JP3876976B2 - Evaluation apparatus and evaluation method - Google Patents

Evaluation apparatus and evaluation method Download PDF

Info

Publication number
JP3876976B2
JP3876976B2 JP2001384601A JP2001384601A JP3876976B2 JP 3876976 B2 JP3876976 B2 JP 3876976B2 JP 2001384601 A JP2001384601 A JP 2001384601A JP 2001384601 A JP2001384601 A JP 2001384601A JP 3876976 B2 JP3876976 B2 JP 3876976B2
Authority
JP
Japan
Prior art keywords
rotating body
frequency component
khz
waveform processing
abnormality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001384601A
Other languages
Japanese (ja)
Other versions
JP2003185535A (en
Inventor
泰之 武藤
達信 桃野
孝範 宮坂
佳宏朗 佐藤
眞一郎 浅枝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2001384601A priority Critical patent/JP3876976B2/en
Publication of JP2003185535A publication Critical patent/JP2003185535A/en
Application granted granted Critical
Publication of JP3876976B2 publication Critical patent/JP3876976B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、回転体の発生する音又は振動に基づいた電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予め回転体の異常に起因した特定の周波数成分値を基準値として記憶しておいて、前記した周波数スペクトルデータ上での基準値の対応箇所にピークが表出するか否かで回転体の特定部位に対する異常の有無の診断を行う評価装置および評価方法に関するものである。
【0002】
【従来の技術】
これまで、例えば、鉄鋼用の圧延機や鉄道車両の主電動機等の大型の回転装置(以下、単に装置とも記す。)に用いられる軸受では、軸受部品の摩耗や破損による不都合の発生を防止するために、定期的に分解目視検査を実施するようにしている。この分解目視検査は、装置の一定期間の使用後に、軸受を装置から取り外して分解し、各軸受構成部品に対して、熟練した専門の検査担当者が、目視によって、摩耗の度合いや傷の有無を確認し、新品の軸受にはない凹凸や摩耗などの異常が検出されれば、新品に交換した後に、再度、組み立てを実施する。
【0003】
【発明が解決しようとする課題】
ところが、前述した分解検査は、装置から軸受を取り外す分解作業や、検査済みの軸受を再度装置に組み込み直す組込作業に多大な労力がかかり、装置の維持コストの大幅な増大を招くという問題があった。
また、検査時の分解作業や組み込み作業時に、誤って軸受部品等に打痕をつけて、検査自体が部品交換を増やす原因となる虞もあった。
更には、検査担当者の熟練度によっては、欠陥の見落としや、不要な部品交換の実施等の不備が発生する虞もあった。
【0004】
そこで、最近では、このような大型装置に用いられる軸受の摩耗や破損による異常の有無を、前述した分解目視検査によらずに、小型軸受の異常診断等で普及している評価装置を応用することが検討された。
この評価装置は、軸受から発生する音又は振動を検出して出力される電気信号を所定の波形処理によって周波数スペクトルデータに変換し、予めその軸受の異常に起因した特定の周波数成分値を基準値として記憶しておいて、前記した周波数スペクトルデータ上での基準値の対応箇所にピークが表出するか否かで回転体の特定部位に対する異常の有無の診断を行うものである。
【0005】
従来のこの種の評価装置では、診断する周波数スペクトルデータは、軸受の実際の常用回転数等に関係なく、その軸受を使用する装置に組み込んだ状態での共振帯域に着眼し、軸受の発生する振動信号から共振帯域のみの振動信号を抽出して、その抽出した信号をエンベロープ分析等で周波数スペクトルデータに仕上げる。
【0006】
このような評価装置によって大型の軸受の異常診断が可能ならば、軸受の分解作業や組み込み作業が不要になり、更に、検査作業の操作で誤って軸受を破損させるような不都合も回避することができ、更に検査担当者の熟練度によって検査の信頼性が左右されるといったことも無くなり、無駄な部品交換を無くして、装置の維持コストの低減を図ることが可能になる。
【0007】
しかし、前述した鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる軸受に対して、前述した従来の評価装置で摩耗や破損による異常の有無の診断を実施すると、図4に示すように、軸受の損傷に起因した周波数成分が顕著に現れず、実際に摩耗や破損等の欠陥による異常があっても、異常と見なされずに、見落とされてしまう虞があり、信頼性が薄く実用性に乏しい。
【0008】
また、鉄道車両の車軸用軸受の場合は、例えば、輪軸試験などで、定期的に、低速回転域で駆動した状態で検査することがある。しかし、鉄道車両の車軸用軸受の場合、軸受が組み込まれるハウジングの剛性が高いため、例えば、軸受の軌道面に交換を必要とする損傷が生じていても、その損傷の上を転動体が通過した際に大きな振動がでず、装置の共振帯域には損傷に起因する振動が伝達されないため、前述した共振帯域の周波数スペクトルデータで異常の有無を診断する評価装置では、軸受の損傷を見逃してしまう虞があった。
【0009】
本発明は上記事情に鑑みてなされたもので、低速回転で使用される大型の軸受等の回転体の摩耗や破損等の異常の有無を、装置の分解等が必要なく、しかも高い信頼性で診断することのできる評価装置および評価方法を提供することを目的とする。
【0010】
本発明の目的は、下記の構成により達成される。
(1) 回転装置に組み込まれる回転体の発生する音又は振動を当該回転装置に組み込んだ状態で検出して電気信号として出力する検出手段と、
電気信号をエンベロープ分析によって周波数スペクトルデータに変換する波形処理手段と、前記回転体の回転数を検出して出力する回転数検出手段と、
当該回転数検出手段の出力結果と前記回転体の諸元とによって予め決定される、前記回転体の異常に起因した特定の周波数成分値を基準値として記憶し、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記回転体の異常の有無の診断を行う比較判定手段とを備える評価装置において、
前記回転装置は、共振帯域が1kHzより大きい、鉄鋼用の圧延機または鉄道車両であり、且つ、
前記検出手段の出力する電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、前記波形処理手段に入力される電気信号を1kHz以下の周波数成分のみに制限するフィルタ処理手段を、前記波形処理手段の前段に設けたことを特徴とする評価装置。
(2) 前記回転体は転がり軸受であり、
前記特定の周波数成分値は、前記転がり軸受の内輪、外輪、転動体または保持器のいずれかに対応する周波数成分値であることを特徴とする(1)に記載の評価装置。
) 回転装置に組み込まれる回転体の発生する音又は振動を当該回転装置に組み込んだ状態で電気信号として検出する検出過程と、
電気信号をエンベロープ分析によって周波数スペクトルデータに変換する波形処理過程と、
前記回転体の回転数を検出する回転数検出過程と、
当該回転数検出過程での検出結果と前記回転体の諸元とによって予め決定される、前記回転体の異常に起因した特定の周波数成分値を基準値として記憶し、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記回転体の異常の有無の診断を行う比較判定過程と、を備える評価方法において、
前記回転装置は、共振帯域が1kHzより大きい、鉄鋼用の圧延機または鉄道車両であり、且つ、
前記検出過程で検出された電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、前記波形処理過程で変換される電気信号を1kHz以下の周波数成分のみに制限するフィルタ処理過程を、前記波形処理過程の前に実施することを特徴とする評価方法。
(4) 前記回転体は転がり軸受であり、
前記特定の周波数成分値は、前記転がり軸受の内輪、外輪、転動体または保持器のいずれかに対応する周波数成分値であることを特徴とする(3)に記載の評価方法。
【0011】
そして、上記構成によれば、低速回転で使用される大型の軸受等の回転体の異常検出に使用すると、例えば、波形処理手段が作成するエンベロープ分析による周波数スペクトルデータは、回転体の常用回転域に合致したデータで、回転体の特定部位に摩耗や破損等の異常があれば、その異常に起因する特定の周波数成分が良好なピーク値を取るように、波形処理手段が出力する周波数スペクトルデータ上に表出する。従って、比較判定手段が診断した際に、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、特定部位での異常の有無を確実に診断することができる。
【0012】
【発明の実施の形態】
以下、本発明に係る評価装置の好適な実施の形態を添付図面に基づいて詳細に説明する。
図1乃至図3は本発明に係る評価装置の一実施の形態を示したもので、図1は本発明の一実施の形態の評価装置の概略構成を示すブロック図、図2は回転体の発生する振動信号の周波数スペクトルを示す波形図、図3は回転体の発生する振動信号から1kHz以下の周波数成分のみを抽出して、その抽出した信号をエンベロープ分析した周波数スペクトルを示す波形図である。
【0013】
この一実施の形態の評価装置1は、回転体3の発生する音又は振動を検知して検知した音又は振動に応じた電気信号を出力する検出手段5と、検出手段5の出力する電気信号を増幅する増幅手段7と、増幅手段7で増幅された電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、1kHz以下の周波数成分のみの電気信号を出力するフィルタ処理手段9と、フィルタ処理手段9の出力する電気信号を所定の波形処理(エンベロープ分析)によって周波数スペクトルデータに変換する波形処理手段11と、回転体3の実際の回転数を検出して出力する回転数検出手段13と、予め回転体3の異常に起因した特定の周波数成分値を基準値として記憶し、前記した周波数スペクトルデータ上での基準値の対応箇所にピークが表出するか否かの比較照合処理によって回転体3の特定部位に対する異常の有無の診断を行う比較判定手段15と、検出データ及び処理状況及び診断結果や予め格納したデータ等を表示するためのCRT等の表示手段17と、処理内容やデータや診断結果をハードコピーとして出力するプリンタ19とを備えた構成である。
【0014】
回転体3は、本実施の形態の場合、鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる低速回転用の転がり軸受である。
この回転体3の回転時に発生する音又は振動の検出は、回転体3を通常の使用状態で装置に組み込んだ状態で回転駆動することによって行う。
この回転体3は、実際の使用時と同様に、例えば、毎分150回転の回転速度で回転させた状態で、発生する音又は振動の検出が行われる。
【0015】
検出手段5としては、振動を電気信号に変換する公知の接触式及び非接触式の各種検出器を使用することができる。振動の検出形式も、加速度式、速度式、変位式等の適宜形式のものの採用が可能である。また、検出手段5は、回転体3自体に直接取り付けたり、あるいは軸受が装着されるハウジング等に取り付けることもできるが、電気的なノイズが多い環境で使用する場合には絶縁型を使用した方が、ノイズの影響を防止する点で、好ましい。
フィルタ処理手段9,波形処理手段11,比較判定手段15等における信号処理は、入力データの演算処理で、コンピュータに所定の演算処理用の適宜プログラムを組み込むことでも構成することができる。
【0016】
増幅手段7から出力された増幅後の信号は、フィルタ処理手段9によるフィルタ処理を受ける前の状態で、波形処理手段11による波形処理(周波数分析)を行うと、図2に示すような周波数スペクトルを示す。図2において、領域Aが1kHz以下の周波数成分域であり、領域Bが共振帯域である。
【0017】
フィルタ処理手段9は、増幅手段7が出力する増幅された電気信号に対して、図2の領域Aの周波数成分のみ抽出して、波形処理手段11に渡す。
波形処理手段11は、受けた信号に対して、エンベロープ分析などの所定の波形処理を施すことで、回転体3の振動状態を示す図3に示す周波数スペクトルデータを得る。
なお、図4は、比較のために示した周波数スペクトルデータで、図2に示した共振帯域Bの信号について、同様にエンベロープ分析などの所定の波形処理を施して得た周波数スペクトルデータである。
【0018】
比較判定手段15には、図示はしていないが、回転体3の設計諸元や、異常の有無の診断に使用する各種のデータ(例えば、回転数情報)等を入力する回路や、入力されたデータを記憶する回路が接続されている。
回転体である軸受は、図5に示すように、設計諸元や使用条件に応じて、特定部位の異常時に発生する周波数成分値が決定される。
比較判定手段15は、図5に示す特定部位の異常時に発生する周波数成分値を基準値として記憶していて、波形処理手段11が求めた周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かの比較照合処理によって回転体3の特定部位に対する異常の有無の診断を行う。
図3及び図4において、破線で示す位置の周波数成分値(周波数値)は、回転体3としての転がり軸受において、外輪固定で、毎分150回転で内輪を回転させた時に、特定部位である外輪の損傷に起因して発生する周波数成分値である。
【0019】
図3に示すように、フィルタ処理手段9によって処理したデータの周波数スペクトルデータは、外輪の損傷に起因して発生する周波数成分値上に波形のピークが良好に重なって、外輪の損傷による異常を明確に示唆する。
従って、容易に、外輪の異常を診断することができる。
しかし、共振帯域の信号を抽出して求めた周波数スペクトルデータでは、図4に示すように、外輪の損傷に起因して発生する周波数成分のピークが顕著ではない。このため、この場合、外輪に異常があっても、異常なしと診断されてしまう。
波形のピークは、他の特定部位の異常によるものとみなされてしまうのである。
【0020】
以上に説明したように、本実施の形態の評価装置1では、低速回転で使用される大型の軸受等の回転体3の異常検出に使用すると、例えば、波形処理手段11が作成するエンベロープ分析による周波数スペクトルデータは、回転体3の常用回転域に合致したデータで、回転体3に摩耗や破損等の異常があれば、その異常に起因した特定の周波数成分がピーク値を取るように、波形処理手段11が出力する周波数スペクトルデータ上に表出する。
【0021】
従って、比較判定手段15が診断した際に、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段11が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、特定部位に対する異常の有無を確実に診断することができ、診断結果について高い信頼性を保証することができる。そして、低速回転で使用される大型の軸受等の回転体3の摩耗や破損等の異常の有無を、回転体3の発生する音を含む振動から周波数分析によって診断できるため、手間のかかる装置の分解等が必要なく、異常診断に要する労力及びコストを削減することが可能になる。
【0022】
なお、本発明の装置で診断する回転体は、低速回転で使用する転がり軸受に限らない。転がり軸受以外でも、低速回転で使用する各種の回転体の異常診断に使用可能なことは、言うまでもない。
また、上記した実施の形態では、回転体の回転により得られる電気信号に対しエンベロープ分析による波形処理を施して、軸受損傷の有無の診断を行うとしたが、このような波形処理に、絶対値検波などの手段を用いて行う絶対値検波処理を適用することもできる。
【0023】
【発明の効果】
本発明の評価装置によれば、回転体が回転装置に組み込まれた状態で、例えばハウジングの剛性が高いなどして、共振帯域に回転体の損傷に起因する振動が伝達されにくい状況に対し、前記回転体の発生する音又は振動を前記回転装置に組み込んだ状態で検出して電気信号として出力し、当該電気信号を1kHz以上の周波数成分をカットするフィルタ処理を実施して、波形処理手段に入力される電気信号を1kHz以下の周波数成分のみに制限するので、低速回転で使用される大型の軸受等の回転体の異常検出に使用すると、例えば、波形処理手段が作成するエンベロープ分析による周波数スペクトルデータは、回転体の常用回転域に合致したデータで、回転体の特定部位に摩耗や破損等の異常があれば、その異常に起因する特定の周波数成分が良好なピーク値を取るように、波形処理手段が出力する周波数スペクトルデータ上に表出する。
【0024】
従って、比較判定手段が診断した際に、異常の有無の判断基準として予め記憶していた周波数成分値に、波形処理手段が抽出した実測の周波数スペクトルデータのピーク箇所が重なるか否かで、特定部位での異常の有無を確実に診断することができ、診断結果について高い信頼性を保証することができる。
そして、低速回転で使用される大型の軸受等の回転体の摩耗や破損等の異常の有無を、回転体の発生する音を含む振動から周波数分析によって診断できるため、例えば鉄鋼用の圧延機や鉄道車両の主電動機等の大型の装置に用いられる軸受の異常診断や定期検査において、手間のかかる装置の分解等が必要なく、異常診断に要する労力及びコストを削減することが可能になる。
【図面の簡単な説明】
【図1】本発明に係る評価装置の一実施の形態の概略構成を示すブロック図である。
【図2】回転体の発生する振動信号の周波数スペクトルを示す波形図である。
【図3】回転体の発生する振動信号から1kHz以下の周波数成分のみを抽出して、その抽出した信号をエンベロープ分析した周波数スペクトルを示す波形図である。
【図4】回転体の発生する振動信号から共振帯域のみの振動信号を抽出して、その抽出した信号をエンベロープ分析した周波数スペクトルを示す波形図である。
【図5】転がり軸受における傷の箇所と、その傷に起因して周波数スペクトル上にピーク値をもたらすエンベロープ処理後の周波数との関係を示す図である。
【符号の説明】
1 評価装置
3 回転体
5 検出手段
7 増幅手段
9 フィルタ処理手段
11 波形処理手段
13 回転数検出手段
15 比較判定手段
[0001]
BACKGROUND OF THE INVENTION
The present invention converts an electrical signal based on sound or vibration generated by a rotating body into frequency spectrum data by predetermined waveform processing, and stores in advance a specific frequency component value resulting from an abnormality of the rotating body as a reference value. In this regard, the present invention relates to an evaluation apparatus and an evaluation method for diagnosing the presence / absence of an abnormality with respect to a specific part of a rotating body based on whether or not a peak appears at a position corresponding to a reference value on the frequency spectrum data described above.
[0002]
[Prior art]
Up to now, for example, in bearings used in large rotating devices (hereinafter also simply referred to as devices) such as steel rolling mills and railway car main motors, the occurrence of inconvenience due to wear and breakage of bearing parts is prevented. Therefore, periodic visual inspections are carried out. In this visual disassembly inspection, the bearings are removed from the equipment after being used for a certain period of time and disassembled, and each bearing component is visually inspected by a trained professional inspector. If abnormalities such as unevenness and wear that are not found in a new bearing are detected, assembly is performed again after replacement with a new bearing.
[0003]
[Problems to be solved by the invention]
However, the above-described overhaul inspection has a problem that a great deal of labor is required for the disassembly work for removing the bearing from the apparatus and the assembling work for reincorporating the inspected bearing into the apparatus, resulting in a significant increase in the maintenance cost of the apparatus. there were.
In addition, there is a risk that the inspection itself may increase parts replacement by making a dent in the bearing parts or the like by mistake during disassembling work or assembling work at the time of inspection.
Furthermore, depending on the level of proficiency of the person in charge of inspection, there is a risk that defects may be overlooked or inadequate, such as implementation of unnecessary parts replacement.
[0004]
Therefore, recently, an evaluation device that is widely used in abnormality diagnosis of small bearings, etc., is applied to the presence or absence of abnormality due to wear or breakage of the bearing used in such a large device, without using the above-described disassembled visual inspection. It was examined.
This evaluation device detects a sound or vibration generated from a bearing and converts an electrical signal output into frequency spectrum data by a predetermined waveform processing, and a specific frequency component value caused by the abnormality of the bearing in advance as a reference value. Is stored, and whether or not there is an abnormality in a specific part of the rotating body is diagnosed based on whether or not a peak appears at a position corresponding to the reference value on the frequency spectrum data.
[0005]
In this type of conventional evaluation device, the frequency spectrum data to be diagnosed is generated regardless of the actual normal rotation speed of the bearing, focusing on the resonance band in the state of being incorporated in the device using the bearing. A vibration signal only in the resonance band is extracted from the vibration signal, and the extracted signal is finished into frequency spectrum data by envelope analysis or the like.
[0006]
If an abnormality diagnosis of a large-sized bearing can be performed with such an evaluation device, the work of disassembling and assembling the bearing becomes unnecessary, and further, it is possible to avoid the inconvenience of accidentally damaging the bearing during the operation of the inspection work. In addition, the reliability of the inspection is not affected by the skill level of the person in charge of inspection, and it is possible to reduce the maintenance cost of the apparatus by eliminating unnecessary parts replacement.
[0007]
However, when the above-described conventional evaluation apparatus is used to diagnose whether there is an abnormality due to wear or breakage on a bearing used in a large apparatus such as the steel rolling mill described above or the main motor of a railway vehicle, FIG. As shown in Fig. 3, the frequency component due to bearing damage does not appear remarkably, and even if there is an abnormality due to defects such as wear or breakage, it may not be regarded as abnormal and may be overlooked. Is thin and lacks practicality.
[0008]
In addition, in the case of a bearing for an axle of a railway vehicle, for example, a wheel shaft test may be periodically inspected while being driven in a low-speed rotation range. However, in the case of a bearing for an axle of a railway vehicle, the rigidity of the housing in which the bearing is incorporated is high. For example, even if the bearing raceway surface is damaged, the rolling element passes over the damage. In the evaluation device for diagnosing the presence or absence of abnormality using the frequency spectrum data in the resonance band described above, the damage to the bearing is overlooked. There was a risk of it.
[0009]
The present invention has been made in view of the above circumstances, and there is no need for disassembling the apparatus and the like with high reliability, whether or not there is an abnormality such as wear or breakage of a rotating body such as a large bearing used at low speed rotation. An object is to provide an evaluation apparatus and an evaluation method capable of making a diagnosis.
[0010]
The object of the present invention is achieved by the following constitution.
(1) detection means for detecting sound or vibration generated by a rotating body incorporated in the rotating device in a state of being incorporated in the rotating device and outputting it as an electrical signal;
Waveform processing means for converting an electrical signal into frequency spectrum data by envelope analysis, and a rotational speed detection means for detecting and outputting the rotational speed of the rotating body,
Is predetermined by the specification output result of the rotating body of the rotation speed detection means, a specific frequency component value caused by abnormal of the rotating body is stored as a reference value, the reference on the frequency spectrum data In an evaluation apparatus comprising comparison determination means for diagnosing the presence or absence of abnormality of the rotating body by whether or not a peak appears at a corresponding position of the value,
The rotating device is a steel rolling mill or railway vehicle having a resonance band greater than 1 kHz; and
Filter processing means for performing a filter process for cutting a frequency component of 1 kHz or more on the electric signal output from the detection means and limiting the electric signal input to the waveform processing means to only a frequency component of 1 kHz or less. An evaluation apparatus provided at a preceding stage of the waveform processing means.
(2) The rotating body is a rolling bearing,
The evaluation device according to (1), wherein the specific frequency component value is a frequency component value corresponding to any of an inner ring, an outer ring, a rolling element, and a cage of the rolling bearing.
( 3 ) a detection process in which sound or vibration generated by a rotating body incorporated in the rotating device is detected as an electrical signal in a state of being incorporated in the rotating device;
Waveform processing process to convert electrical signal into frequency spectrum data by envelope analysis,
A rotational speed detection process for detecting the rotational speed of the rotating body;
Is predetermined by the specifications of the detection result and the rotating body in the rotation speed detection step, wherein the specific frequency component value abnormally due rotating body is stored as a reference value, said on the frequency spectrum data In an evaluation method comprising a comparison determination process for diagnosing the presence or absence of abnormality of the rotating body by whether or not a peak appears at a corresponding position of a reference value,
The rotating device is a steel rolling mill or railway vehicle having a resonance band greater than 1 kHz; and
A filtering process for performing a filter process for cutting a frequency component of 1 kHz or more on the electric signal detected in the detection process, and limiting an electric signal converted in the waveform processing process to a frequency component of 1 kHz or less. Is performed before the waveform processing step.
(4) The rotating body is a rolling bearing,
The evaluation method according to (3), wherein the specific frequency component value is a frequency component value corresponding to any of an inner ring, an outer ring, a rolling element, and a cage of the rolling bearing.
[0011]
According to the above configuration, when used for detecting an abnormality in a rotating body such as a large bearing used at low speed rotation, for example, the frequency spectrum data by the envelope analysis created by the waveform processing means is the normal rotation range of the rotating body. If there is an abnormality such as wear or breakage in a specific part of the rotating body with the data that matches the above, the frequency spectrum data output by the waveform processing means so that the specific frequency component resulting from the abnormality takes a good peak value Expressed above. Therefore, when the comparison determination means diagnoses, the frequency component value stored in advance as a determination criterion for the presence or absence of abnormality is identified by whether or not the peak portion of the actually measured frequency spectrum data extracted by the waveform processing means overlaps. The presence or absence of an abnormality at the site can be reliably diagnosed.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of an evaluation apparatus according to the invention will be described in detail with reference to the accompanying drawings.
1 to 3 show an embodiment of an evaluation apparatus according to the present invention, FIG. 1 is a block diagram showing a schematic configuration of the evaluation apparatus according to an embodiment of the present invention, and FIG. FIG. 3 is a waveform diagram showing a frequency spectrum obtained by extracting only a frequency component of 1 kHz or less from a vibration signal generated by a rotating body and performing an envelope analysis on the extracted signal. .
[0013]
The evaluation apparatus 1 according to the embodiment includes a detection unit 5 that detects a sound or vibration generated by the rotating body 3 and outputs an electric signal corresponding to the detected sound or vibration, and an electric signal output from the detection unit 5 Amplifying means 7 for amplifying the signal, and a filter processing means for performing a filter process for cutting a frequency component of 1 kHz or more on the electric signal amplified by the amplifying means 7 and outputting an electric signal having only a frequency component of 1 kHz or less 9, waveform processing means 11 for converting the electrical signal output from the filter processing means 9 into frequency spectrum data by predetermined waveform processing (envelope analysis), and the number of revolutions detected and output from the actual number of revolutions of the rotating body 3 The detection unit 13 and a specific frequency component value caused by the abnormality of the rotating body 3 are stored in advance as a reference value, and the corresponding position of the reference value on the frequency spectrum data described above is recorded. The comparison / determination means 15 for diagnosing the presence / absence of an abnormality with respect to a specific part of the rotator 3 by comparison / verification processing of whether or not an error occurs is displayed, and detection data, processing status, diagnosis result, prestored data, and the like are displayed. For example, a display unit 17 such as a CRT, and a printer 19 that outputs processing contents, data, and diagnosis results as a hard copy.
[0014]
In the case of this Embodiment, the rotary body 3 is a rolling bearing for low speed rotation used for large apparatuses, such as a rolling mill for steel, and the main motor of a railway vehicle.
Detection of sound or vibration generated when the rotating body 3 rotates is performed by rotationally driving the rotating body 3 in a state where it is incorporated in the apparatus in a normal use state.
As in the actual use, the rotating body 3 is detected, for example, in the state where it is rotated at a rotational speed of 150 revolutions per minute.
[0015]
As the detection means 5, various known contact-type and non-contact-type detectors that convert vibrations into electrical signals can be used. As a vibration detection format, an appropriate format such as an acceleration method, a velocity method, a displacement method, or the like can be adopted. The detecting means 5 can be directly attached to the rotating body 3 itself, or attached to a housing or the like to which a bearing is attached. However, when using in an environment with a lot of electrical noise, an insulating type is used. However, it is preferable in terms of preventing the influence of noise.
The signal processing in the filter processing unit 9, the waveform processing unit 11, the comparison determination unit 15 and the like can be configured by incorporating an appropriate program for predetermined arithmetic processing into the computer by input data arithmetic processing.
[0016]
When the amplified signal output from the amplifying means 7 is subjected to waveform processing (frequency analysis) by the waveform processing means 11 in a state before being subjected to the filter processing by the filter processing means 9, a frequency spectrum as shown in FIG. Indicates. In FIG. 2, region A is a frequency component region of 1 kHz or less, and region B is a resonance band.
[0017]
The filter processing unit 9 extracts only the frequency component in the region A in FIG. 2 from the amplified electrical signal output from the amplification unit 7 and passes it to the waveform processing unit 11.
The waveform processing unit 11 performs predetermined waveform processing such as envelope analysis on the received signal, thereby obtaining frequency spectrum data shown in FIG. 3 showing the vibration state of the rotating body 3.
FIG. 4 is frequency spectrum data shown for comparison, and is frequency spectrum data obtained by similarly performing predetermined waveform processing such as envelope analysis on the signal in the resonance band B shown in FIG.
[0018]
Although not shown, the comparison / determination means 15 is input with a circuit for inputting design data of the rotating body 3 and various data (for example, rotation speed information) used for diagnosis of abnormality. A circuit for storing the data is connected.
As shown in FIG. 5, a bearing that is a rotating body has a frequency component value that is determined when a specific part is abnormal depending on design specifications and use conditions.
The comparison / determination unit 15 stores the frequency component value generated when the specific part shown in FIG. 5 is abnormal as a reference value, and a peak is present at a location corresponding to the reference value on the frequency spectrum data obtained by the waveform processing unit 11. The presence / absence of abnormality of the specific part of the rotating body 3 is diagnosed by the comparison / verification process of whether or not to express.
3 and 4, the frequency component value (frequency value) at the position indicated by the broken line is a specific part when the inner ring is rotated at 150 revolutions per minute with the outer ring fixed in the rolling bearing as the rotating body 3. This is a frequency component value generated due to damage of the outer ring.
[0019]
As shown in FIG. 3, in the frequency spectrum data of the data processed by the filter processing means 9, the waveform peak is satisfactorily overlapped with the frequency component value generated due to the damage of the outer ring, and the abnormality due to the damage of the outer ring is detected. Suggest clearly.
Therefore, the abnormality of the outer ring can be easily diagnosed.
However, in the frequency spectrum data obtained by extracting the signal of the resonance band, as shown in FIG. 4, the peak of the frequency component generated due to the damage of the outer ring is not remarkable. For this reason, in this case, even if there is an abnormality in the outer ring, it is diagnosed that there is no abnormality.
The peak of the waveform is considered to be due to an abnormality in another specific part.
[0020]
As described above, in the evaluation apparatus 1 of the present embodiment, when used for detecting an abnormality in the rotating body 3 such as a large bearing used at low speed rotation, for example, by the envelope analysis created by the waveform processing means 11 The frequency spectrum data is data that matches the normal rotation range of the rotator 3, and if there is an abnormality such as wear or damage in the rotator 3, the waveform is such that a specific frequency component resulting from the abnormality takes a peak value. It is expressed on the frequency spectrum data output from the processing means 11.
[0021]
Therefore, it is determined whether or not the peak portion of the actually measured frequency spectrum data extracted by the waveform processing unit 11 overlaps the frequency component value stored in advance as a determination criterion for the presence or absence of abnormality when the comparison determination unit 15 diagnoses. Thus, it is possible to reliably diagnose the presence or absence of an abnormality with respect to a specific part, and to ensure high reliability of the diagnosis result. Further, since it is possible to diagnose the presence or absence of abnormalities such as wear and breakage of the rotating body 3 such as a large bearing used at low speed rotation by frequency analysis from vibration including sound generated by the rotating body 3, No disassembly or the like is required, and it is possible to reduce labor and cost required for abnormality diagnosis.
[0022]
Note that the rotating body diagnosed by the apparatus of the present invention is not limited to the rolling bearing used at low speed. Needless to say, other than rolling bearings, it can be used for abnormality diagnosis of various rotating bodies used at low speed.
In the above-described embodiment, the waveform processing by the envelope analysis is performed on the electrical signal obtained by the rotation of the rotating body to diagnose the presence or absence of bearing damage. An absolute value detection process performed using a means such as detection can also be applied.
[0023]
【The invention's effect】
According to the evaluation apparatus of the present invention, in a state where the rotating body is incorporated in the rotating apparatus, for example, the rigidity of the housing is high, and the vibration caused by the damage to the rotating body is hardly transmitted to the resonance band. The sound or vibration generated by the rotating body is detected in a state where it is incorporated in the rotating device and output as an electric signal. The electric signal is subjected to filter processing for cutting a frequency component of 1 kHz or more, and the waveform processing means. Since the input electric signal is limited to only frequency components of 1 kHz or less , when used for detecting abnormalities in a rotating body such as a large bearing used at low speed rotation, for example, a frequency spectrum by envelope analysis created by waveform processing means The data is data that matches the normal rotation range of the rotating body, and if there is an abnormality such as wear or damage at a specific part of the rotating body, the specific frequency caused by the abnormality Min to take good peak value will be exposed on the frequency spectrum data output by the waveform processing means.
[0024]
Therefore, when the comparison determination means diagnoses, the frequency component value stored in advance as a determination criterion for the presence or absence of abnormality is identified by whether or not the peak portion of the actually measured frequency spectrum data extracted by the waveform processing means overlaps. It is possible to reliably diagnose the presence or absence of an abnormality at the site, and to ensure high reliability of the diagnosis result.
And since it is possible to diagnose the presence or absence of abnormalities such as wear and breakage of a rotating body such as a large bearing used at low speed rotation by frequency analysis from vibration including sound generated by the rotating body, for example, a rolling mill for steel In trouble diagnosis and periodic inspection of bearings used in large-sized devices such as a main motor of a railway vehicle, it is not necessary to disassemble the troublesome device, and it is possible to reduce labor and cost required for trouble diagnosis.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a schematic configuration of an embodiment of an evaluation apparatus according to the present invention.
FIG. 2 is a waveform diagram showing a frequency spectrum of a vibration signal generated by a rotating body.
FIG. 3 is a waveform diagram showing a frequency spectrum obtained by extracting only a frequency component of 1 kHz or less from a vibration signal generated by a rotating body and performing envelope analysis on the extracted signal.
FIG. 4 is a waveform diagram showing a frequency spectrum obtained by extracting a vibration signal only in a resonance band from a vibration signal generated by a rotating body and performing envelope analysis on the extracted signal.
FIG. 5 is a diagram showing a relationship between a flawed portion in a rolling bearing and a frequency after envelope processing that causes a peak value on a frequency spectrum due to the flaw.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Evaluation apparatus 3 Rotating body 5 Detection means 7 Amplification means 9 Filter processing means 11 Waveform processing means 13 Rotation speed detection means 15 Comparison determination means

Claims (4)

回転装置に組み込まれる回転体の発生する音又は振動を当該回転装置に組み込んだ状態で検出して電気信号として出力する検出手段と、
電気信号をエンベロープ分析によって周波数スペクトルデータに変換する波形処理手段と、
前記回転体の回転数を検出して出力する回転数検出手段と、
当該回転数検出手段の出力結果と前記回転体の諸元とによって予め決定される、前記回転体の異常に起因した特定の周波数成分値を基準値として記憶し、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記回転体の異常の有無の診断を行う比較判定手段とを備える評価装置において、
前記回転装置は、共振帯域が1kHzより大きい、鉄鋼用の圧延機または鉄道車両であり、且つ、
前記検出手段の出力する電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、前記波形処理手段に入力される電気信号を1kHz以下の周波数成分のみに制限して出力するフィルタ処理手段を、前記波形処理手段の前段に設けたことを特徴とする評価装置。
Detecting means for detecting sound or vibration generated by a rotating body incorporated in the rotating device in a state of being incorporated in the rotating device and outputting as an electric signal;
Waveform processing means for converting an electrical signal into frequency spectrum data by envelope analysis;
A rotational speed detection means for detecting and outputting the rotational speed of the rotating body;
Is predetermined by the specification output result of the rotating body of the rotation speed detection means, a specific frequency component value caused by abnormal of the rotating body is stored as a reference value, the reference on the frequency spectrum data in the evaluation device comprising a comparison and determination means depending on whether a peak in the corresponding position values are exposed to diagnose the presence or absence of abnormality of the rotating body, and
The rotating device is a steel rolling mill or railway vehicle having a resonance band greater than 1 kHz; and
A filter that cuts a frequency component of 1 kHz or more with respect to the electrical signal output from the detection means, and that restricts the electrical signal input to the waveform processing means to only a frequency component of 1 kHz or less and outputs it. An evaluation apparatus characterized in that a processing means is provided in a stage preceding said waveform processing means.
前記回転体は転がり軸受であり、The rotating body is a rolling bearing;
前記特定の周波数成分値は、前記転がり軸受の内輪、外輪、転動体または保持器のいずれかに対応する周波数成分値であることを特徴とする請求項1に記載の評価装置。  The evaluation device according to claim 1, wherein the specific frequency component value is a frequency component value corresponding to any of an inner ring, an outer ring, a rolling element, and a cage of the rolling bearing.
回転装置に組み込まれる回転体の発生する音又は振動を当該回転装置に組み込んだ状態で電気信号として検出する検出過程と、
電気信号をエンベロープ分析によって周波数スペクトルデータに変換する波形処理過程と、
前記回転体の回転数を検出する回転数検出過程と、
当該回転数検出過程での検出結果と前記回転体の諸元とによって予め決定される、前記回転体の異常に起因した特定の周波数成分値を基準値として記憶し、前記周波数スペクトルデータ上の前記基準値の対応箇所にピークが表出するか否かで前記回転体の異常の有無の診断を行う比較判定過程と、を備える評価方法において、
前記回転装置は、共振帯域が1kHzより大きい、鉄鋼用の圧延機または鉄道車両であり、且つ、
前記検出過程で検出された電気信号に対して1kHz以上の周波数成分をカットするフィルタ処理を実施して、前記波形処理過程で変換される電気信号を1kHz以下の周波数成分のみに制限するフィルタ処理過程を、前記波形処理過程の前に実施することを特徴とする評価方法。
A detection process for detecting sound or vibration generated by a rotating body incorporated in the rotating device as an electrical signal in a state incorporated in the rotating device;
Waveform processing process to convert electrical signal into frequency spectrum data by envelope analysis,
A rotational speed detection process for detecting the rotational speed of the rotating body;
Is predetermined by the specifications of the detection result and the rotating body in the rotation speed detection step, wherein the specific frequency component value abnormally due rotating body is stored as a reference value, said on the frequency spectrum data In an evaluation method comprising a comparison determination process for diagnosing the presence or absence of abnormality of the rotating body by whether or not a peak appears at a corresponding position of a reference value,
The rotating device is a steel rolling mill or railway vehicle having a resonance band greater than 1 kHz; and
A filtering process for performing a filter process for cutting a frequency component of 1 kHz or more on the electric signal detected in the detection process, and limiting an electric signal converted in the waveform processing process to a frequency component of 1 kHz or less. Is performed before the waveform processing step.
前記回転体は転がり軸受であり、The rotating body is a rolling bearing;
前記特定の周波数成分値は、前記転がり軸受の内輪、外輪、転動体または保持器のいずれかに対応する周波数成分値であることを特徴とする請求項3に記載の評価方法。  The evaluation method according to claim 3, wherein the specific frequency component value is a frequency component value corresponding to any of an inner ring, an outer ring, a rolling element, and a cage of the rolling bearing.
JP2001384601A 2001-12-18 2001-12-18 Evaluation apparatus and evaluation method Expired - Lifetime JP3876976B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001384601A JP3876976B2 (en) 2001-12-18 2001-12-18 Evaluation apparatus and evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001384601A JP3876976B2 (en) 2001-12-18 2001-12-18 Evaluation apparatus and evaluation method

Publications (2)

Publication Number Publication Date
JP2003185535A JP2003185535A (en) 2003-07-03
JP3876976B2 true JP3876976B2 (en) 2007-02-07

Family

ID=27594292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001384601A Expired - Lifetime JP3876976B2 (en) 2001-12-18 2001-12-18 Evaluation apparatus and evaluation method

Country Status (1)

Country Link
JP (1) JP3876976B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637964A (en) * 2020-05-12 2020-09-08 西南交通大学 Rail corrugation identification method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529602B2 (en) * 2004-09-13 2010-08-25 日本精工株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method
JP5309772B2 (en) * 2008-08-01 2013-10-09 日本精工株式会社 Electric motor inspection method
JP2016061752A (en) * 2014-09-22 2016-04-25 日本精工株式会社 Determination diagnostic device
CN111879517B (en) * 2020-08-31 2022-02-22 合肥工业大学 Device and method for detecting bearing abrasion in canned motor pump
CN113124998B (en) * 2021-03-26 2022-09-20 中铁二院工程集团有限责任公司 Rail rigidity time-frequency measurement method based on P2 force vibration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58108419A (en) * 1981-12-23 1983-06-28 Toshiba Corp Abnormality inspection apparatus
JPS62180226A (en) * 1986-02-04 1987-08-07 Yamuko Kk Acceleration pickup
JPH01152335A (en) * 1987-12-09 1989-06-14 Fuji Electric Co Ltd Abnormality diagnostic apparatus for roller bearing
JPH01172621A (en) * 1987-12-26 1989-07-07 Tosoh Corp Detection of anomaly of roller bearing
JPH09113416A (en) * 1995-10-17 1997-05-02 Nippon Steel Corp Method for diagnosing damage of rolling bearing
JP3264480B2 (en) * 1996-11-28 2002-03-11 川崎製鉄株式会社 Abnormality diagnosis method for wheels with built-in bearings and low-speed rotating bearings
JPH10221161A (en) * 1997-02-10 1998-08-21 Nippon Densan Corp Method and apparatus for inspecting vibration
ES2287973T3 (en) * 1998-03-16 2007-12-16 Central Japan Railway Company DEVICE FOR INSPECTION OF MAIN MOTOR BEARINGS OF ROLLING MATERIAL.
JP3392350B2 (en) * 1998-03-25 2003-03-31 川崎製鉄株式会社 Abnormality diagnosis method for wheels with built-in bearings and low-speed rotating bearings
JP4120099B2 (en) * 1999-07-09 2008-07-16 日本精工株式会社 Bearing abnormality diagnosis method and abnormality diagnosis device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111637964A (en) * 2020-05-12 2020-09-08 西南交通大学 Rail corrugation identification method
CN111637964B (en) * 2020-05-12 2021-10-26 西南交通大学 Rail corrugation identification method

Also Published As

Publication number Publication date
JP2003185535A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
TWI474023B (en) Diagnosis method for diagnosing fault in operation of a motor fault and diagnosis device using the same
JP4117500B2 (en) Abnormality diagnosis device, rolling bearing device having the same, and abnormality diagnosis method
JP4120099B2 (en) Bearing abnormality diagnosis method and abnormality diagnosis device
JP2001304954A (en) Fault diagnosis method and device
JP3944744B2 (en) Abnormality diagnosis device and rolling bearing device having the same
JP6508017B2 (en) Evaluation method of machinery and equipment
WO2008117765A1 (en) Abnormality diagnostic method and device of extremely low speed rotary machine
JP2006077938A (en) Abnormality diagnosing device
WO1999047904A1 (en) Devices for inspecting bearings of main motors of rolling stock
JP3876976B2 (en) Evaluation apparatus and evaluation method
JP2003232674A (en) Abnormality diagnosing method and abnormality diagnosing device of machine equipment or apparatus
JP2010234403A (en) Device and method for diagnosing abnormality of rotary shaft of rolling mill
JP3829924B2 (en) Evaluation device
JP4997936B2 (en) Rolling bearing abnormality diagnosis device and vehicle
JPH0588774B2 (en)
JP2019158514A (en) Inspection device of bearing for passenger conveyor, and inspection method of bearing for passenger conveyor
JP6897064B2 (en) Bearing abnormality diagnosis method and diagnosis system
JP2004093357A (en) Evaluation method and evaluation device
JP2695366B2 (en) Abnormality diagnosis method for low-speed rotating machinery
JP2003344150A (en) Condition diagnosing method and apparatus therefor by analyzing shaft vibration of rotating machine
JP3087470B2 (en) Abnormal diagnostic device for rotating equipment
JP3468318B2 (en) Escalator diagnostic system
JPH02205728A (en) Apparatus and method for diagnosing abnormality in sliding motion part
JP7077426B2 (en) Diagnostic device and equipment equipped with it and diagnostic method
JPS6135410B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041220

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060712

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061024

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3876976

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

EXPY Cancellation because of completion of term