JP3876521B2 - Ultraviolet shielding fine powder composition and use thereof - Google Patents

Ultraviolet shielding fine powder composition and use thereof Download PDF

Info

Publication number
JP3876521B2
JP3876521B2 JP08015198A JP8015198A JP3876521B2 JP 3876521 B2 JP3876521 B2 JP 3876521B2 JP 08015198 A JP08015198 A JP 08015198A JP 8015198 A JP8015198 A JP 8015198A JP 3876521 B2 JP3876521 B2 JP 3876521B2
Authority
JP
Japan
Prior art keywords
fine powder
powder composition
fine particles
oxide
flaky
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08015198A
Other languages
Japanese (ja)
Other versions
JPH11236515A (en
Inventor
武 藤田
宗武 佐藤
智宏 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakai Chemical Industry Co Ltd
Original Assignee
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakai Chemical Industry Co Ltd filed Critical Sakai Chemical Industry Co Ltd
Priority to JP08015198A priority Critical patent/JP3876521B2/en
Publication of JPH11236515A publication Critical patent/JPH11236515A/en
Application granted granted Critical
Publication of JP3876521B2 publication Critical patent/JP3876521B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、紫外線遮蔽性微粉体組成物に関し、詳しくは、合成層状ポリケイ酸又はその塩の表面に無機酸化物微粒子を付着させ、複合化してなる紫外線遮蔽性微粉体組成物とその用途、特に、化粧料及び塗料に関する。
【0002】
【従来の技術】
従来、化粧料には、着色の目的のほか、紫外線遮蔽を目的として、酸化チタン、酸化亜鉛、酸化ジルコニウム等、種々の無機酸化物微粒子が配合されている。しかし、従来、このように無機酸化物微粒子を配合した化粧料は、その無機微粒子の有する特性、特に、表面の物理的、化学的性状のほか、粒子径や形状等にも起因して、種々の問題を有している。例えば、酸化チタン微粒子を紫外線散乱剤として配合する場合、酸化チタン微粒子自体が一次粒子の凝集体であるので、例えば、パウダー状の化粧料中に均一に分散させることが困難であり、従って、その紫外線遮蔽効果を有効に発揮させることができない。他方、酸化亜鉛微粒子は、一般に、伸展性がよくなく、これを配合した化粧料も、伸展性が低下し、肌の上での伸びが悪い。
【0003】
そこで、このような問題を解決するために、従来、薄片状の微粉基体にそのような無機酸化物微粒子を付着乃至担持させてなる紫外線遮蔽性微粉体組成物が種々提案されている。例えば、劈開セリサイトのような薄片状微粉基体と紫外線散乱剤である酸化チタン微粒子を乾式混合し、粉砕して、上記薄片状微粉基体に酸化チタン微粒子を吸着させてなる粉体化粧料が特開平6−9337号公報に記載されている。
【0004】
他方、雲母、タルク、シリカ等からなる薄片状の微粉基体に酸化チタンを湿式法にて担持させてなる微粉体組成物が特開平9−132514号公報に記載されている。同様に、雲母等の薄片状の微粉基体と酸化亜鉛微粒子とを湿式処理し、微粉基体を酸化亜鉛微粒子で被覆してなる微粉体組成物からなる脂肪酸固化性微粉体も、特開平9−227792号公報に記載されている。
【0005】
しかしながら、従来より知られている上述したような微粉体組成物、特に、酸化チタンや酸化亜鉛の微粒子を紫外線散乱剤として微粉基体に付着させてなる微粉体組成物によれば、実用的な紫外線遮蔽効果を得るには、多量の酸化チタンや酸化亜鉛の微粒子を基体に付着させる必要があるが、そのように多量の無機酸化物微粒子を微粉体基体に均一に付着させることは容易ではない。かくして、従来、多量の無機酸化物微粒子を微粉基体に付着させた微粉体組成物は、例えば、化粧料への分散性に劣る問題があり、更に、化粧料に配合した場合、透明性や伸展性が十分ではない問題がある。
【0006】
【発明が解決しようとする課題】
本発明は、従来の紫外線遮蔽性微粉体組成物における上述したような問題を解決するためになされたものであって、薄片状微粉基体に無機微粒子が均一に付着しており、紫外線遮蔽効果にすぐれると共に、化粧料や塗料への分散性にもすぐれる紫外線遮蔽性微粉体組成物を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明による紫外線遮蔽性微粉体組成物は、合成層状ポリケイ酸又はその塩からなる薄片状微粉基体の表面に無機酸化物微粒子を付着させてなることを特徴とする。
【0008】
本発明による紫外線遮蔽性微粉体組成物においては、好ましくは、上記合成層状ポリケイ酸又はその塩からなる薄片状微粉基体は、一辺が1〜10μmの範囲にある四角形状を有する薄片であり、その表面に0.01〜0.5μmの範囲の粒子径を有する無機酸化物微粒子が1〜30重量%の割合で付着されてなるものである。
【0009】
【発明の実施の形態】
本発明による紫外線遮蔽性微粉体組成物は、合成層状ポリケイ酸又はその塩からなる薄片状微粉基体の表面に無機酸化物微粒子を付着させてなる。合成層状ポリケイ酸塩は、「ゼオライト」第13巻第3号第89〜96頁(1996年)に記載されているように、層格子がSiO四面体のみからなり、代表例として、アイラアイトが知られている。
【0010】
アイラアイトの合成方法は、例えば、特開平9−227116号公報に記載されている。例えば、水ガラスを水熱反応に付すことによって、ナトリウム型アイラアイト(層状ポリケイ酸塩)を得をことができ、これを塩酸で処理すれば、水素(H)型アイラアイト(層状ポリケイ酸)を得ることができる。
【0011】
本発明によれば、このように、微粉基体として、合成層状ポリケイ酸又はその塩を用いる。ここに、塩としては、ナトリウム塩のほか、カルシウム塩やマグネシウム塩を例示することができる。しかし、本発明によれば、紫外線遮蔽性微粉体組成物を化粧料に配合する場合には、微粉基体としては、H型アイラアイトを用いることが好ましい。
【0012】
本発明によれば、合成層状ポリケイ酸又はその塩からなる薄片状微粉基体は、一辺が1〜10μmの範囲にある四角形状を有する薄片であるのが好ましい。厚みは、通常、0.005〜0.1μmの範囲である。本発明によれば、微粉基体として、このように、合成層状ポリケイ酸又はその塩は、合成品である故に、純度、大きさ等の揃ったものを用いることができ、かくして、微粉基体に単層に、しかも、均一に付着させることができる。
【0013】
本発明において、無機酸化物微粒子としては、紫外線を散乱し、又は吸収する等によって、紫外線を遮蔽する性質を有するものであれば、特に、限定されるものではないが、好ましくは、酸化亜鉛、酸化チタン、酸化第二鉄、酸化セリウム、二酸化ケイ素、酸化ジルコニウム、酸化タングステン及び酸化スズから選ばれる少なくとも1種が用いられる。これらのなかでは、特に、酸化亜鉛又は酸化チタンの微粒子が好ましく用いられる。本発明においては、これら無機酸化物微粒子は、通常、0.01〜0.5μmの範囲の粒子径を有しており、好ましくは、0.01〜0.2μmの範囲の粒子径を有する。
【0014】
本発明によれば、薄片状微粉基体への上記無機酸化物微粒子の付着量は、1〜30重量%の範囲であり、好ましくは、3〜20重量%の範囲であり、特に好ましくは、5〜15重量%の範囲である。
【0015】
本発明による紫外線遮蔽性微粉体組成物は、薄片状微粉基体と無機微粒子とを強力な攪拌装置を用いて混合攪拌することによって得ることができるが、好ましくは、薄片状微粉基体と無機微粒子との混合物に瞬間的に同時に大きい圧縮力と剪断力を繰り返して与える所謂機械的複合化処理することによって得ることができる。このような機械的複合化処理自体は、例えば、特開平9−59015号公報に記載されているように、既に知られており、一般に、粒子複合化装置として知られている装置を用いることによって行なうことができる。そのような装置として、例えば、メカノフュージョンシステム(ホソカワミクロン株式会社製)、シータ・コンポーザ(株式会社徳寿工作所製)等を挙げることができる。
【0016】
必要ならば、透明性を改善することを目的として、得られた微粉体組成物を空気のような酸化性雰囲気中、300〜600℃、好ましくは、300〜500℃以下の温度で焼成してもよい。
【0017】
本発明による微粉体組成物は、以上のように、合成層状ポリケイ酸又はその塩からなる薄片状微粉基体と無機酸化物微粒子との混合物に瞬間的に同時に大きい圧縮力と剪断力を繰り返して与える所謂機械的複合化処理することによって、基体の表面に実質的に単層に且つ均一に無機酸化物微粒子を付着させてなるものであり、従って、薄片状微粉基体に対して、多量の無機微粒子を配合せずとも、高い紫外線遮蔽効果を有する。
【0018】
しかも、本発明による紫外線遮蔽性微粉体組成物は、粉体組成物における分散性にすぐれるのみならず、伸展性、透明性にもすぐれるので、化粧料における紫外線遮蔽剤として有用である。
【0019】
かくして、本発明による微粉体組成物を通常の化粧料に配合することによって、紫外線遮蔽性にすぐれる化粧料を得ることができる。本発明による微粉体組成物は、粉体組成物におけるすぐれた分散性を利用して、粉末状化粧料に有利に配合することができるが、しかし、ケーキ状、ペンシル状、スティック状、液状、乳液状、クリーム状等、任意の形態の化粧料に配合してもよい。
【0020】
また、本発明による紫外線遮蔽性微粉体組成物は、水性、油性いずれの塗料においても、分散性と安定性にすぐれており、従って、紫外線遮蔽性塗料における紫外線遮蔽剤として有用であり、本発明による微粉体組成物を配合した塗料は、紫外線遮蔽効果を有するものとして有用である。
【0021】
【発明の効果】
以上のように、本発明による紫外線遮蔽性微粉体組成物は、合成層状ポリケイ酸又はその塩からなる薄片状微粉基体に酸化チタンや酸化亜鉛等の無機酸化物微粒子を単層に均一に付着させ、複合化してなり、紫外線遮蔽効果にすぐれるのみならず、分散性、伸展性、透明性にもすぐれ、化粧料や塗料における紫外線遮蔽剤として有用である。
【0022】
【実施例】
以下に実施例を挙げて本発明を説明するが、本発明はこれら実施例により何ら限定されるものではない。
【0023】
参考例1
SiOが23.3重量%、NaOが6.2重量%(NaOH/SiOモル比=0.51/1.0)からなる水ガラス(4号ケイ酸ナトリウム)700gを1L容量オートクレーブ中、107℃の水熱条件下に280時間処理した。反応終了後、濾別し、固相を分離し、水洗し、80℃で一昼夜乾燥させて、ナトリウム型アイラアイト(層状ポリケイ酸塩)を得た。得られた反応生成物がナトリウム型アイラアイト(層状ポリケイ酸塩)であることは、X線回折パターンにて確認した。
【0024】
このナトリウム型アイラアイトを塩酸処理して、ナトリウムが0.3%以下であるH型アイラアイト(層状ポリケイ酸)を得た。このH型アイラアイトを試料1とし、図1に透過型電子顕微鏡写真を示し、図2にそのX線回折パターンを示す。
【0025】
実施例1
参考例1で得られたH型アイラアイト(平均で縦3μm、横3.5μm、厚み0.05μm)94重量部と平均粒子径0.02μmの酸化亜鉛微粒子(堺化学工業株式会社製FINEX−50)6重量部とをシータ・コンポーザ(株式会社徳寿工作所製)に仕込み、乾式混合して、H型アイラアイトの表面に酸化亜鉛微粒子を付着させ、複合化してなる酸化亜鉛付着量6重量%の微粉体組成物を得た。この微粉体組成物を試料2とし、その走査型電子顕微鏡写真を図3に示す。
【0026】
また、上記微粉体組成物を空気中、500℃で2時間、焼成した。これを試料4とする。
【0027】
実施例2
実施例1において、酸化亜鉛付着量を8重量%とした以外は、同様にして、微粉体組成物を得た。これを試料3とし、その走査型電子顕微鏡写真を図4に示す。これを空気中、500℃で2時間、焼成したものを試料5とする。
【0028】
以上の試料2〜5のそれぞれ0.60重量部と白色ワセリン(小堺製薬株式会社製)2.40重量部とを樹脂板上で木へらを用いて混練してペーストを調製した。このペーストを2枚の石英ガラスの間に厚み28μmとなるように挟み、日本分光株式会社製V−550型分光光度計で光透過率を測定した。また、実施例1及び2において、微粉体組成物を調製するために用いた酸化亜鉛微粒子自体を試料6とし、その0.05重量部と白色ワセリン2.95重量部とを同様に混練し、ペーストとして、光透過率を測定した。結果を図5及び図6に示す。
【0029】
酸化亜鉛微粒子を8重量%配合した微粉体組成物、試料3は、ペースト中の酸化亜鉛濃度は、試料6(酸化亜鉛微粒子のみ)と同じであるが、中紫外線(290〜320nm、B領域)と近紫外線(320〜400nm、A領域)領域において、試料6よりも、紫外線遮蔽効果が高く、ペースト中における酸化亜鉛微粒子が分散性にすぐれることが示される。しかも、可視光領域(400〜800nm)においては、試料3は、試料6よりも、光透過率が高く、透明性にすぐれることが示される。試料の焼成品である試料5についても、同様である。
【0030】
試料2の微粉体組成物中の酸化亜鉛微粒子量は6重量%であり、紫外線領域における光透過率は、試料6とほぼ同等であるが、試料6よりも可視光領域における透明性が高い。
【0031】
また、焼成品は、焼成前に比べて、可視光領域での光透過率が改善されており、透明性がより高いことが示される。
【0032】
実施例3
参考例1で得られたH型アイラアイト(平均で縦3μm、横3.5μm、厚み0.05μm)90重量部と平均粒子径0.03μmの酸化チタン微粒子(堺化学工業株式会社製STR−40A)10重量部とをシータ・コンポーザ(株式会社徳寿工作所製)に仕込み、乾式混合して、H型アイラアイトの表面に酸化チタン微粒子を付着させ、複合化してなる酸化チタン付着量10重量%の微粉体組成物を得た。この微粉体組成物を試料7とし、その走査型電子顕微鏡写真を図7に示す。
【0033】
試料7の0.60重量部と白色ワセリン(小堺製薬株式会社製)2.40重量部とを樹脂板上で木へらを用いて混練してペーストを調製した。このペーストを2枚の石英ガラスの間に厚み28μmとなるように挟み、日本分光株式会社製V−550型分光光度計で光透過率を測定した。また、微粉体組成物を調製するために用いた酸化チタン微粒子自体を試料8とし、その0.06重量部と白色ワセリン2.94重量部とを同様に混練し、ペーストとして、光透過率を測定した。結果を図8に示す。
【0034】
酸化チタン微粒子を10重量%配合した微粉体組成物、試料7は、ペースト中の酸化チタン濃度は、試料8(酸化チタン微粒子のみ)と同じであるが、紫外領域において、試料8よりも、紫外線遮蔽効果が高く、ペースト中における酸化チタン微粒子が分散性にすぐれることが示される。しかも、可視光領域(400〜800nm)においては、試料7は、試料8よりも、光透過率が高く、透明性にすぐれることが示される。
【図面の簡単な説明】
【図1】は、本発明による微粉体組成物の調製に用いたH型アイラアイト(合成層状ポリケイ酸)の透過型電子顕微鏡写真(倍率10000倍)である。
【図2】は、本発明による微粉体組成物の調製に用いたH型アイラアイト(合成層状ポリケイ酸)のX線回折パターンである。
【図3】は、酸化亜鉛微粒子をH型アイラアイトに付着させた本発明による微粉体組成物(酸化亜鉛微粒子6重量%)の一例の走査型電子顕微鏡写真(倍率20000倍)である。
【図4】は、酸化亜鉛微粒子をH型アイラアイトに付着させた本発明による微粉体組成物(酸化亜鉛微粒子8重量%)の一例の走査型電子顕微鏡写真(倍率20000倍)である。
【図5】は、本発明による微粉体組成物(酸化亜鉛微粒子6重量%)及びその焼成品の紫外及び可視光領域の光透過率を酸化亜鉛微粒子の光透過率と共に示すグラフである。
【図6】は、本発明による微粉体組成物(酸化亜鉛微粒子8重量%)及びその焼成品の紫外及び可視光領域の光透過率を酸化亜鉛微粒子の光透過率と共に示すグラフである。
【図7】は、酸化チタン微粒子をH型アイラアイトに付着させた本発明による微粉体組成物(酸化チタン微粒子10重量%)の一例の走査型電子顕微鏡写真(倍率20000倍)である。
【図8】は、本発明による微粉体組成物(酸化チタン微粒子10重量%)の紫外及び可視光領域の光透過率を酸化チタン微粒子の光透過率と共に示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultraviolet shielding fine powder composition, and more specifically, an ultraviolet shielding fine powder composition obtained by adhering inorganic oxide fine particles to the surface of a synthetic layered polysilicic acid or a salt thereof and combining them, and its use, in particular. , Cosmetics and paints.
[0002]
[Prior art]
Conventionally, various inorganic oxide fine particles such as titanium oxide, zinc oxide and zirconium oxide are blended in cosmetics for the purpose of shielding ultraviolet rays in addition to the purpose of coloring. However, conventionally, cosmetics containing inorganic oxide fine particles in this manner are various due to the characteristics of the inorganic fine particles, particularly the physical and chemical properties of the surface, as well as the particle diameter and shape. Have problems. For example, when titanium oxide fine particles are blended as an ultraviolet scattering agent, since the titanium oxide fine particles themselves are aggregates of primary particles, for example, it is difficult to uniformly disperse them in a powdery cosmetic. The ultraviolet shielding effect cannot be exhibited effectively. On the other hand, zinc oxide fine particles generally do not have good extensibility, and cosmetics containing the fine zinc oxide have low extensibility and poor elongation on the skin.
[0003]
In order to solve such problems, various ultraviolet shielding fine powder compositions in which such inorganic oxide fine particles are adhered or supported on a flaky fine powder substrate have been proposed. For example, a powder cosmetic comprising a flaky fine powder substrate such as cleaved sericite and titanium oxide fine particles, which are ultraviolet scattering agents, is dry-mixed and pulverized to adsorb the titanium oxide fine particles to the flaky fine powder substrate. It is described in Kaihei 6-9337.
[0004]
On the other hand, Japanese Patent Application Laid-Open No. 9-132514 discloses a fine powder composition in which titanium oxide is supported on a flaky fine powder base composed of mica, talc, silica and the like by a wet method. Similarly, a fatty acid-solidifying fine powder comprising a fine powder composition obtained by wet-treating a flaky fine powder substrate such as mica and zinc oxide fine particles and coating the fine powder substrate with zinc oxide fine particles is also disclosed in JP-A-9-227792. It is described in the gazette.
[0005]
However, the above-mentioned fine powder composition as described above, in particular, a fine powder composition in which fine particles of titanium oxide or zinc oxide are adhered to a fine powder substrate as an ultraviolet scattering agent, can be used for practical ultraviolet radiation. In order to obtain a shielding effect, it is necessary to attach a large amount of fine particles of titanium oxide or zinc oxide to the substrate. However, it is not easy to uniformly attach a large amount of inorganic oxide fine particles to the fine powder substrate. Thus, conventionally, a fine powder composition in which a large amount of inorganic oxide fine particles are adhered to a fine powder substrate has, for example, a problem inferior in dispersibility in cosmetics. There is a problem that sex is not enough.
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems in the conventional ultraviolet shielding fine powder composition, and the inorganic fine particles are uniformly attached to the flaky fine powder substrate, and the ultraviolet shielding effect is thus improved. An object of the present invention is to provide an ultraviolet shielding fine powder composition having excellent dispersibility in cosmetics and paints.
[0007]
[Means for Solving the Problems]
The ultraviolet shielding fine powder composition according to the present invention is characterized in that inorganic oxide fine particles are adhered to the surface of a flaky fine powder substrate made of synthetic layered polysilicic acid or a salt thereof.
[0008]
In the ultraviolet shielding fine powder composition according to the present invention, preferably, the flaky fine powder substrate made of the synthetic layered polysilicic acid or a salt thereof is a thin piece having a quadrangular shape with one side in a range of 1 to 10 μm, Inorganic oxide fine particles having a particle diameter in the range of 0.01 to 0.5 μm are adhered to the surface in a proportion of 1 to 30% by weight.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The ultraviolet shielding fine powder composition according to the present invention comprises inorganic oxide fine particles adhered to the surface of a flaky fine powder base composed of synthetic layered polysilicic acid or a salt thereof. As described in “Zeolite” Vol. 13, No. 3, pp. 89-96 (1996), the synthetic layered polysilicate is composed of only a SiO 4 tetrahedron. Are known.
[0010]
A method for synthesizing Iraite is described, for example, in JP-A-9-227116. For example, by applying water glass to a hydrothermal reaction, it is possible to obtain a sodium type Iraite (layered polysilicate), and if this is treated with hydrochloric acid, a hydrogen (H) type Iraite (layered polysilicate) is obtained. be able to.
[0011]
According to the present invention, synthetic layered polysilicic acid or a salt thereof is thus used as the fine powder base. Examples of the salt include a calcium salt and a magnesium salt in addition to a sodium salt. However, according to the present invention, when the ultraviolet shielding fine powder composition is blended in cosmetics, it is preferable to use H-type eyesight as the fine powder base.
[0012]
According to the present invention, the flaky fine powder substrate made of synthetic layered polysilicic acid or a salt thereof is preferably a flaky piece having a square shape with one side in the range of 1 to 10 μm. The thickness is usually in the range of 0.005 to 0.1 μm. According to the present invention, since the synthetic layered polysilicic acid or a salt thereof is a synthetic product as described above, it is possible to use those having a uniform purity, size, etc. It can be deposited uniformly on the layer.
[0013]
In the present invention, the inorganic oxide fine particles are not particularly limited as long as they have a property of shielding ultraviolet rays by scattering or absorbing ultraviolet rays, but preferably zinc oxide, At least one selected from titanium oxide, ferric oxide, cerium oxide, silicon dioxide, zirconium oxide, tungsten oxide and tin oxide is used. Of these, fine particles of zinc oxide or titanium oxide are particularly preferably used. In the present invention, these inorganic oxide fine particles usually have a particle size in the range of 0.01 to 0.5 μm, and preferably have a particle size in the range of 0.01 to 0.2 μm.
[0014]
According to the present invention, the amount of the inorganic oxide fine particles attached to the flaky fine powder substrate is in the range of 1 to 30% by weight, preferably in the range of 3 to 20% by weight, and particularly preferably 5%. It is in the range of ˜15% by weight.
[0015]
The ultraviolet shielding fine powder composition according to the present invention can be obtained by mixing and stirring the flaky fine powder substrate and the inorganic fine particles using a powerful stirring device, but preferably the flaky fine powder substrate and the inorganic fine particles. It can be obtained by a so-called mechanical compounding treatment in which a large compression force and shearing force are repeatedly and instantaneously simultaneously applied to the mixture. Such a mechanical complexing process itself is already known, for example, as described in JP-A-9-59015, and generally by using an apparatus known as a particle complexing apparatus. Can be done. As such an apparatus, for example, a mechano-fusion system (manufactured by Hosokawa Micron Co., Ltd.), theta composer (manufactured by Tokuju Kogakusho Co., Ltd.) and the like can be mentioned.
[0016]
If necessary, the obtained fine powder composition is calcined in an oxidizing atmosphere such as air at a temperature of 300 to 600 ° C., preferably 300 to 500 ° C. or less for the purpose of improving transparency. Also good.
[0017]
As described above, the fine powder composition according to the present invention repeatedly applies a large compressive force and shear force instantaneously and simultaneously to a mixture of a flaky fine powder substrate composed of a synthetic layered polysilicic acid or a salt thereof and inorganic oxide fine particles. By so-called mechanical complexing treatment, inorganic oxide fine particles are adhered to the surface of the substrate substantially in a single layer and uniformly. Therefore, a large amount of inorganic fine particles are formed on the flaky fine powder substrate. Even without blending, it has a high ultraviolet shielding effect.
[0018]
Moreover, the ultraviolet shielding fine powder composition according to the present invention is not only excellent in dispersibility in the powder composition but also excellent in extensibility and transparency, and thus is useful as an ultraviolet shielding agent in cosmetics.
[0019]
Thus, by blending the fine powder composition according to the present invention into a normal cosmetic, a cosmetic having excellent ultraviolet shielding properties can be obtained. The fine powder composition according to the present invention can be advantageously blended into a powdery cosmetic composition by utilizing the excellent dispersibility in the powder composition, however, it is cake-like, pencil-like, stick-like, liquid, You may mix | blend with cosmetics of arbitrary forms, such as emulsion and cream form.
[0020]
Further, the ultraviolet shielding fine powder composition according to the present invention is excellent in dispersibility and stability in both aqueous and oil-based paints, and is therefore useful as an ultraviolet shielding agent in ultraviolet shielding paints. The coating material containing the fine powder composition is useful as an ultraviolet shielding effect.
[0021]
【The invention's effect】
As described above, the ultraviolet shielding fine powder composition according to the present invention allows inorganic oxide fine particles such as titanium oxide and zinc oxide to uniformly adhere to a single layer on a flaky fine powder base composed of synthetic layered polysilicic acid or a salt thereof. In addition to being excellent in ultraviolet shielding effect, it is excellent in dispersibility, extensibility, and transparency, and is useful as an ultraviolet shielding agent in cosmetics and paints.
[0022]
【Example】
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.
[0023]
Reference example 1
1 L capacity autoclave of 700 g of water glass (No. 4 sodium silicate) composed of 23.3 wt% SiO 2 and 6.2 wt% Na 2 O (NaOH / SiO 2 molar ratio = 0.51 / 1.0) The solution was treated under hydrothermal conditions at 107 ° C. for 280 hours. After completion of the reaction, the mixture was separated by filtration, the solid phase was separated, washed with water, and dried at 80 ° C. for a whole day and night to obtain sodium-type ilaite (layered polysilicate). It was confirmed by an X-ray diffraction pattern that the obtained reaction product was sodium type Iraite (layered polysilicate).
[0024]
This sodium-type Iraite was treated with hydrochloric acid to obtain H-type Iraite (layered polysilicic acid) having a sodium content of 0.3% or less. This H-type eyesight is taken as sample 1, FIG. 1 shows a transmission electron micrograph, and FIG. 2 shows its X-ray diffraction pattern.
[0025]
Example 1
94 parts by weight of H-type eyeraite (average 3 μm, width 3.5 μm, thickness 0.05 μm) obtained in Reference Example 1 and zinc oxide fine particles having an average particle size of 0.02 μm (FINEX-50 manufactured by Sakai Chemical Industry Co., Ltd.) ) 6 parts by weight is charged into theta composer (manufactured by Tokuju Kogakusho Co., Ltd.), dry-mixed, and the zinc oxide fine particles are adhered to the surface of the H-type Iraite. A fine powder composition was obtained. This fine powder composition was used as Sample 2, and a scanning electron micrograph thereof is shown in FIG.
[0026]
The fine powder composition was fired in air at 500 ° C. for 2 hours. This is designated as Sample 4.
[0027]
Example 2
A fine powder composition was obtained in the same manner as in Example 1, except that the amount of zinc oxide deposited was 8% by weight. This is designated as Sample 3, and a scanning electron micrograph thereof is shown in FIG. This was fired in air at 500 ° C. for 2 hours to give sample 5.
[0028]
A paste was prepared by kneading 0.60 parts by weight of each of the above samples 2 to 5 and 2.40 parts by weight of white petrolatum (manufactured by Kosuge Pharmaceutical Co., Ltd.) using a wooden spatula on a resin plate. This paste was sandwiched between two quartz glasses so as to have a thickness of 28 μm, and light transmittance was measured with a V-550 spectrophotometer manufactured by JASCO Corporation. Further, in Examples 1 and 2, the zinc oxide fine particles themselves used for preparing the fine powder composition were used as Sample 6, 0.05 parts by weight thereof and 2.95 parts by weight of white petrolatum were similarly kneaded, The light transmittance was measured as a paste. The results are shown in FIGS.
[0029]
A fine powder composition containing 8% by weight of zinc oxide fine particles, sample 3 has the same zinc oxide concentration in the paste as sample 6 (only zinc oxide fine particles), but medium ultraviolet (290 to 320 nm, B region). In the near ultraviolet (320 to 400 nm, A region) region, the ultraviolet shielding effect is higher than that of the sample 6, and the zinc oxide fine particles in the paste are excellent in dispersibility. In addition, in the visible light region (400 to 800 nm), it is shown that Sample 3 has higher light transmittance and better transparency than Sample 6. The same applies to Sample 5, which is a fired product of the sample.
[0030]
The amount of zinc oxide fine particles in the fine powder composition of Sample 2 is 6% by weight, and the light transmittance in the ultraviolet region is almost the same as that of Sample 6, but the transparency in the visible light region is higher than that of Sample 6.
[0031]
In addition, the fired product has improved light transmittance in the visible light region and higher transparency than before firing.
[0032]
Example 3
90 parts by weight of H type Iraite (average 3 μm, width 3.5 μm, thickness 0.05 μm) obtained in Reference Example 1 and titanium oxide fine particles having an average particle diameter of 0.03 μm (STR-40A manufactured by Sakai Chemical Industry Co., Ltd.) ) 10 parts by weight is charged into theta composer (manufactured by Tokuju Kogakusho Co., Ltd.), dry-mixed, and the fine particles of titanium oxide are deposited on the surface of the H-type Iraite. A fine powder composition was obtained. This fine powder composition was used as Sample 7, and a scanning electron micrograph thereof is shown in FIG.
[0033]
A paste was prepared by kneading 0.60 parts by weight of Sample 7 and 2.40 parts by weight of white petrolatum (manufactured by Kosuge Pharmaceutical Co., Ltd.) using a wooden spatula on a resin plate. This paste was sandwiched between two quartz glasses so as to have a thickness of 28 μm, and light transmittance was measured with a V-550 spectrophotometer manufactured by JASCO Corporation. Further, the titanium oxide fine particles themselves used for preparing the fine powder composition were used as Sample 8, 0.06 parts by weight of the fine particles and 2.94 parts by weight of white petrolatum were kneaded in the same manner, and the light transmittance was obtained as a paste. It was measured. The results are shown in FIG.
[0034]
A fine powder composition containing 10% by weight of titanium oxide fine particles, sample 7, the titanium oxide concentration in the paste is the same as that of sample 8 (only titanium oxide fine particles), but in the ultraviolet region, it is more ultraviolet than sample 8. It shows that the shielding effect is high and the titanium oxide fine particles in the paste are excellent in dispersibility. In addition, in the visible light region (400 to 800 nm), it is shown that the sample 7 has higher light transmittance than the sample 8 and is excellent in transparency.
[Brief description of the drawings]
FIG. 1 is a transmission electron micrograph (magnification 10,000 times) of H-type Iraite (synthetic layered polysilicic acid) used for the preparation of a fine powder composition according to the present invention.
FIG. 2 is an X-ray diffraction pattern of H-type Iraite (synthetic layered polysilicic acid) used for preparing the fine powder composition according to the present invention.
FIG. 3 is a scanning electron micrograph (magnification 20000 times) of an example of a fine powder composition (6 wt% of zinc oxide fine particles) according to the present invention in which zinc oxide fine particles are adhered to H-type eyelets.
FIG. 4 is a scanning electron micrograph (magnification 20000 times) of an example of a fine powder composition (8% by weight of zinc oxide fine particles) according to the present invention in which zinc oxide fine particles are adhered to H-type eyelets.
FIG. 5 is a graph showing the light transmittance in the ultraviolet and visible light regions of the fine powder composition (6% by weight of zinc oxide fine particles) according to the present invention and the fired product together with the light transmittance of zinc oxide fine particles.
FIG. 6 is a graph showing the light transmittance in the ultraviolet and visible light regions of the fine powder composition (8% by weight of zinc oxide fine particles) according to the present invention and the fired product together with the light transmittance of zinc oxide fine particles.
FIG. 7 is a scanning electron micrograph (magnification 20000 times) of an example of the fine powder composition (titanium oxide fine particles 10% by weight) according to the present invention in which titanium oxide fine particles are adhered to H-type Iraite.
FIG. 8 is a graph showing the light transmittance in the ultraviolet and visible light regions of the fine powder composition (titanium oxide fine particles 10% by weight) according to the present invention together with the light transmittance of the titanium oxide fine particles.

Claims (8)

合成層状ポリケイ酸又はその塩からなる薄片状微粉基体の表面に酸化亜鉛、酸化チタン、酸化第二鉄、酸化セリウム、二酸化ケイ素、酸化ジルコニウム、酸化タングステン及び酸化スズから選ばれる少なくとも1種の無機酸化物微粒子を付着させてなる紫外線遮蔽性微粉体組成物。At least one inorganic oxide selected from zinc oxide, titanium oxide, ferric oxide, cerium oxide, silicon dioxide, zirconium oxide, tungsten oxide and tin oxide on the surface of a flaky fine powder substrate made of synthetic layered polysilicic acid or a salt thereof Ultraviolet shielding fine powder composition obtained by adhering fine particles. 合成層状ポリケイ酸又はその塩からなる薄片状微粉基体が一辺が1〜10μmの範囲にある四角形状を有する薄片である請求項1に記載の微粉体組成物。2. The fine powder composition according to claim 1, wherein the flaky fine powder substrate composed of the synthetic layered polysilicic acid or a salt thereof is a flaky piece having a square shape with one side in the range of 1 to 10 μm. 無機酸化物微粒子が0.01〜0.5μmの範囲の粒子径を有する請求項1又は3に記載の微粉体組成物。The fine powder composition according to claim 1 or 3, wherein the inorganic oxide fine particles have a particle size in the range of 0.01 to 0.5 µm. 合成層状ポリケイ酸又はその塩からなる薄片状微粉基体の表面に無機酸化物微粒子を1〜30重量%の範囲で付着させてなる請求項1又は3に記載の微粉体組成物。The fine powder composition according to claim 1 or 3, wherein inorganic oxide fine particles are adhered in the range of 1 to 30% by weight on the surface of a flaky fine powder base composed of synthetic layered polysilicic acid or a salt thereof. 合成層状ポリケイ酸又はその塩がアイラアイト型である請求項1、2又は4に記載の微粉体組成物。The fine powder composition according to claim 1, 2 or 4, wherein the synthetic layered polysilicic acid or a salt thereof is of an Iraite type. 請求項1〜5のいずれかに記載の微粉体組成物を酸化性雰囲気中で焼成してなる微粉体組成物。The fine powder composition formed by baking the fine powder composition in any one of Claims 1-5 in oxidizing atmosphere. 請求項1〜6のいずれかに記載の紫外線遮蔽性微粉体組成物を含む化粧料。Cosmetics containing the ultraviolet shielding fine powder composition according to any one of claims 1 to 6. 請求項1〜6のいずれかに記載の紫外線遮蔽性微粉体組成物を含む塗料。The coating material containing the ultraviolet-ray shielding fine powder composition in any one of Claims 1-6.
JP08015198A 1998-02-20 1998-02-20 Ultraviolet shielding fine powder composition and use thereof Expired - Fee Related JP3876521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08015198A JP3876521B2 (en) 1998-02-20 1998-02-20 Ultraviolet shielding fine powder composition and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08015198A JP3876521B2 (en) 1998-02-20 1998-02-20 Ultraviolet shielding fine powder composition and use thereof

Publications (2)

Publication Number Publication Date
JPH11236515A JPH11236515A (en) 1999-08-31
JP3876521B2 true JP3876521B2 (en) 2007-01-31

Family

ID=13710300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08015198A Expired - Fee Related JP3876521B2 (en) 1998-02-20 1998-02-20 Ultraviolet shielding fine powder composition and use thereof

Country Status (1)

Country Link
JP (1) JP3876521B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051759A (en) * 2010-09-01 2012-03-15 Osaka Prefecture Univ Method of manufacturing layer silicate compound
JP2013040066A (en) * 2011-08-12 2013-02-28 Osaka Prefecture Univ Method for manufacturing lamellar silicate compound

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002535430A (en) * 1999-01-20 2002-10-22 キャボット コーポレイション Aggregates with attached polymer groups and polymer foam
JP5576055B2 (en) * 2009-04-09 2014-08-20 岩瀬コスファ株式会社 Surface treatment powder
WO2011016140A1 (en) * 2009-08-04 2011-02-10 L'oreal Composite pigment and method for preparation thereof
JP6012339B2 (en) * 2012-08-28 2016-10-25 大東化成工業株式会社 Method for producing composite powder
CN104151868B (en) * 2014-07-10 2015-10-28 池州市英派科技有限公司 Modified nano-titanium dioxide that a kind of photocatalysis effect strengthens and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012051759A (en) * 2010-09-01 2012-03-15 Osaka Prefecture Univ Method of manufacturing layer silicate compound
JP2013040066A (en) * 2011-08-12 2013-02-28 Osaka Prefecture Univ Method for manufacturing lamellar silicate compound

Also Published As

Publication number Publication date
JPH11236515A (en) 1999-08-31

Similar Documents

Publication Publication Date Title
JP5025259B2 (en) Precipitated silica products with low surface area, dentifrices and methods containing them
KR100283124B1 (en) A method for preparation of composite pigment for make-up cosmetics and make-up cosmetic compositions containing composite pigments made thereby
JP4137383B2 (en) High light diffusion pigment mixture
JPH0614194B2 (en) Electrostatic developing powder containing color pigment
JP3876521B2 (en) Ultraviolet shielding fine powder composition and use thereof
JP2509392B2 (en) Cosmetics
JPH06136284A (en) Surface modifying pigment
JP2784261B2 (en) Flaky fine powder, method for producing the same and cosmetics
EP2171001A1 (en) Surface-modified, pyrogenically produced silicic acid
JP4063421B2 (en) Silica-metal oxide fine particle composite and method for producing silica aggregate particles used therefor
KR950007159B1 (en) Tetra cosahedral siliceous particles and process for preparation thereof
JPH11343222A (en) Cosmetic containing silica-metal oxide fine particle composite material
JP2780778B2 (en) Thixotropic property imparting agent
JP3427195B2 (en) Composite mica powder with ultraviolet blocking action
JP2006124524A (en) Pearl pigment
JP2007015979A (en) Surface-treated pigment for cosmetic use and cosmetic composition
JP3838391B2 (en) Cosmetics
JPH0611872B2 (en) Titanium dioxide coated silica beads, production method and use thereof
JP7088773B2 (en) Plate-shaped zinc oxide powder and cosmetics containing it
JPH0692630A (en) Production of barium sulfate, platy barium sulfate obtaine thereby and cosmetic using the same
JP3998748B2 (en) Synthetic layered silicate
JP2009084132A (en) Modified clay mineral powder, and method for producing the same
KR100288603B1 (en) Method for Producing Inorganic Material Composite
JP3729234B2 (en) Fine particle dispersion and method for producing the same
JPH0860019A (en) Flaky powder, production thereof and cosmetic containing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091110

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101110

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111110

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121110

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131110

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees