JP3879176B2 - Air-cooled absorption refrigeration system - Google Patents

Air-cooled absorption refrigeration system Download PDF

Info

Publication number
JP3879176B2
JP3879176B2 JP11131397A JP11131397A JP3879176B2 JP 3879176 B2 JP3879176 B2 JP 3879176B2 JP 11131397 A JP11131397 A JP 11131397A JP 11131397 A JP11131397 A JP 11131397A JP 3879176 B2 JP3879176 B2 JP 3879176B2
Authority
JP
Japan
Prior art keywords
absorption
air
cooled
heat transfer
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11131397A
Other languages
Japanese (ja)
Other versions
JPH10300267A (en
Inventor
史朗 薬師寺
晃一 安尾
和之 奥山
克宏 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP11131397A priority Critical patent/JP3879176B2/en
Publication of JPH10300267A publication Critical patent/JPH10300267A/en
Application granted granted Critical
Publication of JP3879176B2 publication Critical patent/JP3879176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、吸収器部分で生じる吸収熱を空気流によって冷却放熱させるようにした空冷吸収式冷凍装置に関するものである。
【0002】
【従来の技術】
一般に吸収式冷凍装置の吸収器では、冷媒蒸気の吸収に加え、該吸収によって生じる吸収液の吸収熱の除去を行うことが必要となる。そのため、一般に水冷式又は空冷式の吸収器手段が設けられるようになっているが、水冷式の冷却手段を設けたものでは冷却効率は高いものの、冷却塔を必要とするなどシステムが複雑、大型化し、コストが高くなる欠点を有している。
【0003】
このような事情から、最近では空冷式の吸収器構造が色々提案されるようになっている。
【0004】
その一つとして、例えば特開昭64−84062号公報、特公平7−21364号公報、特公平7−21365号公報などに示されるように、ヘッダー部を介して上方から下方に冷媒蒸気とともに吸収液を流すストレートな吸収伝熱管の外周部に多数枚の放熱フィンを設けることによって吸収器部分をクロスフィン型の熱交換器構造に形成し、それらをファン等の送風手段の空気流上流側から下流側方向に複数組並設することによって空冷吸収器を構成し、上記ファン等の送風手段による空気流によって吸収器自体を空気冷却するようにした空冷吸収式冷凍装置がある。そして、その場合、上記複数組の吸収伝熱管には、それぞれ同一流量の吸収液が供給されるようになっていた。
【0005】
【発明が解決しようとする課題】
しかし、以上のように空気流上流側から下流側各列の複数組の吸収伝熱管のそれぞれに均等に吸収液を流すようにした場合、次のような問題がある。
【0006】
一般に、吸収式冷凍装置は高真空下で作動している。例えば蒸発器での圧力が6〜4mmHg、凝縮器では50〜70mmHgである。そのため空気の漏洩、腐食抑制剤の働きによる内部での水素の発生などによる不凝縮ガスの蓄積があると、僅少でも性能への影響が大きい。
【0007】
一方、各吸収伝熱管部分を通る空気の温度は、空気流最上流側の吸収伝熱管部分が最も低く、下流側に行くに従って順次高くなる。そのため、上記複数列の吸収伝熱管は必然的に上流側のものほど吸収能力が大きく、下流側のものほど吸収能力が小さくなる。
【0008】
したがって、それにも拘わらず上述のように空気流上流側から下流側に配列された複数列の吸収伝熱管の各々に同一流量の吸収液を流すようにした場合、上流側吸収伝熱管の冷媒蒸気吸収量が多くなる一方、下流側の吸収伝熱管部分では冷媒蒸気吸収量が少なくなり、下流側吸収伝熱管部分の途中に上述の不凝縮ガスが滞留しやすくなる。
【0009】
したがって、吸収器から吸収器外へ該不凝縮ガスを抽気する必要があり、一般に上述のような空冷吸収器の場合、上記のように下流側の蒸気吸収量が少ないために、不凝縮ガスが流入した場合、その下流側の管内蒸気流速が遅くなるので、蒸気流により不凝縮ガスが下部ヘッダまで到達せず、管中央部付近に滞留しやすく、上記のようにして下部ヘッダから抽気しても充分に抽気しきれず、その結果吸収器性能が低下していた。
【0010】
本願発明は、このような問題を解決するためになされたもので、空気流上流側から下流側に配列された複数列の吸収伝熱管の内、空気流下流側吸収伝熱管に対して吸収液の流量を増大させる流量調節手段を設けることによって空気流下流側吸収伝熱管の吸収液流量を多くし、その抽気性を向上させて不凝縮ガスの滞留を防止することにより、可及的に吸収性能を高め、当該吸収器の吸収性能を効果的に向上させ得るようにした空冷吸収式冷凍装置を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本願発明は、該目的を達成するために、次のような課題解決手段を備えて構成されている。
【0012】
すなわち、本願発明は、吸収液に冷媒蒸気を吸収させる複数列の吸収伝熱管4a,4b,4cよりなる空冷吸収器4と、該空冷吸収器4を空気流により冷却する送風手段20とを備えてなる空冷吸収式冷凍装置において、上記複数列の吸収伝熱管4a,4b,4cの内の空気流下流側のものほど上流側のものに比べて吸収液の流量が多くなるように流量調節する流量調節手段18a,18b,18c、23a,23b,23cを設けて構成されている。
【0013】
したがって、同構成によると、空気流上流側から下流側に配列された複数列の吸収伝熱管に対して適切な吸収液流量を調節設定できるようになり、冷却空気の温度が高く、吸収性能の小さい空気流下流側吸収伝熱管に多量の吸収液を流すことによって、その抽気性を向上させて不凝縮ガスの滞留を防止することにより可能な限り吸収性能を高くし、吸収伝熱管全体としての吸収効率、吸収性能を向上均一化させることができ、吸収器の吸収効率、吸収性能をアップできるようになる。つまり、下流側流量を増やすと、下流側蒸気吸収量が増加し、蒸気流により不凝縮ガスが下部ヘッダまで到達するようになるので、抽気が容易になり、よって吸収性能が向上する。
【0014】
そして、本願発明の上記流量調節手段18a,18b、23a,23b,23cは、例えば低温再生器9から空冷吸収器4上部の吸収液分配部15a,15bへの吸収液分岐配管18a,18bの管径を変えることにより構成されるか、又は吸収液分配部15の各吸収伝熱管4a,4b,4cの吸収液入口キャップ22a,22b,22cの径やその吸収液導入口23a,23b,23cの開口面積を変えることにより構成され、空気流上流側と下流側とで異なる吸収液流量が固定的に調節設定され、上述の作用が有効に実現される。
【0015】
【発明の効果】
以上の結果、本願発明の空冷吸収式冷凍装置によると、複数列の吸収伝熱管トータルとしての吸収効率、吸収性能を従来よりも有効に向上させることができ、可及的に小型高性能の空冷吸収式冷凍装置を提供し得るようになる。
【0016】
【発明の実施の形態】
(実施の形態1)
図1および図2は、本願発明の実施の形態1に係る空冷吸収式冷凍装置の構成を示している。
【0017】
この空冷吸収式冷凍装置においては、吸収液として例えば臭化リチウム水溶液(LiBr水溶液)が採用され、また冷媒(被吸収液)として水(H2O)が採用されている。
【0018】
図1において、先ず符号1は高温再生器であり、ガスバーナ等の加熱源を備えている。該高温再生器1の上方には、揚液管2を介して連通された気液分離器3が設けられている。上記高温再生器1においては、臭化リチウム希溶液を加熱沸騰させて、揚液管2を介して上方に位置する気液分離器3に供給し、ここで冷媒蒸気である水蒸気と吸収液である臭化リチウム中間濃溶液(中間濃度吸収液)とに分離再生するようになっている。
【0019】
上記高温再生器1に供給される臭化リチウム希溶液は、後述する空冷吸収器4において吸収液である臭化リチウム濃溶液に冷媒蒸気である水蒸気を吸収させることによって得られ、低温溶液熱交換器7および高温溶液熱交換器8を経て順次有効に予熱された後に高温再生器1へ還流されるようになっている。
【0020】
上記気液分離器3で気液分離された水蒸気は、次に低温再生器9に送られて凝縮される。また、上記気液分離器3において気液分離された上記臭化リチウム中間濃溶液は、上記高温溶液熱交換器8において前述した空冷吸収器4からの臭化リチウム希溶液と熱交換された後にオリフィス11を介して上記低温再生器9へ供給される。
【0021】
そして、上記低温再生器9では、上記のようにして気液分離器3から各々供給された水蒸気と臭化リチウム中間濃溶液との間で相互に熱交換させることにより、水蒸気を可及的に凝縮させるとともに臭化リチウム中間濃溶液中に含まれる残余水分を蒸発させてさらに高濃度の臭化リチウム濃溶液を取り出す。
【0022】
次に、このようにして低温再生器9において臭化リチウム中間濃溶液から蒸発された水蒸気は、オリフィス12を介して供給される上記水蒸気混合状態の凝縮水とともに空冷凝縮器10に送られ確実に凝縮液化されて凝縮水となり、さらに蒸発器13の凝縮水散布装置部分へ供給される。また、一方上記記低温再生器9から取り出された臭化リチウム濃溶液は、上記低温溶液熱交換器7において上記した空冷吸収器4からの臭化リチウム希溶液と熱交換した後にメイン供給管18から流量調節手段として機能する第1,第2の分岐管18a,18b部を介して空冷吸収器4の第1,第2の各吸収液分配装置15a,15b部分に供給される。
【0023】
第1,第2の分岐管18a,18bは、図2のように空気流上流側第1の吸収伝熱管4a上部の第1の吸収液分配装置15aに対応する第1の分岐管18aの方が小径で、空気流下流側第2,第3の吸収伝熱管4b,4c上部の第2の吸収液分配装置15bに対応する第2の分岐管18bの方が大径に形成されており、それによって空気流下流側第2,第3の吸収伝熱管4b,4cに多量の吸収液を流す一方、空気流上流側第1の吸収伝熱管4aに少量の吸収液を流すようになっている。
【0024】
この空冷吸収器4は、例えば吸収液が垂直に流される上記第1〜第3の複数本の吸収伝熱管4a,4b,4cと、該第1〜第3の吸収伝熱管4a,4b,4c各々の外周部に設けられた多数枚の放熱フィンF,F・・・と、上記第1の吸収伝熱管4a、第2,第3の吸収伝熱管4b,4cの各々上部に設けられ、それら第1の吸収伝熱管4aおよび第2,第3の吸収伝熱管4b,4cの各々に対して吸収液を分配する上記第1,第2の吸収液分配装置15a,15bと、送風ファン20とを備えて構成されている。
【0025】
蒸発器13は、利用側熱交換器14を含む二次側冷媒サイクルを循環する冷媒(例えば、R407C)と上記空冷凝縮器10から送られてくる凝縮水とを相互に熱交換させるものであり、冷房運転時の冷熱源となる。
【0026】
そして、上記空冷吸収器4では、上記臭化リチウム濃溶液に上記蒸発器13で蒸発した水蒸気を吸収させることによって上述のように臭化リチウム希溶液を形成する。この臭化リチウム希溶液は、一旦下部ヘッダ16に留められた後、溶液ポンプ5により逆止弁6を介して前述したように低温溶液熱交換器7および高温溶液熱交換器8を経て高温再生器1に戻されて高温再生される。
【0027】
以上のように、上記空冷吸収器4の第1〜第3の吸収伝熱管4a〜4cには、それぞれ図示のように、その第1,第2の吸収液分配装置15a,15bの上流側に個別に流量を調節することができる管径の小さな第1,管径の大きな第2の分岐管18a,18bが設けられており、上記メイン供給管18から該第1,第2の分岐管18a,18bを介して分流された後に供給される吸収液を上記第1,第2の吸収液分配装置15a,15bを介して空気流上流側第1および空気流下流側第2,第3の各吸収伝熱管4a,4b,4cに流すようにしているので、各々その伝熱管部分を流れる吸収液の流量が空気流上流側のものより空気流下流側のものほど多くなるように流量設定されるようになる。
【0028】
したがって、該構成では、上記第1〜第3の吸収伝熱管4a〜4cは、上記送風ファン20からの空気流上流側に位置し、冷却空気の温度が低くて冷却性能く、冷媒蒸気の吸収量が多いものでは相対的に流される吸収液の量が少なくなるが、他方上記送風ファン20からの空気流の下流側に位置し、冷却空気の温度が高くなって冷却性能が低下し、冷媒蒸気の吸収量が少なくなり不凝縮ガスが滞留して抽気性が悪くなるものでは相対的に流される吸収液の量が多くなり、それによって冷媒蒸気吸収量が増大し、上記空気流上流側のものと下流側のものとの冷媒蒸気吸収量を適切に設定することができる。その結果、上記空気流下流側のものでも不凝縮ガスが下部ヘッダまで到達するようになり、抽気性が良くなる。
その結果、上記空冷吸収器4の第1〜第3の吸収伝熱管4a〜4c全体として、熱交換効率、吸収効率が向上して、上記吸収器4自体の吸収効率、吸収性能がアップする。
【0029】
なお、以上の構成の場合、第1の吸収液分配装置15aに対して、第2の吸収液分配装置15bは第2,第3の2本の吸収伝熱管4b,4cに吸収液を分配するようになっているため、通常でも必然的に多くの量の吸収液供給量を必要とする。従って下流側流量増大のための上記第2の分岐管18bの管径の設定は、その点を十分に考慮してなされることはもちろんである。
【0030】
(変形例1)
なお、上記実施の形態1における第1,第2の分岐管18a,18bは、その管径を変えることにより、吸収液の供給流量を変えるように構成したが、これは例えば図3に示すように、管径そのものは各々等径のものとし、吸収液の供給流量を相対的に少なくしたい第1の分岐管18aの途中に、図4に示すような小径の貫孔19aを有するオリフィス19を介設するようにしても良い。
【0031】
このような構成によっても、上述の管径を変えた場合と全く同様の作用効果(流量調節作用)を得ることができる。
【0032】
(変形例2)
また、上記実施の形態1の構成では、空気流上流側第1列目と空気流下流側第2列、第3列目とで相互の流量を変えるようにしたが、これは第1列、第2列、第3列各々の3段階で相互に流量を変えるようにして、下流側ほど多く流れるようにすると、より効果的である。
【0033】
(実施の形態2)
次に図5〜図7は、本願発明の実施の形態2に係る空冷吸収式冷凍装置の構成を示している。
【0034】
この空冷吸収式冷凍装置においては、吸収液として例えば臭化リチウム水溶液(LiBr水溶液)が採用され、また冷媒(被吸収液)として水(H2O)が採用されている。
【0035】
図5において、先ず符号1は高温再生器であり、ガスバーナ等の加熱源を備えている。該高温再生器1の上方には、揚液管2を介して連通された気液分離器3が設けられている。上記高温再生器1においては、臭化リチウム希溶液を加熱沸騰させて、揚液管2を介して上方に位置する気液分離器3に供給し、ここで冷媒蒸気である水蒸気と吸収液である臭化リチウム中間濃溶液(中間濃度吸収液)とに分離再生するようになっている。
【0036】
上記高温再生器1に供給される臭化リチウム希溶液は、後述する空冷吸収器4において吸収液である臭化リチウム濃溶液に冷媒蒸気である水蒸気を吸収させることによって得られ、低温溶液熱交換器7および高温溶液熱交換器8を経て順次有効に予熱された後に高温再生器1へ還流されるようになっている。
【0037】
上記気液分離器3で気液分離された水蒸気は、次に低温再生器9に送られて凝縮される。また、上記気液分離器3において気液分離された上記臭化リチウム中間濃溶液は、上記高温溶液熱交換器8において前述した空冷吸収器4からの臭化リチウム希溶液と熱交換された後にオリフィス11を介して上記低温再生器9へ供給される。
【0038】
そして、上記低温再生器9では、上記のようにして気液分離器3から各々供給された水蒸気と臭化リチウム中間濃溶液との間で相互に熱交換させることにより、水蒸気を可及的に凝縮させるとともに臭化リチウム中間濃溶液中に含まれる残余水分を蒸発させてさらに高濃度の臭化リチウム濃溶液を取り出す。
【0039】
次に、このようにして低温再生器9において臭化リチウム中間濃溶液から蒸発された水蒸気は、オリフィス12を介して供給される上記水蒸気混合状態の凝縮水とともに空冷凝縮器10に送られ確実に凝縮液化されて凝縮水となり、さらに蒸発器13の凝縮水散布装置部分へ供給される。また、一方上記記低温再生器9から取り出された臭化リチウム濃溶液は、上記低温溶液熱交換器7において上記した空冷吸収器4からの臭化リチウム希溶液と熱交換した後にメイン供給管18から流量調節分配手段として機能する空冷吸収器4上部の吸収液分配装置15に供給される。
【0040】
この吸収液分配装置15は、例えば図6のように同吸収液分配装置15の吸収液分配トレイ16内に第1〜第3の各吸収伝熱管4a,4b,4cの上端側第1〜第3の開口部21a〜21cを各々所定高さ突設させて構成されている。そして、第1〜第3の各吸収伝熱管4a,4b,4cのトレイ内に突出した上記第1〜第3の開口部21a〜21cの外周には、該第1〜第3の開口部21a〜21cよりも所定寸法高さが高い円筒状の第1〜第3の入口キャップ22a〜22cが配設されており、該第1〜第3の入口キャップ22a〜22cと上記第1〜第3の開口部21a〜21cとの間には各々所定寸法の環状の第1〜第3の隙間24a〜24cが形成されている。そして、上記第1〜第3の入口キャップ22a〜22cの各下端部には、上記第1〜第3の隙間24a〜24cに連通する各々複数(例えば2個)のスリット状の第1〜第3の吸収液導入口23a〜23cが例えば円周方向に等間隔に形成されている。該第1〜第3の吸収液導入口23a〜23cは、上記吸収液分配トレイ16の内底部に溜まった吸収液bが第1〜第3の隙間24a〜24c内へ流入できるものであればよく、従って、その形状は必ずしも上記のようなスリット形状に限定されるものではなく、例えば半円形状でもよく、また、必ずしも円周方向に等間隔に形成されなくてもよい。
【0041】
そして、上記吸収液分配トレイ16の内底部に溜まった吸収液bは、先ず第1〜第3の入口キャップ22a〜22cの第1〜第3の吸収液導入口23a〜23cから第1〜第3の入口キャップ22a〜22cと第1〜第3の吸収伝熱管4a〜4cの第1〜第3の開口部21a〜21cとの間の第1〜第3の隙間24a〜24cに入り、それから第1〜第3の吸収伝熱管4a〜4c内へ溢れ出し、その内壁を均一に濡らしながら流下することになり、この流下の過程において蒸発器13からの冷媒蒸気aを効率良く吸収する。従って、上記吸収液分配トレイ16に溜まった吸収液bの液面に変動等が生じたとしても、上記第1〜第3の隙間24a〜24c内に溜まった吸収液bには当該変動が伝達されることはなく、第1〜第3の隙間24a〜24cから第1〜第3の吸収伝熱管4a〜4c内への吸収液bの溢れ出しは定常状態を常時保持されることになる。そして、それにより空冷吸収器4における安定した吸収効率を維持できることになる。
【0042】
ところで、上記第1〜第3の入口キャップ22a〜22cの第1〜第3の吸収液導入口23a〜23cは、図示のように空気流上流側第1の吸収伝熱管4a上部の第1の入口キャップ22aのものが小開口面積(高さが低くて)で、空気流下流側第2,第3の吸収伝熱管4b,4c上部の第2,第3の入口キャップ22b,22cのものが大開口面積(高さが高くて)に形成されており、それによって空気流上流側第1の吸収伝熱管4aに少量の吸収液を流す一方、空気流下流側第2,第3の吸収伝熱管4b,4cには多量の吸収液を流すようになっている。
【0043】
空冷吸収器4は、空気流上流側から下流側にかけて並設され、吸収液が垂直に流される上述の第1〜第3の複数本の吸収伝熱管4a,4b,4cと、該第1〜第3の吸収伝熱管4a,4b,4c各々の外周部に設けられた多数枚の放熱フィンF,F・・・と、上記第1,第2,第3の吸収伝熱管4a,4b,4cの上部に設けられ、それら第1,第2,第3の吸収伝熱管4a,4b,4cの各々に対して吸収液を分配する上述の吸収液分配装置15と、送風ファン20とを備えて構成されている。
【0044】
蒸発器13は、利用側熱交換器14を含む二次側冷媒サイクルを循環する冷媒(例えば、R407C)と上記空冷凝縮器10から送られてくる凝縮水とを相互に熱交換させるものであり、冷房運転時の冷熱源となる。
【0045】
そして、上記空冷吸収器4では、上記臭化リチウム濃溶液に上記蒸発器13で蒸発した水蒸気を吸収させることによって上述のように臭化リチウム希溶液を形成する。この臭化リチウム希溶液は、一旦下部ヘッダ16内に留められた後、溶液ポンプ5により逆止弁6を介して前述したように低温溶液熱交換器7および高温溶液熱交換器8を経て高温再生器1に戻されて高温再生される。
【0046】
以上のように、本実施の形態における上記空冷吸収器4の第1〜第3の吸収伝熱管4a〜4cには、それぞれ図6に示すように、その吸収液分配装置15の吸収液分配トレイ16部分に第1〜第3の各吸収伝熱管4a,4b,4cに対して個別に流量を調節することができる開口面積の異なる第1〜第3の吸収液導入口23a〜23cを有する第1〜第3の入口キャップ22a〜22cが設けられており、該第1〜第3の入口キャップ22a〜22cを介して供給される吸収液を第1,第2,第3の吸収伝熱管4a,4b,4cに流すようにしており、しかも上記第1〜第3の吸収液導入口23a〜23cは空気流下流側第2,第3の吸収液導入口23b,23cの開口面積が上流側第1の吸収液導入口23aのものよりも大きく形成されているので、各々その伝熱管部分を流れる吸収液の流量が空気流上流側のものよりも空気流下流側のものほど多くなるように流量設定されるようになる。
【0047】
したがって、該構成では、上記第1〜第3の吸収伝熱管4a〜4cは、送風ファン20からの空気流下流側に位置し、冷却空気の温度が高くて冷却性能が低く、抽気性が悪く不凝縮ガスが滞留しやすかったものほど流される吸収液の量が多くなり、下流側蒸気吸収量が増加し、該蒸気流により不凝縮ガスが下部ヘッダまで到達するようになるので、抽気性が良くなって十分な吸収性能を発揮するようになる。他方、冷却空気の温度が低くて吸収性能が高い空気流上流側のものは流される吸収液の量が相対的に少なくなるが、それ自体の吸収効率は高く、それぞれ熱交換効率、吸収効率が向上する。その結果、空冷吸収器4の第1〜第3の吸収伝熱管4a〜4c全体として、十分な熱交換能力を実現することができるようになり、吸収器の吸収効率、吸収性能がアップする。
【0048】
(変形例1)
なお、上記実施の形態では、吸収液分配トレイ16の第1〜第3の入口キャップ22a〜22cの第1〜第3の吸収液導入口23a〜23cそれぞれの開口面積を変えることにより、吸収液の流量を調節するようにしたが、これは当該第1〜第3の入口キャップ22a〜22cそのものの径を変え、第1〜第3の各吸収伝熱管4a〜4c上端の開口部21a〜21cとの間の第1〜第3の隙間24a〜24cの寸法を異ならせるか、又は第1〜第3の各吸収伝熱管4a〜4cの上端側各開口部21a〜21cの上方への突出高を変えるようにして流量調節するようにしても良い。
【0049】
(変形例2)
なお、上記実施の形態では、第1〜第3の吸収液導入口23a〜23cの開口面積を空気流上流側第1の吸収液導入口23aと空気流下流側第2,第3の吸収液導入口23b,23cとで2段階に変えるようにしているが、これは順次下流側ほど大きくなるように3段階に変えるようにしても良い。これは又変形例1の第1〜第3の入口キヤップ22a〜22cの径や第1〜第3の開口部21a〜21cの高さについても同様である。
【図面の簡単な説明】
【図1】本願発明の実施の形態1に係る空冷吸収式冷凍装置の装置全体の構成を示す図である。
【図2】同装置の要部の構成を示す拡大図である。
【図3】同装置の要部の変形例を示す拡大図である。
【図4】図3の構成における要部の部品の拡大図である。
【図5】本願発明の実施の形態2に係る空冷吸収式冷凍装置の装置全体の構成を示す図である。
【図6】同装置の要部の構成を示す拡大断面図である。
【図7】同装置の要部の部品の構成を示す拡大図である。
【符号の説明】
1は高温再生器、2は揚液管、3は気液分離器、4は空冷吸収器、4aは第1の吸収伝熱管、4bは第2の吸収伝熱管、4cは第3の吸収伝熱管、5は溶液ポンプ、9は低温再生器、10は空冷凝縮器、13は蒸発器、15は吸収液分配装置、15aは第1の吸収液分配装置、15bは第2の吸収液分配装置、16は吸収液分配トレイ、18aは第1の分岐管、18bは第2の分岐管、22a〜22cは第1〜第3の入口キャップ、23a〜23cは第1〜第3の吸収液導入口である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air-cooled absorption refrigeration apparatus in which absorbed heat generated in an absorber portion is cooled and dissipated by an air flow.
[0002]
[Prior art]
In general, in an absorber of an absorption refrigeration apparatus, in addition to absorption of refrigerant vapor, it is necessary to remove absorption heat of an absorption liquid generated by the absorption. Therefore, in general, water-cooled or air-cooled absorber means are provided, but those with water-cooled cooling means have high cooling efficiency, but the system is complicated and requires a large cooling tower. And has the disadvantage of increasing costs.
[0003]
Under such circumstances, various air-cooled absorber structures have recently been proposed.
[0004]
As one of them, for example, as shown in Japanese Patent Application Laid-Open No. 64-84062, Japanese Patent Publication No. 7-21364, Japanese Patent Publication No. 7-21365, etc., it is absorbed together with the refrigerant vapor from above to below through the header portion. By providing a large number of heat dissipating fins on the outer periphery of a straight absorption heat transfer tube through which the liquid flows, the absorber part is formed into a cross fin type heat exchanger structure, and these are formed from the air flow upstream side of the blowing means such as a fan. There is an air-cooled absorption refrigeration apparatus in which a plurality of sets are arranged in the downstream direction to constitute an air-cooled absorber, and the absorber itself is air-cooled by an air flow by a blowing means such as the fan. In that case, the plurality of sets of absorption heat transfer tubes are supplied with the same amount of absorption liquid.
[0005]
[Problems to be solved by the invention]
However, when the absorbing liquid is allowed to flow evenly from the upstream side of the air flow to each of the plurality of sets of absorbing heat transfer tubes in the downstream side as described above, there are the following problems.
[0006]
In general, absorption refrigeration devices operate under high vacuum. For example, the pressure in the evaporator is 6 to 4 mmHg, and the pressure in the condenser is 50 to 70 mmHg. For this reason, if there is accumulation of non-condensable gas due to air leakage or the generation of hydrogen inside due to the action of the corrosion inhibitor, even a small amount will have a significant effect on performance.
[0007]
On the other hand, the temperature of the air passing through each absorption heat transfer tube portion is lowest at the absorption heat transfer tube portion on the most upstream side of the air flow, and gradually increases toward the downstream side. For this reason, the absorption heat transfer tubes in the plurality of rows inevitably have a higher absorption capacity at the upstream side and a lower absorption capacity at the downstream side.
[0008]
Therefore, nevertheless, when allowed to flow to the absorbing liquid in the same flow rate to each of the absorption heat exchanger tube of a plurality of rows arranged downstream from the air flow upstream side, as described above, the refrigerant on the upstream side absorbing heat transfer tube While the amount of vapor absorption increases, the amount of refrigerant vapor absorption decreases in the downstream absorption heat transfer tube portion, and the aforementioned non-condensable gas tends to stay in the middle of the downstream absorption heat transfer tube portion.
[0009]
Therefore, it is necessary to extract the non-condensable gas from the absorber to the outside of the absorber. Generally, in the case of the air-cooled absorber as described above, the amount of non-condensable gas is reduced because the amount of vapor absorption on the downstream side is small as described above. If it flows in, the steam velocity in the pipe on the downstream side will slow down, so the non-condensable gas will not reach the lower header due to the steam flow, and will tend to stay near the center of the pipe. However, the air was not sufficiently extracted, and as a result, the performance of the absorber was deteriorated.
[0010]
The present invention has been made in order to solve such a problem. Among a plurality of rows of absorption heat transfer tubes arranged from the upstream side of the air flow to the downstream side, the absorption liquid is absorbed with respect to the absorption heat transfer tube on the downstream side of the air flow. Absorbing as much as possible by increasing the absorption liquid flow rate of the absorption heat transfer tube on the downstream side of the air flow by improving the flow rate adjustment means to increase the flow rate of the non-condensable gas It is an object of the present invention to provide an air-cooled absorption refrigeration apparatus capable of enhancing the performance and effectively improving the absorption performance of the absorber.
[0011]
[Means for Solving the Problems]
In order to achieve the object, the present invention includes the following problem solving means.
[0012]
That is, the present invention includes an air-cooled absorber 4 composed of a plurality of rows of absorption heat transfer tubes 4a, 4b, 4c that absorb the refrigerant vapor in the absorbing liquid, and a blower means 20 that cools the air-cooled absorber 4 with an air flow. In the air-cooled absorption refrigeration apparatus, the flow rate is adjusted so that the flow rate of the absorbing liquid in the plurality of rows of the absorption heat transfer tubes 4a, 4b, 4c is higher on the downstream side than on the upstream side. The flow rate adjusting means 18a, 18b, 18c, 23a, 23b, and 23c are provided.
[0013]
Therefore, according to this configuration, it becomes possible to adjust and set an appropriate absorption liquid flow rate for a plurality of rows of absorption heat transfer tubes arranged from the upstream side to the downstream side of the air flow, the temperature of the cooling air is high, and the absorption performance By flowing a large amount of absorption liquid through a small air flow downstream absorption heat transfer tube, the absorption performance is increased as much as possible by improving its bleedability and preventing retention of non-condensable gas, and as a whole absorption heat transfer tube Absorption efficiency and absorption performance can be improved and uniformized, and the absorption efficiency and absorption performance of the absorber can be improved. That is, when the downstream flow rate is increased, the downstream vapor absorption amount increases, and the non-condensable gas reaches the lower header by the vapor flow, so that the extraction is facilitated, and thus the absorption performance is improved.
[0014]
The flow rate adjusting means 18a, 18b, 23a, 23b, and 23c of the present invention are, for example, pipes of the absorption liquid branch pipes 18a and 18b from the low temperature regenerator 9 to the absorption liquid distribution portions 15a and 15b above the air-cooled absorber 4. It is comprised by changing a diameter, or the diameter of absorption liquid inlet cap 22a, 22b, 22c of each absorption heat exchanger tube 4a, 4b, 4c of the absorption liquid distribution part 15, and its absorption liquid inlet 23a, 23b, 23c It is configured by changing the opening area, and the absorption liquid flow rate which is different between the upstream side and the downstream side of the air flow is fixedly adjusted and set, and the above-described operation is effectively realized.
[0015]
【The invention's effect】
As a result of the above, according to the air-cooled absorption refrigeration apparatus of the present invention, the absorption efficiency and absorption performance as a total of the absorption heat transfer tubes in a plurality of rows can be improved more effectively than before, and the air-cooling with as small and high performance as possible. An absorption refrigeration apparatus can be provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
1 and 2 show the configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 1 of the present invention.
[0017]
In this air-cooled absorption refrigeration apparatus, for example, an aqueous solution of lithium bromide (LiBr aqueous solution) is employed as the absorbing liquid, and water (H 2 O) is employed as the refrigerant (absorbed liquid).
[0018]
In FIG. 1, reference numeral 1 is a high-temperature regenerator, which includes a heating source such as a gas burner. Above the high-temperature regenerator 1, a gas-liquid separator 3 communicated via a pumping pipe 2 is provided. In the high-temperature regenerator 1, a lithium bromide dilute solution is heated and boiled and supplied to a gas-liquid separator 3 located above via a pumping pipe 2, where water vapor and absorption liquid as refrigerant vapor are used. It is separated and regenerated into a certain lithium bromide intermediate concentrated solution (intermediate concentration absorbing solution).
[0019]
The dilute lithium bromide solution supplied to the high temperature regenerator 1 is obtained by absorbing water vapor as refrigerant vapor into a concentrated solution of lithium bromide as an absorbing solution in an air-cooled absorber 4 to be described later. After being effectively preheated sequentially through the unit 7 and the high-temperature solution heat exchanger 8, they are returned to the high-temperature regenerator 1.
[0020]
The water vapor separated by the gas-liquid separator 3 is then sent to the low-temperature regenerator 9 to be condensed. The lithium bromide intermediate concentrated solution gas-liquid separated in the gas-liquid separator 3 is subjected to heat exchange with the lithium bromide dilute solution from the air-cooled absorber 4 described above in the high-temperature solution heat exchanger 8. It is supplied to the low temperature regenerator 9 through the orifice 11.
[0021]
In the low-temperature regenerator 9, the water vapor is exchanged as much as possible between the water vapor and the lithium bromide intermediate concentrated solution supplied from the gas-liquid separator 3 as described above. Condensation and evaporation of the residual water contained in the lithium bromide intermediate concentrated solution are taken out to obtain a higher concentration lithium bromide concentrated solution.
[0022]
Next, the water vapor evaporated from the lithium bromide intermediate concentrated solution in the low-temperature regenerator 9 in this way is sent to the air-cooled condenser 10 together with the water vapor mixed condensate supplied through the orifice 12 to be sure. It is condensed and liquefied to become condensed water, and further supplied to the condensed water spraying device portion of the evaporator 13. On the other hand, the concentrated lithium bromide solution taken out from the low-temperature regenerator 9 is heat-exchanged with the lithium bromide diluted solution from the air-cooled absorber 4 in the low-temperature solution heat exchanger 7 and then the main supply pipe 18. To the first and second absorption liquid distributors 15a and 15b of the air-cooled absorber 4 through the first and second branch pipes 18a and 18b functioning as flow rate control means.
[0023]
As shown in FIG. 2, the first and second branch pipes 18a and 18b are arranged in the direction of the first branch pipe 18a corresponding to the first absorbing liquid distributor 15a above the first absorption heat transfer pipe 4a on the air flow upstream side. Has a smaller diameter, and the second branch pipe 18b corresponding to the second absorbing liquid distributor 15b on the air flow downstream side second and third absorption heat transfer pipes 4b, 4c is formed with a larger diameter, As a result, a large amount of absorption liquid is caused to flow through the second and third absorption heat transfer tubes 4b, 4c on the downstream side of the air flow, while a small amount of absorption liquid is caused to flow through the first absorption heat transfer tube 4a on the upstream side of the air flow. .
[0024]
The air-cooled absorber 4 includes, for example, the first to third absorption heat transfer tubes 4a, 4b, 4c through which the absorption liquid flows vertically, and the first to third absorption heat transfer tubes 4a, 4b, 4c. ... provided on the outer periphery of each of the plurality of heat radiation fins F, F... And the first absorption heat transfer tubes 4a, the second and third absorption heat transfer tubes 4b, 4c. The first and second absorption liquid distributors 15a and 15b for distributing the absorption liquid to each of the first absorption heat transfer pipe 4a and the second and third absorption heat transfer pipes 4b and 4c; It is configured with.
[0025]
The evaporator 13 exchanges heat between the refrigerant (for example, R407C) circulating in the secondary refrigerant cycle including the use-side heat exchanger 14 and the condensed water sent from the air-cooled condenser 10. It becomes a cooling heat source during cooling operation.
[0026]
In the air-cooled absorber 4, the lithium bromide diluted solution is formed as described above by absorbing the water vapor evaporated in the evaporator 13 into the lithium bromide concentrated solution. This lithium bromide dilute solution is once retained in the lower header 16 and then regenerated at a high temperature via the check valve 6 by the solution pump 5 via the low temperature solution heat exchanger 7 and the high temperature solution heat exchanger 8 as described above. Returned to the vessel 1 and regenerated at high temperature.
[0027]
As described above, the first to third absorption heat transfer tubes 4a to 4c of the air-cooled absorber 4 are arranged upstream of the first and second absorption liquid distributors 15a and 15b, respectively, as shown in the drawing. There are provided first and second branch pipes 18a and 18b having a small pipe diameter and a large pipe diameter capable of individually adjusting the flow rate, and the first and second branch pipes 18a from the main supply pipe 18 are provided. , 18b, the first and second absorption liquid distributors 15a and 15b are used to supply the absorption liquid supplied after being diverted through the first and second absorption liquid distributors 15a and 15b. Since the flow is made to flow through the absorption heat transfer tubes 4a, 4b, and 4c, the flow rate is set so that the flow rate of the absorption liquid flowing through the heat transfer tube portion is larger on the downstream side of the air flow than on the upstream side of the air flow. It becomes like this.
[0028]
Thus, in the configuration, the first to third absorbing heat exchanger tube 4a~4c is located on the upstream side of the air flow from the blower fan 20, the cooling performance is rather high and low temperature of the cooling air, the refrigerant Although absorption of the steam in the amount of relatively flows absorbent liquid is reduced in multi-casting, located downstream of the air flow from the other the blower fan 20, the cooling performance is the temperature of the cooling air is high The amount of refrigerant vapor absorbed decreases and the amount of absorbed liquid that flows relatively increases when the non-condensable gas stays and the bleedability deteriorates, thereby increasing the amount of refrigerant vapor absorbed. It is possible to appropriately set the refrigerant vapor absorption amounts of the air flow upstream side and the downstream side. As a result, the non-condensable gas reaches the lower header even on the downstream side of the air flow, and the bleed performance is improved.
As a result, the entire first to third absorbing heat exchanger tube of 4a~4c of the air-cooled absorber 4, the heat exchange efficiency, and improve absorption efficiency, the absorber 4 itself absorption efficiency, absorption performance is increased.
[0029]
In the case of the above configuration, the second absorption liquid distribution device 15b distributes the absorption liquid to the second and third absorption heat transfer tubes 4b and 4c with respect to the first absorption liquid distribution device 15a. Therefore, a large amount of absorption liquid supply is inevitably required even in normal cases. Accordingly, it goes without saying that the setting of the pipe diameter of the second branch pipe 18b for increasing the flow rate on the downstream side is made in consideration of this point.
[0030]
(Modification 1)
The first and second branch pipes 18a and 18b in the first embodiment are configured so as to change the supply flow rate of the absorbing liquid by changing the pipe diameter, as shown in FIG. 3, for example. Furthermore, the pipe diameters themselves are of equal diameter, and an orifice 19 having a small-diameter through hole 19a as shown in FIG. 4 is provided in the middle of the first branch pipe 18a for which the supply flow rate of the absorbing liquid is relatively small. You may make it interpose.
[0031]
Even with such a configuration, it is possible to obtain the same effect (flow rate adjusting effect) as when the above-mentioned tube diameter is changed.
[0032]
(Modification 2)
In the configuration of the first embodiment, the mutual flow rate is changed between the first row of the air flow upstream side, the second row of the air flow downstream side, and the third row. It is more effective to change the flow rate in three stages of each of the second row and the third row so that more flows are made downstream.
[0033]
(Embodiment 2)
Next, FIGS. 5 to 7 show the configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 2 of the present invention.
[0034]
In this air-cooled absorption refrigeration apparatus, for example, an aqueous solution of lithium bromide (LiBr aqueous solution) is employed as the absorbing liquid, and water (H 2 O) is employed as the refrigerant (absorbed liquid).
[0035]
In FIG. 5, reference numeral 1 is a high-temperature regenerator, which includes a heating source such as a gas burner. Above the high-temperature regenerator 1, a gas-liquid separator 3 communicated via a pumping pipe 2 is provided. In the high-temperature regenerator 1, a lithium bromide dilute solution is heated and boiled and supplied to a gas-liquid separator 3 located above via a pumping pipe 2, where water vapor and absorption liquid as refrigerant vapor are used. It is separated and regenerated into a certain lithium bromide intermediate concentrated solution (intermediate concentration absorbing solution).
[0036]
The dilute lithium bromide solution supplied to the high temperature regenerator 1 is obtained by absorbing water vapor as refrigerant vapor into a concentrated solution of lithium bromide as an absorbing solution in an air-cooled absorber 4 to be described later. After being effectively preheated sequentially through the unit 7 and the high-temperature solution heat exchanger 8, they are returned to the high-temperature regenerator 1.
[0037]
The water vapor separated by the gas-liquid separator 3 is then sent to the low-temperature regenerator 9 to be condensed. The lithium bromide intermediate concentrated solution gas-liquid separated in the gas-liquid separator 3 is subjected to heat exchange with the lithium bromide dilute solution from the air-cooled absorber 4 described above in the high-temperature solution heat exchanger 8. It is supplied to the low temperature regenerator 9 through the orifice 11.
[0038]
In the low-temperature regenerator 9, the water vapor is exchanged as much as possible between the water vapor and the lithium bromide intermediate concentrated solution supplied from the gas-liquid separator 3 as described above. Condensation and evaporation of the residual water contained in the lithium bromide intermediate concentrated solution are taken out to obtain a higher concentration lithium bromide concentrated solution.
[0039]
Next, the water vapor evaporated from the lithium bromide intermediate concentrated solution in the low-temperature regenerator 9 in this way is sent to the air-cooled condenser 10 together with the water vapor mixed condensate supplied through the orifice 12 to be sure. It is condensed and liquefied to become condensed water, and further supplied to the condensed water spraying device portion of the evaporator 13. On the other hand, the concentrated lithium bromide solution taken out from the low-temperature regenerator 9 is heat-exchanged with the lithium bromide diluted solution from the air-cooled absorber 4 in the low-temperature solution heat exchanger 7 and then the main supply pipe 18. To the absorption liquid distributor 15 at the top of the air-cooled absorber 4 that functions as a flow rate adjusting and distributing means.
[0040]
For example, as shown in FIG. 6, the absorption liquid distributor 15 is arranged in the absorption liquid distribution tray 16 of the absorption liquid distribution apparatus 15 in the first to third absorption heat transfer tubes 4a, 4b, 4c on the upper end side of the first to first. Each of the three openings 21a to 21c protrudes at a predetermined height. And in the outer periphery of the said 1st-3rd opening part 21a-21c protruded in the tray of each 1st-3rd absorption heat exchanger tube 4a, 4b, 4c, this 1st-3rd opening part 21a Cylindrical first to third inlet caps 22a to 22c having a predetermined height higher than those of ˜21c are arranged, and the first to third inlet caps 22a to 22c and the first to third cylindrical caps. The first to third gaps 24a to 24c each having a predetermined size are formed between the openings 21a to 21c. The first to third inlet caps 22a to 22c have a plurality of (for example, two) slit-shaped first to first slits communicating with the first to third gaps 24a to 24c, respectively. The three absorption liquid inlets 23a to 23c are formed at regular intervals in the circumferential direction, for example. The first to third absorption liquid introduction ports 23a to 23c may be configured so that the absorption liquid b accumulated in the inner bottom portion of the absorption liquid distribution tray 16 can flow into the first to third gaps 24a to 24c. Therefore, the shape is not necessarily limited to the slit shape as described above, and may be, for example, a semicircular shape, and may not necessarily be formed at equal intervals in the circumferential direction.
[0041]
Then, the absorbing liquid b accumulated in the inner bottom portion of the absorbing liquid distribution tray 16 is first to first to third absorbing liquid inlets 23a to 23c of the first to third inlet caps 22a to 22c. The first to third gaps 24a to 24c between the three inlet caps 22a to 22c and the first to third openings 21a to 21c of the first to third absorption heat transfer tubes 4a to 4c, and then It overflows into the 1st-3rd absorption heat exchanger tubes 4a-4c, and it will flow down while wetting the inner wall uniformly, In the process of this flow, refrigerant vapor a from evaporator 13 is absorbed efficiently. Therefore, even if a fluctuation or the like occurs in the liquid level of the absorption liquid b accumulated in the absorption liquid distribution tray 16, the fluctuation is transmitted to the absorption liquid b accumulated in the first to third gaps 24a to 24c. The overflow of the absorbing liquid b from the first to third gaps 24a to 24c into the first to third absorption heat transfer tubes 4a to 4c is always maintained in a steady state. As a result, stable absorption efficiency in the air-cooled absorber 4 can be maintained.
[0042]
By the way, the 1st-3rd absorption liquid inlet 23a-23c of the said 1st-3rd inlet caps 22a-22c is the 1st absorption heat exchanger tube 4a upper part of the air flow upstream as shown in the figure. The one of the inlet cap 22a has a small opening area (the height is low), and the ones of the second and third inlet caps 22b and 22c above the second and third absorption heat transfer tubes 4b and 4c on the downstream side of the air flow. It is formed in a large opening area (with a high height), thereby allowing a small amount of absorbing liquid to flow through the first absorption heat transfer tube 4a on the upstream side of the air flow, while the second and third absorption flows on the downstream side of the air flow. A large amount of absorption liquid is allowed to flow through the heat tubes 4b and 4c.
[0043]
The air-cooled absorber 4 is juxtaposed from the upstream side to the downstream side of the air flow, and the first to third absorption heat transfer tubes 4a, 4b, 4c described above, in which the absorption liquid flows vertically, A large number of radiation fins F, F... Provided on the outer periphery of each of the third absorption heat transfer tubes 4a, 4b, 4c, and the first, second, and third absorption heat transfer tubes 4a, 4b, 4c. The above-mentioned absorption liquid distribution device 15 that distributes the absorption liquid to each of the first, second, and third absorption heat transfer tubes 4a, 4b, and 4c, and the blower fan 20 are provided. It is configured.
[0044]
The evaporator 13 exchanges heat between the refrigerant (for example, R407C) circulating in the secondary refrigerant cycle including the use-side heat exchanger 14 and the condensed water sent from the air-cooled condenser 10. It becomes a cooling heat source during cooling operation.
[0045]
In the air-cooled absorber 4, the lithium bromide diluted solution is formed as described above by absorbing the water vapor evaporated in the evaporator 13 into the lithium bromide concentrated solution. This lithium bromide dilute solution is once retained in the lower header 16 and then passed through the check valve 6 by the solution pump 5 through the low temperature solution heat exchanger 7 and the high temperature solution heat exchanger 8 as described above. It is returned to the regenerator 1 and regenerated at a high temperature.
[0046]
As described above, the first to third absorption heat transfer tubes 4a to 4c of the air-cooled absorber 4 in the present embodiment are respectively provided with the absorption liquid distribution tray of the absorption liquid distribution device 15 as shown in FIG. The 16th portion has first to third absorption liquid inlets 23a to 23c having different opening areas capable of individually adjusting the flow rates for the first to third absorption heat transfer tubes 4a, 4b, and 4c. The first to third inlet caps 22a to 22c are provided, and the first, third and second absorption heat transfer tubes 4a are supplied with the absorption liquid supplied through the first to third inlet caps 22a to 22c. , 4b, 4c, and the first to third absorption liquid introduction ports 23a to 23c have an upstream opening area of the second and third absorption liquid introduction ports 23b and 23c on the downstream side. Formed larger than that of the first absorbent inlet 23a. Runode, so each flow rate of the absorption liquid flowing through the heat transfer tube portion is flow set to be larger as those of the air flow downstream side than the air flow upstream side.
[0047]
Therefore, in this structure, the said 1st-3rd absorption heat exchanger tubes 4a-4c are located in the air flow downstream from the ventilation fan 20, the temperature of cooling air is high, cooling performance is low, and extraction property is bad. As the non-condensable gas tends to stay, the amount of the absorbed liquid that flows is increased, the downstream side vapor absorption amount increases, and the non-condensable gas reaches the lower header by the vapor flow. It becomes better and exhibits sufficient absorption performance. On the other hand, the one on the upstream side of the air flow where the temperature of the cooling air is low and the absorption performance is high reduces the amount of absorbing liquid that flows, but its own absorption efficiency is high, and the heat exchange efficiency and absorption efficiency are respectively low. improves. As a result, sufficient heat exchange capability can be realized as the first to third absorption heat transfer tubes 4a to 4c of the air-cooled absorber 4, and the absorption efficiency and absorption performance of the absorber are improved.
[0048]
(Modification 1)
In the above-described embodiment, the absorption liquid is changed by changing the opening area of each of the first to third absorption liquid inlets 23a to 23c of the first to third inlet caps 22a to 22c of the absorption liquid distribution tray 16. However, this is to change the diameter of the first to third inlet caps 22a to 22c themselves, and to open the upper ends 21a to 21c of the first to third absorption heat transfer tubes 4a to 4c. The first to third gaps 24a to 24c between the first and third absorption heat transfer tubes 4a to 4c are different from each other in size, or projecting heights above the openings 21a to 21c at the upper ends of the first to third absorption heat transfer tubes 4a to 4c. The flow rate may be adjusted by changing the flow rate.
[0049]
(Modification 2)
In the above-described embodiment, the opening areas of the first to third absorption liquid introduction ports 23a to 23c are set to be the air flow upstream side first absorption liquid introduction port 23a and the air flow downstream side second and third absorption liquids. The introduction ports 23b and 23c are changed in two stages, but this may be changed in three stages so that the downstream side gradually increases. This also applies to the diameters of the first to third inlet caps 22a to 22c and the heights of the first to third openings 21a to 21c of the first modification.
[Brief description of the drawings]
FIG. 1 is a diagram showing the overall configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 1 of the present invention.
FIG. 2 is an enlarged view showing a configuration of a main part of the apparatus.
FIG. 3 is an enlarged view showing a modification of the main part of the apparatus.
4 is an enlarged view of a main part in the configuration of FIG. 3;
FIG. 5 is a diagram showing the overall configuration of an air-cooled absorption refrigeration apparatus according to Embodiment 2 of the present invention.
FIG. 6 is an enlarged sectional view showing a configuration of a main part of the apparatus.
FIG. 7 is an enlarged view showing a configuration of a main part of the apparatus.
[Explanation of symbols]
1 is a high temperature regenerator, 2 is a liquid pump, 3 is a gas-liquid separator, 4 is an air-cooled absorber, 4a is a first absorption heat transfer tube, 4b is a second absorption heat transfer tube, and 4c is a third absorption transfer. Heat pipe, 5 is a solution pump, 9 is a low-temperature regenerator, 10 is an air-cooled condenser, 13 is an evaporator, 15 is an absorbing liquid distributor, 15a is a first absorbing liquid distributor, and 15b is a second absorbing liquid distributor. , 16 is an absorption liquid distribution tray, 18a is a first branch pipe, 18b is a second branch pipe, 22a to 22c are first to third inlet caps, and 23a to 23c are first to third absorption liquid introductions. The mouth.

Claims (4)

吸収液に冷媒蒸気を吸収させる複数列の吸収伝熱管(4a),(4b),(4c)よりなる空冷吸収器(4)と、該空冷吸収器(4)を空気流により冷却する送風手段(20)とを備えてなる空冷吸収式冷凍装置において、上記複数列の吸収伝熱管(4a),(4b),(4c)の内の空気流下流側のものほど上流側のものに比べて吸収液の流量が多くなるように流量調節する流量調節手段(18a),(18b),(18c)、(23a),(23b),(23c)を設けたことを特徴とする空冷吸収式冷凍装置。An air-cooled absorber (4) comprising a plurality of rows of absorption heat transfer tubes (4a), (4b), (4c) for absorbing refrigerant vapor in the absorbing liquid, and a blowing means for cooling the air-cooled absorber (4) with an air flow In the air-cooled absorption refrigeration apparatus comprising (20), the downstream side of the plurality of rows of the absorption heat transfer tubes (4a), (4b), (4c) is more upstream than the upstream side. Air-cooled absorption refrigeration characterized by providing flow rate adjusting means (18a), (18b), (18c), (23a), (23b), (23c) for adjusting the flow rate so that the flow rate of the absorbing liquid increases. apparatus. 流量調節手段(18a),(18b)は、空冷吸収器(4)の吸収液分配部(15a),(15b)への吸収液分岐配管の管径を変えることにより構成されていることを特徴とする請求項1記載の空冷吸収式冷凍装置。The flow rate adjusting means (18a) and (18b) are configured by changing the pipe diameter of the absorption liquid branch pipe to the absorption liquid distribution sections (15a) and (15b) of the air-cooled absorber (4). The air-cooled absorption refrigeration apparatus according to claim 1. 流量調節手段(23a),(23b),(23c)は、吸収液分配部(15)の各吸収伝熱管(4a),(4b),(4c)の吸収液入口キャップ(22a),(22b),(22c)の径を変えることにより構成されていることを特徴とする請求項1記載の空冷吸収式冷凍装置。The flow rate adjusting means (23a), (23b), (23c) are the absorption liquid inlet caps (22a), (22b) of the absorption heat transfer tubes (4a), (4b), (4c) of the absorption liquid distribution section (15). 2) The air-cooled absorption refrigerating apparatus according to claim 1, wherein the air-cooled absorption refrigerating apparatus is configured by changing the diameter of (22c). 流量調節手段(23a),(23b),(23c)は、吸収液分配部(15)の各吸収伝熱管(4a),(4b),(4c)の吸収液入口キャップ(22a),(22b),(22c)の吸収液導入口(23a),(23b),(23c)の開口面積を変えることにより構成されていることを特徴とする請求項1記載の空冷吸収式冷凍装置。The flow rate adjusting means (23a), (23b), (23c) are the absorption liquid inlet caps (22a), (22b) of the absorption heat transfer tubes (4a), (4b), (4c) of the absorption liquid distribution section (15). The air-cooled absorption refrigeration apparatus according to claim 1, wherein the absorption-cooling inlet (23a), (23b) and (23c) are changed by changing the opening area.
JP11131397A 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system Expired - Fee Related JP3879176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11131397A JP3879176B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11131397A JP3879176B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Publications (2)

Publication Number Publication Date
JPH10300267A JPH10300267A (en) 1998-11-13
JP3879176B2 true JP3879176B2 (en) 2007-02-07

Family

ID=14558067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11131397A Expired - Fee Related JP3879176B2 (en) 1997-04-28 1997-04-28 Air-cooled absorption refrigeration system

Country Status (1)

Country Link
JP (1) JP3879176B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3929864B2 (en) * 2002-09-26 2007-06-13 大阪瓦斯株式会社 Absorption refrigeration equipment high temperature regenerator
CN108335857B (en) * 2018-02-05 2024-06-21 河南丰源电力科技有限公司 Heat dissipation formula intelligent transformer and transformation equipment

Also Published As

Publication number Publication date
JPH10300267A (en) 1998-11-13

Similar Documents

Publication Publication Date Title
EP1365199B1 (en) Evaporator with mist eliminator
JP3195100B2 (en) High-temperature regenerator of absorption chiller / heater and absorption chiller / heater
JP4701147B2 (en) 2-stage absorption refrigerator
WO2016121123A1 (en) Refrigeration cycle device
JP3879176B2 (en) Air-cooled absorption refrigeration system
JP3789815B2 (en) High temperature regenerator and absorption chiller / heater equipped with the same
KR890004393B1 (en) Air cooling type absorption cooler
JP3997594B2 (en) Air-cooled absorber
JP2568769B2 (en) Absorption refrigerator
KR890004392B1 (en) Air cooled absorption refrigeration system
JP3216567B2 (en) Air-cooled absorption refrigeration system
JP2009236477A (en) Absorption chiller and heater
JP2007071512A (en) Absorption refrigeration machine
KR100213780B1 (en) Water supply system of absortion type cooler
JP7010608B2 (en) Air-cooled absorption chiller
KR100286833B1 (en) Heat exchanger for regenerator of cool/heating system
JP3171138B2 (en) Air-cooled absorption refrigeration system
JP3938712B2 (en) High-temperature regenerator and absorption chiller / heater
KR100334933B1 (en) Absorber of plate heat exchanger type in Absorption heating and cooling system
JP3944043B2 (en) Air-cooled absorber
JP2993454B2 (en) Air-cooled absorption refrigeration system
KR0140627B1 (en) Refrigerant Heat Exchanger for Pressure Drop of Absorption Air Conditioner
KR100349619B1 (en) Absorber for a absorption heating and cooling system
CN112066604A (en) Heat exchanger and water cooling unit
JP3684897B2 (en) Absorption refrigerator vertical absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20060307

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees