JP3875653B2 - 小滴の状態計測装置、及び状態計測方法 - Google Patents

小滴の状態計測装置、及び状態計測方法 Download PDF

Info

Publication number
JP3875653B2
JP3875653B2 JP2003161213A JP2003161213A JP3875653B2 JP 3875653 B2 JP3875653 B2 JP 3875653B2 JP 2003161213 A JP2003161213 A JP 2003161213A JP 2003161213 A JP2003161213 A JP 2003161213A JP 3875653 B2 JP3875653 B2 JP 3875653B2
Authority
JP
Japan
Prior art keywords
droplet
cameras
light
state
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003161213A
Other languages
English (en)
Other versions
JP2004361291A (ja
Inventor
正昭 川橋
淑夫 座間
慎一 富永
Original Assignee
正昭 川橋
日本ノッズル精機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正昭 川橋, 日本ノッズル精機株式会社 filed Critical 正昭 川橋
Priority to JP2003161213A priority Critical patent/JP3875653B2/ja
Publication of JP2004361291A publication Critical patent/JP2004361291A/ja
Application granted granted Critical
Publication of JP3875653B2 publication Critical patent/JP3875653B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、3次元空間に存在する液滴や気泡等の小滴の状態を計測するための装置及び方法に関する。
【0002】
【従来の技術】
3次元空間に存在する液滴や気泡等の小滴の状態を計測するための装置が多くの分野において求められている。
【0003】
例えば、内燃機関の燃焼によって排出される排気ガスに含まれるCO2 やNoxの低減のためには燃焼状態を制御する必要がある。噴霧された燃料の分布あるいは拡散状態の適正な評価は、内燃機関用の燃料噴射ノズルの開発に大きく貢献する。そのほか、ネブライザ、加湿器等の噴霧特性の評価や、特定の薬品等から立ち昇る蒸気の分布や径の計測、ビールやワインの気泡の挙動の観察など、3次元空間に存在する小滴の分布や径を精度よく測定したいというニーズは大きい。
【0004】
特許文献1(特開平10−90157号公報)には、レーザ回折法を用いた測定装置の例が開示されている。この装置の測定原理は、噴霧空間内にレーザ発信部とその受光部とを臨ませ、噴霧空間を透過したレーザビームを受光部で受け取ることにより噴霧空間における散乱強度分布や透過率を検出するというものである。一般的には、散乱強度分布を噴霧の粒径分布のモデルに適応させ、噴霧の粒径分布と代表粒径を算出する。粒径分布が算出されると、粒子群の減衰断面積が演算され、測定された透過率から光束中の体積濃度の平均値が推定される。
【0005】
また、従来、LDV(レーザドップラー流速法)、位相法LDV、PDPA(位相ドップラ粒子分析法)等と呼ばれる方法により、3次元空間中の位置を特定して複数の粒子を同時に測定する手法が提案されている。この測定法の基本原理は、空中に2本のレーザビームを「交差させて」空間的な干渉縞を形成すると共に、その干渉縞を横切る小滴から散乱される光を異なる複数の点から同じ測定体積を観測し、測定信号の位相差から小滴の径を測定するというものである。
【0006】
なお、面的に速度場を得る測定法としては、PIV(粒子画像流速測定法)が知られている。この測定法は、ある大きさの観測領域に分布する小滴群が作る配置パターンが一定時間流れの方向に変わらないという仮定に基づき、複数の小滴群の作るパターンについて相関の強い点を探索することによって移動距離の算出を行うものである。これを3次元化したSPIV(ステレオ粒子画像流速測定法)も知られている。
【0007】
一方、近年、測定空間にシート状の平行なレーザビーム(放射シート光)を照射し、そのレーザビームが当たった小滴に関し、液滴表面での反射光と一次屈折光との干渉によって焦点外れ像内に発生する干渉縞を解析する測定法が開発された。レーザ干渉画像法と称されるこの測定法は、各小滴に対応する円形の焦点外れ像中に干渉縞が存在し、その干渉縞の数と小滴の径との間に一定の関係があることに着目したもので、当該干渉縞の数を測定することにより小滴の径を高精度に測定できる(非特許文献1:SAE Paper No.950457等)。
【0008】
しかしながら、この測定法は、焦点外れ像自体が円形で大きい領域を占めるため、空間内の小滴の分布濃度が高いと焦点外れ像が相互に重なってしまい、各小滴を分離して各々の径を測定することが困難になるという問題があった。
【0009】
この点に関して、特許文献2(特開2002−181515号公報)においては、光学系に工夫を加えることにより、小滴に対応する円形の焦点外れ像間の干渉を抑制し、焦点外れ像の分析を容易化した技術を開示している。この技術は、各小滴に対応する円形の焦点外れ像を、その一方向において圧縮し、他の方向のみの線状画像とすることにより、空間中の小滴の分布濃度が高い場合においても、それぞれの焦点外れ像を相互に分離可能とし、且つ該焦点外れ像中の干渉縞の数を精度よく数えることができるようにしたものである。
【0010】
なお、この特許文献2においては、このほかに、当該線状の焦点外れ像の中心を求めることにより、小滴の中心位置を求める方法や、線状の焦点外れ像をフーリエ変換して周波数を求め、求めた周波数にその焦点外れ像の長さを掛けることにより焦点外れ像中の干渉縞の数を求め、その干渉縞の数に基づいて小滴の径を求めるというより具体的な方法も併せて開示されている。更には、微小間隔をおいて2セットの2次元凍結画像を撮影し、特定の線状の焦点外れ像自体がその2セットの2次元凍結画像間で移動した方向及び距離を相互相関演算により求める方法も開示されている。
【0011】
【特許文献1】
特開平10−90157号公報
【非特許文献1】
SAE Paper No.950457
【特許文献2】
特開2002−181515号公報
【0012】
【発明が解決しようとする課題】
しかしながら、前記特許文献1に係る測定法は、液滴径の分布は測定できるものの、当該液滴の位置に関する情報を得ることができないという問題がある。そのため、噴霧された液滴がどのような軌跡、あるいは速度にて空間に拡散していくかという情報を得ることはできない。又、噴霧空間内にレーザの発信部と受光部とを臨ませているため、このレーザ発信部及び受光部の存在により噴霧の本来の流れが乱されてしまうという大きな問題も有している。
【0013】
また、前記LDV、位相法LDV、PDPA等と呼ばれる測定法は、レーザビームが交差する(点に近い)極狭い領域の小滴の径を測定するものであるため、その領域外の周囲の空間中の測定を同時に行うことができず、小滴の挙動の空間的な相互関係の把握や乱流のような非定常的な噴霧場の解析が困難だった。また、測定精度も必ずしも十分なものではなかった。
【0014】
一方、前記PIVの範疇に属する測定法は3次元的な速度の分布を知ることができるが、個々の小滴の粒径を計測することができていない。また、もともと個々の小滴の粒径の挙動に着目したものではないため、個々の粒子速度が大きく異なる流れ場を測定する場合には、粒子群の移動量検出が困難となることが考えられる。粒径については、小滴画像の輝度プロフィールから求めるように試みた改良法も提案されているが、概略的な粒径計測結果しか得られていない。また、輝度プロフィールは、粒径の2乗に比例して強くなるため、測定空間中の大径の粒子の速度分布、あるいは平均化された情報として速度や粒径が得られている可能性が高い。小滴の密度が高いと測定のダイナミックレンジが大きく低下するという問題も残されている。
【0015】
レーザ干渉法を改良した特許文献2(特開2002−181515号公報)に係る技術は、焦点外れ像内に発生する干渉縞の解析により各液滴の粒径を高精度に求めることができるため、近年注目されている技術であるが、小滴の位置情報(分布情報)および速度情報が二次元観測場でしか捉えられないという大きな問題がある。
【0016】
一般に、3次元空間に存在する小滴の粒径あるいは分布について検討する場合、2次元での観測だけでは不十分である。とりわけ、乱流中に浮遊する分散小滴の空間濃度は必ずしも一様ではなく、流れ場の空間構造に応じて疎密の偏りが生じ、局所的に高濃度あるいは低濃度の領域が発生することが知られている。そのため、このレーザ干渉法に係る測定は、ときに空間内のある特定の平面上にたまたま存在した局所的な高密度或いは低密度の小滴分布あるいは速度情報を示しているに過ぎないことがあり、その本来の分布状態あるいは速度情報を必ずしも反映していない可能性があると指摘されていた。しかし、焦点外れ像から干渉縞を得るという手法を用いる限り、得られた画像情報から3次元の分布或いは速度を再構築するのは不可能である。
【0017】
また、たとえ焦点外れ像を光学的に処理して線状化し、重なり合う液滴の画像を分離する手法を採用したとしても、1個1個の液滴の像はかなりの長さを有する像として拡大されており、小滴密度によってはやはり像同士がかなり重なってしまう。即ち、小滴密度が高くなると、分布の解像度は相対的に低くならざるを得ない。
【0018】
このように、従来は、3次元空間に存在する液滴や気泡等の小滴の粒径、3次元分布、3次元速度を正確にかつ同時に測定し得る測定法は、未だ開発されておらず、そのためこれらのすべての要素を正確に測定するには、異なる種類の測定法を用いた別々の測定を並列的に行わざるを得ないというのが実情であった。
【0019】
本発明は、このような従来の小滴の状態計測に関する事情を抜本的に改善するためになされたもので、新しい測定原理に基づき、これらの全ての要素を同時にかつ正確に測定することを可能とする小滴の状態計測装置及び状態計測方法を提供することをその課題としている。
【0020】
【課題を解決するための手段】
本発明は、3次元空間に存在する液滴や気泡等の小滴の状態を計測するための小滴の状態計測装置において、計測対象となる小滴が存在する空間に対し、薄幅シート状の放射シート光を照射可能なレーザ照射機構と、前記放射シート光内の被測定領域に存在する各小滴に該放射シート光が照射されることによって各小滴毎にそれぞれ2個得られる点状の光の群を、前記放射シート光が照射されている範囲外から合焦点画像で捉える第1のカメラと、前記点状の光の群を、前記放射シート光が照射されている範囲外であって且つ前記第1のカメラと異なる角度から合焦点画像で捉える第2のカメラと、を備え、前記第1、第2のカメラによって捉えられた前記点状の光の群のそれぞれの合焦点画像に基づいて、前記被測定領域内の小滴または小滴群を、それぞれの小滴毎に2個得られる点状の光で構成される輝点対または輝点対群の態様で3次元空間内で同定可能に構成したしたことにより、上記課題を解決したものである。
【0021】
図2に、液滴や気泡等の小滴Pに平行レーザ光LSoが照射されたときの光線軌跡の焦点面P1に対する関係を示す。透明球形の小滴Pに平行レーザ光LSoを照射すると、小滴Pの0次反射および1次屈折(或いは2次屈折)により、焦点面上に輝点の二重像(2個得られる点状の光:輝点対GP)が形成される。図中θはにらみ角(散乱角:後述)である。この輝点対GPは小滴Pの粒径の情報を有している。しかし、実際に測定空間に存在する多数の液滴を撮像した場合、生の画像の状態のままではこれら多数の輝点対GPが撮像面全体に散らばることになり、1個1個の小滴Pの識別は不可能である(図4、図7(a)等参照)。
【0022】
本発明では、(特許文献2に係る技術のようにこの輝点対を敢えて焦点外れ面で撮像して干渉縞を得るという手法ではなく)この輝点対を合焦点像のまま捉えるようにすると共に、各小滴を第1、第2カメラにより異なる角度から捉え、そのステレオ画像(2枚の画像)の比較により、1個1個の小滴を「探索・同定する」という手法を採用した。即ち、本発明では1個1個の小滴自体を探索・同定するための手段としてステレオ画像を利用する。
【0023】
本発明では、ばらばらの状態で無数に散らばる点状の光を、ペア化された2つの点状の光点、即ち「輝点対」という概念の下で同定する。そのため、1個1個の小滴を個別に同定できる。しかも、同定された1個1個の小滴は、それぞれ合焦された輝点対という態様で描写されているため、本来的に粒径の情報を含み、(粒径の大小の如何に関わらず)当該粒径を光学的に正しく反映している。
【0024】
また、合焦された輝点対はほとんど面積を有しないため、たとえ小滴が被測定領域に密に存在していたとしても各小滴同士の描写干渉はほとんど生じない。そのため、カメラ、或いはレンズの解像度次第で、従来測定し得なかったような小径の小滴が高密度に存在するような空間であっても、1個1個の小滴を確実に同定できる。
【0025】
加えて、本発明が優れているのは、この第1、第2カメラによって異なる角度から捉えられた2枚の合焦点画像は、1個1個の小滴の同定作業に寄与するだけでなく、当該同定の時点で各小滴の被測定領域内での3次元分布(3次元における位置)に関する情報をも同時に含んでいるということである。即ち、本発明に係る2つの画像面上に存在する各小滴の輝点対に関する解析は、被測定領域内における各小滴の3次元分布状態の把握を同時に可能にする。
【0026】
また、本発明では、1個1個の小滴が輝点対という態様で特定できるため、第1、第2カメラによって特定の時刻の状態と、それから微小時間経過後の状態とをそれぞれ撮像することにより、第1、第2カメラによって捉えられる各々の画像面上における各小滴の移動情報を得ることができる。したがって両者の相互関係により、1個1個の小滴の3次元の移動軌跡や速度情報を算出することも可能となる。
【0027】
即ち、本発明では、従来は不可能だった各小滴の粒径、3次元分布(3次元位置情報)、及び3次元移動軌跡や3次元速度(3次元ベクトル情報)の同時取得が可能である。
【0028】
ところで、本発明は、このように原理的に被測定領域に存在する全ての小滴を同定し得る「可能性」を有しており、結果として全小滴について粒径、3次元における分布(3次元での位置情報)、さらには3次元における速度分布の測定ができる。しかしながら、本発明は実際の測定に当たって必ずしも被測定領域に存在する全ての小滴を個々の小滴単位で同定することを要求するものではなく、目的に応じた数あるいは態様の同定を行うだけで十分な場合もある。
【0029】
例えば、粒径を求めたいときには、もとより被測定領域中の全ての小滴を同定する必要はない。この場合は、演算範囲や同定の処置数を限定したり、輝点対が特に鮮明に撮影されているもののみ同定する等の条件を付して必要と思われる程度の数のみの同定を行い、当該条件の下で同定された液滴のみについて粒径計測を行うようにすれば足りる。
【0030】
また、3次元分布の測定、あるいは3次元速度分布の測定においても、第1、第2カメラの解像度、あるいはコンピュータの処理能力等の関係で全ての液滴について同定を行うのが困難な場合には、例えば、複数の液滴群によって形成される輝点対群を一つの塊として探索・同定するようにしてもよい。この場合でも、複数の小滴群は3次元での位置が同一で且つ同一の挙動を行うと推定されるグループレベルの小滴群として同定できるため(即ち、本来の位置は異なるが2次元情報として見たが故にたまたま同一の位置に存在すると捉えられたものではないため)位置情報や挙動追跡情報の信頼性が高い。したがって、速度情報を得るために所定時間経過した後の画像を得る場合においても、追跡が容易であり、用途によっては充分な情報が得られる。
【0031】
小滴を一個単位で同定するか、あるいは複数単位で同定するかは、主にカメラの解像度やコンピュータの演算能力、あるいは処理時間やコストとの関係で選択されるべきものであり、本発明はこの点でも目的に応じて柔軟に対応できる。
【0032】
なお、本発明では、小滴の粒径、3次元分布、あるいは3次元移動軌跡や3次元速度等のいずれをも同時に測定し得る「可能性」を有しているが、実際の実施に当たっては、必ずしもこれらの測定を全て同時に行う必要はなく、目的に応じ、このうちいずれかの測定項目のみを演算し、不要な演算を省略してもよいのは言うまでもない。
【0033】
本発明にはさまざまなバリエーションが考えられる。
【0034】
例えば、前記放射シート光が小滴に照射されて得られる2個の点状の光としては、当該小滴の0次反射光と一次屈折光を選択するようにすると、各小滴において明るく明快な輝点対を得ることができる。換言するならば、本発明は、例えば小滴の2次屈折光を輝点対を構成する対象として選択することもできる。
【0035】
また、前記小滴の径を計測する場合には、前記輝点対の間隔を自己相関法によって算出するようにするとよい。2点間の距離を自己相関法によって算出する方法自体は公知である。この演算は、例えば干渉縞をフーリエ変換を用いて解析する手法に比べ、演算負担が軽い。
【0036】
また、前記放射シート光の幅方向の深さ(厚さ)が可変とされていると、測定目的に合致した大きさの被測定領域を得ることができる。すなわち、放射シート光の幅方向の深さが深い(厚い)と、測定可能な3次元空間の深さを大きくとることができるため、特に動きの速い乱流など、3次元方向の移動量の大きな小滴を確実に追跡できる。一方、小滴の存在密度が高い場合などでは、撮像される小滴の数(輝点対の数)が多くなり、各輝点対を同定する演算処理の負担が大きくなるだけでなく、誤った同定が行われてしまう確率がそれだけ高くなる。このようなときには放射シート光の幅方向の深さを浅くすると、撮像される輝点対の数を減少できる。放射シート光の幅方向の深さが可変とされていると、目的に応じたこのような調整を簡易に行うことができる。
【0037】
また、前記第1、第2カメラのそれぞれの光軸が前記放射シート光のシート平面と直角以外の交差角度(にらみ角とステレオ角:後に詳述)で交差するように配置するとよい。
【0038】
一般に、0次反射光、一次屈折光、あるいは二次屈折光は、その得られる輝度が異なる。カメラの光軸が放射シート光のシート平面と直角以外の角度で交差するように「にらみ角」を有して第1、第2のカメラを配置すると、その差を縮小できる。その結果小滴の同定をより確実に行うことができるようになる。
【0039】
なお、この場合に、当該にらみ角が可変とされていると、被測定対象の透明度や屈折率などの特性に応じて、最も鮮明に輝点対が得られるようなカメラ配置に容易に調整することができるようになり、設定の自由度を高めることができる。
【0040】
また、前記第1、第2カメラのそれぞれの光軸同士のなす角(ステレオ角)が可変とされていると、被測定領域の3次元空間における放射シート面方向の解像度と深さ(幅)方向の解像度の調整を容易に行うことができるようになる。
【0041】
また、前記第1、第2カメラの前記被測定領域に対する距離が可変とされていると、被測定対象の動き等を勘案して撮像可能空間の大きさを容易に変更することができるようになる。
【0042】
また、前記第1、第2カメラによって撮像される被測定領域が小滴が存在する空間内の任意の位置に設定可能とされていると、被測定領域をトレースすることにより、小滴の存在する全3次元空間の測定を行うことができる。
【0043】
ところで、本発明においては、第1、第2のカメラによってそれぞれ撮影された合焦点画像に基づいて被測定領域内の各小滴を同定することをその基本構成としているが、本発明は、これらの2つのカメラ以外のカメラの設置を禁止するものではなく、用途、あるいは目的に応じて適宜他のカメラを併設するようにしてもよい。
【0044】
例えば、前記第1、第2のカメラのほかに、更に、前記点状の光の群を、放射シート光が照射されている範囲外であって且つ第1、第2のカメラのいずれとも異なる角度から合焦点画像で捉えるチェックカメラを備え、第1、第2のカメラに加え、このチェックカメラによって捉えられた合焦点画像をも参照して、被測定領域内の小滴(または小滴群)を同定できるようにした場合には、各小滴の同定を一層正確に行うことができるようになり、また、3次元空間における小滴の位置の把握もそれだけ正確に行うことができるようになる。
【0045】
なお、このチェックカメラは、当該チェックカメラによって撮像された合焦点画像を第1、第2のカメラによって撮像された合焦点画像と対等に扱い、3つのカメラによって得られた数値を平均化するような態様で利用してもよく、また、第1、第2カメラの相関に疑問が生じたときにのみ参照するような態様で利用してもよい。
【0046】
このチェックカメラは、第1、第2のカメラの光軸を含むカメラ平面内に自身の光軸を有し、且つ、第1、第2カメラの中央に相当する位置に設置されるようにすると一層良好である。一般に、輝点対を明確に捉えるという機能のみに着目した場合、放射シート光に対してステレオ角0度に相当する位置でカメラを設置するのが最も好ましい。そのため、ステレオ角0度における小滴の合焦点画像が別途存在すると、誤った同定が行われる確率を低減できるだけでなく、輝点対が明確に捉えられている分、例えばその間隔を求めるための自己相関法による演算においてもそのピークが判明しやすくなるため、より正確に小滴の粒径を演算することができる場合がある。
【0047】
更に、前記第1、第2のカメラのほかに、該第1、第2のカメラのセットと同様の構成を有する一対、あるいは2対以上のカメラセットを併設するようにしてもよい。例えば、同一のにらみ角で、ステレオ角の小さな第1、第2のカメラのセットと、ステレオ角の大きな第3、第4のカメラのセットを組み合わせると、第1、第2カメラのセットによって、特に放射シート光のシート面に平行な方向において高い解像度を有する輝点対画像が得られ、第3、第4のカメラのセットによって放射シート光の幅方向において高い解像度を有する輝点対画像が得られる。この結果、一対のみのカメラセットを備える場合に比べ、3次元のあらゆる方向について、非常に高い精度で小滴の同定及び位置分布の確定が行えるようになる。
【0048】
また、例えば、第1、第2のカメラセットの被測定領域と第3、第4のカメラセットの被測定領域が連続するように設定しておくと、1回の測定で広範囲の小滴の分布あるいは動きを、精度の高い合焦状態で連続して測定あるいは追跡できるようになる。
【0049】
こうした3台以上のカメラによる連携測定は、本発明が輝点対の合焦点画像に基づいた同定解析を行っているが故に、その発展形として想定し得るものであり、本発明の有する大きな潜在的可能性を示すものと言える。
【0050】
【発明の実施の形態】
以下図面に基づいて本発明の実施形態を詳細に説明する。
【0051】
図1は本発明の測定の基本原理を説明するための概念構成図である。
【0052】
この実施形態における計測対象は、スワールノズルNより下方に向けて噴霧される液滴(小滴)である。便宜上、放射シート光LSが放射されていく水平方向をX方向、鉛直方向(スワールノズルNの中心軸の延在する方向)をY方向、X方向及びY方向の双方と垂直な水平方向(放射シート光LSの幅方向)をZ方向と定義する。各方向の原点はスワールノズルNの噴射口である。
【0053】
図1を参照して、状態計測装置10は、レーザ照射機構12、第1カメラ14、第2カメラ16、及びコンピュータ(演算手段:図示略)を主な構成要素として備える。
【0054】
前記レーザ照射機構12は、液滴が存在する3次元空間に対し、光源12Aから薄幅(厚さW)のシート状の放射シート光LSを照射するもので、これ自体は公知のものである。
【0055】
放射シート光LSは、レーザ照射機構12の光源12Aを基点とし、X方向の水平線x0を中心に鉛直面内(X−Y面内)において上下対称に拡開する扇状の光である。この放射シート光LSのZ方向の厚さWがそのままこの実施形態における被測定領域Sの実質的なZ方向の深さとなる。即ち、この厚さWを大きく設定すると、被測定領域SのZ方向の深さを大きくできる。逆に、この厚さWを小さく設定すると、放射シート光LSの照射される液滴の数が少なくなるため、各液滴同士の干渉の少ない(同定のし易い)画像を得ることができる。従って、定性的には液滴の動きが大きい場合は、厚さWを大きく取って深い被測定領域Sを確保し、液滴の存在密度が高い場合には、放射シート光LSの厚さWを小さめにして撮像される液滴数を抑えるようにするとより望ましい測定結果が得られる。
【0056】
なお、被測定領域SのX方向及びY方向の境界は、第1、第2カメラのそれぞれの撮影領域の重なった部分として確定される。
【0057】
被測定領域Sに存在する各液滴に放射シート光が照射されると、前述したように、各液滴毎にそれぞれ0次反射光、及び1次屈折光の2個の点状の光(輝点対)が得られる(図2参照)。
【0058】
第1カメラ14は、各液滴に該放射シート光LSが照射されることによって各液滴毎にそれぞれ得られる輝点対の群を、合焦点画像で捉えられるように、放射シート光LSが照射されている範囲外に配置される。一方、第2カメラ16は、同じこの輝点対の群を、放射シート光LSが照射されている範囲外であって且つ第1カメラと異なる角度から合焦点画像で捉えるように配置される。2台のカメラ14、16はCCDカメラであり、いわゆるステレオPIV配列にて配置される。
【0059】
より具体的に説明すると、第1、第2カメラ14、16のそれぞれの光軸14A、16Aは、それぞれX−Z平面内において放射シート光LSのシート平面と直角以外の角度θで交差している。この交差角度θをここでは「にらみ角」と称す。にらみ角θが90度以外の角度に設定されているのは、0次反射光と一次屈折光の輝度の差をできるだけ縮小し、両者がほぼ同等の輝度を有するようにするためである。にらみ角θは、液滴の透明度や屈折率などの特性に応じて、最適値が異なってくるため、可変とされているのが望ましい。
【0060】
また、前記第1、第2カメラ14、16のそれぞれの光軸14A、16Aのなす角αも可変である。この角αをここでは「ステレオ角」と称す。ステレオ角αの設定(より具体的にはその1/2に相当する水平面からの傾斜角α/2の設定)は、被測定領域Sの3次元空間での液滴の同定に関し、放射シート光LSのシート面方向(X−Y方向)の解像度と深さ方向(Z方向)の解像度の調整に影響する。ステレオ角αを小さく設定すると、シート面方向の解像度を高めることができ、ステレオ角αを大きく設定すると、深さ方向(Z方向)の解像度を高めることができる。
【0061】
第1、第2カメラ14、16の被測定領域Sに対する距離d1、d2(d1=d2)も可変とされている。これは被測定対象の動き等を勘案して撮像可能空間の大きさを容易に変更することができるようにするためである。
【0062】
なお、第1、第2カメラ14、16のそれぞれの光軸14A、16Aを含むカメラ平面は、放射シート光LSが広がっている方向に対応する座標軸(この実施形態ではY方向の座標軸)とは平行である。第1、第2カメラ14、16は、放射シート光LSに対して対称に対峙しており、それぞれ同一のにらみ角θ及び同一の水平面からの傾斜角(ステレオ角αの1/2に相当)を有し、被測定領域Sに対する距離d1、d2もそれぞれ同一である。
【0063】
以上の構成より、第1、第2カメラ14、16は、その被測定領域Sが放射シート光LS内の任意の位置に設定可能である。従って、例えば後述するように液滴の存在する空間に対する放射シート光LSの照射方向自体を可変とすると共に、当該被測定領域Sをトレースするように測定を繰り返すことにより、結果として液滴の存在する全3次元空間において小滴の状態を測定できる。
【0064】
図3に、ノズルから噴出する噴霧の瞬間画像及び被測定領域S(A、B)の例を示す。被測定領域A、Bの中心は、スワールノズルNの噴射口Naの中心から見て、それぞれX方向に20mm、Y方向に50mm、及び、X方向に35mm、Y方向に70mmの位置にある。
【0065】
図4(a)(b)に、被測定領域Bの焦点面における噴霧を視覚化した画像および液滴の輝点対のサンプルを示す。これらの画像は、被測定領域Bについて立体構成した第1、第2カメラ14、16で記録されたものである。
【0066】
図5(a)(b)に、ある輝点対およびその画像の自己相関関数パターンを示す。相関値の0次ピークと1次ピークとの間隔は、輝点対の間隔Lに相当する。輝点対の間隔が分かると公知の(1)式に基づいて液滴の粒径を算出することができる。
【0067】
【数1】
Figure 0003875653
【0068】
ここで、θはにらみ角、mは液滴の屈折率である。
【0069】
実際にこの液滴の粒径を、(1)式から求めたところ153.5[μm]であった。
【0070】
被測定領域A内において同定された個々の液滴の粒径を測定した結果の分析例を図6に示す。図6では、被測定領域A内の個々の液滴の粒径に対する液滴数のヒストグラムが示されている。この図6から、被測定領域Aにおいては、液滴の直径が増加するとともに液滴数が減少することが分かる。最大液滴数は、液滴直径=60[μm]において記録されている。
【0071】
同様な測定及び分析を被測定領域B以内の液滴についても行えば、被測定領域A、B間の液滴の粒径に対する液滴数の違いが明確化される。
【0072】
一方、被測定領域A、B内において同定された個々の液滴は、本実施形態の構成上そのまま3次元の位置情報を内在している。この位置情報は、噴射口から噴霧された液滴の3次元分布(個々の液滴の3次元の位置情報)にほかならない。もちろん、得られた3次元分布の情報を、更にどのように分析するかは、もとより限定されるものではなく、さまざまな手法の分析が可能である。上記分析例もその一例と言える。
【0073】
更に、第1、第2カメラ14、16によって撮影された映像を、所定の時間間隔で2セット以上入手した場合、各々の時点における各液滴の3次元空間における動きに関する情報を得ることができ、個々の液滴の移動軌跡を把握することができる。また、撮影の時間間隔と移動距離との関係から個々の液滴の3次元の速度分布を得ることもできる。
【0074】
図7(a)に、被測定領域Aにおける生の画像を、図7(b)に速度分布に関する分析を行った後のパターン例をそれぞれ示す。この例では、被測定領域Aにおいて複数個の液滴をまとめて同定し、当該複数個の液滴群に対応する輝点対群の速度分布を求めている。なお、ここでは、X−Y方向の速度分布のみが示されており、Z方向の速度分布は描かれていない。実際の測定ではZ方向の速度分布は、カラーのレイヤー表示で表現される。
【0075】
前述したように、本発明は、第1、第2カメラ14、16によって撮像された二枚の画像を基にして一個一個の液滴を個別に同定できるが、このように複数の液滴群をまとめて同定しても、相応の効果が得られる。どの程度の大きさの液滴群を纏めて捉えるかは、コスト、処理時間等を考慮して設定すればよい。
【0076】
ところで、本発明では、被測定領域S内の各液滴を異なる角度から撮影した画像に基づいて同定する。そのため、撮影するカメラの台数を増やすことによって、様々な付加的な効果を得ることができるようになる。
【0077】
図8に第1、第2カメラ14、16のほかに更に別のカメラを併設した実施形態の例を示す。図8の(a)においては、前記第1、第2のカメラ14、16のほかに、更に、センタカメラ(チェックカメラ)30を備えた例が示されている。このセンタカメラ30は、第1、第2のカメラ14、16のカメラ平面上において第1、第2カメラ14、16が放射シート光LSに対して有しているそれぞれの角度の中間に相当する角度、すなわちステレオ角0度に相当する角度に設置されている。
【0078】
この構成により、第1、第2のカメラに加え、センタカメラ30によって捉えられた合焦点画像をも参照して、被測定領域S内の各小滴を輝点対の態様で同定できるようになる。その結果、各小滴の同定を一層誤りなく正確に行うことができるようになり、粒径測定も3次元空間における小滴の位置の把握もそれだけ正確に行うことができるようになる。
【0079】
例えば粒径測定の場合に、第1、第2カメラ14、16によって特定の小滴が存在すると推定された空間に、センタカメラ30も同一の輝点対画像をとらえていた場合に限り、その点状の2個の光点が確かに存在するある小滴の輝点対であるとして、粒径測定に利用できるようにソフトを構成すれば、誤って同定された輝点対をベースに粒径測定を行ってしまうのを防止できる。
【0080】
このセンタカメラ30は、当該センタカメラ30によって撮像された合焦点画像を第1、第2のカメラによって撮像された合焦点画像と対等に扱い、3つのカメラによって得られた数値を平均化するような態様で利用してもよく、また、第1、第2カメラ14、16の相関に疑問が生じたときにのみ参照するような態様で利用してもよい。
【0081】
また、前述したように、センタカメラ30によって捉えられ合焦点画像は、ステレオ角0度における画像であるため、輝点対がより明確に捉えられている可能性が高いため、粒径測定に関しては、このセンタカメラ30によって捉えられた輝点対をベースに測定するように構成してもよい。
【0082】
一方、図8(b)には、第1、第2のカメラ14、16のほかに、該第1、第2のカメラセットと同様の構成を有する第3、第4のカメラ26、28からなるカメラセットを同一のカメラ平面に併設するようにしている。この例では、同一のにらみ角θで、第1、第2カメラ14、16セットのステレオ角α1を小さめ(より零に近い値)に設定し、一方第3、第4カメラ26、28のセットのステレオ角α2を大きめ(より180°に近い値)に設定している。この結果、第1、第2カメラ14、16のセットによって、特に放射シート光LSのシート面に平行な方向(X−Y方向)において高い解像度を有する輝点対画像が得られ、第3、第4のカメラ26、28のセットによって放射シート光LSの幅方向(Z方向)において高い解像度を有する輝点対画像が得られる。この結果、一対のみのカメラセットを備える場合に比べ、3次元のあらゆる方向について、非常に高い精度で小滴の同定及び位置分布の確定が行えるようになる。
【0083】
なお、このように、第3、第4のカメラセットを併設する場合、第1、第2のカメラセットの被測定領域と第3、第4のカメラセットの被測定領域が連続するように設置することも可能である。このように設置すると、動きの速い液滴でも1回の測定で画面から外れることなく連続して測定あるいは追跡できるようになる。
【0084】
こうした3台以上のカメラによる連携測定の例は多々考えられる。追加するカメラの使用例は上記例に限定されない。
【0085】
最後に、本発明を実際に実施する際に使用する具体的な装置の構成例について簡単に説明する。
【0086】
図9は本状態計測装置10の全体概略正面図、図10はその斜視図、図11はカメラ設置機構の全体概略図斜視図、図12はその要部拡大斜視図である。なお、理解を容易にするために、これまで説明してきた部材と同様の機能を有する部材については、同一の符号をそのまま使用している。
【0087】
この状態計測装置10は、スワールノズルNから噴霧される液滴の拡散状態を計測するためのもので、レーザ照射機構12、第1カメラ14、第2カメラ16、及びコンピュータ(演算手段)18a、18bを主な構成要素として備える。
【0088】
前記レーザ照射機構12は、液滴が存在する3次元空間に対し、薄幅(厚さW)のシート状の放射シート光LSを照射するもので、この実施形態では、ダブルパルスNd:YAGレーザ(λ=532nm、最大出力50mJ/パルス)が使用されている。
【0089】
放射シート光LSの厚さWは、この実施形態では1mmに設定されている。
【0090】
図11、図12を参照して、第1、第2カメラ14、16設置するためのカメラ設置機構CSは、レーザ照射機構12ごと水平面内(X−Z面内)で回転可能なターンテーブル31上に配置されており、ベース体32、L字アングル34、および支持アーム36、37から主に構成される。ターンテーブル31は、上下動も可能である。
【0091】
ベース体32は、放射シート光LSが照射される方向(X方向)に沿ってターンテーブル31上に固定されており、回転台40の固定位置をX方向においてMの範囲で可変とするための溝部42を有する。
【0092】
L字アングル34はこの回転台40上においてX−Z平面内で回転してにらみ角θを調整・設定可能とする。また、L字アングル34はこの回転台40自体がベース体32の溝部42に沿って摺動可能とされていることにより、結果として被測定領域SをX方向に可変とする機能も有する。L字アングル34の立柱34Aには、第1、第2カメラ14、16を支持するための支持アーム36、37がカメラ平面内で回転可能に取付けられている。支持アーム36、37は、これ自体が放射シート光LS(被測定領域S)に対して進退動自在とされており(または第1、第2カメラ14、16が支持アームに対して相対的に摺動可能とされており)、結果として第1、第2カメラ14、16の被測定領域Sに対する距離d1、d2が可変とされ、被測定対象の動き等を勘案して撮像可能空間の大きさを容易に変更することができるようになっている。
【0093】
L字アングル34及び支持アーム36、37の回転角は、それぞれエンコーダ44、45、46によって検出され、現時点でのにらみ角θ及びステレオ角α(傾斜角α/2)が確認できるようになっている。また、必要ならば、この検出値に基づいて図示せぬリニヤモータを用いてにらみ角θ及びステレオ角αの自動設定を行うように構成することもできる。
【0094】
図11から明らかなように、この状態計測装置10においては、光学系の配置関係をそのままに維持しながら、ターンテーブル31を回転或いは上下動させることにより、カメラ支持機構CS全体をスワールノズルNの中心軸(Y軸)を基準にして360度回転させることができ、全方向の状態測定ができるようになっている。
【0095】
なお、手動設定、あるいは自動設定のための初期設定の際には、図13に示されるように、スワールノズルNの装着ヘッド50に取り付けた位置決めバー52に、レーザポインタ53を当て、指定された位置にマーカーが来るように画像を見ながら、被測定領域Sの調整を行う。
【0096】
また、図14に示されるように、回転台40の回転・位置決めは、レーザ光源12Aからレーザポインタ55を放ち、ノズル装着ヘッド50に取り付け角度を調整したミラー57を装着し、照度計56により光度が最も高くなるように調整することにより行う。
【0097】
なお、図9及び図10において、符号74は作業デスク、76は試験流体供給機構をそれぞれ示している。試験流体供給機構76は、流体を送り出すスクリュースピンドルポンプ80、圧力を制御する水圧制御盤82、試験流体回収タンク84、配管86等からなる。また、90符号はレーザ光源12Aに信号を送るパルスジェネレータ、92はレーザ光源12Aに付設されたシリンドリカルレンズをそれぞれ示している。また、符号94は噴霧場の液滴の下方からの影響(巻き返し)の影響を抑制するためのハニカム整流ボードである。
【0098】
第1、第2カメラ14、16は、1008×1016ピクセルのCCDカメラであり、焦点深さはこの例では12.3mm、絞りはf=16である。これにより放射シート光LSの厚さW内において両カメラが合焦点画像を記録するのに十分な被写界深度を得ている。
【0099】
この実施形態ではこのにらみ角θは70度に設定されている。可変範囲は50度〜80度である。実用上は65度〜75度程度がにらみ角θの最適範囲となることが多い。
【0100】
また、ステレオ角αは、この例では50度(水平線を境に上下25度の傾斜)とされているが、20度〜60度(水平線を境に上下10度〜30度の傾斜)の範囲で可変である。
【0101】
以上の構成より、第1、第2カメラ14、16は、その被測定領域Sが放射シート光LS内の任意の位置に設定可能である。更に、液滴の存在する空間に対する放射シート光LSの照射方向もターンテーブル31の回転及び上下動により可変とされているため、液滴の存在する空間をトレースするようにして測定を繰り返すことにより、結果として液滴の存在する全範囲における3次元状態を液滴の粒径の測定を含めて実施できる。
【0102】
なお、第1、第2カメラ14、16のほかに別途のカメラを増設する場合においても、同様の構成の支持機構を採用することができる。
【0103】
尤も、本発明においては、第1、第2カメラ支持機構を含めて、具体的にどのような支持機構によって各カメラを支持・設置するかについては、特に限定されない。
【0104】
【発明の効果】
本発明によれば、3次元空間に存在する液滴や気泡等の小滴の粒径、3次元における分布状態、及び3次元における速度分布を同時にかつ正確に測定することができるようになるという優れた効果が得られる。
【図面の簡単な説明】
【図1】本発明の測定の基本原理を説明するための概念構成図
【図2】液滴の結像における光線軌跡の焦点面に対する関係を示す光学特性図
【図3】ノズルから噴出する噴霧の瞬間画像に被測定領域の表示を挿入した合成図
【図4】被測定領域Bの焦点面における噴霧を視覚化した画像および液滴の輝点対のサンプルを示す撮影図
【図5】ある輝点対およびその画像の自己相関関数のパターン図
【図6】被測定領域A内において同定された個々の液滴粒径を測定した結果の分析例を示すヒストグラム
【図7】(a)は被測定領域Saにおける生の撮影図、(b)は速度分布に関する分析を行った後の速度パターン図
【図8】第1、第2カメラのほかに更に別のカメラを併設した実施形態の例を示す概略斜視図
【図9】本発明の実施形態に係る状態計測装置の具体的構成を示す全体概略正面図
【図10】同斜視図
【図11】カメラ設置機構の全体概略図斜視図
【図12】同要部拡大斜視図
【図13】位置決めバーを用いてカメラ設置機構により被測定領域の設定を行うときの説明図
【図14】にらみ角を調整するときの具体的手法の例の説明図
【符号の説明】
10…状態計測装置
12…レーザ照射機構
14…第1カメラ
16…第2カメラ
18a、18b…コンピュータ(演算手段)
26…第3カメラ
28…第4カメラ
30…センタカメラ
LS…放射シート光
W…放射シート光の厚さ
S(A、B)…被測定領域
θ…にらみ角
α…ステレオ角

Claims (14)

  1. 3次元空間に存在する液滴や気泡等の小滴の状態を計測するための小滴の状態計測装置において、
    計測対象となる小滴が存在する空間に対し、薄幅シート状の放射シート光を照射可能なレーザ照射機構と、
    前記放射シート光内の被測定領域に存在する各小滴に該放射シート光が照射されることによって各小滴毎にそれぞれ2個得られる点状の光の群を、前記放射シート光が照射されている範囲外から合焦点画像で捉える第1のカメラと、
    前記点状の光の群を、前記放射シート光が照射されている範囲外であって且つ前記第1のカメラと異なる角度から合焦点画像で捉える第2のカメラと、を備え、
    前記第1、第2のカメラによって捉えられた前記点状の光の群のそれぞれの合焦点画像に基づいて、前記被測定領域内の小滴または小滴群を、それぞれの小滴毎に2個得られる点状の光で構成される輝点対または輝点対群の態様で3次元空間内で同定可能に構成した
    ことを特徴とする小滴の状態計測装置。
  2. 請求項1において、
    前記第1、第2のカメラによる点状の光の群の撮像画像を、所定の時間間隔で2セット以上取得可能に構成した
    ことを特徴とする小滴の状態計測装置。
  3. 請求項1または2において、
    前記放射シート光が小滴に照射されて得られる2個の点状の光として、当該小滴の0次反射光と一次屈折光が選択されている
    ことを特徴とする小滴の状態計測装置。
  4. 請求項1〜3のいずれかにおいて、
    前記輝点対の間隔を自己相関法によって解析することにより前記小滴の径を計測する
    ことを特徴とする小滴の状態計測装置。
  5. 請求項1〜4のいずれかにおいて、
    前記放射シート光の幅方向の深さが可変とされている
    ことを特徴とする小滴の状態計測装置。
  6. 請求項1〜5のいずれかにおいて、
    前記第1、第2カメラのそれぞれの光軸が、前記放射シート光のシート平面と直角以外の角度で交差している
    ことを特徴とする小滴の状態計測装置。
  7. 請求項6において、
    前記第1、第2カメラのそれぞれの光軸と放射シート光のシート平面との交差角度が可変とされている
    ことを特徴とする小滴の状態計測装置。
  8. 請求項1〜7のいずれかにおいて、
    前記第1、第2カメラのそれぞれの光軸同士のなす角が可変とされている
    ことを特徴とする小滴の状態計測装置。
  9. 請求項1〜8のいずれかにおいて、
    前記第1、第2カメラの前記被測定領域に対する距離が可変とされている
    ことを特徴とする小滴の状態計測装置。
  10. 請求項1〜9のいずれかにおいて、
    前記第1、第2カメラによって撮影される前記被測定領域が、小滴の存在する空間内の任意の位置に設定可能とされている
    ことを特徴とする小滴の状態計測装置。
  11. 請求項1〜10のいずれかにおいて、
    前記第1、第2のカメラのほかに、更に、前記点状の光の群を、前記放射シート光が照射されている範囲外であって且つ前記第1、第2のカメラのいずれとも異なる角度から合焦点画像で捉えるチェックカメラを備え、
    前記第1、第2のカメラに加え、該チェックカメラによって捉えられた合焦点画像をも参照して、前記被測定領域内の小滴または小滴群を3次元空間内で同定可能とした
    ことを特徴とする小滴の状態計測装置。
  12. 請求項11において、
    前記チェックカメラが、前記第1、第2のカメラの光軸を含むカメラ平面内に自身の光軸を有し、且つ、第1、第2カメラの中央に相当する位置に設置される
    ことを特徴とする小滴の状態計測装置。
  13. 請求項1〜12のいずれかにおいて、
    前記第1、第2のカメラのほかに、該第1、第2のカメラのセットと同様の構成を有する少なくとも一対のカメラセットを併設した
    ことを特徴とする小滴の状態計測装置。
  14. 3次元空間に存在する液滴や気泡等の小滴の状態を計測するための小滴の状態計測方法において、
    計測対象となる小滴が存在する空間に対し、薄幅シート状の放射シート光をレーザ照射機構にて照射する手順と、
    前記放射シート光内の被測定領域に存在する各小滴に該放射シート光が照射されることによって各小滴毎にそれぞれ2個得られる点状の光の群を、前記放射シート光に対して互いに異なる角度から可視化した2枚の合焦点画像として同時に捉える手順と、
    該2枚の合焦点画像に基づいて、前記被測定領域内の各小滴または小滴群を、それぞれの小滴毎に2個得られる点状の光で構成される輝点対または輝点対群の態様で同定する手順と、
    を含むことを特徴とする小滴の状態計測方法。
JP2003161213A 2003-06-05 2003-06-05 小滴の状態計測装置、及び状態計測方法 Expired - Fee Related JP3875653B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003161213A JP3875653B2 (ja) 2003-06-05 2003-06-05 小滴の状態計測装置、及び状態計測方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003161213A JP3875653B2 (ja) 2003-06-05 2003-06-05 小滴の状態計測装置、及び状態計測方法

Publications (2)

Publication Number Publication Date
JP2004361291A JP2004361291A (ja) 2004-12-24
JP3875653B2 true JP3875653B2 (ja) 2007-01-31

Family

ID=34053736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003161213A Expired - Fee Related JP3875653B2 (ja) 2003-06-05 2003-06-05 小滴の状態計測装置、及び状態計測方法

Country Status (1)

Country Link
JP (1) JP3875653B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449696A (zh) * 2017-07-13 2017-12-08 华南农业大学 一种可切换方向的雾滴分布检测装置

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007263876A (ja) * 2006-03-29 2007-10-11 Miyazaki Prefecture レーザ回折・散乱式粒度分布測定法における校正方法および液体中の気泡の体積濃度の測定方法
JP4774517B2 (ja) * 2006-04-28 2011-09-14 国立大学法人埼玉大学 粒子計測装置および方法
WO2008109176A2 (en) 2007-03-07 2008-09-12 President And Fellows Of Harvard College Assays and other reactions involving droplets
JP5224756B2 (ja) * 2007-09-19 2013-07-03 学校法人同志社 液滴粒子撮像解析システムおよび解析方法
EP2235210B1 (en) 2007-12-21 2015-03-25 President and Fellows of Harvard College Methods for nucleic acid sequencing
US20110218123A1 (en) 2008-09-19 2011-09-08 President And Fellows Of Harvard College Creation of libraries of droplets and related species
EP3290531B1 (en) 2008-12-19 2019-07-24 President and Fellows of Harvard College Particle-assisted nucleic acid sequencing
US9056289B2 (en) 2009-10-27 2015-06-16 President And Fellows Of Harvard College Droplet creation techniques
JP5924077B2 (ja) * 2012-03-30 2016-05-25 ソニー株式会社 微小粒子分取装置及び微小粒子分取装置における軌道方向判定方法
WO2015069634A1 (en) 2013-11-08 2015-05-14 President And Fellows Of Harvard College Microparticles, methods for their preparation and use
EP3653727A1 (en) 2014-04-08 2020-05-20 University Of Washington Through Its Center For Commercialization Methods and apparatus for performing digital assays using polydisperse droplets
US11123297B2 (en) 2015-10-13 2021-09-21 President And Fellows Of Harvard College Systems and methods for making and using gel microspheres
CN110823758A (zh) * 2019-10-29 2020-02-21 西安交通大学 一种粉末密度分布的观测装置及图像处理和喷嘴优化方法
CN113624163B (zh) * 2021-08-11 2022-04-15 西南交通大学 一种基于三维激光扫描的碎石颗粒表面棱角度测量方法
CN114739316B (zh) * 2022-03-10 2022-12-20 江苏省肿瘤医院 手卫生消毒剂量释放测量仪器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449696A (zh) * 2017-07-13 2017-12-08 华南农业大学 一种可切换方向的雾滴分布检测装置
CN107449696B (zh) * 2017-07-13 2019-06-28 华南农业大学 一种可切换方向的雾滴分布检测装置

Also Published As

Publication number Publication date
JP2004361291A (ja) 2004-12-24

Similar Documents

Publication Publication Date Title
JP3875653B2 (ja) 小滴の状態計測装置、及び状態計測方法
US9217669B2 (en) One-dimensional global rainbow measurement device and measurement method
JP2007315976A (ja) 微小液滴・気泡・粒子の位置・粒径・速度測定の方法と装置
US10254404B2 (en) 3D measuring machine
Gomit et al. Free surface measurement by stereo-refraction
DE112009005524B3 (de) Vorrichtung und Verfahren zum Messen von sechs Freiheitsgraden
JP4568800B2 (ja) 小滴の状態計測装置及び該装置におけるカメラの校正方法
Maeda et al. Improvements of the interferometric technique for simultaneous measurement of droplet size and velocity vector field and its application to a transient spray
Kumar et al. Automated droplet size distribution measurements using digital inline holography
US6587208B2 (en) Optical system for measuring diameter, distribution and so forth of micro bubbles and micro liquid drop
US8134703B2 (en) Apparatus for the quality control of nozzles
CN108333145B (zh) 一种icf靶丸的检测新装置及定位方法
TW201120687A (en) Method and system for positioning by using optical speckle
CN110118706A (zh) 一种层析扫描式的喷雾场分布测量方法
CN101469975A (zh) 光学检测仪器和方法
JP3211825B1 (ja) 微小気泡及び微小液滴の径及び分布等の測定方法と装置
CN104931725A (zh) 正交两分量同时测量的流场多点干涉瑞利散射测速装置
JP2011247601A (ja) 微小流動場撮影装置
JP2007327966A (ja) 光源モジュールおよびこれを用いた位置計測システム
CN207787994U (zh) 一种基于宽带激光频域三维切割装置
JP2003535319A (ja) 距離測定用および/または面傾斜度測定用の光センサ
JPH03289504A (ja) 気泡計測装置
CN213657775U (zh) 一种对称双接收直射式激光三角位移传感器
JP3711892B2 (ja) 3次元表面形状測定方法
Kobayashi et al. Measurement of spray flow by an improved interferometric laser imaging droplet sizing (ILIDS) system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061010

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees