JP3875596B2 - Functional ultrapure water production method and apparatus used therefor - Google Patents

Functional ultrapure water production method and apparatus used therefor Download PDF

Info

Publication number
JP3875596B2
JP3875596B2 JP2002187173A JP2002187173A JP3875596B2 JP 3875596 B2 JP3875596 B2 JP 3875596B2 JP 2002187173 A JP2002187173 A JP 2002187173A JP 2002187173 A JP2002187173 A JP 2002187173A JP 3875596 B2 JP3875596 B2 JP 3875596B2
Authority
JP
Japan
Prior art keywords
specific resistance
carbon dioxide
ultrapure water
resistance value
dissolved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002187173A
Other languages
Japanese (ja)
Other versions
JP2004025078A (en
Inventor
信二 久波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
NGK Filtech Ltd
Original Assignee
NGK Insulators Ltd
NGK Filtech Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd, NGK Filtech Ltd filed Critical NGK Insulators Ltd
Priority to JP2002187173A priority Critical patent/JP3875596B2/en
Publication of JP2004025078A publication Critical patent/JP2004025078A/en
Application granted granted Critical
Publication of JP3875596B2 publication Critical patent/JP3875596B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、炭酸ガスを溶解した超純水の製造方法及びそれに用いる装置に関するものである。
【0002】
【従来の技術】
超純水へ炭酸ガスを溶解させることで、超純水の電気抵抗値だけを下げた機能性超純水が知られている。この機能性超純水は、マスク・レチクル洗浄水、スクラバー洗浄水、ジェットスプレー洗浄水、ダイサー用ブレード水、LCDの各洗浄工程で使用される洗浄水などとして使用され、静電気によるゴミの再付着を防止するとともに、静電破壊を防止する機能を有している。
【0003】
このような機能性超純水において、炭酸ガスの溶解のためにはイオン化する解離時間が必要である。通常はこの解離時間を、超純水に炭酸ガスを混入させてから実際にその機能性超純水を使用するユースポイントまでの配管の距離で稼いでいる。そして、炭酸ガス量の調整は、配管の所定の箇所に設けた測定点で炭酸ガスを注入した超純水の比抵抗値を測定し、測定した比抵抗値が制御値(制御比抵抗)となるようにフィードバック制御することで行っている。または、超純水の流量を測定して、炭酸ガスは完全解離するものとして、測定した流量に応じた炭酸ガスを超純水へ注入するフィードバック制御を行い、炭酸ガス量の調整を行っている。
【0004】
【発明が解決しようとする課題】
上述した炭酸ガス量の調整のうち、比抵抗を測定するだけで行う制御では、炭酸ガスの解離時間を配管の距離で取っているので、流量変動時の追従性が遅くなる問題があった。また、解離時間が充分でない場合や超純水の流量が変動した場合に、この炭酸ガスの解離の程度による影響で、比抵抗値の測定点での比抵抗の変動がおき、ユースポイントでの比抵抗は制御値に対し低くなる問題もあった。そのため、超純水の比抵抗の変動幅を小さく抑えるには、この炭酸ガスの解離の動向を把握して、制御方法に反映させる必要があることがわかった。
【0005】
一方、上述した炭酸ガス量の調整のうち、超純水の流量を測定する制御では、超純水流量が変動した場合に、その変動に応じて注入すべき炭酸ガス流量が適正な流量になるまでに多くの時間を要してしまう問題があった。
【0006】
本発明は上述した課題を解消して、超純水に炭酸ガスを溶解させて機能性超純水を得るにあたり、比抵抗のみを測定してもユースポイントでの炭酸ガス量を所定の値に正確に調整することができる機能性超純水の製造方法及びそれに用いる装置を提供しようとするものである。
【0007】
【課題を解決するための手段】
本発明の機能性超純水の製造方法は、炭酸ガスを溶解した機能性超純水の製造方法において、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定して、測定した比抵抗値に基づきユースポイントにおける超純水の比抵抗値を、炭酸ガスが不完全解離状態での比抵抗値と、ユースポイントにおける比抵抗値と、超純水の流量との関係を示す予め求めた相関データを利用して予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御することを特徴とするものである。
【0008】
本発明の機能性超純水の製造方法では、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定して、測定した比抵抗値に基づき解離が進行した状態での超純水の比抵抗値を予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御することで、機能性超純水におけるユースポイントでの炭酸ガス溶解量を一定に精度良く調整することができる。また、超純水の流量の変動時の追従性も早くなる。
【0009】
本発明の機能性超純水の製造方法の好適例としては、炭酸ガス溶解量の制御を、炭酸ガスの流路を複数に分岐させ、各分岐した流路にそれぞれ流量抵抗の異なるフィルターを設置し、これらのフィルターの前又は後に流路を遮断するバルブを設け、バルブの開閉により行うこと、及び、炭酸ガスの流路に設けたマスフローコントローラーにより行うこと、がある。いずれの場合も、本発明の機能性超純水をより好適に製造することができる。
【0010】
また、本発明の機能性超純水の製造装置では、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定するため、超純水の配管の所定位置に設けた比抵抗計センサーと、比抵抗計センサーで測定した比抵抗値に基づきユースポイントにおける超純水の比抵抗値を、炭酸ガスが不完全解離状態での比抵抗値と、ユースポイントにおける比抵抗値と、超純水の流量との関係を示す予め求めた相関データを利用して予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御する制御部と、を備えること、上記機能性超純水の製造方法を好適に実施することができる。
【0011】
本発明の機能性超純水の製造装置の好適例としては、比抵抗計センサーの設置位置を、超純水に溶解した炭酸ガスの解離度が完全解離となる配管長さの50%以下の所定の位置とするとともに、解離が進行した状態での超純水の比抵抗を予測する位置を、完全解離となる配管長さの90%以上の所定の位置とすることがある。さらに、制御部での炭酸ガスの溶解量の制御を、炭酸ガスが不完全解離状態での比抵抗値と、炭酸ガスの溶解が進行した状態での比抵抗値との関係を示す予め求めた相関データを利用して、比抵抗計センサーで測定した比抵抗値から予測した比抵抗値を求め、求めた予測比抵抗値が制御値となるように、炭酸ガスの供給量を段数分けしてこの段数毎に制御比抵抗値を変えて炭酸ガス溶解量を制御して行うこと、及び、制御部での炭酸ガスの溶解量の制御を、相関データに加えて、超純水の流量と解離が進行した状態での比抵抗値との関係を示す予め求めた相関データをも考慮して行うこと、がある。いすれの場合も本発明の機能性超純水製造装置をより好適に構成することができる。
【0012】
【発明の実施の形態】
本発明の機能性超純水の製造方法及びそれに用いる装置における最大の特徴は、炭酸ガスを溶解した機能性超純水を製造するにあたり、炭酸ガスが不完全解離状態での超純水の比抵抗値を測定するだけで、炭酸ガスの解離が進行した状態、通常は、炭酸ガスが完全に解離した状態での超純水の比抵抗値(これがユースポイントにおける機能性超純水の比抵抗値、すなわち、炭酸ガスの溶解量となる)を予測し、予測した比抵抗値が制御値となるように、炭酸ガス溶解量を制御する点である。
【0013】
すなわち、好適な一例として、超純水に炭酸ガス注入後のある測定点(この位置では炭酸ガスは不完全解離状態である)での比抵抗値と、注入した炭酸ガスがほぼ解離した位置(ユースポイント)の比抵抗値との関係を、予め相関データとして求めておく。そして、予め求めておいた相関データに基づき、比抵抗の測定点でのフィードバック制御による制御比抵抗値を、ユースポイントにおけるユーザが希望する比抵抗値(炭酸ガス溶解量に対応)から求め、測定点における比抵抗値が求めた制御比抵抗値となるように炭酸ガスの供給量を制御している。また、他の好適例として、炭酸ガスの調整量は設定値として比例積分動作(フィードバック制御)させているが、流量変動初期の比抵抗値の変動幅で超純水流量変動を予測して素早く制御値となるようにしている。
【0014】
本発明で対象とする機能性超純水の製造装置では、製造装置とユースポイントとが離れていることが多い。このような場合、従来のように、製造装置内の炭酸ガスが不完全解離状態での比抵抗値がユースポイントでの比抵抗値になるものとしてフィードバック制御を行うと、炭酸ガスの解離が進行したすなわち通常は完全解離したユースポイントにおいて、正確に比抵抗値すなわち炭酸ガス溶解量の制御を行うことができない。通常、流量にもよるがユースポイントでの比抵抗値は測定点での比抵抗値よりも低くなる。この点を、予め求めた相関データに基づき、ユースポイントでの比抵抗値を予測し、その予測した比抵抗値に基づき測定点での制御比抵抗値を決定してフィードバック制御を行うことで、製造装置から離れているユースポイントでの炭酸ガス溶解量をユーザの望み通りの値に正確に制御することができる。
【0015】
本発明におけるユースポイントの比抵抗の予測方法は、以下の通りである。図1は測定点(不完全解離状態)での制御比抵抗値を、比抵抗と純水流量との関係で、ユースポイント(完全解離状態)の目標比抵抗値毎に示したグラフである。図1では、炭酸ガスの注入ポイントから内径19mmで2m後の測定点における制御比抵抗値を、ユースポイントで希望する比抵抗値(2、1、0.5、0.3、0.2、0.1(MΩ・cm))毎に示している。また、純水の最大流量は30L/minと決定し、炭酸ガス流量を16段階で分割している。純水流量30L/minを16段階に分割すると、電磁弁の流路段数で純水流量が対応するようになる。この各流路段数の時の制御比抵抗値を、炭酸ガスの完全解離の比抵抗(ユースポイントの比抵抗)になるようにしている。例えば、ユースポイントの比抵抗値を1MΩ・cmで制御する場合、純水流量最大30L/cmで電磁弁全開で、測定点での制御比抵抗値は2.8MΩ・cmとなる。電磁弁の開度で制御比抵抗値は変わる。
【0016】
次に、本発明の機能性超純水の製造装置の構成について説明する。図2は本発明の機能性超純水の製造装置の一例の構成を示す図である。図2に示す例において、本発明の機能性超純水の製造装置1は、炭酸ガス注入装置11と制御装置31とから構成されている。炭酸ガス注入装置11は、炭酸ガスボンベ12と、ガス流量調整部13と、炭酸ガス注入部14と、比抵抗計センサー15とを、流路16、17、18で接続して構成されている。
【0017】
上述した構成の機能性超純水の製造装置1では、炭酸ガスボンベ12から供給される炭酸ガスは、流路16を介してガス流量調整部13へ供給され、制御装置31の制御のもと、注入すべき炭酸ガス量を調整する。所定の注入量となった炭酸ガスは、さらに流路17を介して炭酸ガス注入部14へ供給される。炭酸ガス注入部14において、超純水に炭酸ガスを注入し、比抵抗計センサー15を通過した後、流路19を介してユースポイント20まで供給されて使用される。
【0018】
上述した構成は従来例とほぼ同じであり、図2に示す本発明の機能性超純水の製造装置1で従来例と異なる点は、比抵抗計センサー15で測定した超純水の比抵抗値を制御装置31で制御して、ユースポイント20における炭酸ガス溶解量を調整することである。
【0019】
ここで重要なのは、比抵抗計センサー15を、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定できるように、炭酸ガス注入部14に近い位置、本例では、炭酸ガス注入部14から2m離れた位置に設ける点である。そして、制御装置31において、比抵抗計センサー15で測定した比抵抗値に基づき、炭酸ガスの溶解が進行した状態、通常は、炭酸ガスが完全解離した状態の超純水の比抵抗値、図2に示す例では、比抵抗計センサー15から10m以上離れた位置のユースポイント20における超純水の比抵抗値を予測し、予測した比抵抗値が制御値となるように、炭酸ガス溶解量を制御する。すなわち、予測したユースポイント20の比抵抗値が制御値となるように、比抵抗計センサー15での被測定値が、予め求めた相関データに基づき、予測した比抵抗値から得られる制御比抵抗値となるように、比抵抗計センサー15、制御装置31、ガス流量調整部13との間でフィードバック制御を行っている。
【0020】
なお、図2に示す例において、比抵抗計センサー15を炭酸ガス注入部14から2m離れた位置に設け、ユースポイント20を比抵抗計センサー15から10m以上離れた位置に設けている。しかし、これは一例であって、比抵抗計センサー15は炭酸ガスが不完全解離状態での超純水の比抵抗値を測定できる位置ならいずれの位置でも良く、また、ユースポイント20も解離が進行した状態での超純水の比抵抗値を測定できる位置ならいずれの位置でも良い。好適例として、比抵抗計センサー15の設置位置を、超純水に溶解した炭酸ガスの解離度が完全解離となる配管長さの50%以下の所定の位置とするとともに、解離が進行した状態での超純水の比抵抗を予測する位置を、完全解離となる配管長さの90%以上の所定の位置とする。
【0021】
図3は炭酸ガス注入部14の一例の構成を示す図である。図3に示す例において、炭酸ガスの流路16を4個に分岐して、各分岐した流路にはそれぞれ流量抵抗の異なるフィルター21−1〜21−4を設置するとともに、これらのフィルター21−1〜21−4の前に流路を遮断するバルブ22−1〜22−4を設けて、バルブ22−1〜22−4の開閉の組み合わせで炭酸ガスの流量をコントロールしている。従って、流路を4個に分岐したこの組み合わせで、0〜15までの16段階の炭酸ガスの流路段数を有する。また、超純水入口23と制御水出口24とを有するセル25の内部には疎水性の膜26を設置し、膜26の外側に超純水を流す一方膜26の内側に炭酸ガスを供給して、超純水に炭酸ガスを注入している。そして、炭酸ガス注入後の超純水は制御水出口24から流路18へ供給される。
【0022】
【実施例】
図2及び図3に示す構成の機能性超純水の製造装置を用い、従来例として、炭酸ガス溶解量の制御を比抵抗計センサーを利用したフィードバック制御のみで行った▲1▼比抵抗の測定ポイントが制御値となる制御と、本発明例として、ユースポイントでの予測を加味した▲2▼炭酸ガスが完全解離と流量変動予測する制御と、さらに、本発明例として、図2及び図3に示す装置にさらに流量計を設置し、超純水の流量をも加味した制御を行う▲3▼流量信号による比抵抗制御と、の3例について、実際にユースポイントにおける比抵抗の変動を求め比較した。
【0023】
各例とも以下に示す同じ条件下で比較した。まず、超純水の最大流量は30L/minとし、流路は内径19mmの配管とし、比抵抗計センサーは炭酸ガス注入部から2mの位置とした。比抵抗計センサーで目標値とする制御比抵抗値、ユースポイントにおいて炭酸ガスが完全解離した比抵抗値となるように、炭酸ガスの流路段数毎に変えてフィードバック制御を行った。なお、表示する比抵抗は完全解離した比抵抗を換算して表示している。制御方法は、フィードバック制御時の比例積分動作に加えて、流量変動初期の比抵抗変動値で純水流量の変動を予測して、炭酸ガス量を調整する制御も加えてある。
【0024】
確認のため、ほぼ完全解離している10m後の比抵抗値を同時に測定して表示させた。炭酸ガス流量を調整するフィルターに供給する炭酸ガス圧力は、比抵抗1MΩ・cmの時0.05MPa、比抵抗0.5MΩ・cmの時0.2MPa、比抵抗0.2MΩ・cmの時0.9MPaとした。▲3▼の制御の場合は、流量信号による比抵抗制御を行った。これは、流量信号でバルブ段数を割り当てと比抵抗の設定値近辺での比例積分動作を行った制御を行うことで実施される。実際に、純水流量を30→20→10→5→10→20→30L/minと変動させた。制御比抵抗値は、1MΩ・cm、0.5MΩ・cm、0.2MΩ・cmで制御させた。上記▲1▼、▲2▼、▲3▼の制御結果をそれぞれ図4、図5、図6に示す。
【0025】
図4、図5、図6の結果から、図5、図6に示す本発明例は図4に示す従来例と比較して、流量変動する場合の制御比抵抗値の制御性が良くなることが分かる。純水流量が多い場合(10L/min以上)と制御比抵抗値が高い場合(0.5MΩ・cm以上)及び比抵抗測定点を極端に炭酸ガス注入位置の近辺に配置する場合に、炭酸ガスの解離時間の影響が大きいことが分かる。この時、連続的に流れる超純水の流量が変動する時に比抵抗値変動幅は小さくなり、注入精度を向上させることができた。また、このことより、制御値と、ユースポイントで使用する超純水の比抵抗値をほぼ同じに制御することができるようになった。
【0026】
特に、純水最大流量が大きい装置では、炭酸ガスの解離時間が90%以上進むポイントはかなり遠い位置になってしまうが、そのような場合でも本発明のように予測制御させることにより、比抵抗計センサーによる比抵抗の測定を装置近傍で行うだけで正確な制御を行うことができる。本発明例▲2▼、▲3▼の例を比較すると、精度的には、流量センサーを備えた▲3▼の例と同等の制御を▲2▼の流量センサーを備えない例でも出来るようになった。▲2▼のように比抵抗のみを測定する装置は、シンプルでコンパクトである。
【0027】
上述した例では、炭酸ガス溶解量の制御を、炭酸ガスの流路を複数に分岐させ、各分岐した流路にそれぞれ流量抵抗の異なるフィルターを設置し、これらのフィルターの前または後に流路を遮断するバルブを設け、バルブの開閉により行っている。しかし、炭酸ガス溶解量の制御が上記方法に限定されないことはいうまでもない。その一例として、炭酸ガス溶解量の制御を、炭酸ガスの流路に設けたマスフローコントローラーにより行うこともできる。
【0028】
炭酸ガスの溶解量の制御にマスフローコントローラーを使用する場合は、通常は流量センサーを取り付けてこの信号に対応するようにマスフローコントローラーで炭酸ガス量を調整する。純水の流量計の信号を使用しないでも、純水の最大流量が既知であれば、上記の同じ制御をさせることが出来る。すなわち、炭酸ガスの最大流量の信号を16分割して、比抵抗値だけを測定して制御させる。流路段数で純水流量が対応するようになるので、この各流路段数の時の制御比抵抗値を、炭酸ガスの完全解離の比抵抗になるようにする。流量センサーで流量を測定してマスフローコントローラーで炭酸ガスを調整して比抵抗値を確認する作業が、比抵抗を測定してマスフローコントローラーで炭酸ガスを調整するだけで済むようになる。しかも、炭酸ガスの完全解離する超純水を測定する訳ではないので、装置はコンパクトになる。
【0029】
【発明の効果】
以上の説明から明らかなように、本発明によれば、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定して、測定した比抵抗値に基づき解離が進行した状態での超純水の比抵抗値を予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御しているため、機能性超純水におけるユースポイントでの炭酸ガス溶解量を一定に精度良く調整することができる。また、超純水の流量の変動時の追従性も早くなる。
【図面の簡単な説明】
【図1】本発明におけるユースポイントにおける比抵抗値を予測する方法を証明するためのグラフである。
【図2】本発明の機能性超純水の製造装置の一例の構成を示す図である。
【図3】本発明の機能性超純水の製造装置における炭酸ガス注入部の一例の構成を示す図である。
【図4】従来例の比抵抗の測定ポイントが制御値となる制御の結果を示すグラフである。
【図5】本発明例の炭酸ガスの完全解離で流量変動予測による制御の結果を示すグラフである。
【図6】本発明例の流量信号による比抵抗制御の結果を示すグラフである。
【符号の説明】
1 機能性超純水の製造装置、11 炭酸ガス注入装置、12 炭酸ガスボンベ、13 ガス流量調整部、14 炭酸ガス注入部、15 比抵抗計センサー、16、17、18、19 流路、20 ユースポイント、21−1〜21−4 フィルター、22−1〜22−4 バルブ、23 超純水入口、24 制御水出口、25 セル、26 膜、31 制御装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing ultrapure water in which carbon dioxide gas is dissolved and an apparatus used therefor.
[0002]
[Prior art]
Functional ultrapure water in which only the electric resistance value of ultrapure water is reduced by dissolving carbon dioxide gas in ultrapure water is known. This functional ultrapure water is used as mask / reticle cleaning water, scrubber cleaning water, jet spray cleaning water, dicer blade water, cleaning water used in each LCD cleaning process, etc. And has a function of preventing electrostatic breakdown.
[0003]
In such functional ultrapure water, ionization dissociation time is required to dissolve carbon dioxide. Usually, this dissociation time is earned by the distance of the piping from mixing carbon dioxide into ultrapure water to the point of use where the functional ultrapure water is actually used. And adjustment of the amount of carbon dioxide gas measures the specific resistance value of the ultrapure water which injected carbon dioxide gas at the measurement point provided in the predetermined part of piping, and the measured specific resistance value is a control value (control specific resistance). This is done by feedback control. Or, the flow rate of ultrapure water is measured and the carbon dioxide gas is completely dissociated, and feedback control is performed to inject carbon dioxide gas into the ultrapure water according to the measured flow rate, and the amount of carbon dioxide gas is adjusted. .
[0004]
[Problems to be solved by the invention]
Among the adjustments of the carbon dioxide amount described above, in the control performed only by measuring the specific resistance, the dissociation time of the carbon dioxide gas is taken by the distance of the pipe, so that there is a problem that the followability at the time of flow rate fluctuation is slow. In addition, when the dissociation time is not sufficient or the flow rate of ultrapure water fluctuates, the specific resistance fluctuates at the measurement point of the specific resistance value due to the degree of dissociation of the carbon dioxide gas. There was also a problem that the specific resistance was lower than the control value. Therefore, it was found that in order to keep the fluctuation range of the resistivity of ultrapure water small, it is necessary to grasp the trend of dissociation of carbon dioxide and reflect it in the control method.
[0005]
On the other hand, in the control for measuring the flow rate of the ultrapure water among the adjustment of the carbon dioxide amount described above, when the flow rate of the ultrapure water changes, the flow rate of the carbon dioxide gas to be injected according to the change becomes an appropriate flow rate. There was a problem that took a lot of time until.
[0006]
The present invention solves the above-described problems, and in obtaining carbon dioxide in ultrapure water to obtain functional ultrapure water, the carbon dioxide gas amount at the point of use is set to a predetermined value even if only specific resistance is measured. An object of the present invention is to provide a method for producing functional ultrapure water that can be accurately adjusted and an apparatus used therefor.
[0007]
[Means for Solving the Problems]
The method for producing functional ultrapure water according to the present invention is a method for producing functional ultrapure water in which carbon dioxide gas is dissolved. In the method for producing functional ultrapure water, the specific resistance value of ultrapure water in an incompletely dissociated state is measured. The specific resistance value of ultrapure water at the point of use based on the measured specific resistance value, the specific resistance value when carbon dioxide is in an incompletely dissociated state, the specific resistance value at the point of use, and the flow rate of ultrapure water The amount of carbon dioxide dissolved is controlled so that the predicted specific resistance value becomes a control value by using the correlation data obtained in advance .
[0008]
In the method for producing the functional ultrapure water of the present invention, the specific resistance value of the ultrapure water is measured when the dissolved carbon dioxide gas is in an incompletely dissociated state, and the dissociation proceeds based on the measured specific resistance value. By predicting the specific resistance value of ultrapure water and controlling the amount of carbon dioxide dissolved so that the predicted specific resistance value becomes the control value, the amount of carbon dioxide dissolved at the point of use in functional ultrapure water is kept constant. It can be adjusted with high accuracy. In addition, the follow-up performance when the flow rate of ultrapure water is changed is also accelerated.
[0009]
As a preferred example of the method for producing functional ultrapure water of the present invention, the amount of carbon dioxide dissolved is controlled by dividing the flow path of carbon dioxide into a plurality of channels, and a filter having a different flow resistance is installed in each branched flow path. However, there is a case where a valve for shutting off the flow path is provided before or after these filters, which is performed by opening / closing the valve, or by a mass flow controller provided in the flow path of carbon dioxide gas. In any case, the functional ultrapure water of the present invention can be more suitably produced.
[0010]
Further, in the functional ultrapure water production apparatus of the present invention, the ratio of the ultrapure water piping provided at a predetermined position in order to measure the specific resistance value of the ultrapure water when the dissolved carbon dioxide gas is in an incompletely dissociated state. The resistivity value of ultrapure water at the point of use based on the resistivity value measured with the resistance meter sensor and the resistivity meter sensor, the resistivity value when carbon dioxide is incompletely dissociated, and the resistivity value at the point of use A control unit that predicts using correlation data obtained in advance showing the relationship with the flow rate of ultrapure water, and controls the amount of carbon dioxide dissolved so that the predicted specific resistance value becomes a control value, The said manufacturing method of functional ultrapure water can be implemented suitably.
[0011]
As a preferable example of the functional ultrapure water production apparatus of the present invention, the specific resistance meter sensor is installed at a position where the dissociation degree of carbon dioxide dissolved in the ultrapure water is 50% or less of the pipe length at which complete dissociation occurs. While setting it as a predetermined position, the position which estimates the specific resistance of the ultrapure water in the state which dissociation advanced may be made into the predetermined position 90% or more of the piping length used as complete dissociation. Furthermore, the control of the amount of carbon dioxide dissolved in the control unit was obtained in advance to show the relationship between the specific resistance value when the carbon dioxide gas is in an incompletely dissociated state and the specific resistance value when the carbon dioxide gas has been dissolved. Using the correlation data, calculate the specific resistance value predicted from the specific resistance value measured by the specific resistance sensor, and divide the carbon dioxide supply amount into stages so that the calculated specific resistance value becomes the control value. The control specific resistance value is changed for each number of stages to control the amount of carbon dioxide dissolved, and the control of the amount of carbon dioxide dissolved in the control unit is added to the correlation data in addition to the flow rate and dissociation of ultrapure water. In some cases, the correlation data obtained in advance showing the relationship with the specific resistance value in a state where the process proceeds has also been taken into consideration. In any case, the functional ultrapure water production apparatus of the present invention can be configured more suitably.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The greatest feature of the method for producing functional ultrapure water and the apparatus used therefor according to the present invention is that the ratio of ultrapure water in which carbon dioxide is in an incompletely dissociated state in producing functional ultrapure water in which carbon dioxide is dissolved. By measuring the resistance value, the specific resistance value of ultrapure water in the state in which carbon dioxide gas dissociation has progressed, usually in the state in which carbon dioxide gas has completely dissociated (this is the specific resistance value of functional ultrapure water at the point of use) Value, that is, the amount of carbon dioxide dissolved), and the amount of carbon dioxide dissolved is controlled so that the predicted specific resistance value becomes the control value.
[0013]
That is, as a preferred example, the specific resistance value at a certain measurement point after carbon dioxide injection into ultrapure water (the carbon dioxide is in an incompletely dissociated state at this position) and the position where the injected carbon dioxide is almost dissociated ( The relationship between the use point and the specific resistance value is obtained in advance as correlation data. Based on the correlation data obtained in advance, the control specific resistance value by feedback control at the specific resistance measurement point is obtained from the specific resistance value (corresponding to the dissolved amount of carbon dioxide gas) desired by the user at the use point and measured. The supply amount of carbon dioxide gas is controlled so that the specific resistance value at the point becomes the calculated control specific resistance value. As another preferred example, the adjustment amount of the carbon dioxide gas is proportionally integrated (feedback control) as a set value. However, the fluctuation amount of the specific resistance value at the beginning of the flow rate fluctuation is predicted to quickly change the flow rate of the ultrapure water. The control value is set.
[0014]
In the production apparatus for functional ultrapure water targeted by the present invention, the production apparatus and the use point are often separated. In such a case, if the feedback control is performed on the assumption that the specific resistance value in the incomplete dissociation state of the carbon dioxide gas in the manufacturing apparatus becomes the specific resistance value at the use point as in the conventional case, the dissociation of the carbon dioxide gas proceeds. In other words, the specific resistance value, that is, the amount of carbon dioxide dissolved cannot be accurately controlled at the use point that is normally completely dissociated. Usually, although it depends on the flow rate, the specific resistance value at the use point is lower than the specific resistance value at the measurement point. By predicting the specific resistance value at the use point based on the correlation data obtained in advance, and by performing feedback control by determining the control specific resistance value at the measurement point based on the predicted specific resistance value. The amount of carbon dioxide dissolved at the use point away from the manufacturing apparatus can be accurately controlled to a value desired by the user.
[0015]
The use point specific resistance prediction method in the present invention is as follows. FIG. 1 is a graph showing the control specific resistance value at the measurement point (incompletely dissociated state) for each target specific resistance value at the use point (completely dissociated state) in relation to the specific resistance and the pure water flow rate. In FIG. 1, the control specific resistance value at the measurement point 2 m after the inner diameter of 19 mm from the carbon dioxide injection point is the desired specific resistance value (2, 1, 0.5, 0.3, 0.2, 0.1 (MΩ · cm)). The maximum flow rate of pure water is determined to be 30 L / min, and the carbon dioxide gas flow rate is divided into 16 stages. When the pure water flow rate of 30 L / min is divided into 16 stages, the pure water flow rate corresponds to the number of flow path stages of the solenoid valve. The control specific resistance value at each channel stage number is set to the specific resistance of carbon dioxide gas completely dissociated (specific resistance at the use point). For example, when the specific resistance value at the use point is controlled at 1 MΩ · cm, the control specific resistance value at the measurement point is 2.8 MΩ · cm when the solenoid valve is fully opened at a pure water flow rate of 30 L / cm at the maximum. The control specific resistance value varies depending on the opening of the solenoid valve.
[0016]
Next, the configuration of the functional ultrapure water production apparatus of the present invention will be described. FIG. 2 is a diagram showing the configuration of an example of the production apparatus for functional ultrapure water of the present invention. In the example shown in FIG. 2, the functional ultrapure water production apparatus 1 according to the present invention includes a carbon dioxide gas injection device 11 and a control device 31. The carbon dioxide gas injection device 11 is configured by connecting a carbon dioxide gas cylinder 12, a gas flow rate adjusting unit 13, a carbon dioxide gas injection unit 14, and a resistivity sensor 15 through flow paths 16, 17, and 18.
[0017]
In the functional ultrapure water production apparatus 1 having the above-described configuration, the carbon dioxide gas supplied from the carbon dioxide gas cylinder 12 is supplied to the gas flow rate adjusting unit 13 through the flow path 16, and is controlled by the control device 31. Adjust the amount of carbon dioxide to be injected. The carbon dioxide gas having reached a predetermined injection amount is further supplied to the carbon dioxide gas injection section 14 via the flow path 17. In the carbon dioxide injection section 14, carbon dioxide is injected into ultrapure water, and after passing through the resistivity sensor 15, it is supplied to the use point 20 through the flow path 19 and used.
[0018]
The configuration described above is almost the same as that of the conventional example, and the functional ultrapure water production apparatus 1 of the present invention shown in FIG. 2 is different from the conventional example in that the specific resistance of ultrapure water measured by the specific resistance sensor 15 is used. The value is controlled by the control device 31 to adjust the amount of carbon dioxide dissolved at the use point 20.
[0019]
What is important here is that the specific resistance meter sensor 15 is positioned close to the carbon dioxide injection section 14 so that the specific resistance value of the ultrapure water when the dissolved carbon dioxide is in an incompletely dissociated state, in this example, carbon dioxide. It is a point provided at a position 2 m away from the gas injection part 14. Then, in the control device 31, based on the specific resistance value measured by the specific resistance sensor 15, the specific resistance value of the ultrapure water in a state where the dissolution of the carbon dioxide gas has progressed, normally, the carbon dioxide gas is completely dissociated, FIG. 2, the specific resistance value of ultrapure water at the use point 20 at a position 10 m or more away from the specific resistance meter sensor 15 is predicted, and the dissolved amount of carbon dioxide gas so that the predicted specific resistance value becomes the control value. To control. That is, the measured specific resistance value obtained by the specific resistance meter sensor 15 based on the correlation data determined in advance is obtained from the predicted specific resistance value so that the predicted specific resistance value of the use point 20 becomes the control value. Feedback control is performed among the specific resistance sensor 15, the control device 31, and the gas flow rate adjustment unit 13 so as to be a value.
[0020]
In the example shown in FIG. 2, the specific resistance meter sensor 15 is provided at a position 2 m away from the carbon dioxide injection part 14, and the use point 20 is provided at a position 10 m or more away from the specific resistance meter sensor 15. However, this is merely an example, and the specific resistance meter sensor 15 may be in any position as long as it can measure the specific resistance value of ultrapure water in a state where carbon dioxide is incompletely dissociated, and the use point 20 is also dissociated. Any position where the specific resistance value of ultrapure water in the advanced state can be measured is acceptable. As a preferred example, the specific resistance meter sensor 15 is installed at a predetermined position where the dissociation degree of carbon dioxide dissolved in ultrapure water is not more than 50% of the pipe length at which complete dissociation occurs, and the dissociation has progressed. The position at which the specific resistance of ultrapure water is predicted is a predetermined position that is 90% or more of the pipe length for complete dissociation.
[0021]
FIG. 3 is a diagram showing a configuration of an example of the carbon dioxide gas injection unit 14. In the example shown in FIG. 3, the carbon dioxide gas flow path 16 is branched into four, and the filters 21-1 to 21-4 having different flow resistances are installed in the branched flow paths, and these filters 21. Valves 22-1 to 22-4 for blocking the flow paths are provided in front of -1 to 21-4, and the flow rate of carbon dioxide gas is controlled by a combination of opening and closing of the valves 22-1 to 22-4. Therefore, this combination of four flow paths has 16 flow stages of carbon dioxide gas from 0 to 15. Further, a hydrophobic membrane 26 is installed inside the cell 25 having the ultrapure water inlet 23 and the control water outlet 24, and carbon dioxide gas is supplied to the inside of the membrane 26 while allowing the ultrapure water to flow outside the membrane 26. Then, carbon dioxide gas is injected into the ultrapure water. Then, the ultrapure water after carbon dioxide gas injection is supplied from the control water outlet 24 to the flow path 18.
[0022]
【Example】
Using the functional ultrapure water production apparatus configured as shown in FIGS. 2 and 3, as a conventional example, the amount of carbon dioxide dissolution was controlled only by feedback control using a resistivity meter sensor. The control where the measurement point becomes a control value, the control example for predicting the complete dissociation of the carbon dioxide gas and the flow rate fluctuation in consideration of the prediction at the use point as an example of the present invention, and the present invention example as shown in FIGS. In addition, the flow meter is installed in the device shown in Fig. 3, and control is performed in consideration of the flow rate of ultrapure water. Sought and compared.
[0023]
Each example was compared under the same conditions shown below. First, the maximum flow rate of ultrapure water was 30 L / min, the flow path was a pipe having an inner diameter of 19 mm, and the specific resistance meter sensor was positioned 2 m from the carbon dioxide injection part. Feedback control was performed by changing the flow rate of the carbon dioxide gas flow rate so that the specific resistance value as a target value by the resistivity meter sensor and the specific resistance value at which the carbon dioxide gas was completely dissociated at the use point were obtained. In addition, the specific resistance to display is converted into the specific resistance after complete dissociation. In addition to the proportional integral operation during feedback control, the control method includes control for adjusting the amount of carbon dioxide gas by predicting the fluctuation of the pure water flow rate with the specific resistance fluctuation value at the initial stage of the flow fluctuation.
[0024]
For confirmation, the specific resistance value after 10 m after almost complete dissociation was simultaneously measured and displayed. The pressure of carbon dioxide supplied to the filter for adjusting the flow rate of carbon dioxide is 0.05 MPa when the specific resistance is 1 MΩ · cm, 0.2 MPa when the specific resistance is 0.5 MΩ · cm, and 0. The pressure was 9 MPa. In the case of control (3), specific resistance control was performed using a flow rate signal. This is implemented by performing control by assigning the number of valve stages by the flow rate signal and performing a proportional integration operation near the set value of the specific resistance. Actually, the flow rate of pure water was changed from 30 → 20 → 10 → 5 → 10 → 20 → 30 L / min. Control specific resistance values were controlled at 1 MΩ · cm, 0.5 MΩ · cm, and 0.2 MΩ · cm. The control results of (1), (2), and (3) above are shown in FIGS. 4, 5, and 6, respectively.
[0025]
4, 5, and 6, the control example of the control specific resistance value when the flow rate fluctuates is better in the example of the present invention shown in FIGS. 5 and 6 than in the conventional example shown in FIG. 4. I understand. Carbon dioxide gas when the flow rate of pure water is large (10 L / min or more), when the control specific resistance value is high (0.5 MΩ · cm or more), and when the specific resistance measurement point is placed extremely near the carbon dioxide injection position It can be seen that the influence of the dissociation time is large. At this time, when the flow rate of the continuously flowing ultrapure water fluctuates, the specific resistance fluctuation range becomes small, and the injection accuracy can be improved. In addition, this makes it possible to control the control value and the specific resistance value of the ultrapure water used at the use point substantially the same.
[0026]
In particular, in a device having a large pure water maximum flow rate, the point where the dissociation time of carbon dioxide gas proceeds by 90% or more is far away, but even in such a case, by performing predictive control as in the present invention, the specific resistance is increased. Accurate control can be performed simply by measuring the specific resistance with a meter sensor in the vicinity of the apparatus. Comparing the examples (2) and (3) of the present invention, it is possible to accurately control the same control as the example (3) with the flow sensor even in the example without the flow sensor (2). became. The device that measures only the specific resistance as in (2) is simple and compact.
[0027]
In the above-described example, the amount of carbon dioxide dissolved is controlled by dividing the flow path of carbon dioxide into a plurality of channels, and installing a filter with a different flow resistance in each branched flow path, and setting the flow path before or after these filters. A shut-off valve is provided and the valve is opened and closed. However, it goes without saying that the control of the amount of dissolved carbon dioxide gas is not limited to the above method. As an example, the amount of carbon dioxide dissolved can be controlled by a mass flow controller provided in the carbon dioxide flow path.
[0028]
When a mass flow controller is used to control the amount of carbon dioxide dissolved, a flow sensor is usually attached and the amount of carbon dioxide is adjusted with the mass flow controller so as to respond to this signal. Even if the pure water flowmeter signal is not used, the same control as described above can be performed if the maximum flow rate of pure water is known. That is, the signal of the maximum flow rate of carbon dioxide gas is divided into 16 and only the specific resistance value is measured and controlled. Since the flow rate of pure water corresponds to the number of channel stages, the control specific resistance value at each channel stage number is set to the specific resistance of complete dissociation of carbon dioxide gas. The work of measuring the flow rate with the flow sensor and adjusting the carbon dioxide gas with the mass flow controller to check the specific resistance value only requires measuring the specific resistance and adjusting the carbon dioxide gas with the mass flow controller. Moreover, since the ultrapure water from which carbon dioxide gas is completely dissociated is not measured, the apparatus becomes compact.
[0029]
【The invention's effect】
As apparent from the above description, according to the present invention, the dissolved carbon dioxide gas measures the specific resistance value of ultrapure water in an incompletely dissociated state, and the dissociation proceeds based on the measured specific resistance value. The amount of carbon dioxide dissolved at the point of use in functional ultrapure water is controlled by predicting the specific resistance value of ultrapure water at the water and controlling the amount of carbon dioxide dissolved so that the predicted specific resistance value becomes the control value. Can be adjusted to a constant accuracy. In addition, the follow-up performance when the flow rate of ultrapure water is changed is also accelerated.
[Brief description of the drawings]
FIG. 1 is a graph for proving a method for predicting a specific resistance value at a use point according to the present invention.
FIG. 2 is a diagram showing a configuration of an example of a production apparatus for functional ultrapure water according to the present invention.
FIG. 3 is a diagram showing a configuration of an example of a carbon dioxide injection unit in the functional ultrapure water production apparatus of the present invention.
FIG. 4 is a graph showing a result of control in which a measurement point of specific resistance in a conventional example becomes a control value.
FIG. 5 is a graph showing the result of control based on the prediction of flow rate fluctuations in the complete dissociation of carbon dioxide gas in the present invention example.
FIG. 6 is a graph showing a result of specific resistance control by a flow rate signal of an example of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Functional ultrapure water production apparatus, 11 Carbon dioxide gas injection device, 12 Carbon dioxide gas cylinder, 13 Gas flow rate adjustment part, 14 Carbon dioxide gas injection part, 15 Resistivity meter sensor, 16, 17, 18, 19 Channel, 20 Use Point, 21-1 to 21-4 filter, 22-1 to 22-4 valve, 23 ultrapure water inlet, 24 control water outlet, 25 cells, 26 membranes, 31 controller

Claims (4)

炭酸ガスを溶解した機能性超純水の製造方法において、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定して、測定した比抵抗値に基づきユースポイントにおける超純水の比抵抗値を、炭酸ガスが不完全解離状態での比抵抗値と、ユースポイントにおける比抵抗値と、超純水の流量との関係を示す予め求めた相関データを利用して予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御することを特徴とする機能性超純水の製造方法。In the method for producing functional ultrapure water in which carbon dioxide is dissolved, the specific resistance value of ultrapure water when the dissolved carbon dioxide gas is in an incompletely dissociated state is measured, and ultrapure water at the point of use is determined based on the measured specific resistance value. The specific resistance value of water is predicted using correlation data obtained in advance showing the relationship between the specific resistance value when carbon dioxide is incompletely dissociated, the specific resistance value at the point of use, and the flow rate of ultrapure water. A method for producing functional ultrapure water, wherein the amount of carbon dioxide dissolved is controlled so that the predicted specific resistance value becomes a control value. 前記炭酸ガス溶解量の制御を、炭酸ガスの流路を複数に分岐させ、各分岐した流路にそれぞれ流量抵抗の異なるフィルターを設置し、これらのフィルターの前又は後に流路を遮断するバルブを設け、バルブの開閉により行う請求項1記載の機能性超純水の製造方法。For controlling the amount of dissolved carbon dioxide, a flow path for carbon dioxide gas is divided into a plurality of channels, and a filter having a different flow resistance is installed in each branched flow path, and a valve for blocking the flow path before or after these filters is provided. The method for producing functional ultrapure water according to claim 1, wherein the method is performed by opening and closing a valve. 前記炭酸ガス溶解量の制御を、炭酸ガスの流路に設けたマスフローコントローラーにより行う請求項1記載の機能性超純水の製造方法。The method for producing functional ultrapure water according to claim 1, wherein the amount of carbon dioxide dissolved is controlled by a mass flow controller provided in a carbon dioxide flow path. 請求項1〜3のいずれか1項に記載の機能性超純水の製造方法に用いる装置において、溶解した炭酸ガスが不完全解離状態での超純水の比抵抗値を測定するため、超純水の配管の所定位置に設けた比抵抗計センサーと、比抵抗計センサーで測定した比抵抗値に基づきユースポイントにおける超純水の比抵抗値を、炭酸ガスが不完全解離状態での比抵抗値と、ユースポイントにおける比抵抗値と、超純水の流量との関係を示す予め求めた相関データを利用して予測し、予測した比抵抗値が制御値となるように炭酸ガス溶解量を制御する制御部と、を備えることを特徴とする機能性超純水の製造装置。In the apparatus used for the manufacturing method of the functional ultrapure water of any one of Claims 1-3, in order to measure the specific resistance value of the ultrapure water in which the dissolved carbon dioxide gas is in an incompletely dissociated state, The specific resistance value of the ultrapure water at the point of use based on the specific resistance value sensor measured at the specified position of the pure water pipe and the specific resistance value measured by the specific resistance sensor is the ratio when carbon dioxide is incompletely dissociated. Predicted using correlation data obtained in advance showing the relationship between the resistance value, the specific resistance value at the point of use, and the flow rate of ultrapure water, and the amount of carbon dioxide dissolved so that the predicted specific resistance value becomes the control value And a control unit that controls the functional ultrapure water manufacturing apparatus.
JP2002187173A 2002-06-27 2002-06-27 Functional ultrapure water production method and apparatus used therefor Expired - Lifetime JP3875596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002187173A JP3875596B2 (en) 2002-06-27 2002-06-27 Functional ultrapure water production method and apparatus used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002187173A JP3875596B2 (en) 2002-06-27 2002-06-27 Functional ultrapure water production method and apparatus used therefor

Publications (2)

Publication Number Publication Date
JP2004025078A JP2004025078A (en) 2004-01-29
JP3875596B2 true JP3875596B2 (en) 2007-01-31

Family

ID=31182289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002187173A Expired - Lifetime JP3875596B2 (en) 2002-06-27 2002-06-27 Functional ultrapure water production method and apparatus used therefor

Country Status (1)

Country Link
JP (1) JP3875596B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8448925B2 (en) 2006-10-17 2013-05-28 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
US7731161B2 (en) * 2006-10-17 2010-06-08 Mks Instruments, Inc. Devices, systems, and methods for carbonation of deionized water
JP2010115639A (en) * 2008-10-18 2010-05-27 Viita Kk Method and apparatus for adjusting ph
JP5577106B2 (en) * 2010-01-15 2014-08-20 株式会社トライテック Ultrapure water specific resistance adjustment method and ultrapure water treatment device

Also Published As

Publication number Publication date
JP2004025078A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
TWI399627B (en) Method and apparatus for in situ testing of gas flow controllers
US8019481B2 (en) Flow rate ratio control device
JP2005196788A (en) Apparatus, method and system for controlling fluid flow
TWI534576B (en) Gas shunt supply device and gas shunt supply method
KR20090075816A (en) Diagnostic mechanism in differential pressure type mass flow controller
JPH11202945A (en) Self-diagnosing method for mass flow controller
TW201537324A (en) Pressure-type flow rate control device
TWI696057B (en) Method of determining output flow rate of flow rate control device
KR20170071426A (en) Gas flow monitoring method and gas flow monitoring apparatus
JP2018018351A (en) Pressure type flow rate control device
US10386864B2 (en) Mass flow controller and a method for controlling a mass flow rate
JPH11223538A (en) Mass flow controller flow rate testing system
US11504676B2 (en) Systems and methods for gas disposal
JP2013232101A (en) Gas distributary supply device for semiconductor manufacturing device
JP3875596B2 (en) Functional ultrapure water production method and apparatus used therefor
JP2008506116A (en) Method and system for flow measurement and mass flow regulator validation
TW202028909A (en) Concentration control apparatus, zero point adjustment method, and concentration control apparatus program
JP2009252147A (en) Fluid split-flow supply unit
JPH09155180A (en) Liquid mixing device
JP2013104694A (en) Simulated gas supply device
JPH11294631A (en) Flow rate controller
JPS6312391A (en) Method and apparatus for controlling specific resistance of ultra-pure water
JP2006200776A (en) Gas meter
JP4925493B1 (en) Mixed gas flow rate control device and exhaust gas purification catalyst evaluation device
JP2007038179A (en) Gas mixer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060620

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Ref document number: 3875596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

EXPY Cancellation because of completion of term