JP3875322B2 - Vacuum heat treatment furnace - Google Patents

Vacuum heat treatment furnace Download PDF

Info

Publication number
JP3875322B2
JP3875322B2 JP27426696A JP27426696A JP3875322B2 JP 3875322 B2 JP3875322 B2 JP 3875322B2 JP 27426696 A JP27426696 A JP 27426696A JP 27426696 A JP27426696 A JP 27426696A JP 3875322 B2 JP3875322 B2 JP 3875322B2
Authority
JP
Japan
Prior art keywords
heat treatment
gas
heater
gas blowing
treatment furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27426696A
Other languages
Japanese (ja)
Other versions
JPH10103874A (en
Inventor
丈夫 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP27426696A priority Critical patent/JP3875322B2/en
Publication of JPH10103874A publication Critical patent/JPH10103874A/en
Application granted granted Critical
Publication of JP3875322B2 publication Critical patent/JP3875322B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は真空熱処理炉に関するものであり、更に詳しくは加熱時間の短縮化、および熱処理雰囲気の均一化を図った真空熱処理炉に関するものである。
【0002】
【従来の技術】
図4は従来使用されている縦型2室式の真空熱処理炉100の縦断面図である。真空熱処理炉100は被処理物Tを搬入し搬出するための前室101と真空下に熱処理するための真空室111とからなり、それらの境には両室の間を気密に開閉する仕切弁102が設けられている。
【0003】
前室101は側面に被処理物Tを搬入搬出するための開閉扉103、底部には真空室111との間で被処理物Tを昇降させるための支持台104をシャフト106の頂部に備え、その下方には上昇時に後述の熱処理区画116を閉塞するための断熱板105をシャフト106に取り付けた昇降用シリンダ107が設けられている。
【0004】
また、扉103と対向する側にはモーターファン108が取り付けられ、その風道の周囲にはフィン付きの筒状熱交換器109が取り付けられており、前室101内の空気または不活性ガスを循環させて熱処理後の被処理物Tを冷却するようになっている。
【0005】
真空室111は鋼板の二重壁構造として冷却水が通水可能な側壁112、および同様な構造の上蓋113で外殻が構成されている。真空室111内には、金属性リフレクタが張設された断熱材115で囲われて熱処理区画116が形成されている。また、熱処理区画116内には断熱材115の内面に近接してグラファイト製のヒーター117が配置されており、側壁112に設けた給電端子118に接続されている。更には必要な場合に、熱処理区画116内に反応性のガスを吹き込むためのガス吹出管121が設けられている。
【0006】
上記の真空熱処理炉100によって、被処理物Tは次ぎのように熱処理される。定常状態においては、真空室111内は常時真空排気系によって排気されている。昇降用シリンダ107のシャフト106が下降され、仕切弁102が閉じられた状態において、開閉扉103を開けて被処理物Tが搬入され、昇降用シリンダ107の支持台104に載置されて開閉扉103が閉じられる。
【0007】
次いで仕切弁102が開けられ、昇降用シリンダ107のシャフト106が上昇されて、被処理物Tは熱処理区画116内へ装填され、シャフト106に取り付けられている断熱板105によって熱処理区画116は閉塞される。そして、ヒーター117に通電され、熱処理区画116内を所定の温度に保持して被処理物Tの熱処理が行なわれる。必要な場合には不活性ガスまたは反応性のガスがガス吹出管121から導入される。
【0008】
所定の熱処理時間の経過後、ヒーター117の加熱が停止され、ガスが導入されている場合にはそれを停止し、昇降用シリンダ107のシャフト106が下降されて、被処理物Tは前室101内へ降ろされ仕切弁102が閉じられる。次いで、図示しない配管から大気または不活性ガスが前室101内へ導入されると共に、モーターファン108が起動され、前室101内の空気または不活性ガスが筒状熱交換器109で冷却され循環されることにより被処理物Tは冷却され、冷却の完了後、開閉扉103から外部へ取り出される。
【0009】
【発明が解決しようとする課題】
従来例の真空熱処理炉100によって熱処理を行なう場合、加熱に長時間を要するほか、吹き込まれるガスの熱処理区画116内における分布も均一でないという不都合な点がある。
【0010】
図4に示すように、ヒーター117は熱処理区画116内において断熱材115に近接して、すなわち、被処理物Tの外周側にのみ設けられているので、加熱時間は真空熱処理炉100が大型になり熱処理区画116の容積が大になるに従って長時間化する。図5、図6は外寸法の異なる熱処理領域T1 、T2 内で複数の被処理物Tを熱処理する場合に生じる昇温速度の差を概念的に示す図である。図5のAは外周上の点a、中心点bを持つ半径rの円柱状の熱処理領域T1 、図5のBは外周上の点A、中心点Bを持つ半径Rの円柱状の熱処理領域T2 であり、その外周上の点a、またはAは何れもヒーター117から同一の距離にある。これらの熱処理領域T1 、T2 の上記各点における加熱時間と温度は図6に示すようになる。すなわち、外周面のa点、A点の温度は熱処理領域T1 、T2 の外寸法に関係なく同一曲線に従って時間と共に上昇するのに対し、外寸法の大きい熱処理領域T2 の中心点Bの温度上昇は外寸法の小さい熱処理領域T1 の中心点bよりも遅れる。
【0011】
図7は昇温速度に差が発生する理由を説明する図である。熱処理領域には対流する気体が存在しないので、ヒーター117の熱は輻射のみによって伝えられるが、図7に示すように、複数の被処理物TA 、 TB 、 TC が並べて多段に載置されており(多段に載置するための部材は図7において省略されている)、輻射熱が直接に中心部まで届かない場合には、ヒーター117から被処理物TA への輻射熱で被処理物TA が昇温され、被処理物TA から被処理物TB への輻射熱で被処理物TB が昇温され、被処理物TB から被処理物TC への輻射熱で被処理物TC が昇温されるようなプロセスを辿るので、中心部の被処理物TC の昇温は遅れ、熱処理領域内での保持時間をかなり長くしなければ外周側の被処理物TA と同程度の温度にすることはできない。この時間遅れはヒーター117から熱処理領域の中心部までの距離、すなわちヒーター117からヒーター間の中立点までの距離Lに大約比例する。
【0012】
また、図4に示すように、ガス吹出管121は被処理物Tの上方に設置されており、その部分の拡大図である図8において、ガスは矢印で示すようにダウンブローに流され、被処理物TA、TB、TCが多段に載置されている場合に、外周部への流れが大で中央部の被処理物TCはガスとの接触が不十分となり、反応性のガスを使用する場合には全体を均一に処理することは困難で、その改善が求められている。
【0013】
【課題を解決するための手段】
本発明の真空熱処理炉は、熱処理区画内へ装填される被処理物の中心部となるようにガス吹込管を設置し、ガス吹込管に複数のガス吹出孔を開口して、被処理物に対しガスが均一に接触するようにしている
【0014】
また本発明の真空熱処理炉は、熱処理区画を囲う断熱材の内面に近接してヒーターを設けると共に、熱処理区画内へ装填される被処理物の中心部となるようにガス吹込管兼用の筒状のヒーターを設けて、被処理物を外周側と中心部とから加熱するようにしている
【0015】
そして、ガス吹込管兼用の筒状のヒーターは内筒と外筒とが直列に接続された二重筒として内筒と外筒をそれぞれ給電端子に接続すると共に、ガスは内筒へ供給して連通孔から外筒へ導き、外筒の外周面に多段にガス吹出孔を設けたものとしている
【0016】
【発明の実施の形態】
以下、本発明の実施の形態による真空熱処理装置について、図面を参照して説明する。
【0017】
図1は実施の形態の真空熱処理装置に置ける真空室11の断面図である。真空室11の下方に設けられる仕切弁や冷却ファン、昇降用シリンダを備えた前室は従来例の真空熱処理装置100と全く同様に設けられているので、それらの説明は省略する。
【0018】
真空室11は鋼板の二重構造として冷却水が通水可能な側壁12、および同様な構造の上蓋13で外郭が構成され、その内部に金属製リフレクタが張設された断熱材15で囲われ熱処理区画16が形成されていることは従来例の真空熱処理装置100と同様である。更には、熱処理区画16内において、断熱材15の内面に近接してヒーター17が設けられており、側壁12に設けた筒状部14内に固定されている銅製の水冷電極端子19と一体的なモリブデン製の導電軸18に接続されている。
【0019】
そして、本発明構成する筒状のヒーター21が熱処理区画16の中央部に天井面から挿入され、下方から被処理物Tを載置して挿入される支持台4にほぼ達する長さに垂下されている。ヒーター21は二重筒とされ、内筒22と外筒23とが直列に接続されて電気回路が形成されており、それぞれは上蓋13に設けられた水冷電極端子32、36に接続されている。すなわち、外筒23の下端部において、内筒22と外筒23とは導電性の環状栓24によって電気的に接続され、内筒22の下端部には絶縁性の円柱栓26が嵌入されている。他方、外筒23の上端部においては、内筒22と外筒23とは絶縁性の環状栓25によって絶縁されている。
【0020】
また、内筒22はその外周端部に固定した電極バー34を介し、上蓋13に設けた筒状部31内に固定されている銅製の水冷電極端子32と一体的なモリブデン製の導電軸33に接続されている。同じく外筒23もその外周端部に固定した電極バー38を介して、上蓋13に設けた筒状部35内に固定されている水冷電極36と一体的な導電軸37に接続されている。
【0021】
更にはこのヒーター21はガスの吹込管として兼用されるようになっている。すなわち、上蓋13に設けたガス導入端子42に外部のガス供給源41が接続され、ガス導入端子42に付属するノズル43が内筒22の上端にかぶせた絶縁性のキャップ44に挿通されている。そして、内筒22には、外筒23内の上方に位置して、内筒22と外筒23との連通孔45が開口されており、外筒23の熱処理区画16内に挿入されている部分には、多段に載置される被処理物Tの各段間にガスが放射状に流れ込むように、ガス吹出孔46が多段に、かつ各段において円周を4等分する位置に開口されている。なお、図1において、ヒーター21は明確に示すために太く画かれており、実際にはヒーター17と同程度の径である。また、支持台4上に被処理物Tを多段に載置するための部材は省略されている。そのほか、熱処理区画16は支持台4が挿入されると同時に底面が断熱板5によって閉塞される。なおガスとしては不活性ガスまたは反応性ガスが導入される。すなわち不活性ガスは炉内圧力の調整、被処理物Tからの放出ガスの除去、昇温の加速に、また反応性ガスは被処理物Tの変性と昇温の加速を目的として導入される。
【0022】
本実施の形態による真空熱処理炉の真空室11は以上のように構成されているが、次ぎにその作用を説明する。真空室11を含む真空熱処理炉としての基本的な作用は従来例の真空熱処理炉100と同様であるので説明の重複は避け、従来例の真空熱処理炉100の真空室111と異なる作用を主体に説明する。
【0023】
真空室11の熱処理区画16内へ下方から支持台4に多段に載置された被処理物Tが装填されると共に、熱処理区画16の底面が断熱板5で閉塞される。次いで、被処理物Tの外周側のヒーター17と中央部のヒーター21とが通電され、熱処理区画16内が所定の温度に保持されて、被処理物Tの熱処理が行なわれる。同時にガス供給源41から反応性のガスが導入されるものとする。反応性のガスはノズル43から内筒22内を下降し連通孔45を経由して外筒23内へ流れ込み、外筒23に多段に、かつ各段において90度の等角度間隔に開口されているガス吹出孔46から被処理物Tの段間へ放射状に均等に吹き出される。
【0024】
所定の熱処理時間が経過すると、反応性のガスの導入が停止され、ヒーター17、21への通電が停止されると共に、支持台4が下降され、被処理物Tは冷却されて外部へ取り出される。
【0025】
以上に説明したように、本実施の形態の真空熱処理炉における真空室11の熱処理区画16は被処理物Tを外周側から加熱するヒーター17と中央部から加熱するヒーター21とを有しているので、加熱の所要時間が大幅に短縮される。従来例の真空熱処理炉100における熱伝達を説明した図7に対応するものとして、本実施の形態の真空熱処理炉の熱処理区画16内における熱伝達を図2で説明する。図2は熱処理区画16内に複数の被処理物TA 、TB が多段に並べて載置されている場合を示すが、被処理物TA 、TB の外周側となるヒーター17と共に中心部にヒーター21が設けられている。図2において、被処理物TA は主としてヒーター17の輻射熱によって、被処理物TB は主としてヒーター21の輻射熱によってそれぞれ直接に加熱され、被処理物TA の昇温を待って被処理物TA の輻射熱により被処理物TB が昇温されるというようなプロセスではない。
【0026】
従来例においては、ヒーター117から加熱区画116の中心部までの距離、すなわち、ヒーター117からヒーター間中立点までの距離がLであったに対して、本実施の形態の加熱区画16ではこの距離が(L/2)となるので、被処理物TA 、TB を所定の温度まで昇温させるに要する時間が短縮され、昇温速度が非常に早い真空熱処理炉となる。中心部にヒーター21を設けることにより、加熱区画16の有効容積は当然減少するが、熱処理区画16の有効直径が600mm以上である場合、その減少率は5%以下となるので、生産性の向上に対しては、中心部にヒーター21を設けることによる熱処理速度増大の効果の方が大きい。
【0027】
また、図3はガス吹込管に兼用されるヒーター21の部分を示し、図3のAはその縦断面図、図3のBは図3のAにおける[B]−[B]線方向の断面図である。被処理物Tは外筒23の周囲に多段に載置され、ガス吹出孔46が外筒23に、かつ各段において90度の等角度間隔に開口されているので、ガスは載置された被処理物Tの各段の段間を中心部から外周側へ放射状に広がって流れる。反応性のガスを流して被処理物Tと反応させるような熱処理を行なう場合には、反応が均一に進むので最適である。また、ヒーター21と兼用され、専用の設置スペースを必要としないので、真空熱処理炉の有効容積を低下させず、生産性の点で好ましい。
【0028】
以上、本発明の実施の形態について説明したが、勿論、本発明はこれに限られることなく、本発明の技術的精神に基づいて種々の変形が可能である。
【0029】
例えば本実施の形態においては、真空熱処理炉にはガス吹込管を兼用するヒーターを設けたが、ガス吹込管を兼用させずに中央部にヒーターのみを設けるようにしてもよく、また場合によっては、ヒーターを兼用させずに中央部にガス吹込管のみを設けるようにしてもよい。
【0030】
また本実施の形態においては、上下2室型の真空熱処理炉について説明したが、被処理物Tの外周側と同時に被処理物の中心部に設けるヒーターおよびガス吹込管は1室型の真空熱処理炉にも適用され得る。
【0031】
また本実施の形態においては、熱処理区画16の中心部に設けるガス吹込管兼用のヒーター21を二重筒として、ガス吹き込み用のノズル43を内筒22へ挿入したが、直接に外筒23へ挿入するようにしてもよい。
【0032】
また本実施の形態においては、ガス吹込管兼用のヒーター21を二重筒としたが、一重筒を縦割りにし絶縁材を挟み込んで両半割り部を直列に接続すると共に上下の両端を塞いで形成される一重筒にガス吹出孔を開口して、ヒーターとガス吹込管とを兼用させるようにしてもよく、本発明のガス吹込管を兼ねるヒーターは被処理物Tの中心部に位置するように設置される限りにおいて、その形状は問わない。
【0033】
また本実施の形態においては、熱処理区画16は円筒状としたが、角筒状としてもよいことはいうまでもない。
【0034】
【発明の効果】
本発明は以上に説明したような形態で実施され、次に記載するような効果を奏する。
【0035】
本願発明の請求項1および請求項2の真空熱処理炉によれば、支持台に多段に載置されて下方から加熱室の熱処理区画内へ装填される被処理物の中心部にガス吹込管が挿通され、ガス吹込管の外周面には多段に、そして各段においては外周側ヘ向かって等角度間隔に配置された複数のガス吹出孔から放射状に不活性ガスまたは反応性ガスを吹き出して被処理物に均等に接触するようにしているので、反応性ガスを使用する場合には反応が均一に進行する
【0036】
請求項2の真空熱処理炉によれば、支持台に多段に載置されて下方から加熱室の熱処理区画へ装填される被処理物の外周側となる第1ヒーターのほかに、被処理物の中心部を挿通するようにガス吹込管兼用の第2ヒーターを設けているので、ヒーター間距離が短くなるだけ被処理物の昇温時間が短縮される中心部に第2ヒーターを設けることにより熱処理区画の内容積は減少するが、そのことよりも熱処理速度が向上する効果の方が大であり、真空熱処理炉の生産性を増大させる
【0037】
そして請求項3の真空熱処理炉によれば、第2ヒーターを内筒と外筒とが直列に接続された二重筒とし、内筒へ吹き込むガスが連通孔を経て外筒内へ導かれ、外筒の外周面のガス吹出孔から吹き出すようにして、第2ヒーターとガス吹込管と兼用させているので、これらの設置スペースが節減されて熱処理区画の有効容積が増大し、結果的に真空熱処理装置の生産性を向上させる
【図面の簡単な説明】
【図1】 実施の形態による真空熱処理炉の加熱室の縦断面図である。
【図2】 同加熱室の熱処理区画内における熱伝達を示す図である。
【図3】 同加熱室の熱処理区画内に挿入垂下されるヒーター兼用ガス吹込管の一部をガスの流れと共に示し、Aは縦断面図であり、BはAにおける[B]−[B]線方向の断面図である。
【図4】 従来例の2室型の真空熱処理炉の縦断面図である。
【図5】 図6と共に外寸法の異なる熱処理炉内で複数の被処理物を同時に熱処理する場合の昇温速度の差異を概念的に示す図であり、Aは外寸法の小さい熱処理領域の温度の測定点とヒーター位置を示し、Bは外寸法の大きい熱処理領域の同様な温度側定点を示す。
【図6】 図5の外寸法の異なる熱処理領域の各温度測定点における熱処理時間と温度の関係を示す図である。
【図7】 図6に示す外寸法の異なる熱処理領域において昇温速度の差異の発生を説明する図である。
【図8】 従来例におけるガス吹出管によるガスの流れを示す図である。
【符号の説明】
11 真空室
12 側壁
13 上蓋
15 断熱材
16 熱処理区画
17 ヒーター
18 導電軸
19 水冷電極端子
21 ヒーター
22 内筒
23 外筒
24 導電性環状栓
25 絶縁性円柱栓
26 絶縁性環状栓
32 水冷電極端子
33 導電軸
34 電極バー
36 水冷電極端子
37 導電軸
38 電極バー
41 ガス供給源
42 ガス導入端子
43 ノズル
44 絶縁性キャップ
45 連通孔
46 ガス吹出孔
100 従来例の真空熱処理炉
101 前室
102 仕切弁
103 開閉扉
104 支持台
105 断熱板
106 シャフト
107 昇降用シリンダ
108 モーターファン
109 熱交換器
111 真空室
121 ガス吹出管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum heat treatment furnace, and more particularly to a vacuum heat treatment furnace which shortens the heating time and makes the heat treatment atmosphere uniform.
[0002]
[Prior art]
FIG. 4 is a longitudinal sectional view of a conventionally used vertical two-chamber vacuum heat treatment furnace 100. The vacuum heat treatment furnace 100 includes a front chamber 101 for carrying in and carrying out the workpiece T and a vacuum chamber 111 for heat treatment under vacuum, and a gate valve for opening and closing between the two chambers at the boundary. 102 is provided.
[0003]
The front chamber 101 includes an opening / closing door 103 for loading and unloading the workpiece T on the side surface, and a support base 104 for raising and lowering the workpiece T between the vacuum chamber 111 at the bottom and a top portion of the shaft 106. Below that is provided an elevating cylinder 107 in which a heat insulating plate 105 for closing a heat treatment section 116 (described later) is attached to the shaft 106 when it is raised.
[0004]
In addition, a motor fan 108 is attached to the side facing the door 103, and a finned cylindrical heat exchanger 109 is attached around the air passage, and air or inert gas in the front chamber 101 is removed. The workpiece T after the heat treatment is circulated and cooled.
[0005]
The vacuum chamber 111 has an outer shell made up of a side wall 112 through which cooling water can flow and a top cover 113 having a similar structure as a double-wall structure of a steel plate. In the vacuum chamber 111, a heat treatment section 116 is formed by being surrounded by a heat insulating material 115 on which a metallic reflector is stretched. Further, a graphite heater 117 is disposed in the heat treatment section 116 in the vicinity of the inner surface of the heat insulating material 115, and is connected to a power supply terminal 118 provided on the side wall 112. Further, when necessary, a gas blow-out pipe 121 for blowing reactive gas into the heat treatment section 116 is provided.
[0006]
In the vacuum heat treatment furnace 100, the workpiece T is heat-treated as follows. In the steady state, the inside of the vacuum chamber 111 is always exhausted by the vacuum exhaust system. In a state where the shaft 106 of the lifting cylinder 107 is lowered and the gate valve 102 is closed, the opening / closing door 103 is opened, the workpiece T is loaded, and is placed on the support base 104 of the lifting cylinder 107 to be opened / closed. 103 is closed.
[0007]
Next, the gate valve 102 is opened, the shaft 106 of the lifting cylinder 107 is raised, the workpiece T is loaded into the heat treatment compartment 116, and the heat treatment compartment 116 is closed by the heat insulating plate 105 attached to the shaft 106. The Then, the heater 117 is energized, and the heat treatment of the workpiece T is performed while maintaining the inside of the heat treatment section 116 at a predetermined temperature. If necessary, an inert gas or a reactive gas is introduced from the gas blowing pipe 121.
[0008]
After the elapse of a predetermined heat treatment time, the heating of the heater 117 is stopped. When the gas is introduced, the heating is stopped, the shaft 106 of the lifting cylinder 107 is lowered, and the object T to be processed is placed in the front chamber 101. The gate valve 102 is closed and the gate valve 102 is closed. Next, air or an inert gas is introduced into the front chamber 101 from a pipe (not shown), and the motor fan 108 is started, and the air or the inert gas in the front chamber 101 is cooled and circulated by the cylindrical heat exchanger 109. As a result, the workpiece T is cooled, and after the cooling is completed, the workpiece T is taken out from the door 103.
[0009]
[Problems to be solved by the invention]
When heat treatment is performed by the vacuum heat treatment furnace 100 of the conventional example, there are disadvantages in that heating takes a long time and the distribution of the injected gas in the heat treatment section 116 is not uniform.
[0010]
As shown in FIG. 4, the heater 117 is provided close to the heat insulating material 115 in the heat treatment section 116, that is, only on the outer peripheral side of the workpiece T, so that the heating time of the vacuum heat treatment furnace 100 is large. As the volume of the heat treatment section 116 increases, the time increases. FIGS. 5 and 6 are diagrams conceptually showing the difference in the heating rate generated when the plurality of workpieces T are heat-treated in the heat-treated regions T 1 and T 2 having different outer dimensions. 5A shows a cylindrical heat treatment region T 1 having a radius r having a point a on the outer periphery and a center point b, and FIG. 5B shows a cylindrical heat treatment region having a radius R having a point A on the outer periphery and a center point B. In the region T 2 , the point a or A on the outer periphery thereof is at the same distance from the heater 117. The heating time and temperature at the above-mentioned points in these heat treatment regions T 1 and T 2 are as shown in FIG. That is, the temperatures at points a and A on the outer peripheral surface increase with time according to the same curve regardless of the outer dimensions of the heat treatment regions T 1 and T 2 , whereas the temperature at the center point B of the heat treatment region T 2 having a larger outer dimension. The temperature rise is delayed from the center point b of the heat treatment region T 1 having a small outer dimension .
[0011]
FIG. 7 is a diagram for explaining the reason for the difference in the heating rate. Since there is no convective gas in the heat treatment region, the heat of the heater 117 is transmitted only by radiation. However, as shown in FIG. 7, a plurality of objects to be processed TA, TB, TC are arranged in multiple stages. (Members to be placed in multiple stages are omitted in FIG. 7). When the radiant heat does not reach the central portion directly, the temperature of the object TA increases due to the radiant heat from the heater 117 to the object TA. A process in which the object TB is heated by radiant heat from the object TA to the object TB, and the object TC is heated by the radiant heat from the object TB to the object TC. Therefore, the temperature rise of the workpiece TC in the center is delayed, and the temperature cannot be set to the same level as that of the workpiece TA on the outer peripheral side unless the holding time in the heat treatment region is considerably increased. This time delay is roughly proportional to the distance from the heater 117 to the center of the heat treatment region, that is, the distance L from the heater 117 to the neutral point between the heaters.
[0012]
Moreover, as shown in FIG. 4, the gas blowing pipe 121 is installed above the to-be-processed object T, In FIG. 8 which is the enlarged view of the part, gas is made to flow down as shown by the arrow, When workpieces TA, TB, and TC are placed in multiple stages, the flow to the outer periphery is large, and the central workpiece TC is not in contact with the gas, and a reactive gas is used. In this case, it is difficult to uniformly process the whole, and improvement is required.
[0013]
[Means for Solving the Problems]
In the vacuum heat treatment furnace of the present invention, a gas blowing pipe is installed so as to be the central part of the workpiece to be loaded into the heat treatment section, and a plurality of gas blowing holes are opened in the gas blowing pipe to form the workpiece. The gas is in uniform contact .
[0014]
In addition, the vacuum heat treatment furnace of the present invention is provided with a heater in the vicinity of the inner surface of the heat insulating material surrounding the heat treatment section, and a cylindrical shape also serving as a gas blowing pipe so as to be a central portion of an object to be loaded into the heat treatment section. The object to be processed is heated from the outer peripheral side and the central part .
[0015]
The cylindrical heater also serving as a gas blowing pipe connects the inner cylinder and the outer cylinder to the power supply terminal as a double cylinder in which the inner cylinder and the outer cylinder are connected in series, and supplies gas to the inner cylinder. It leads to the outer cylinder from the communication hole, and gas outlet holes are provided in multiple stages on the outer peripheral surface of the outer cylinder .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a vacuum heat treatment apparatus according to an embodiment of the present invention will be described with reference to the drawings.
[0017]
FIG. 1 is a cross-sectional view of a vacuum chamber 11 that can be placed in the vacuum heat treatment apparatus of the embodiment. Since the front chamber provided with the gate valve, the cooling fan, and the raising / lowering cylinder provided below the vacuum chamber 11 is provided in the same manner as the vacuum heat treatment apparatus 100 of the conventional example, description thereof will be omitted.
[0018]
The vacuum chamber 11 is surrounded by a heat insulating material 15 in which an outer wall is configured by a side wall 12 through which cooling water can flow and a top cover 13 having a similar structure as a double structure of steel plates, and a metal reflector is stretched inside the vacuum chamber 11. The heat treatment section 16 is formed as in the conventional vacuum heat treatment apparatus 100. Further, in the heat treatment section 16, a heater 17 is provided in the vicinity of the inner surface of the heat insulating material 15, and is integrated with a copper water-cooled electrode terminal 19 fixed in a cylindrical portion 14 provided on the side wall 12. It is connected to a conductive shaft 18 made of molybdenum.
[0019]
And the cylindrical heater 21 which comprises this invention is inserted in the center part of the heat processing division 16 from a ceiling surface, and it hangs down to the length which reaches the support stand 4 inserted by mounting the to-be-processed object T from the downward direction. Has been. The heater 21 is a double cylinder, and an inner cylinder 22 and an outer cylinder 23 are connected in series to form an electric circuit, and each is connected to water-cooled electrode terminals 32 and 36 provided on the upper lid 13. . That is, at the lower end portion of the outer cylinder 23, the inner cylinder 22 and the outer cylinder 23 are electrically connected by a conductive annular plug 24, and an insulating cylindrical plug 26 is fitted into the lower end portion of the inner cylinder 22. Yes. On the other hand, at the upper end portion of the outer cylinder 23, the inner cylinder 22 and the outer cylinder 23 are insulated by an insulating annular plug 25.
[0020]
The inner cylinder 22 has a conductive shaft 33 made of molybdenum integral with a copper water-cooled electrode terminal 32 fixed in a cylindrical part 31 provided in the upper lid 13 through an electrode bar 34 fixed to the outer peripheral end portion thereof. It is connected to the. Similarly, the outer cylinder 23 is also connected to a conductive shaft 37 integral with a water-cooled electrode 36 fixed in a cylindrical portion 35 provided on the upper lid 13 via an electrode bar 38 fixed to the outer peripheral end portion thereof.
[0021]
Further, the heater 21 is also used as a gas blowing pipe. That is, an external gas supply source 41 is connected to a gas introduction terminal 42 provided on the upper lid 13, and a nozzle 43 attached to the gas introduction terminal 42 is inserted through an insulating cap 44 that covers the upper end of the inner cylinder 22. . The inner cylinder 22 is located above the outer cylinder 23, and a communication hole 45 between the inner cylinder 22 and the outer cylinder 23 is opened and inserted into the heat treatment section 16 of the outer cylinder 23. In the portion, gas blowout holes 46 are opened in multiple stages and at positions that divide the circumference into four equal parts in each stage so that the gas flows radially between the stages of the workpiece T placed in multiple stages. ing. In FIG. 1, the heater 21 is drawn thick for the sake of clarity, and actually has the same diameter as the heater 17. Further, members for placing the workpieces T on the support base 4 in multiple stages are omitted. In addition, the bottom surface of the heat treatment section 16 is closed by the heat insulating plate 5 at the same time as the support 4 is inserted. An inert gas or a reactive gas is introduced as the gas. That is, the inert gas is introduced for the purpose of adjusting the pressure in the furnace, removing the released gas from the workpiece T and accelerating the temperature rise, and the reactive gas is introduced for the purpose of denaturing the workpiece T and accelerating the temperature rise. .
[0022]
The vacuum chamber 11 of the vacuum heat treatment furnace according to the present embodiment is configured as described above. Next, the operation will be described. Since the basic operation of the vacuum heat treatment furnace including the vacuum chamber 11 is the same as that of the vacuum heat treatment furnace 100 of the conventional example, the description will not be repeated, and the operation different from that of the vacuum chamber 111 of the vacuum heat treatment furnace 100 of the conventional example will be mainly used. explain.
[0023]
A workpiece T placed in multiple stages on the support 4 is loaded into the heat treatment section 16 of the vacuum chamber 11 from below, and the bottom surface of the heat treatment section 16 is closed with the heat insulating plate 5. Next, the outer peripheral side heater 17 and the central heater 21 of the workpiece T are energized, the inside of the heat treatment section 16 is maintained at a predetermined temperature, and the workpiece T is heat-treated. At the same time, a reactive gas is introduced from the gas supply source 41. The reactive gas descends in the inner cylinder 22 from the nozzle 43 and flows into the outer cylinder 23 through the communication hole 45, and is opened in the outer cylinder 23 in multiple stages and at equal angular intervals of 90 degrees in each stage. The gas blowout holes 46 are blown out radially and uniformly between the stages of the workpiece T.
[0024]
When a predetermined heat treatment time elapses, the introduction of the reactive gas is stopped, the energization to the heaters 17 and 21 is stopped, the support base 4 is lowered, and the workpiece T is cooled and taken out to the outside. .
[0025]
As described above, the heat treatment section 16 of the vacuum chamber 11 in the vacuum heat treatment furnace of the present embodiment has the heater 17 for heating the workpiece T from the outer peripheral side and the heater 21 for heating from the center. Therefore, the time required for heating is significantly shortened. The heat transfer in the heat treatment section 16 of the vacuum heat treatment furnace according to the present embodiment will be described with reference to FIG. 2 as corresponding to FIG. 7 illustrating the heat transfer in the vacuum heat treatment furnace 100 of the conventional example. FIG. 2 shows a case where a plurality of workpieces TA 1, TB are placed in multiple stages in the heat treatment section 16, and a heater 21 is provided at the center along with the heater 17 on the outer peripheral side of the workpieces TA 2, TB 2. Is provided. In FIG. 2, the object to be processed TA is directly heated mainly by the radiant heat of the heater 17 and the object to be processed TB is directly heated mainly by the radiant heat of the heater 21, and the temperature of the object to be processed TA is increased. This is not a process in which the temperature of the workpiece TB is increased.
[0026]
In the conventional example, the distance from the heater 117 to the center of the heating section 116, that is, the distance from the heater 117 to the neutral point between the heaters is L, whereas in the heating section 16 of the present embodiment, this distance. (L / 2), the time required to raise the temperature of the workpieces TA 1 and TB 2 to a predetermined temperature is shortened, resulting in a vacuum heat treatment furnace having a very high temperature raising rate. By providing the heater 21 at the center, the effective volume of the heating section 16 is naturally reduced. However, when the effective diameter of the heat treatment section 16 is 600 mm or more, the reduction rate is 5% or less, so that productivity is improved. In contrast, the effect of increasing the heat treatment rate by providing the heater 21 in the center is greater.
[0027]
3 shows a portion of the heater 21 that is also used as a gas blowing pipe. FIG. 3A is a longitudinal sectional view thereof, and FIG. 3B is a sectional view taken along the line [B]-[B] in FIG. FIG. Since the workpiece T is placed in multiple stages around the outer cylinder 23, and the gas blowing holes 46 are opened in the outer cylinder 23 and at equal angular intervals of 90 degrees in each stage, the gas was placed. It flows radially between the steps of the workpiece T from the center to the outer periphery. When heat treatment is performed such that a reactive gas is flowed to react with the workpiece T, it is optimal because the reaction proceeds uniformly. Further, since it is also used as the heater 21 and does not require a dedicated installation space, it is preferable in terms of productivity without reducing the effective volume of the vacuum heat treatment furnace.
[0028]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to this, and various modifications can be made based on the technical spirit of the present invention.
[0029]
For example, in this embodiment, the vacuum heat treatment furnace is provided with a heater that also serves as a gas blowing pipe, but it may be provided with only a heater in the center without using a gas blowing pipe. Alternatively, only the gas blowing pipe may be provided in the center without using the heater.
[0030]
In this embodiment, the upper and lower two-chamber type vacuum heat treatment furnace has been described. However, the heater and the gas blowing pipe provided at the center of the workpiece simultaneously with the outer peripheral side of the workpiece T are one-chamber vacuum heat treatment. It can also be applied to furnaces.
[0031]
Further, in the present embodiment, the gas blowing pipe heater 21 provided at the center of the heat treatment section 16 is a double cylinder and the gas blowing nozzle 43 is inserted into the inner cylinder 22, but directly to the outer cylinder 23. You may make it insert.
[0032]
In the present embodiment, the gas blower pipe combined heater 21 is a double cylinder, but the single cylinder is vertically divided, the insulating material is sandwiched between the two halves, and the upper and lower ends are closed. A gas blowing hole may be opened in the single cylinder formed so that the heater and the gas blowing pipe are used together. The heater serving as the gas blowing pipe of the present invention is located at the center of the workpiece T. As long as it is installed, the shape is not limited.
[0033]
In the present embodiment, the heat treatment section 16 has a cylindrical shape, but it goes without saying that it may have a rectangular tube shape.
[0034]
【The invention's effect】
The present invention is implemented in the form as described above, and has the following effects.
[0035]
According to the vacuum heat treatment furnace of claims 1 and 2 of the present invention, the gas blowing tube is placed in the center of the workpiece to be loaded in the heat treatment section of the heating chamber from below in a multistage manner. The inert gas or the reactive gas is blown out radially from a plurality of gas blowing holes arranged at equal angular intervals on the outer peripheral surface of the gas blowing pipe in multiple stages and toward the outer peripheral side in each stage. Since it is made to contact a processed material equally, when using reactive gas, reaction advances uniformly .
[0036]
According to the vacuum heat treatment furnace of the second aspect, in addition to the first heater which is placed in multiple stages on the support and is loaded from below into the heat treatment section of the heating chamber, Since the second heater also serving as a gas blowing pipe is provided so as to pass through the center portion, the temperature rise time of the workpiece is shortened as the distance between the heaters is shortened . Although the inner volume of the heat treatment section is reduced by providing the second heater in the center, the effect of improving the heat treatment rate is greater than that, and the productivity of the vacuum heat treatment furnace is increased .
[0037]
According to the vacuum heat treatment furnace of claim 3, the second heater is a double cylinder in which the inner cylinder and the outer cylinder are connected in series, and the gas blown into the inner cylinder is guided into the outer cylinder through the communication hole, Since it is blown out from the gas blowout hole on the outer peripheral surface of the outer cylinder, it is also used as the second heater and the gas blowout pipe, so that the installation space is saved and the effective volume of the heat treatment section is increased, resulting in a vacuum. Improve the productivity of heat treatment equipment .
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a heating chamber of a vacuum heat treatment furnace according to an embodiment.
FIG. 2 is a view showing heat transfer in a heat treatment section of the heating chamber.
FIG. 3 shows a part of a heater / gas blowing pipe inserted and suspended in a heat treatment section of the heating chamber together with a gas flow, A is a longitudinal sectional view, and B is [B]-[B] in A It is sectional drawing of a line direction.
FIG. 4 is a longitudinal sectional view of a conventional two-chamber vacuum heat treatment furnace.
FIG. 5 is a diagram conceptually showing a difference in heating rate when heat treating a plurality of workpieces simultaneously in a heat treatment furnace having different outer dimensions together with FIG. 6, and A is a temperature of a heat treatment region having a small outer dimension. The measurement point and the heater position are shown, and B shows a similar temperature side fixed point in the heat treatment region having a large outer dimension.
6 is a diagram showing the relationship between the heat treatment time and the temperature at each temperature measurement point in the heat treatment regions having different outer dimensions in FIG. 5. FIG.
7 is a diagram for explaining the occurrence of a difference in heating rate in heat treatment regions having different outer dimensions shown in FIG.
FIG. 8 is a diagram showing a gas flow through a gas outlet pipe in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 Vacuum chamber 12 Side wall 13 Top cover 15 Heat insulating material 16 Heat processing compartment 17 Heater 18 Conductive shaft 19 Water-cooled electrode terminal 21 Heater 22 Inner cylinder 23 Outer cylinder 24 Conductive annular stopper 25 Insulating cylindrical stopper 26 Insulating annular stopper 32 Water-cooled electrode terminal 33 Conductive shaft 34 Electrode bar 36 Water-cooled electrode terminal 37 Conductive shaft 38 Electrode bar 41 Gas supply source 42 Gas introduction terminal 43 Nozzle 44 Insulating cap 45 Communication hole 46 Gas blowout hole 100 Conventional vacuum heat treatment furnace 101 Prechamber 102 Gate valve 103 Opening and closing door 104 Support base 105 Heat insulating plate 106 Shaft 107 Lifting cylinder 108 Motor fan 109 Heat exchanger 111 Vacuum chamber 121 Gas outlet pipe

Claims (3)

真空室内に熱処理区画を備えた真空熱処理炉において、前記熱処理区画内へ支持台上に配置されて装填される被処理物が装填されるに伴って該被処理物の中心部をほぼ挿通するようにガス吹込管が設けられており、該ガス吹込管に開口された複数のガス吹出孔から前記被処理物に対してほぼ均等に接触するように不活性ガスまたは反応性ガスが放射状に吹き出されることを特徴とする真空熱処理炉 In a vacuum heat treatment furnace provided with a heat treatment section in a vacuum chamber, the center of the object to be processed is almost inserted as the object to be processed is placed in the heat treatment section and loaded on a support table. A gas blowing pipe is provided, and an inert gas or a reactive gas is blown out radially from the plurality of gas blowing holes opened in the gas blowing pipe so as to contact the object to be processed almost evenly. A vacuum heat treatment furnace characterized by that . 真空室内に熱処理区画を備えた真空熱処理炉において、前記熱処理区画内へ支持台上に配置されて装填される被処理物の外周側に第1ヒーターが設けられ、かつ前記被処理物の装填に伴って該被処理物の中心部をほぼ挿通するように同一部材を兼用して第2ヒーターとガス吹込管とが設けられており、前記被処理物が前記第1ヒーターと前記第2ヒーターとによって外周側と中心部とから加熱され、前記ガス吹込管に開口された複数のガス吹出孔から前記被処理物に対してほぼ均等に接触するように不活性ガスまたは反応性ガスが放射状に吹き出されることを特徴とする真空熱処理炉 In a vacuum heat treatment furnace provided with a heat treatment section in a vacuum chamber, a first heater is provided on the outer peripheral side of a workpiece to be placed and loaded on a support table in the heat treatment section, and for loading the workpiece. Along with this, a second heater and a gas blowing pipe are provided so as to serve as the same member so as to be almost inserted through the central portion of the object to be processed, and the object to be processed is the first heater and the second heater. The inert gas or the reactive gas is blown out radially from the plurality of gas blowing holes opened in the gas blowing pipe so as to come into almost uniform contact with the object to be processed. A vacuum heat treatment furnace . 前記第2ヒーターと前記ガス吹込管とが形成されている前記同一部材がそれぞれ端部の閉塞された内筒と外筒とからなる二重筒とされており、前記第2ヒーターはそれぞれに外部からの給電端子に接続されている前記内筒と前記外筒とが直列に接続された電気回路として形成され、前記ガス吹込管は外部からのガスが導入される前記内筒に前記外筒への連通孔が設けられ、前記外筒にはその挿通方向に多段に、かつ各段の周囲に等角度間隔に前記ガス吹出孔が開口されてガス流路が形成されている請求項2に記載の真空熱処理炉 The same member in which the second heater and the gas blowing pipe are formed is a double cylinder composed of an inner cylinder and an outer cylinder, each of which is closed at an end, and each of the second heaters is externally provided. The inner cylinder and the outer cylinder connected to the power supply terminal from are formed as an electric circuit in which the inner cylinder and the outer cylinder are connected in series, and the gas blowing pipe is connected to the inner cylinder into which the gas from the outside is introduced to the outer cylinder The gas outlet is formed in the outer cylinder in multiple stages in the insertion direction, and the gas blowing holes are formed at equiangular intervals around each stage to form a gas flow path. Vacuum heat treatment furnace .
JP27426696A 1996-09-25 1996-09-25 Vacuum heat treatment furnace Expired - Lifetime JP3875322B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27426696A JP3875322B2 (en) 1996-09-25 1996-09-25 Vacuum heat treatment furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27426696A JP3875322B2 (en) 1996-09-25 1996-09-25 Vacuum heat treatment furnace

Publications (2)

Publication Number Publication Date
JPH10103874A JPH10103874A (en) 1998-04-24
JP3875322B2 true JP3875322B2 (en) 2007-01-31

Family

ID=17539281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27426696A Expired - Lifetime JP3875322B2 (en) 1996-09-25 1996-09-25 Vacuum heat treatment furnace

Country Status (1)

Country Link
JP (1) JP3875322B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3498213B2 (en) * 2000-11-13 2004-02-16 株式会社村田製作所 Heat treatment furnace
US9891000B2 (en) 2013-08-15 2018-02-13 Ipsen, Inc. Center heating element for a vacuum heat treating furnace

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0560464A (en) * 1991-08-30 1993-03-09 Kawasaki Steel Corp Vacuum heating furnace
JP3438381B2 (en) * 1995-02-07 2003-08-18 株式会社村田製作所 Heat treatment furnace

Also Published As

Publication number Publication date
JPH10103874A (en) 1998-04-24

Similar Documents

Publication Publication Date Title
KR101148728B1 (en) Heat treatment furnace and vertical heat treatment apparatus
JP4365017B2 (en) Method for controlling temperature drop rate of heat treatment apparatus and heat treatment apparatus
JP4642349B2 (en) Vertical heat treatment apparatus and low temperature region temperature convergence method
JP3910151B2 (en) Heat treatment method and heat treatment apparatus
US7008210B2 (en) Hot isostatic pressing apparatus
US4165868A (en) Method and apparatus for heating coils of strip
KR20120005977A (en) Substrate processing apparatus and heating equipment
US4612064A (en) Method for heat-treating a charge using a vacuum furnace
JP3875322B2 (en) Vacuum heat treatment furnace
US6168426B1 (en) Batch-type kiln
JPS63232422A (en) Thermal treatment equipment for semiconductor wafer
JPS63278227A (en) Heat treatment equipment
JP4180424B2 (en) Substrate processing apparatus, substrate processing method, and IC manufacturing method
CN210529024U (en) Carburizing equipment
JPH05106973A (en) Vacuum furnace
JP5770042B2 (en) Heat treatment equipment
JP3921716B2 (en) Batch type heat treatment furnace
JP2008255404A (en) Plasma-treating furnace
US3813469A (en) Method for heating vacuum degassing container
KR101521464B1 (en) Heat treatment apparatus
US1707300A (en) Annealing furnace
JPH05157461A (en) Heating furnace
CN112857057B (en) Heat treatment furnace
JP4070832B2 (en) Semiconductor manufacturing equipment
JPH0599572A (en) Continuous vacuum furnace

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061026

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20071108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141102

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term