by applying the material on the base layer and carbonizing the raw material by high-temperature heat treatment in an inert atmosphere. .
JP21195897A 1997-08-06 1997-08-06 Hydrostatic air bearing spindle Expired - Fee Related JP3880694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21195897A JP3880694B2 (en) 1997-08-06 1997-08-06 Hydrostatic air bearing spindle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21195897A JP3880694B2 (en) 1997-08-06 1997-08-06 Hydrostatic air bearing spindle

Publications (2)

Publication Number Publication Date
JPH1151052A JPH1151052A (en) 1999-02-23
JP3880694B2 true JP3880694B2 (en) 2007-02-14

Family

ID=16614528

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21195897A Expired - Fee Related JP3880694B2 (en) 1997-08-06 1997-08-06 Hydrostatic air bearing spindle

Country Status (1)

Country Link
JP (1) JP3880694B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4899415B2 (en) * 2005-10-25 2012-03-21 日本精工株式会社 Manufacturing method of porous gas bearing

Also Published As

Publication number Publication date
JPH1151052A (en) 1999-02-23

Similar Documents

Publication Publication Date Title
US6042935A (en) Friction element
JPH10502722A (en) Backup bearing device for magnetic bearing
US5113582A (en) Method for making a gas turbine engine component
US20110198169A1 (en) Bi-metal disc brake rotor and method of manufacturing
US5210944A (en) Method for making a gas turbine engine component
US20050276530A1 (en) Composite resilient mount
JP2927948B2 (en) Brake disk circulation type overhaul method
JP2002503317A (en) Rotating air bearing and manufacturing method thereof
JP3880694B2 (en) Hydrostatic air bearing spindle
JPS63158321A (en) Hard rolling body with supporting body made of synthetic resin material and manufacture thereof
US20190195280A1 (en) Method for coating a turbomachine part with a self-lubricating coating and part coated by said method
JP4899415B2 (en) Manufacturing method of porous gas bearing
US20030012940A1 (en) Continuous yarn laid wet friction material
JP3262395B2 (en) Spindle device of machine tool
JPH11303870A (en) Porous gas bearing and spindle device using the same
JP4002069B2 (en) Manufacturing method of outer ring in electric corrosion prevention type bearing
US5353553A (en) Method and apparatus for treating brake rotors
JPH074435A (en) Bearing member and wear preventing method for bearing member
JP2518939Y2 (en) Hydrostatic gas bearing spindle
JP2006509975A (en) Rolling bearing with composite lubricating material
JP2001304259A (en) Static pressure gas bearing spindle
JPH0685026B2 (en) Rotating polygon mirror
JP3740273B2 (en) How to apply preload to tapered roller bearings
JP3231123B2 (en) Grinding wheel
Rubenstein et al. Wear assessment of epoxy composites used for machine slideways

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060412

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060608

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061108

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees