JP3874372B2 - Anticancer drug effect enhancer - Google Patents

Anticancer drug effect enhancer Download PDF

Info

Publication number
JP3874372B2
JP3874372B2 JP04991094A JP4991094A JP3874372B2 JP 3874372 B2 JP3874372 B2 JP 3874372B2 JP 04991094 A JP04991094 A JP 04991094A JP 4991094 A JP4991094 A JP 4991094A JP 3874372 B2 JP3874372 B2 JP 3874372B2
Authority
JP
Japan
Prior art keywords
meval
yield
mmol
pro
βhomeval
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04991094A
Other languages
Japanese (ja)
Other versions
JPH07233084A (en
Inventor
一任 竹迫
郁之進 加藤
隆 鶴尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takara Bio Inc
Original Assignee
Takara Bio Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takara Bio Inc filed Critical Takara Bio Inc
Priority to JP04991094A priority Critical patent/JP3874372B2/en
Publication of JPH07233084A publication Critical patent/JPH07233084A/en
Application granted granted Critical
Publication of JP3874372B2 publication Critical patent/JP3874372B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、制癌剤に有効である、新規な効果増強剤に関する。
【0002】
【従来の技術】
本発明で使用される化合物及びその医薬として許容される塩は、優れた抗真菌活性を有し、カンジダ症、クリプトコッカス症を始めとする真菌感染症の治療に有用であることが知られている(特開平2−138296号、同3−22995号、同3−44398号、同3−220199号、同5−279384号、特願平4−303177号、欧州特許公開第0581429号)。配列表の配列番号2で表されるオーレオバシジンAは下記式(2)の構造を有しており、その中で特に優れた活性と低い毒性を有している。
【0003】
【化2】

Figure 0003874372
【0004】
〔式中、D-Hmpは2(R)−ヒドロキシ−3(R)−メチルペンタン酸を示す〕
ところで、抗生物質等の化学療法剤を比較的長期に投与した場合、感染微生物が耐性を獲得し、化学療法剤の効果が減少することはよく知られている。また、癌の成長又は転移を縮小、阻害又は制限する手段として、制癌剤を用いる癌化学療法においても時間の経過と共に投与した制癌剤に耐性を示す癌が出現し、癌化学療法の治療効果が低下することが一般に知られている。それは癌細胞内の制癌剤の蓄積、維持能低下が原因であることが多いと言われている。この耐性の機作が分子レベルで解明されつつあり、これに対する治療方法も検討されてきている。すなわち、最近、多剤耐性を担う遺伝子が単離され、この遺伝子が多剤耐性細胞に発現する膜蛋白質、P糖蛋白質(P−glycoprotein) の遺伝子であることが明らかとなった。P糖蛋白質は制癌剤の細胞外排出の機能をもった蛋白質であることが推定され、癌の多剤耐性機構において中心的役割を担う蛋白質であると考えられる。また、P糖蛋白質は癌細胞のほかにも、真菌を始めとする真核生物、細菌にも存在し、真菌において薬剤耐性に関与していることが知られている〔K.ニシ(K.Nishi)ら、モレキュラー ミクロバイオロジー(Molecular Microbiology) 、第6巻、第761〜769頁(1992)〕。
【0005】
【発明が解決しようとする課題】
新規な化学療法剤の開発が困難な今日、既存の化学療法剤の効果増強を試みることは極めて重要である。
本発明の目的は、優れた制癌効果増強作用を有することが見出された化合物を含有する、制癌効果増強剤を提供することにある。
【0006】
【課題を解決するための手段】
本発明を概説すれば、本発明は、下記式(1)で表される環状デプシペプチド又はその医薬として許容される塩を含有することを特徴とする、ビンクリスチン、ビンブラスチン、アドリアマイシン、ダウノマイシン及びアクチノマイシンDから選択される制癌剤の効果増強剤に関する。
【0007】
【化3】
Figure 0003874372
【0008】
式中、X1はHmp又はHmb(Hmpは2−ヒドロキシ−3−メチルペンタン酸、Hmbは2−ヒドロキシ−3−メチルブタン酸を示す)であり、X3はMePhe又はβHOMePhe(MePheはN−メチルフェニルアラニン、βHOMePheはβ−ヒドロキシ−N−メチルフェニルアラニンを示す)であり、X5はaIle、Val又はLeuであり、X8はβHOMeVal(βHOMeValはβ−ヒドロキシ−N−メチルバリンを示す)又はMeValである
【0009】
なお、本明細書において用いた特殊なα−アミノ酸、N−メチル−α−アミノ酸、又はα−オキシ酸の略号は、次表にまとめて示すとおりである。
Figure 0003874372
Figure 0003874372
【0010】
本発明者らは、鋭意研究の結果、意外にも抗真菌剤として知られている下記式(3)で表される環状デプシペプチド(配列表の配列番号1)の中で、特に前記の式(1)で表される化合物が、細胞内における制癌剤の蓄積、維持に強い効果を示すと共に、制癌剤の効果を著しく増強させる効果を有することを見出し、本発明を完成した。
なお、下記式(3)中、X1はHmp、Hmb又はDhmp(Hmpは2−ヒドロキシ−3−メチルペンタン酸、Hmbは2−ヒドロキシ−3−メチルブタン酸、Dhmpは2,4−ジヒドロキシ−3−メチルペンタン酸を示す)であり、
X2はPhe、oFPhe、mFPhe、pFPhe又はChaであり、
X3はMePhe、oFMePhe、mFMePhe、pFMePhe、MeGly、MeAla、MeVal、MeTyr、βHOMePhe又はβR 1 OMePhe{但し、R 1 は炭素数1〜4の低級アシル基であり、−COOH、−COO−R 2 (R 2 は炭素数1〜4の低級アルキル基である)、−NH 2 又は−NH−R 3 (R 3 は炭素数1〜4の低級アシル基である)で置換されていてもよい}、
X4はPro、4Hyp、SPro又はPipであり、
X5はaIle、Leu、Val、Nle、Glu、GluOR 4 (R 4 はベンジル基、炭素数1〜12のアルキル基又は炭素数1〜12のアルケニル基である)、HONva又はR 5 ONva(R 3 はベンジル基又は炭素数1〜12のアシル基である)であり、
X6はVal、MeVal、MeaIle、MeLeu、Hmb、HOMeNva又はR 6 OMeNva(R 6 はベンジル基又は炭素数1〜12のアシル基である)であり、
X7はLeu、Nva、aIle、HONva又はGluOR 7 (R 7 はベンジル基、炭素数1〜12のアルキル基又は炭素数1〜12のアルケニル基である)であり、
X8はβHOMeVal、γHOMeVal、MeVal、Val、N,βMeAsp、βHOMePhe、MeDH 2,3 Val、MeDH 3,4 Val又はMeThrである。
また、下記式(3)で表される代表的化合物を後記表1〜表3に示す。
【0011】
【化4】
Figure 0003874372
【0012】
【表1】
Figure 0003874372
【0013】
【表2】
Figure 0003874372
【0014】
【表3】
Figure 0003874372
【0015】
なお、表1〜表3中、・印はオーレオバシジンA(化合物1)と同一のアミノ酸又はオキシ酸であることを示す。
【0016】
本発明で用いられる環状デプシペプチドは、オーレオバシジウム プルランス(Aureobasidium pullulans) No.R106〔微工研条寄第1938号(FERMBP−1938)〕の培養物より、特開平2−138296号、同3−22995号、同3−220199号、同5−279384号各公報又は特願平4−303177号明細書記載の方法により採取される。
【0017】
例えば、グルコース、グリセリン等の炭素源、ペプトン、アンモニウム塩、アミノ酸等の窒素源、その他無機塩等を含有する液体培地で上記生産菌を培養し、得られた培養液によりエタノール等の有機溶媒で抽出し、抽出物を吸着性樹脂で精製し、更に60〜70%のアセトニトリル/水の混合溶媒等を用いた逆相HPLCやヘキサン/アセトニトリル/2−プロパノールの混合溶媒を用いたシリカゲルHPLC等により精製すれば、環状デプシペプチドを分離、生産することができる。なお、化合物1(オーレオバシジンA)については特開平2−138296号公報に、化合物2、10、11、20、21、28、39、40、41、42については特開平3−22995号公報に、化合物4、9、15、16、19、34については特開平3−220199号公報に、化合物3については特開平5−279384号公報に、化合物29、30、35については特願平4−303177号明細書、欧州特許公開第0581429号公報中にそれぞれ記載されている。
【0018】
また、培養物より得られたものを原料として、特開平3−44398号、同3−220199号各公報記載の化学的な方法により誘導体として採取される。
なお、化合物12、13、14については特開平3−44398号公報に、化合物6については特開平3−220199号公報にそれぞれ記載されている。
【0019】
更に、特願平4−303177号明細書、欧州特許公開第0581429号公報、特願平5−346873号明細書記載の方法により化学的に全合成により得ることができる。なお化合物1、17、18、22、29、30、31、32、33、35、38、43については特願平4−303177号明細書及び欧州特許公開第0581429号公報に、化合物23、24、25、26、27、36、37については欧州特許公開第0581429号公報に、化合物5、7、8、44については特願平5−346873号明細書にそれぞれ記載されている。なお、化合物5、7、8、44の製造法については参考例として後述する。
【0020】
(1)で表される化合物の医薬として許容される塩としては、無毒の、医薬として許容される慣用の塩であり、例えばナトリウム塩、カリウム塩等のアルカリ金属塩、例えばカルシウム塩、マグネシウム塩等のアルカリ土類金属塩、アンモニウム塩、例えばトリエチルアミン塩、N−ベンジル−N−メチルアミン塩等のアミン塩のような無機又は有機塩基との塩が挙げられる。
【0021】
本発明において化学療法とは、例えば、細菌、ウイルス、真菌又は原生動物等に対し、抗生物質を投与することによって感染症の予防若しくは治療を行うこと、並びに癌細胞に対し制癌剤を投与することによって癌の予防若しくは治療を行うこと等を意味し、化学療法剤とはこれらの目的に使用される抗生物質、制癌剤等を意味する。
【0022】
本発明の制癌剤の効果増強剤により、その効果が増強されうる制癌剤としては、後述のように式(1)の化合物又はその医薬として許容される塩が、細胞内の制癌剤の濃度を上昇させうることから考えて、少なくとも細胞膜を通じて細胞内に輸送され効果を発揮する制癌剤であればよく、そのような制癌剤としては、ビンクリスチン、ビンブラスチン、アドリアマイシン、ダウノマイシン及びアクチノマイシンDから選択される、抗生物質、抗癌剤、植物成分を含む天然物抗癌物質由来の制癌剤がある。
【0023】
本発明の化学療法剤効果増強剤の耐性癌に対する制癌剤効果増強作用は、例えばヒト卵巣癌細胞のアドリアマイシン耐性株2780AD、又はヒト骨髄性白血病のアドリアマイシン耐性株K562/ADMを用い、その細胞内への制癌剤取り込み増強効果及び制癌剤の作用増強効果によって説明される。
【0024】
本発明の制癌効果増強剤は、式(1)の化合物又はその医薬として許容される塩を外用、内服又は非経口投与に適した有機又は無機の担体若しくは賦形剤と混合して、例えば固体状、半固体状若しくは液状の医薬製剤の形で投与することができる。この医薬製剤は、錠剤、ペレット剤、カプセル剤、坐剤、液剤、懸濁液及びその他の適切な形で使用でき、例えば通常の無毒で、医薬として許容される担体と混合してもよい。使用しうる担体は、水、グルコース、ラクトース、アラビアゴム、ゼラチン、マンニトール、でんぷんペースト、ステアリン酸マグネシウム、タルク、コーンスターチ、ケラチン、コロイドシリカ、及び他の固体状、半固体状又は液状の製剤を製造するのに適した担体があり、更に、賦形剤、安定化剤、粘稠化剤、着色剤、香料を使用してもよい。式(1)の化合物又はその医薬として許容される塩は、疾患の経過又は状態により、所望の効果を発揮するのに十分な量が医薬製剤中に含有される。
この医薬製剤をヒトに用いる場合は、非経口投与又は内服で使用することが望ましい。
本発明の制癌効果増強剤を用いてヒト又は動物を治療する際には、公知の制癌剤と組合せて使用する。その際には、前記のようにして製剤化した本発明の制癌効果増強剤と制癌剤とを同時に投与してもよいし、又は予め式(1)の化合物又はその医薬として許容される塩と制癌剤とを、例えば散剤、細粒剤、錠剤、カプセル剤、注射剤等に製剤化したものを投与してもよい。
【0025】
本発明の制癌効果増強剤として用いられる式(1)の化合物の用量は、年令、体重等の患者の状態、投与経路、病気の性質と程度等を考慮した上で、調整することが望ましいが、通常は、成人に対して有効成分量として、一日当り、10〜2000mgの範囲が一般的である。場合によっては、これ未満で足りるし、また逆にこれより以上の容量を必要とすることもある。多量に投与するときは、一日数回に分割して投与することが望ましい。
なお化合物1〜44を各100mg/kgずつマウスに腹腔内投与したが何ら毒性を示さない。
【0026】
以下、化合物5、7、8、44についてその製造例を参考例をもって示す。
参考例1 シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro)(化合物7)の合成
a) Boc−D-MeAla−OH(Bocはt−ブトキシカルボニル基を示す)
Boc−D-Ala−OH(3.0g、15.9mmol)のテトラヒドロフラン(THF、48ml)溶液に、氷冷下、60%水素化ナトリウム(1.9g、47.6mmol)を加え、10分間かくはん後、ヨウ化メチル(7.9ml、127mmol)を加え、室温で22時間かくはんした。減圧濃縮後、氷冷下、10%クエン酸水溶液を加え酸性とした後、酢酸エチルで抽出した。これを飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧濃縮した。残渣をヘキサンより結晶化し、ヘキサンで洗浄し、標記化合物を得た。収量3.07g(収率94.8%)。
【0027】
b) Boc−D-MeAla−L-Pro−OPac(Pacはフェナシル基を示す)
Boc−D-MeAla−OH(1.50g、7.38mmol)、HCl・H−L-Pro−OPac(1.53g、5.68mmol)の塩化メチレン(12ml)溶液に、氷冷下ブロモ−トリピロリジノホスホニウムヘキサフルオロリン化物塩(PyBroP、3.44g、7.38mmol)、ジイソプロピルエチルアミン(DIEA、3.96ml、22.7mmol)を加え、氷冷下3時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル200g、クロロホルム、クロロホルム−メタノール100:1により溶出)で精製した。更に、溶出液を減圧濃縮後、ヘキサンより結晶化し、ヘキサンで洗浄し、標記化合物を得た。収量1.90g(収率78.0%)。
【0028】
c) HCl・H−D-MeAla−L-Pro−OPac
Boc−D-MeAla−L-Pro−OPac(1.7g、4.06mmol)に4.0N塩化水素/ジオキサン溶液(30ml)を加え、室温に40分間放置した。減圧濃縮後、エーテルより結晶化し、エーテルで洗浄し、標記化合物を得た。収量1.38g(収率95.8%)。
【0029】
d) Boc−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-Phe−OH(1.26g、4.76mmol)、HCl・H−D-MeAla−L-Pro−OPac(1.30g、3.66mmol)、の塩化メチレン(10ml)溶液に、氷冷下、PyBroP(2.22g、4.76mmol)、DIEA(921μl、5.29mmol)を加え、氷冷下2時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル200g、トルエン−酢酸エチル3:1,1:1により溶出)で精製し、標記化合物を得た。収量1.76g(収率84.9%)。
【0030】
e) HCl・H−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-Phe−D-MeAla−L-Pro−OPac(1.70g、3.01mmol)に4.0N塩化水素/ジオキサン溶液(30ml)を加え、室温に30分間放置した。減圧濃縮後、エーテルより結晶化し、エーテルで洗浄し、標記化合物を得た。収量1.63g(収率100%)。
【0031】
f) Boc−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-MeVal−OH(898mg、3.88mmol)の塩化メチレン(9ml)溶液に、氷冷下HCl・H−L-Phe−D-MeAla−L-Pro−OPac(1.45g、2.99mmol)、PyBroP(1.81g、3.88mmol)を加え、更にDIEA(2.08ml、12.0mmol)を加え、氷冷下16時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル200g、トルエン−酢酸エチル2:1、1:1により溶出)で精製し、標記化合物を得た。収量1.67g(収率82.3%)。
【0032】
g) HCl・H−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac(1.00g、1.47mmol)に4.0N塩化水素/ジオキサン溶液(18.4ml)を加え、室温に50分間放置した。減圧濃縮後、エーテルより結晶化し、エーテルで洗浄し、標記化合物を得た。収量838mg(収率92.7%)。
【0033】
h) Boc-DL-βHOMeVal−OBzl(Bzlはベンジル基を示す)
-DL-βHOMeVal−OH(38.6mg、0.264mmol)のジメチルホルムアミド(DMF、0.57ml)懸濁液に、氷冷下ビストリメチルシリルトリフルオロアセトアミド(BSTFA、0.56ml、2.11mmol)を加え、室温で1時間かくはんした。これに氷冷下、ジ−t−ブチル−ジカーボナート(72.8μl、0.317mmol)を加え、室温で1.5時間かくはんした。減圧濃縮後、10%クエン酸水溶液を加え、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、得られた油状物を酢酸エチル(0.5ml)に溶解し、氷冷下トリエチルアミン(55.0μl、0.396mmol)、臭化ベンジル(62.8μl、0.528mmol)を加え、氷冷下、5分間かくはん後、室温で48時間かくはんした。減圧濃縮後、調製用シリカゲル薄層クロマトグラフィー(クロロホルム−メタノール19:1で展開)により精製し、標記化合物を得た。収量60.7mg(収率68.1%)。
【0034】
i) HCl−H-DL-βHOMeVal−OBzl
Boc-DL-βHOMeVal−OBzl(472mg、1.40mmol)に5.5N塩化水素/ジオキサン溶液(29.5ml)を加え、室温に1.5時間放置した。減圧濃縮後、エーテルより結晶化し、エーテルで洗浄し、標記化合物を得た。収量367mg(収率95.7%)。
【0035】
j) Boc−L-Leu-DL-βHOMeVal−OBzl
Boc−L-Leu−OH・H2 O(1.34g、5.39mmol)の塩化メチレン(10ml)溶液に、氷冷下、HCl・H-DL-βHOMeVal−OBzl(981.1mg、3.59mmol)、PyBroP(2.52g、5.39mmol)を加え、更にDIEA(2.50ml、14.4mmol)を加え、氷冷下1時間かくはん、更に室温で8時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル40g、トルエン−酢酸エチル3:1により溶出)で精製した。更に、溶出液を減圧濃縮後、ヘキサンより結晶化し、ヘキサンで洗浄し、標記化合物を得た。収量1.05g(収率65.2%)。
【0036】
k) Boc−L-Leu-DL-βHOMeVal−OH
Boc−L-Leu-DL-βHOMeVal−OBzl(43.5mg、96.5μmol )のメタノール(40ml)溶液に、パラジウム−黒(40mg)を加え、室温で水素ガスを50分間吹込んだ。触媒をろ去後、減圧濃縮し、標記化合物を得た。収量30.6mg(収率87.9%)。
【0037】
l) Boc−L-Leu−L-βHOMeVal−D-Hmp−OPac
Boc−L-Leu-DL-βHOMeVal−OH(744mg、2.15mmol)、2(R)−ヒドロキシ−3(R)−メチルペンタン酸フェナシルエステル(D-Hmp−OPac)(589mg、2.36mmol)、4−ピロリジノピリジン(95.6mg、0.65mmol)をTHF(4.3ml)に溶解し、氷冷下、N,N′−ジシクロヘキシルカルボジイミド(DCC、487mg、2.36mmol)を加え、氷冷下1時間かくはん後、徐々に室温に戻して18時間かくはんした。減圧濃縮後、酢酸エチルを加え、不溶物をろ去した後、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル80g、トルエン−酢酸エチル5:1により溶出)で精製し、Boc−L-Leu-DL-βHOMeVal−D-Hmp−OPacを得た(収量1.00g、収率78.7%)。更に、中圧シリカゲルカラムクロマトグラフィー(シリカゲル200g、トルエン−酢酸エチル15:1、10:1により溶出)で、ジアステレオマーを分離し、標記化合物を得た。収量357mg(収率56.2%:Boc−L-Leu-DL-βHOMeVal−OH中の L-L体を基準にした)。
【0038】
m) Boc−L-Leu−L-βHOMeVal−D-Hmp−OH
Boc−L-Leu−L-βHOMeVal−D-Hmp−OPac(220mg、0.37mmol)を90%酢酸水溶液(18.5ml)に溶解し、氷冷下、超音波かくはんしながら亜鉛末(3.60g、55.5mmol)を加え、氷冷下7.5時間超音波かくはんした。不溶物をろ去後、減圧濃縮した。これに10%クエン酸水溶液を加えた後、酢酸エチルを抽出した。抽出物を飽和食塩水洗浄し、硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル10g、クロロホルム−メタノール−酢酸50:1:0.5により溶出)で精製し、標記化合物を得た。収量133mg(収率73.7%)。
【0039】
n) HCl・H−L-MeVal−OPac
Boc−L-MeVal−OH(4.94g、21.4mmol)のアセトン(50ml)溶液に、氷冷下、トリエチルアミン(3.30ml、23.8mmol)、臭化フェナシル(4.77g、24.0mmol)を加え、氷冷下1時間かくはん後、更に室温で2時間かくはんした。減圧濃縮後、酢酸エチルを加え、水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮した。これに5.5N塩化水素/ジオキサン溶液(77.8ml、0.428mmol)を加え、室温に30分間放置した。減圧濃縮後、エーテルより結晶化し、集めた結晶をエーテルで洗浄し、標記化合物を得た。収量6.08g(収率99.3%)。
【0040】
o) Boc−L-aIle−L-MeVal−OPac
HCl・H−L-MeVal−OPac(1.12g、4.18mmol)を塩化メチレン(10ml)に溶解し、氷冷下Boc−L-aIle−OH(1.06g、4.59mmol)、PyBroP(2.57g、5.49mmol)、DIEA(2.65ml、15.2mmol)を加え、氷冷下30分間かくはんし、更に室温で17時間かくはんした。減圧濃縮後、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、飽和食塩水、10%クエン酸水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル80g、クロロホルムにより溶出)で精製し、標記化合物を得た。収量764mg(収率36.0%)。
【0041】
p) Boc−L-aIle−L-MeVal−OH
Boc−L-aIle−L-MeVal−OPac(657mg、1.42mmol)を90%酢酸水溶液(70ml)に溶解し、氷冷下、超音波かくはんしながら亜鉛末(4.64g、71.0mmol)を加え、氷冷下7.5時間超音波かくはんした。不溶物をろ去、減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣をヘキサンより結晶化し、ヘキサンで洗浄し、標記化合物を得た。収量325mg(収率66.5%)。
【0042】
q) Boc−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-Leu−L-βHOMeVal−D-Hmp−OH(60.0mg、0.123mmol)の塩化メチレン(400μl)溶液に、氷冷下、HCl・H−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac(114mg、0.184mmol)、PyBroP(74.6mg、0.16mmol)を加え、更にDIEA(86.0μl、0.491mmol)を加え、氷冷下2時間かくはん、更に室温で13時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(シリカゲル20g、トルエン−酢酸エチル2:1、3:2により溶出)で精製し、標記化合物を得た。収量97.4mg(収率75.5%)。
【0043】
r) HCl・H−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac(85mg、81.0μmol)に氷冷下、トリフルオロ酢酸(500μl、6.48mmol)を加え、氷冷下30分間放置した。減圧濃縮後、エーテルを加え、氷冷下4.0N塩化水素/ジオキサン溶液(41μl、162μmol)を加え、室温に30分間放置した。析出した結晶をエーテルで洗浄し、標記化合物を得た。収量59.2mg(収率74.2%)。
【0044】
s) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac
Boc−L-aIle−L-MeVal−OH(29.0mg、83.7μmol )、HCl・H−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac(55.0mg、55.8μmol )をDMF(200μl)に溶解し、氷冷下、HOOBt(11.0mg、67.0μmol )を加え、更にN−エチル−N′−ジメチルアミノプロピルカルボジイミド(EDC、12.9μl、72.5μmol )を加え、氷冷下2時間かくはんした。室温で17時間かくはん後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を調製用シリカゲル薄層クロマトグラフィー(ベンゼン−アセトン 3:1展開、酢酸エチル抽出)で精製し、標記化合物を得た。収量60.6mg(収率85.1%)。
【0045】
t) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OPac(50.0mg、39.2μmol )を90%酢酸水溶液(2.0ml)に溶解し、氷冷下、亜鉛末(513mg、7.84mmol)を加え、氷冷下1時間超音波かくはんした。不溶物をろ去後、減圧濃縮し、10%クエン酸水溶液を加え、酢酸エチルを抽出した。抽出物を飽和食塩水で洗浄し、硫酸マグネシウムで乾燥後、減圧濃縮し、標記化合物を得た。収量48.3mg。
【0046】
u) HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OH(48.3mg、39.2μmol)に氷冷下、トリフルオロ酢酸(TFA、604μl、7.84mmol)を加え、氷冷下30分間放置した。減圧濃縮後、エーテルを加え、氷冷下4.0N塩化水素/ジオキサン溶液(29.5μl、118μmol)を加え、氷冷下30分間放置した。析出した結晶をエーテルで洗浄し、標記化合物を得た。収量33.3mg(収率78.7%)。
【0047】
v) シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−Pro)(化合物7)
HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeAla−L-Pro−OH(23.0mg、21.3μmol)、DIEA(7.4μl、42.6μmol )を塩化メチレン(11ml)に溶解し、これをPyBroP(49.4mg、106μmol )、DIEA(18.6μl、106μmol )を塩化メチレン(11ml)溶液に室温で4時間かけて滴下し、更に室温で20時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を調製用シリカゲル薄層クロマトグラフィー(クロロホルム−メタノール 19:1展開、抽出)で精製し、標記化合物を得た。収量12.1mg(収率55.5%)。
【0048】
標記化合物の理化学的性質を示す。
1H−NMR(CDCl3 、270MHz):δ8.62、7.95、7.67(計 3H、NH)、7.35〜7.11(計 5H、芳香族H)、5.79、5.44〜5.22、4.97、4.88、4.73〜4.56、4.30、4.04、3.44(計 10H)、3.33、3.32、3.20、2.85(計 12H、NCH3 )、1.09〜0.71(CH3 )ほか。
【0049】
参考例2 シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−Pro)(化合物8)の合成
a) H−L-Phe−L-MePhe−L-Pro−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列表の配列番号4)
オーレオバシジンA(6.0g、5.45mmol)にドライアイス−メタノール浴冷却下、無水フッ化水素(200ml)を導入後、室温で1.5時間かくはんした。減圧下、フッ化水素を留去した後、残渣をジオキサンで凍結乾燥した。これを高速液体クロマトグラフィー(カラム:Soken Pack C-18 60×500mm、50−100%アセトニトリル/0.05% aq.TFAで溶出)で精製し、標記化合物を得た。収量1.81g(収率29.7%)。
【0050】
b) Z−L-Phe−L-MePhe−L-Pro−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列表の配列番号5、Zはベンジルオキシカルボニル基を示す)
H−L-Phe−L-MePhe−L-Pro−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列表の配列番号4、200mg、0.179mmol)のDMF(3.6ml)懸濁液に氷冷下、トリエチルアミン(50.2μl、0.358mmol)、ベンジルオキシカルボニルスクシンイミド(53.5mg、0.215mmol)を加え、氷冷下、1.5時間かくはんした。減圧濃縮後、酢酸エチルを加え、不溶物をろ去した後、10%クエン酸水溶液、飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を中圧シリカゲルカラムクロマトグラフィー(クロロホルム−メタノール−酢酸
100:2:2により溶出)で精製し、標記化合物を得た。収量183mg(収率81.5%)。
【0051】
c) HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列表の配列番号6)
Z−L-Phe−L-MePhe−L-Pro−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列番号5、100mg、79.8mmol)のエタノール(10ml)溶液を50mMカリウム−リン酸緩衝液(pH7.0)(89ml)に加えた。30℃,10分間静置した後、プロリルエンドペプチダーゼ(600単位、生化学工業社製)を溶解した50mMカリウム−リン酸緩衝液(pH7.0)(1.2ml)を加え、かくはんした後、不溶物を遠心(7000r.p.m 、10分)して除去し、上清を減圧濃縮した。残渣を高速液体クロマトグラフィー〔カラム:YMC C-18 ODS、(株)山村化学研究所製、30〜90%アセトニトリル/0.05% aq. TFAで溶出〕で精製し、標記化合物を得た。収量59.1mg(収率100%)。
【0052】
d) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列表の配列番号7)
HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列番号6、57.7mg、81.0μmol )のジオキサン/水(2:1)溶液にトリエチルアミン(14.6μl、105μmol )、ジ−t−ブチル−ジカーボナート(24.0μl、105μmol )を加え、室温で3.5時間かくはんした。減圧濃縮後、酢酸エチルを加え、10%クエン酸水溶液、飽和食塩水で順次洗浄した。硫酸マグネシウムで乾燥後、減圧濃縮し、残渣を調製用シリカゲル薄層クロマトグラフィー〔クロロホルム−メタノール−酢酸 100:1:2展開、クロロホルム−メタノール 10:1抽出)で精製し、標記化合物を得た。収量51.2mg(収率77.8%)。
【0053】
e) Boc−D-MeVal−OH
Boc−D-Val−OH(2.0g、9.21mmol)、60%水素化ナトリウム(1.1g、27.6mmol)、ヨウ化メチル(6.58ml、105.7mmol)を用い参考例1−a)と同様の操作を行い、標記化合物を得た。収量1.54g(収率72.5%)。
【0054】
f) Boc−D-MeVal−L-Pro−OPac
Boc−D-MeVal−OH(300mg、1.30mmol)、HCl・H−L-Pro−OPac(291mg、1.08mmol)、PyBroP(606mg、1.30mmol)、DIEA(753μl、4.32mmol)を用い参考例1−b)と同様の操作を行い、標記化合物を得た。収量372mg(収率77.2%)。
【0055】
g) HCl・H−D-MeVal−L-Pro−OPac
Boc−D-MeVal−L-Pro−OPac(350mg、0.784mmol)、4.0N塩化水素/ジオキサン溶液(5.88ml)を用い参考例1−c)と同様の操作を行い、標記化合物を得た。収量292mg(収率97.3%)。
【0056】
h) Boc−L-Phe−D-MeVal−L-Pro−OPac
Boc−L-Phe−OH(180mg、0.679mmol)、HCl・H−D-MeVal−L-Pro−OPac(200mg、0.522mmol)、PyBroP(317mg、0.679mmol)、DIEA(364μl、2.09mmol)を用い参考例1−d)と同様の操作を行い、標記化合物を得た。収量281mg(収率90.7%)。
【0057】
i) HCl・H−L-Phe−D-MeVal−L-Pro−OPac
Boc−L-Phe−D-MeVal−L-Pro−OPac(190mg、0.320mmol)、4.0N塩化水素/ジオキサン溶液(4.2ml)を用い参考例1−e)と同様の操作を行い、標記化合物を得た。収量169mg(収率99.4%)。
【0058】
j) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OPac
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列番号7、35.0mg、43.1μmol )、HCl・H−L-Phe−D-MeVal−L-Pro−OPac(34.2mg、64.6μmol )、3−ヒドロキシ−4−オキソ−3,4−ジヒドロ−1,2,3−ベンゾトリアジン(HOObt、8.7mg、64.6μmol )、EDC(11.4μl、64.6μmol )を用い参考例1−s)と同様の操作を行い、標記化合物を得た。収量34.6mg(収率62.3%)。
【0059】
k) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OPac(31.0mg、24.1μmol )、90%酢酸水溶液(1.2ml)、亜鉛末(313mg、4.82mmol)を用い参考例1−t)と同様の操作を行い、標記化合物を得た。収量30.0mg。
【0060】
l) HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OH(30.0mg、25.7μmol )、TFA(396μl、5.14mmol)、4.0N塩化水素/ジオキサン溶液(12.9μl、51.4μmol )を用い参考例1−u)と同様の操作を行い、標記化合物を得た。収量19.6mg(収率73.6%)。
【0061】
m) シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro)(化合物8)
HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Phe−D-MeVal−L-Pro−OH(15.0mg、13.6μmol )、DIEA(4.7μl、27.2μmol )の塩化メチレン(6.8ml) 溶液、PyBroP(31.7mg、67.9μmol )、DIEA(11.8μl、67.9μmol )の塩化メチレン(6.8ml)溶液を用い参考例1−v)と同様の操作を行い、標記化合物を得た。収量5.0mg(収率35.0%)。
【0062】
標記化合物の理化学的性質を示す。
1H−NMR(CDCl3 、270MHz):δ8.78、8.10、7.48(計 3H、NH)、7.35〜7.09(計 5H、芳香族H)、5.78、5.39、5.20、4.98〜4.94、4.80、4.53、4.37〜4.31、4.13、3.45(計 10H)、3.33、3.22、2.78(計 12H、NCH3 )、1.11〜0.70(CH3 )ほか。
【0063】
参考例3 シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−D-MeAla−Pro)(化合物5)の合成
a) Boc−L-Cha−D-MeAla−L-Pro−OPac
Boc−L-Cha−OH(137mg、0.507mmol)、HCl・H−D-MeAla−L-Pro−OPac(150mg、0.423mmol)、PyBroP(236mg、0.507mmol)、DIEA(258μl、1.48mmol)を用い参考例1−d)と同様の操作を行い、標記化合物を得た。収量198mg(収率82.1%)。
【0064】
b) HCl・H−L-Cha−L-MeAla−L-Pro−OPac
Boc−L-Cha−D-MeAla−L-Pro−OPac(180mg、0.315mmol)、4.0N塩化水素/ジオキサン溶液(3.15ml)を用い参考例1−e)と同様の操作を行い、標記化合物を得た。収量148mg(収率93.1%)。
【0065】
c) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−D-MeAla−L-Pro−OPac
参考例2−a)〜d)記載の方法で調製したBoc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列番号7、35.0mg、43.1μmol )、HCl・H−L-Cha−D-MeVal−L-Pro−OPac(32.8mg、64.6μmol )、HOObt(8.7mg、64.6μmol )、EDC(11.4μl、64.6μmol )を用い参考例1−s)と同様の操作を行い、標記化合物を得た。収量48.6mg(収率89.2%)。
【0066】
d) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−L-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−D-MeAla−L-Pro−OPac(45.4mg、35.8μmol )、90%酢酸水溶液(1.6ml) 、亜鉛末(466mg、7.16mmol)を用い参考例1−t)と同様の操作を行い、標記化合物を得た。収量46.0mg。
【0067】
e) HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−L-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−D-MeAla−L-Pro−OH(42.5mg、37.0μmol )、TFA(570μl、7.40mmol)、4.0N塩化水素/ジオキサン溶液(18.5μl、74.0μmol )を用い参考例1−u)と同様の操作を行い、標記化合物を得た。収量31.7mg(収率90.3%)。
【0068】
f) シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−L-MeAla−L-Pro)(化合物5)
HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-Cha−D-MeAla−L-Pro−OH(25.0mg、21.1μmol )、DIEA(7.3μl、42.2μmol )の塩化メチレン(10.6ml)溶液、PyBroP(49.2mg、105.5μmol )、DIEA(18.4μl、105.5μmol )の塩化メチレン(10.6ml)溶液を用い参考例1−v)と同様の操作を行い、標記化合物を得た。収量6.8mg(収率28.6%)。
【0069】
標記化合物の理化学的性質を示す。
1H−NMR(CDCl3 、270MHz):δ8.62、8.55、7.92、7.87、7.75(計 3H、NH)、5.82、5.44〜5.20、5.02〜4.86、4.67、4.56、4.20、4.03、3.37(計10H)、3.29、3.28、3.27、3.25、3.24(計 12H、NCH3 )、1.03〜0.76(CH3 )ほか。
【0070】
参考例4 シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro)(化合物44)の合成
a) Boc−L-pFPhe−D MeAla−L-Pro−OPac
Boc−L-pFPhe−OH(100mg、0.353mmol)、HCl・H−D-MeAla−L-Pro−OPac(105mg、0.294mmol)、PyBroP(165mg、0.353mmol)、DIEA(179μl、1.03mmol)を用い参考例1−d)と同様の操作を行い、標記化合物を得た。収量153mg(収率89.2%)。
【0071】
b) HCl・H−L-pFPhe−D-MeAla−L-Pro−OPac
Boc−L-pFPhe−D-MeAla−L-Pro−OPac(140mg、0.240mmol)、4.0N塩化水素/ジオキサン溶液(2.4ml)を用い参考例1−e)と同様の操作を行い、標記化合物を得た。収量120mg(収率96.8%)。
【0072】
c) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro−OPac
参考例2−a)〜d)記載の方法で調製したBoc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−OH(配列番号7、35.0mg、43.1μmol )、HCl・H−L-pFPhe−D-MeAla−L-Pro−OPac(33.6mg、64.6μmol )、HOObt(8.7mg、64.6μmol )、EDC(11.4μl、64.6μmol )を用い参考例1−s)と同様の操作を行い、標記化合物を得た。収量48.8mg(収率88.7%)。
【0073】
d) Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−L-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−L-MeAla−L-Pro−OPac(45.3mg、35.4μmol )、90%酢酸水溶液(1.7ml) 、亜鉛末(920mg、14.1mmol)を用い参考例1−t)と同様の操作を行い、標記化合物を得た。収量47.2mg。
【0074】
e) HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro−OH
Boc−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro−OH(44.0mg、37.9μmol )、TFA(584μl、7.58mmol)、4.0N塩化水素/ジオキサン溶液(18.9μl、75.8μmol )を用い参考例1−u)と同様の操作を行い、標記化合物を得た。収量34.9mg(収率96.1%)。
【0075】
f) シクロ(L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro)(化合物44)
HCl・H−L-aIle−L-MeVal−L-Leu−L-βHOMeVal−D-Hmp−L-MeVal−L-pFPhe−D-MeAla−L-Pro−OH(28.0mg、25.5μmol )、DIEA(8.9μl、51.1μmol )の塩化メチレン(12.8ml)溶液、PyBroP(59.4mg、128μmol )、DIEA(22.2μl、128μmol )の塩化メチレン(12.8ml)溶液を用い参考例1−v)と同様の操作を行い、標記化合物を得た。収量7.94mg(収率29.8%)。
【0076】
標記化合物の理化学的性質を示す。
1H−NMR(CDCl3 、270MHz):δ8.65、7.98、7.66(計 3H、NH)、7.09〜7.05(計 4H、芳香族H)、5.84、5.31、5.19、4.97、4.88、4.73〜4.57、4.17、4.04、3.44(計 10H)、3.33、3.32、3.19、2.94(計 12H、NCH3 )、1.07〜0.73(CH3 )ほか。
【0077】
参考例1〜4で得られた化合物の理化学的性質を表4及び表5に示す。
【0078】
【表4】
Figure 0003874372
【0079】
【表5】
Figure 0003874372
【0080】
* アミノ酸分析は、日本電子(株)製JCL−300を用いて、ニンヒドリン反応により検出した。
【0081】
参考例1〜4で得られた化合物の真菌類に対する最小生育阻止濃度(MIC、μg/ml)を後記表6に示す。測定はサブローデキストロース寒天培地(グルコース2%、ポリペプトン1%、寒天1.5%、以上の濃度はすべてW/V)を用いた寒天平板希釈法(30℃、2日間培養)により行い、MICを求めた。なお、対照として化合物1、オーレオバシジンA(AbA)を用いた。
【0082】
化合物5、7、8、44は、3.12〜12.5μg/mlの濃度でアスペルギルスに対して活性を示した。特に、化合物5は、アスペルギルスに対し3.12μg/mlの低濃度で活性を示し、更に、クリプトコッカスに対しても強い抗真菌活性を示し、オーレオバシジンAより強い活性を示した。
【0083】
【表6】
Figure 0003874372
【0084】
以上、参考例1〜4で得られた化合物は、カンジダばかりでなく、クリプトコッカス及び/又はアスペルギルスに対しても優れた活性を示し、抗真菌剤として有用性が高い。
【0085】
【実施例】
以下、実施例により本発明を説明するが、本発明はこれら実施例に限定されない。
【0086】
実施例1 薬剤耐性癌細胞内への制癌剤取り込み増強効果
本発明の効果を示すため、式(1)の化合物の代表例について、薬剤耐性癌細胞に対する制癌剤ビンクリスチンの取り込み増強作用を検討した。
ヒト卵巣癌細胞A2780のアドリアマイシン耐性株2780AD〔A.M.ローガン(Rogan)ら、サイエンス(Science)、第224巻、第994〜996頁(1984)〕を5%牛胎児血清を含むRPMI−1640培養液中に1×106 個/mlを懸濁し、直径16mm、24穴のマルチウエル培養プレートに1穴当り1mlの癌細胞懸濁液を入れ、5%CO2 、37℃で培養した。24時間後に培養液を20nM 3H−ビンクリスチン(6Ci/mmol)、5%牛胎児血清、10mMヘペス緩衝液を含むRPMI−1640培養液0.5mlと交換した。ジメチルスルホキシドに溶解後、生理リン酸緩衝液で希釈した被験化合物を5μl加え(反応液中の濃度は1.0又は10.0μg/ml)、5%CO2 、37℃で2時間培養を続けた後、氷冷した生理リン酸緩衝液で細胞を洗浄した。これに0.5mlの0.2N NaOHを加え、バイアルに移し、56℃で30〜60分間温浴し、細胞を溶解させた。水溶液シンチレーター(ACSII、アマーシャム社製)を4ml加え、液体シンチレーションカウンターで細胞内に取り込まれた 3H−ビンクリスチンの量を測定した。
効果は薬物無処理の対照群に取り込まれた 3H−ビンクリスチンの量を100として、薬物処理群に取り込まれた 3H−ビンクリスチンの量を百分率(%)で表した。結果を表7に示す。
【0087】
【表7】
Figure 0003874372
【0088】
実施例2
界面活性剤HCO−50の1gを65℃に加熱して溶融させ、これに化合物1を1g及びポリエチレングリコール4000を10g加えて溶融させる。充分混合後、室温にて凝固させ顆粒剤となるように調製する。
【0089】
【発明の効果】
以上説明したとおり、本発明の制癌剤の効果増強剤により細胞内の制癌剤の濃度を増加させることができる。また、耐性細胞の感受性を増強させることが判明した。したがって、本発明化合物は、制癌剤に対して低感受性の癌細胞や、制癌剤に対して耐性を獲得した癌細胞に対して有効であり、制癌剤の使用量を減少させる手段としても有用であり、その結果、制癌剤が有する毒性等の副作用を低減させることができる。
【0090】
【配列表】
【0091】
Figure 0003874372
Figure 0003874372
Figure 0003874372
Figure 0003874372
Figure 0003874372
【0092】
Figure 0003874372
【0093】
Figure 0003874372
【0094】
Figure 0003874372
【0095】
Figure 0003874372
【0096】
Figure 0003874372
【0097】
Figure 0003874372
[0001]
[Industrial application fields]
  The present inventionIs a novel anti-cancer agentIt relates to an effect enhancer.
[0002]
[Prior art]
  The compounds used in the present invention and pharmaceutically acceptable salts thereof have excellent antifungal activity and are known to be useful for the treatment of fungal infections including candidiasis and cryptococcosis. (JP-A-2-138296, JP-A-3-22995, JP-A-3-44398, JP-A-3-220199, JP-A-5-279384, Japanese Patent Application No. 4-303177, EP 0581429). Aureobasidin A represented by SEQ ID NO: 2 in the sequence listing is represented by the following formula:(2)Among them, it has particularly excellent activity and low toxicity.
[0003]
[Chemical 2]
Figure 0003874372
[0004]
[Where,D-Hmp represents 2 (R) -hydroxy-3 (R) -methylpentanoic acid]
By the way, it is well known that when a chemotherapeutic agent such as an antibiotic is administered for a relatively long period of time, the infecting microorganism acquires resistance and the effect of the chemotherapeutic agent decreases. In addition, in cancer chemotherapy using an anticancer agent as a means of reducing, inhibiting or limiting the growth or metastasis of cancer, a cancer resistant to the anticancer agent administered with the passage of time appears, and the therapeutic effect of the cancer chemotherapy decreases. It is generally known. It is said that it is often caused by accumulation of anticancer drugs in cancer cells and a decrease in maintenance ability. The mechanism of this resistance is being elucidated at the molecular level, and therapeutic methods for this are being investigated. That is, recently, a gene responsible for multidrug resistance has been isolated, and it has been revealed that this gene is a membrane protein, P-glycoprotein gene expressed in multidrug resistant cells. P-glycoprotein is presumed to be a protein having a function of extracellular elimination of anticancer agents, and is considered to be a protein that plays a central role in the multidrug resistance mechanism of cancer. In addition to cancer cells, P-glycoprotein is also present in eukaryotes and bacteria including fungi, and is known to be involved in drug resistance in fungi [K. Nishi, et al., Molecular Microbiology, Vol. 6, pp. 761-769 (1992)].
[0005]
[Problems to be solved by the invention]
  Today, when it is difficult to develop new chemotherapeutic agents, it is extremely important to try to enhance the effects of existing chemotherapeutic agents.
  The object of the present invention is excellentCancer controlAgentofContaining a compound found to have an effect enhancing action,Cancer controlAgentofIt is to provide an effect enhancer.
[0006]
[Means for Solving the Problems]
  In general, the present invention is a cyclic depsipeptide represented by the following formula (1).DomataVincristine, vinblastine, adriamycin, daunomycin, characterized by containing a pharmaceutically acceptable salt thereofAndAnd an effect enhancer of an anticancer drug selected from actinomycin D.
[0007]
[Chemical Formula 3]
Figure 0003874372
[0008]
[In the formula, X1 is Hmp or Hmb.(Hmp represents 2-hydroxy-3-methylpentanoic acid, Hmb represents 2-hydroxy-3-methylbutanoic acid)And X3 is MePhe or βHOMePhe(MePhe represents N-methylphenylalanine, βHOMePhe represents β-hydroxy-N-methylphenylalanine)And X5 isaIle, ValOr Leu and X8 isβHOMeVal (βHOMeVal represents β-hydroxy-N-methylvaline)OrMeValIs]
[0009]
The abbreviations for special α-amino acids, N-methyl-α-amino acids, and α-oxy acids used in the present specification are as shown in the following table.
Figure 0003874372
Figure 0003874372
[0010]
  As a result of earnest research, the present inventors are unexpectedly known as antifungal agents.Among the cyclic depsipeptides represented by the following formula (3) (SEQ ID NO: 1 in the sequence listing), in particularThe above formulaRepresented by (1)The compound is intracellularCancer controlIn addition to showing a strong effect on the accumulation and maintenance of the agent,Cancer controlThe present invention was completed by finding that it has an effect of remarkably enhancing the effect of the agent.
  In the following formula (3), X1 is Hmp, Hmb or Dhmp (Hmp is 2-hydroxy-3-methylpentanoic acid, Hmb is 2-hydroxy-3-methylbutanoic acid, Dhmp is 2,4-dihydroxy-3- Methylpentanoic acid)
X2 is Phe, oFPhe, mFPhe, pFPhe or Cha;
X3 is MePhe, oFMePhe, mFMePhe, pFMePhe, MeGly, MeAla, MeVal, MeTyr, βHOMePhe or βR 1 OMePhe {however, R 1 Is a lower acyl group having 1 to 4 carbon atoms, -COOH, -COO-R 2 (R 2 Is a lower alkyl group having 1 to 4 carbon atoms), -NH 2 Or -NH-R Three (R Three Is a lower acyl group having 1 to 4 carbon atoms)},
X4 is Pro, 4Hyp, SPro or Pip,
X5 is aIle, Leu, Val, Nle, Glu, GluOR Four (R Four Is a benzyl group, an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 1 to 12 carbon atoms), HONva or R Five ONva (R Three Is a benzyl group or an acyl group having 1 to 12 carbon atoms),
X6 is Val, MeVal, MeaIle, MeLeu, Hmb, HOMeNva or R 6 OMeNva (R 6 Is a benzyl group or an acyl group having 1 to 12 carbon atoms),
X7 is Leu, Nva, aIle, HONva or GluOR 7 (R 7 Is a benzyl group, an alkyl group having 1 to 12 carbon atoms or an alkenyl group having 1 to 12 carbon atoms),
X8 is βHOMeVal, γHOMeVal, MeVal, Val, N, βMeAsp, βHOMePhe, MeDH 2,3 Val, MeDH 3,4 Val or MeThr.
  Further, representative compounds represented by the following formula (3) are shown in Tables 1 to 3 below.
[0011]
[Formula 4]
Figure 0003874372
[0012]
[Table 1]
Figure 0003874372
[0013]
[Table 2]
Figure 0003874372
[0014]
[Table 3]
Figure 0003874372
[0015]
In Tables 1 to 3, the symbol indicates that it is the same amino acid or oxyacid as aureobasidin A (Compound 1).
[0016]
Cyclic depsipeptides used in the present invention were obtained from the culture of Aureobasidium pullulans No. R106 [Fabric Kenjo No. 1938 (FERMBP-1938)], Japanese Patent Laid-Open Nos. 2-138296 and 3- It is collected by the method described in JP-A Nos. 2295, 3-220199, and 5-279384 or Japanese Patent Application No. 4-303177.
[0017]
For example, the above producing bacteria are cultured in a liquid medium containing a carbon source such as glucose and glycerin, a nitrogen source such as peptone, ammonium salt and amino acid, and other inorganic salts, and an organic solvent such as ethanol is used with the obtained culture solution Extraction and purification of the extract with an adsorptive resin, and further by reverse-phase HPLC using a mixed solvent of 60 to 70% acetonitrile / water or silica gel HPLC using a mixed solvent of hexane / acetonitrile / 2-propanol If purified, cyclic depsipeptides can be separated and produced. Compound 1 (Aureobasidin A) is disclosed in JP-A-2-138296, and compounds 2, 10, 11, 20, 21, 28, 39, 40, 41, and 42 are disclosed in JP-A-3-22995. In addition, compounds 4, 9, 15, 16, 19, and 34 are disclosed in JP-A-3-220199, compound 3 is disclosed in JP-A-5-279384, and compounds 29, 30, and 35 are disclosed in Japanese Patent Application No. 4-4. -303177 and European Patent Publication No. 0581429, respectively.
[0018]
Moreover, it is extract | collected as a derivative | guide_body by the chemical method of Unexamined-Japanese-Patent No. 3-44398 and 3-220199 each using what was obtained from the culture as a raw material.
Compounds 12, 13, and 14 are described in JP-A-3-44398, and compound 6 is described in JP-A-3-220199.
[0019]
Further, it can be obtained by total synthesis chemically by the methods described in Japanese Patent Application No. 4-303177, European Patent Publication No. 0581429, and Japanese Patent Application No. 5-346873. Compounds 1, 17, 18, 22, 29, 30, 31, 32, 33, 35, 38, 43 are described in Japanese Patent Application No. 4-303177 and European Patent Publication No. 0581429, compounds 23, 24. , 25, 26, 27, 36, and 37 are described in European Patent Publication No. 0581429, and Compounds 5, 7, 8, and 44 are described in Japanese Patent Application No. 5-346873. In addition, about the manufacturing method of compound 5, 7, 8, 44, it mentions later as a reference example.
[0020]
  formulaRepresented by (1)The pharmaceutically acceptable salt of the compound is a non-toxic, pharmaceutically acceptable conventional salt, for example, an alkali metal salt such as sodium salt or potassium salt, for example, an alkaline earth metal salt such as calcium salt or magnesium salt And salts with inorganic or organic bases, such as ammonium salts, for example amine salts such as triethylamine salt, N-benzyl-N-methylamine salt.
[0021]
In the present invention, chemotherapy is, for example, prevention or treatment of infectious diseases by administering antibiotics to bacteria, viruses, fungi or protozoa, and administration of anticancer agents to cancer cells. It means that cancer is prevented or treated, and chemotherapeutic agents mean antibiotics, anticancer agents and the like used for these purposes.
[0022]
  As the anticancer drug whose effect can be enhanced by the anticancer drug effect enhancer of the present invention, the compound of formula (1) or a pharmaceutically acceptable salt thereof can increase the concentration of intracellular anticancer drug as described later. Therefore, any anticancer agent that is transported into the cell through the cell membrane and exerts its effect may be used. Examples of such anticancer agents include vincristine, vinblastine, adriamycin, daunomycin.AndAnd anti-cancer agents derived from natural anti-cancer substances including antibiotics, anti-cancer agents and plant components, selected from actinomycin D.
[0023]
The chemotherapeutic effect-enhancing action of the chemotherapeutic effect-enhancing agent of the present invention can be achieved by, for example, using an adriamycin-resistant strain 2780AD of human ovarian cancer cells or an adriamycin-resistant strain K562 / ADM of human myeloid leukemia. This is explained by the anticancer drug uptake enhancing effect and the action enhancing effect of the anticancer drug.
[0024]
  Of the present inventionCancer controlAgentofThe effect enhancer is the formula(1)A compound ofThatA pharmaceutically acceptable salt may be administered in the form of, for example, a solid, semi-solid or liquid pharmaceutical preparation, mixed with an organic or inorganic carrier or excipient suitable for external, internal or parenteral administration. it can. The pharmaceutical preparations can be used in tablets, pellets, capsules, suppositories, solutions, suspensions and other suitable forms, eg mixed with a conventional non-toxic pharmaceutically acceptable carrier. Carriers that can be used are water, glucose, lactose, gum arabic, gelatin, mannitol, starch paste, magnesium stearate, talc, corn starch, keratin, colloidal silica, and other solid, semi-solid or liquid formulations There are suitable carriers for this purpose, and excipients, stabilizers, thickeners, coloring agents, and fragrances may be used. formula(1)The compound or a pharmaceutically acceptable salt thereof is contained in a pharmaceutical preparation in an amount sufficient to exert a desired effect depending on the course or condition of the disease.
  When this pharmaceutical preparation is used in humans, it is desirable to use it parenterally or for internal use.
  Of the present inventionCancer controlAgentofWith effect enhancerHumanOr when treating animals,Cancer controlUsed in combination with agents. In that case, the formulation of the present invention formulated as described above.Cancer controlAgentofWith effect enhancerCancer controlAgents may be administered simultaneously or pre-formulated(1)Or a pharmaceutically acceptable salt thereofCancer controlYou may administer what was formulated into a powder, a fine granule, a tablet, a capsule, an injection, etc., for example.
[0025]
  Of the present inventionCancer controlAgentofFormula used as an effect enhancer(1)It is desirable to adjust the dose of the compound in consideration of the patient's condition such as age and body weight, administration route, nature and degree of disease, etc. A range of 10 to 2000 mg per day is common. In some cases, less than this may be sufficient, and conversely, more capacity may be required. When administering a large amount, it is desirable to divide the dose into several times a day.
  In addition, although compound 1-44 was intraperitoneally administered to a mouse | mouth 100 mg / kg each, it does not show any toxicity.
[0026]
The production examples of Compounds 5, 7, 8, and 44 are shown below with reference examples.
Reference Example 1 Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro) (Compound 7) synthesis
a) Boc-D-MeAla-OH (Boc represents t-butoxycarbonyl group)
Boc-D-To a solution of Ala-OH (3.0 g, 15.9 mmol) in tetrahydrofuran (THF, 48 ml) was added 60% sodium hydride (1.9 g, 47.6 mmol) under ice-cooling, followed by stirring for 10 minutes and then iodide. Methyl (7.9 ml, 127 mmol) was added and stirred at room temperature for 22 hours. After concentration under reduced pressure, the mixture was acidified with 10% aqueous citric acid solution under ice cooling, and extracted with ethyl acetate. This was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure. The residue was crystallized from hexane and washed with hexane to give the title compound. Yield 3.07 g (yield 94.8%).
[0027]
b) Boc-D-MeAla-L-Pro-OPac (Pac represents a phenacyl group)
Boc-D-MeAla-OH (1.50 g, 7.38 mmol), HCl.H-L-To a solution of Pro-OPac (1.53 g, 5.68 mmol) in methylene chloride (12 ml) was added bromo-tripyrrolidinophosphonium hexafluorophosphide salt (PyBroP, 3.44 g, 7.38 mmol), diisopropylethylamine ( DIEA, 3.96 ml, 22.7 mmol) was added and stirred for 3 hours under ice cooling. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 200 g, eluted with chloroform, chloroform-methanol 100: 1). Further, the eluate was concentrated under reduced pressure, crystallized from hexane, and washed with hexane to obtain the title compound. Yield 1.90 g (yield 78.0%).
[0028]
c) HCl / H-D-MeAla-L-Pro-OPac
Boc-D-MeAla-L-To Pro-OPac (1.7 g, 4.06 mmol) was added 4.0N hydrogen chloride / dioxane solution (30 ml) and left at room temperature for 40 minutes. After concentration under reduced pressure, crystallization from ether and washing with ether gave the title compound. Yield 1.38 g (95.8% yield).
[0029]
d) Boc-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-Phe-OH (1.26 g, 4.76 mmol), HCl.H-D-MeAla-L-To a solution of Pro-OPac (1.30 g, 3.66 mmol) in methylene chloride (10 ml) was added PyBroP (2.22 g, 4.76 mmol) and DIEA (921 μl, 5.29 mmol) under ice cooling. Stirred for 2 hours. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentration under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 200 g, eluted with toluene-ethyl acetate 3: 1, 1: 1) to obtain the title compound. Yield 1.76 g (yield 84.9%).
[0030]
e) HCl / H-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-Phe-D-MeAla-L-To Pro-OPac (1.70 g, 3.01 mmol) was added 4.0N hydrogen chloride / dioxane solution (30 ml) and left at room temperature for 30 minutes. After concentration under reduced pressure, crystallization from ether and washing with ether gave the title compound. Yield 1.63 g (yield 100%).
[0031]
f) Boc-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-To a solution of MeVal-OH (898 mg, 3.88 mmol) in methylene chloride (9 ml) was added HCl · H— under ice-cooling.L-Phe-D-MeAla-L-Pro-OPac (1.45 g, 2.99 mmol) and PyBroP (1.81 g, 3.88 mmol) were added, and DIEA (2.08 ml, 12.0 mmol) was further added, followed by stirring for 16 hours under ice cooling. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 200 g, eluted with toluene-ethyl acetate 2: 1, 1: 1) to give the title compound. Yield 1.67 g (82.3% yield).
[0032]
g) HCl · H-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-MeVal-L-Phe-D-MeAla-L-To Pro-OPac (1.00 g, 1.47 mmol) was added 4.0N hydrogen chloride / dioxane solution (18.4 ml) and left at room temperature for 50 minutes. After concentration under reduced pressure, crystallization from ether and washing with ether gave the title compound. Yield 838 mg (yield 92.7%).
[0033]
h) Boc-DL-βHOMeVal-OBzl (Bzl represents a benzyl group)
H-DL-To a suspension of βHOMeVal-OH (38.6 mg, 0.264 mmol) in dimethylformamide (DMF, 0.57 ml) was added bistrimethylsilyltrifluoroacetamide (BSTFA, 0.56 ml, 2.11 mmol) under ice-cooling, at room temperature. And stirred for 1 hour. To this was added di-t-butyl-dicarbonate (72.8 μl, 0.317 mmol) under ice cooling, and the mixture was stirred at room temperature for 1.5 hours. After concentration under reduced pressure, 10% aqueous citric acid solution was added, and the mixture was washed with saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the resulting oil was dissolved in ethyl acetate (0.5 ml), triethylamine (55.0 μl, 0.396 mmol), benzyl bromide (62.8 μl, 0) under ice cooling. .528 mmol) was added, and the mixture was stirred under ice-cooling for 5 minutes and then at room temperature for 48 hours. After concentration under reduced pressure, the product was purified by preparative silica gel thin layer chromatography (developed with chloroform-methanol 19: 1) to obtain the title compound. Yield 60.7 mg (yield 68.1%).
[0034]
i) HCl-H-DL-βHOMeVal-OBzl
Boc-DL-A 5.5 N hydrogen chloride / dioxane solution (29.5 ml) was added to βHOMeVal-OBzl (472 mg, 1.40 mmol) and left at room temperature for 1.5 hours. After concentration under reduced pressure, crystallization from ether and washing with ether gave the title compound. Yield 367 mg (yield 95.7%).
[0035]
j) Boc-L-Leu-DL-βHOMeVal-OBzl
Boc-L-Leu-OH · H2To a solution of O (1.34 g, 5.39 mmol) in methylene chloride (10 ml) was added HCl · H under ice cooling.-DL-βHOMeVal-OBzl (981.1 mg, 3.59 mmol), PyBroP (2.52 g, 5.39 mmol) were added, and DIEA (2.50 ml, 14.4 mmol) was further added, followed by stirring for 1 hour under ice-cooling and further at room temperature. Stir for 8 hours. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 40 g, eluted with toluene-ethyl acetate 3: 1). Further, the eluate was concentrated under reduced pressure, crystallized from hexane, and washed with hexane to obtain the title compound. Yield 1.05 g (65.2% yield).
[0036]
k) Boc-L-Leu-DL-βHOMeVal-OH
Boc-L-Leu-DL-Palladium-black (40 mg) was added to a solution of βHOMeVal-OBzl (43.5 mg, 96.5 μmol) in methanol (40 ml), and hydrogen gas was blown in at room temperature for 50 minutes. The catalyst was removed by filtration and concentrated under reduced pressure to obtain the title compound. Yield 30.6 mg (yield 87.9%).
[0037]
l) Boc-L-Leu-L-βHOMeVal-D-Hmp-OPac
Boc-L-Leu-DL-βHOMeVal-OH (744 mg, 2.15 mmol), 2 (R) -hydroxy-3 (R) -methylpentanoic acid phenacyl ester (D-Hmp-OPac) (589 mg, 2.36 mmol), 4-pyrrolidinopyridine (95.6 mg, 0.65 mmol) was dissolved in THF (4.3 ml), and N, N′-dicyclohexylcarbodiimide (DCC) was cooled with ice. 487 mg, 2.36 mmol) was added, and the mixture was stirred under ice-cooling for 1 hour, then gradually returned to room temperature and stirred for 18 hours. After concentration under reduced pressure, ethyl acetate was added, the insoluble material was filtered off, and washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 80 g, eluted with toluene-ethyl acetate 5: 1), and Boc-L-Leu-DL-βHOMeVal-D-Hmp-OPac was obtained (yield 1.00 g, yield 78.7%). Furthermore, diastereomers were separated by medium pressure silica gel column chromatography (silica gel 200 g, eluted with toluene-ethyl acetate 15: 1, 10: 1) to obtain the title compound. Yield 357 mg (Yield 56.2%: Boc-L-Leu-DL-in βHOMeVal-OHLLBased on body).
[0038]
m) Boc-L-Leu-L-βHOMeVal-D-Hmp-OH
Boc-L-Leu-L-βHOMeVal-D-Hmp-OPac (220 mg, 0.37 mmol) was dissolved in a 90% aqueous acetic acid solution (18.5 ml), and zinc dust (3.60 g, 55.5 mmol) was added under ice-cooling with ultrasonic stirring. Ultrasonic agitation for 7.5 hours. Insoluble material was removed by filtration, followed by concentration under reduced pressure. To this was added 10% aqueous citric acid solution, and ethyl acetate was extracted. The extract was washed with saturated brine, dried over magnesium sulfate, concentrated under reduced pressure, and the residue was purified by medium pressure silica gel column chromatography (silica gel 10 g, eluted with chloroform-methanol-acetic acid 50: 1: 0.5). The title compound was obtained. Yield 133 mg (yield 73.7%).
[0039]
n) HCl / H-L-MeVal-OPac
Boc-L-To a solution of MeVal-OH (4.94 g, 21.4 mmol) in acetone (50 ml) was added triethylamine (3.30 ml, 23.8 mmol) and phenacyl bromide (4.77 g, 24.0 mmol) under ice cooling. After stirring for 1 hour under ice cooling, the mixture was further stirred for 2 hours at room temperature. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with water, saturated aqueous sodium hydrogen carbonate solution and saturated brine. The extract was dried over magnesium sulfate and concentrated under reduced pressure. To this was added 5.5N hydrogen chloride / dioxane solution (77.8 ml, 0.428 mmol) and left at room temperature for 30 minutes. After concentration under reduced pressure, crystallization from ether was performed, and the collected crystals were washed with ether to obtain the title compound. Yield 6.08 g (99.3% yield).
[0040]
o) Boc-L-aIle-L-MeVal-OPac
HCl / H-L-MeVal-OPac (1.12 g, 4.18 mmol) was dissolved in methylene chloride (10 ml), and Boc-L-aIle-OH (1.06 g, 4.59 mmol), PyBroP (2.57 g, 5.49 mmol), DIEA (2.65 ml, 15.2 mmol) were added, and the mixture was stirred for 30 minutes under ice cooling, and further at room temperature for 17 hours. Stirred. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with saturated aqueous sodium hydrogen carbonate solution, saturated brine, 10% aqueous citric acid solution and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 80 g, eluted with chloroform) to obtain the title compound. Yield 764 mg (yield 36.0%).
[0041]
p) Boc-L-aIle-L-MeVal-OH
Boc-L-aIle-L-MeVal-OPac (657 mg, 1.42 mmol) was dissolved in 90% aqueous acetic acid solution (70 ml), and zinc dust (4.64 g, 71.0 mmol) was added with ultrasonic stirring under ice-cooling. Ultrasonic agitation for 5 hours. Insoluble material was removed by filtration, concentrated under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution and saturated brine. After drying over magnesium sulfate and concentration under reduced pressure, the residue was crystallized from hexane and washed with hexane to obtain the title compound. Yield 325 mg (yield 66.5%).
[0042]
q) Boc-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-Leu-L-βHOMeVal-D-To a solution of Hmp-OH (60.0 mg, 0.123 mmol) in methylene chloride (400 μl) under ice-cooling, HCl.H—L-MeVal-L-Phe-D-MeAla-L-Pro-OPac (114 mg, 0.184 mmol) and PyBroP (74.6 mg, 0.16 mmol) were added, DIEA (86.0 μl, 0.491 mmol) was further added, stirred for 2 hours under ice-cooling, and further for 13 hours at room temperature. Stirred. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by medium pressure silica gel column chromatography (silica gel 20 g, eluted with toluene-ethyl acetate 2: 1, 3: 2) to give the title compound. Yield 97.4 mg (yield 75.5%).
[0043]
r) HCl.H-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-To Pro-OPac (85 mg, 81.0 μmol) was added trifluoroacetic acid (500 μl, 6.48 mmol) under ice cooling, and the mixture was allowed to stand for 30 minutes under ice cooling. After concentration under reduced pressure, ether was added, 4.0N hydrogen chloride / dioxane solution (41 μl, 162 μmol) was added under ice cooling, and the mixture was allowed to stand at room temperature for 30 minutes. The precipitated crystals were washed with ether to obtain the title compound. Yield 59.2 mg (yield 74.2%).
[0044]
s) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac
Boc-L-aIle-L-MeVal-OH (29.0 mg, 83.7 μmol), HCl.H—L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac (55.0 mg, 55.8 μmol) was dissolved in DMF (200 μl), HOOBt (11.0 mg, 67.0 μmol) was added under ice cooling, and N-ethyl-N′-dimethylaminopropylcarbodiimide was added. (EDC, 12.9 μl, 72.5 μmol) was added and stirred for 2 hours under ice cooling. After stirring at room temperature for 17 hours, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentration under reduced pressure, the residue was purified by preparative silica gel thin layer chromatography (benzene-acetone 3: 1 development, ethyl acetate extraction) to give the title compound. Yield 60.6 mg (yield 85.1%).
[0045]
t) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OPac (50.0 mg, 39.2 μmol) was dissolved in 90% aqueous acetic acid solution (2.0 ml), and zinc dust (513 mg, 7.84 mmol) was added under ice cooling, followed by ultrasonic stirring for 1 hour under ice cooling. did. The insoluble material was removed by filtration, and the filtrate was concentrated under reduced pressure. A 10% aqueous citric acid solution was added to extract ethyl acetate. The extract was washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure to give the title compound. Yield 48.3 mg.
[0046]
u) HCl · H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-To Pro-OH (48.3 mg, 39.2 μmol) was added trifluoroacetic acid (TFA, 604 μl, 7.84 mmol) under ice cooling, and the mixture was allowed to stand for 30 minutes under ice cooling. After concentration under reduced pressure, ether was added, 4.0N hydrogen chloride / dioxane solution (29.5 μl, 118 μmol) was added under ice cooling, and the mixture was allowed to stand for 30 minutes under ice cooling. The precipitated crystals were washed with ether to obtain the title compound. Yield 33.3 mg (yield 78.7%).
[0047]
v) Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-Pro) (compound 7)
HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeAla-L-Pro-OH (23.0 mg, 21.3 μmol), DIEA (7.4 μl, 42.6 μmol) were dissolved in methylene chloride (11 ml), and this was dissolved in PyBroP (49.4 mg, 106 μmol), DIEA (18.6 μl, 106 μmol) was added dropwise to a methylene chloride (11 ml) solution at room temperature over 4 hours, and the mixture was further stirred at room temperature for 20 hours. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution, saturated brine, saturated aqueous sodium hydrogen carbonate solution, and saturated brine. After drying over magnesium sulfate and concentration under reduced pressure, the residue was purified by preparative silica gel thin layer chromatography (chloroform-methanol 19: 1 development, extraction) to give the title compound. Yield 12.1 mg (yield 55.5%).
[0048]
The physicochemical properties of the title compound are shown.
1H-NMR (CDClThree270 MHz): δ 8.62, 7.95, 7.67 (total 3H, NH), 7.35-7.11 (total 5H, aromatic H), 5.79, 5.44-5.22, 4.97, 4.88, 4.73 to 4.56, 4.30, 4.04, 3.44 (total 10H), 3.33, 3.32, 3.20, 2.85 (total 12H) , NCHThree), 1.09 to 0.71 (CHThreeOthers.
[0049]
Reference Example 2 Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-Synthesis of MeVal-Pro) (compound 8)
a) H-L-Phe-L-MePhe-L-Pro-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 4 in the sequence listing)
Aureobasidin A (6.0 g, 5.45 mmol) was cooled with a dry ice-methanol bath, anhydrous hydrogen fluoride (200 ml) was introduced, and the mixture was stirred at room temperature for 1.5 hours. After distilling off hydrogen fluoride under reduced pressure, the residue was lyophilized with dioxane. This was purified by high performance liquid chromatography (column: Soken Pack C-18 60 × 500 mm, eluted with 50-100% acetonitrile / 0.05% aq. TFA) to obtain the title compound. Yield 1.81 g (yield 29.7%).
[0050]
b) Z-L-Phe-L-MePhe-L-Pro-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 5 in the sequence listing, Z represents a benzyloxycarbonyl group)
H-L-Phe-L-MePhe-L-Pro-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-To a suspension of MeVal-OH (SEQ ID NO: 4, 200 mg, 0.179 mmol) in DMF (3.6 ml) under ice cooling, triethylamine (50.2 μl, 0.358 mmol), benzyloxycarbonylsuccinimide (53. 5 mg, 0.215 mmol) was added, and the mixture was stirred for 1.5 hours under ice cooling. After concentration under reduced pressure, ethyl acetate was added, the insoluble material was filtered off, and the mixture was washed with 10% aqueous citric acid solution and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue is subjected to medium pressure silica gel column chromatography (chloroform-methanol-acetic acid).
Elution with 100: 2: 2) to give the title compound. Yield 183 mg (yield 81.5%).
[0051]
c) HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 6 in the sequence listing)
Z-L-Phe-L-MePhe-L-Pro-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-A solution of MeVal-OH (SEQ ID NO: 5, 100 mg, 79.8 mmol) in ethanol (10 ml) was added to 50 mM potassium-phosphate buffer (pH 7.0) (89 ml). After standing at 30 ° C. for 10 minutes, 50 mM potassium-phosphate buffer solution (pH 7.0) (1.2 ml) in which prolyl endopeptidase (600 units, manufactured by Seikagaku Corporation) was dissolved was added and stirred. Insoluble matters were removed by centrifugation (7000 rpm, 10 minutes), and the supernatant was concentrated under reduced pressure. The residue was purified by high performance liquid chromatography (column: YMC C-18 ODS, manufactured by Yamamura Chemical Laboratory, eluted with 30-90% acetonitrile / 0.05% aq. TFA) to obtain the title compound. Yield 59.1 mg (yield 100%).
[0052]
d) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 7 in the sequence listing)
HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-Triethylamine (14.6 μl, 105 μmol), di-t-butyl-dicarbonate (24.0 μl, 105 μmol) in a solution of MeVal-OH (SEQ ID NO: 6, 57.7 mg, 81.0 μmol) in dioxane / water (2: 1) And stirred at room temperature for 3.5 hours. After concentration under reduced pressure, ethyl acetate was added, and the mixture was washed successively with 10% aqueous citric acid solution and saturated brine. After drying over magnesium sulfate and concentrating under reduced pressure, the residue was purified by preparative silica gel thin layer chromatography (chloroform-methanol-acetic acid 100: 1: 2 development, chloroform-methanol 10: 1 extraction) to give the title compound. Yield 51.2 mg (yield 77.8%).
[0053]
e) Boc-D-MeVal-OH
Boc-D-Similar to Reference Example 1-a) using Val-OH (2.0 g, 9.21 mmol), 60% sodium hydride (1.1 g, 27.6 mmol), methyl iodide (6.58 ml, 105.7 mmol). To give the title compound. Yield 1.54 g (yield 72.5%).
[0054]
f) Boc-D-MeVal-L-Pro-OPac
Boc-D-MeVal-OH (300 mg, 1.30 mmol), HCl.H-L-The title compound was obtained in the same manner as in Reference Example 1-b) using Pro-OPac (291 mg, 1.08 mmol), PyBroP (606 mg, 1.30 mmol) and DIEA (753 μl, 4.32 mmol). Yield 372 mg (yield 77.2%).
[0055]
g) HCl · H-D-MeVal-L-Pro-OPac
Boc-D-MeVal-L-Using Pro-OPac (350 mg, 0.784 mmol), 4.0N hydrogen chloride / dioxane solution (5.88 ml), the same operation as in Reference Example 1-c) was carried out to obtain the title compound. Yield 292 mg (97.3% yield).
[0056]
h) Boc-L-Phe-D-MeVal-L-Pro-OPac
Boc-L-Phe-OH (180 mg, 0.679 mmol), HCl.H-D-MeVal-L-The title compound was obtained in the same manner as in Reference Example 1-d) using Pro-OPac (200 mg, 0.522 mmol), PyBroP (317 mg, 0.679 mmol) and DIEA (364 μl, 2.09 mmol). Yield 281 mg (yield 90.7%).
[0057]
i) HCl / H-L-Phe-D-MeVal-L-Pro-OPac
Boc-L-Phe-D-MeVal-L-Using Pro-OPac (190 mg, 0.320 mmol), 4.0N hydrogen chloride / dioxane solution (4.2 ml), and performing the same operation as in Reference Example 1-e), the title compound was obtained. Yield 169 mg (yield 99.4%).
[0058]
j) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro-OPac
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 7, 35.0 mg, 43.1 μmol), HCl · H—L-Phe-D-MeVal-L-Pro-OPac (34.2 mg, 64.6 μmol), 3-hydroxy-4-oxo-3,4-dihydro-1,2,3-benzotriazine (HOObt, 8.7 mg, 64.6 μmol), EDC (11 The title compound was obtained in the same manner as in Reference Example 1-s) using 4 μl and 64.6 μmol). Yield 34.6 mg (yield 62.3%).
[0059]
k) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro-OPac (31.0 mg, 24.1 μmol), 90% aqueous acetic acid solution (1.2 ml) and zinc dust (313 mg, 4.82 mmol) were used in the same manner as in Reference Example 1-t) to give the title compound. Obtained. Yield 30.0 mg.
[0060]
l) HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Similar to Reference Example 1-u) using Pro-OH (30.0 mg, 25.7 μmol), TFA (396 μl, 5.14 mmol), 4.0 N hydrogen chloride / dioxane solution (12.9 μl, 51.4 μmol) Operation was performed to obtain the title compound. Yield 19.6 mg (yield 73.6%).
[0061]
m) Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro) (compound 8)
HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Phe-D-MeVal-L-Pro-OH (15.0 mg, 13.6 μmol), DIEA (4.7 μl, 27.2 μmol) in methylene chloride (6.8 ml), PyBroP (31.7 mg, 67.9 μmol), DIEA (11.8 μl, The same operation as in Reference Example 1-v) was carried out using a solution of 67.9 μmol) in methylene chloride (6.8 ml) to obtain the title compound. Yield 5.0 mg (Yield 35.0%).
[0062]
The physicochemical properties of the title compound are shown.
1H-NMR (CDClThree270 MHz): δ 8.78, 8.10, 7.48 (total 3H, NH), 7.35 to 7.09 (total 5H, aromatic H), 5.78, 5.39, 5.20, 4.98 to 4.94, 4.80, 4.53, 4.37 to 4.31, 4.13, 3.45 (10H in total), 3.33, 3.22, 2.78 (12H in total) , NCHThree), 1.11 to 0.70 (CHThreeOthers.
[0063]
Reference Example 3 Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-D-Synthesis of (MeAla-Pro) (compound 5)
a) Boc-L-Cha-D-MeAla-L-Pro-OPac
Boc-L-Cha-OH (137 mg, 0.507 mmol), HCl.H-D-MeAla-L-The title compound was obtained in the same manner as in Reference Example 1-d) using Pro-OPac (150 mg, 0.423 mmol), PyBroP (236 mg, 0.507 mmol) and DIEA (258 μl, 1.48 mmol). Yield 198 mg (yield 82.1%).
[0064]
b) HCl / H-L-Cha-L-MeAla-L-Pro-OPac
Boc-L-Cha-D-MeAla-L-Using Pro-OPac (180 mg, 0.315 mmol), 4.0N hydrogen chloride / dioxane solution (3.15 ml), and performing the same operation as in Reference Example 1-e), the title compound was obtained. Yield 148 mg (yield 93.1%).
[0065]
c) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-D-MeAla-L-Pro-OPac
Boc- prepared by the method described in Reference Examples 2-a) to d)L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 7, 35.0 mg, 43.1 μmol), HCl · H—L-Cha-D-MeVal-L-Using Pro-OPac (32.8 mg, 64.6 μmol), HOObt (8.7 mg, 64.6 μmol) and EDC (11.4 μl, 64.6 μmol), the same operation as in Reference Example 1-s) was carried out. A compound was obtained. Yield 48.6 mg (yield 89.2%).
[0066]
d) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-L-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-D-MeAla-L-Pro-OPac (45.4 mg, 35.8 μmol), 90% aqueous acetic acid solution (1.6 ml) and zinc dust (466 mg, 7.16 mmol) were used in the same manner as in Reference Example 1-t) to give the title compound. Obtained. Yield 46.0 mg.
[0067]
e) HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-L-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-D-MeAla-L-Similar to Reference Example 1-u) using Pro-OH (42.5 mg, 37.0 μmol), TFA (570 μl, 7.40 mmol), 4.0N hydrogen chloride / dioxane solution (18.5 μl, 74.0 μmol) Operation was performed to obtain the title compound. Yield 31.7 mg (yield 90.3%).
[0068]
f) Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-L-MeAla-L-Pro) (compound 5)
HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-Cha-D-MeAla-L-Pro-OH (25.0 mg, 21.1 μmol), DIEA (7.3 μl, 42.2 μmol) in methylene chloride (10.6 ml), PyBroP (49.2 mg, 105.5 μmol), DIEA (18.4 μl, The title compound was obtained in the same manner as in Reference Example 1-v) using a solution of 105.5 μmol) in methylene chloride (10.6 ml). Yield 6.8 mg (Yield 28.6%).
[0069]
The physicochemical properties of the title compound are shown.
1H-NMR (CDClThree270 MHz): δ 8.62, 8.55, 7.92, 7.87, 7.75 (total 3H, NH), 5.82, 5.44-5.20, 5.02-4.86, 4.67, 4.56, 4.20, 4.03, 3.37 (total 10H), 3.29, 3.28, 3.27, 3.25, 3.24 (total 12H, NCHThree), 1.03-0.76 (CHThreeOthers.
[0070]
Reference Example 4 Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Pro) (Compound 44)
a) Boc-L-pFPhe-DMeAla-L-Pro-OPac
Boc-L-pFPhe-OH (100 mg, 0.353 mmol), HCl.H-D-MeAla-L-The title compound was obtained in the same manner as in Reference Example 1-d) using Pro-OPac (105 mg, 0.294 mmol), PyBroP (165 mg, 0.353 mmol) and DIEA (179 μl, 1.03 mmol). Yield 153 mg (yield 89.2%).
[0071]
b) HCl / H-L-pFPhe-D-MeAla-L-Pro-OPac
Boc-L-pFPhe-D-MeAla-L-Using Pro-OPac (140 mg, 0.240 mmol), 4.0N hydrogen chloride / dioxane solution (2.4 ml), and performing the same operation as in Reference Example 1-e), the title compound was obtained. Yield 120 mg (96.8% yield).
[0072]
c) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Pro-OPac
Boc- prepared by the method described in Reference Examples 2-a) to d)L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-OH (SEQ ID NO: 7, 35.0 mg, 43.1 μmol), HCl · H—L-pFPhe-D-MeAla-L-Using Pro-OPac (33.6 mg, 64.6 μmol), HOObt (8.7 mg, 64.6 μmol) and EDC (11.4 μl, 64.6 μmol), the same operation as in Reference Example 1-s) was carried out. A compound was obtained. Yield 48.8 mg (yield 88.7%).
[0073]
d) Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-L-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-L-MeAla-L-Pro-OPac (45.3 mg, 35.4 μmol), 90% aqueous acetic acid solution (1.7 ml) and zinc dust (920 mg, 14.1 mmol) were used in the same manner as in Reference Example 1-t) to give the title compound. Obtained. Yield 47.2 mg.
[0074]
e) HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Pro-OH
Boc-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Similar to Reference Example 1-u) using Pro-OH (44.0 mg, 37.9 μmol), TFA (584 μl, 7.58 mmol), 4.0N hydrogen chloride / dioxane solution (18.9 μl, 75.8 μmol) Operation was performed to obtain the title compound. Yield 34.9 mg (96.1% yield).
[0075]
f) Cyclo (L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Pro) (compound 44)
HCl / H-L-aIle-L-MeVal-L-Leu-L-βHOMeVal-D-Hmp-L-MeVal-L-pFPhe-D-MeAla-L-Pro-OH (28.0 mg, 25.5 μmol), DIEA (8.9 μl, 51.1 μmol) in methylene chloride (12.8 ml), PyBroP (59.4 mg, 128 μmol), DIEA (22.2 μl, 128 μmol) The title compound was obtained in the same manner as in Reference Example 1-v) using a methylene chloride (12.8 ml) solution. Yield 7.94 mg (29.8% yield).
[0076]
The physicochemical properties of the title compound are shown.
1H-NMR (CDClThree270 MHz): δ 8.65, 7.98, 7.66 (total 3H, NH), 7.09 to 7.05 (total 4H, aromatic H), 5.84, 5.31, 5.19, 4.97, 4.88, 4.73 to 4.57, 4.17, 4.04, 3.44 (total 10H), 3.33, 3.32, 3.19, 2.94 (total 12H) , NCHThree), 1.07 to 0.73 (CHThreeOthers.
[0077]
Tables 4 and 5 show the physicochemical properties of the compounds obtained in Reference Examples 1 to 4.
[0078]
[Table 4]
Figure 0003874372
[0079]
[Table 5]
Figure 0003874372
[0080]
*The amino acid analysis was detected by ninhydrin reaction using JCL-300 manufactured by JEOL Ltd.
[0081]
The minimum inhibitory concentration (MIC, μg / ml) of the compounds obtained in Reference Examples 1 to 4 for fungi is shown in Table 6 below. The measurement is performed by the agar plate dilution method (cultured at 30 ° C. for 2 days) using a Sabouraud dextrose agar medium (glucose 2%, polypeptone 1%, agar 1.5%, all concentrations are W / V). Asked. As a control, compound 1, aureobasidin A (AbA) was used.
[0082]
Compounds 5, 7, 8, and 44 showed activity against Aspergillus at concentrations of 3.12-12.5 μg / ml. In particular, Compound 5 showed activity at a low concentration of 3.12 μg / ml against Aspergillus, and also showed strong antifungal activity against Cryptococcus, and stronger activity than Aureobasidin A.
[0083]
[Table 6]
Figure 0003874372
[0084]
As described above, the compounds obtained in Reference Examples 1 to 4 exhibit excellent activity against not only Candida but also cryptococcus and / or aspergillus and are highly useful as antifungal agents.
[0085]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[0086]
Example 1 Effect of enhancing uptake of anticancer drug into drug-resistant cancer cells
  To show the effect of the present invention, the formula(1)Anti-cancer agent for drug-resistant cancer cellsVincristineThe uptake-increasing action of was examined.
  Adriamycin resistant strain 2780AD of human ovarian cancer cell A2780 [A. M.M. Rogan et al., Science, Vol. 224, pp. 994-996 (1984)] in RPMI-1640 culture medium containing 5% fetal bovine serum.6 1 ml of cancer cell suspension per well is suspended in a multiwell culture plate with a diameter of 16 mm and 24 wells, 5% CO2 And cultured at 37 ° C. After 24 hours, the culture solution is 20 nMThreeThe medium was exchanged with 0.5 ml of RPMI-1640 culture medium containing H-vincristine (6 Ci / mmol), 5% fetal calf serum, 10 mM hepes buffer. After dissolving in dimethyl sulfoxide, add 5 μl of the test compound diluted with physiological phosphate buffer (concentration in the reaction solution is 1.0 or 10.0 μg / ml), 5% CO2 After culturing at 37 ° C. for 2 hours, the cells were washed with an ice-cold physiological phosphate buffer. To this 0.5 ml of 0.2N NaOH was added, transferred to a vial and warm bathed at 56 ° C. for 30-60 minutes to lyse the cells. 4 ml of aqueous scintillator (ACSII, Amersham) was added and taken up into cells with a liquid scintillation counter.ThreeThe amount of H-vincristine was measured.
  The effect was incorporated into a drug-free control groupThreeThe amount of H-vincristine was taken as 100 and incorporated into the drug treatment groupThreeThe amount of H-vincristine was expressed as a percentage (%). The results are shown in Table 7.
[0087]
[Table 7]
Figure 0003874372
[0088]
Example 2
1 g of surfactant HCO-50 is heated to 65 ° C. and melted, and 1 g of compound 1 and 10 g of polyethylene glycol 4000 are added and melted. After thorough mixing, it is coagulated at room temperature to prepare granules.
[0089]
【The invention's effect】
  As explained above, the present inventionAnticancer drugIntracellular by effect enhancerCancer controlThe concentration of the agent can be increased. It was also found to enhance the sensitivity of resistant cells. Therefore, the compound of the present invention, Anticancer drugsEffective against cancer cells that are less sensitive to cancer and cancer cells that have acquired resistance to anticancer drugs,Cancer controlIt is also useful as a means of reducing the amount of agent used,Cancer controlSide effects such as toxicity of the agent can be reduced.
[0090]
[Sequence Listing]
[0091]
Figure 0003874372
Figure 0003874372
Figure 0003874372
Figure 0003874372
Figure 0003874372
[0092]
Figure 0003874372
[0093]
Figure 0003874372
[0094]
Figure 0003874372
[0095]
Figure 0003874372
[0096]
Figure 0003874372
[0097]
Figure 0003874372

Claims (1)

下記式(1)で表される環状デプシペプチド又はその医薬として許容される塩を含有することを特徴とするビンクリスチン、ビンブラスチン、アドリアマイシン、ダウノマイシン及びアクチノマイシンDから選択される制癌剤の効果増強剤。
Figure 0003874372
式中、X1はHmp又はHmb(Hmpは2−ヒドロキシ−3−メチルペンタン酸、Hmbは2−ヒドロキシ−3−メチルブタン酸を示す)であり、X3はMePhe又はβHOMePhe(MePheはN−メチルフェニルアラニン、βHOMePheはβ−ヒドロキシ−N−メチルフェニルアラニンを示す)であり、X5はaIle、Val又はLeuであり、X8はβHOMeVal(βHOMeValはβ−ヒドロキシ−N−メチルバリンを示す)又はMeValである
An anti-cancer effect-enhancing agent selected from vincristine, vinblastine, adriamycin, daunomycin and actinomycin D, comprising a cyclic depsipeptide represented by the following formula (1) or a pharmaceutically acceptable salt thereof.
Figure 0003874372
[ Wherein, X1 is Hmp or Hmb (Hmp is 2-hydroxy-3-methylpentanoic acid, Hmb is 2-hydroxy-3-methylbutanoic acid) , X3 is MePhe or βHOMePhe (MePhe is N-methylphenylalanine) , ΒHOMePhe is β-hydroxy-N-methylphenylalanine) , X5 is aIle, Val or Leu, and X8 is βHOMeVal (βHOMeVal is β-hydroxy-N-methylvaline) or MeVal ]
JP04991094A 1994-02-24 1994-02-24 Anticancer drug effect enhancer Expired - Lifetime JP3874372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04991094A JP3874372B2 (en) 1994-02-24 1994-02-24 Anticancer drug effect enhancer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04991094A JP3874372B2 (en) 1994-02-24 1994-02-24 Anticancer drug effect enhancer

Publications (2)

Publication Number Publication Date
JPH07233084A JPH07233084A (en) 1995-09-05
JP3874372B2 true JP3874372B2 (en) 2007-01-31

Family

ID=12844175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04991094A Expired - Lifetime JP3874372B2 (en) 1994-02-24 1994-02-24 Anticancer drug effect enhancer

Country Status (1)

Country Link
JP (1) JP3874372B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5396016B2 (en) * 2007-03-26 2014-01-22 学校法人青山学院 Compound or pharmacologically acceptable salt or ester derivative thereof and anticancer agent
WO2010051667A1 (en) * 2008-11-10 2010-05-14 复旦大学 Pharmaceutical compositions comprising cyclic peptide nanotubes and the uses thereof

Also Published As

Publication number Publication date
JPH07233084A (en) 1995-09-05

Similar Documents

Publication Publication Date Title
CN101754769B (en) Based on the purposes of Type B lantibiotics with antimicrobial acivity
TWI423987B (en) Cyclic peptide cxcr4 antagonists
US11046730B2 (en) Antimicrobial compositions
JP5188665B2 (en) Kahalalide compounds
KR20070047770A (en) Peptide antibiotics and methods for making same
KR101903768B1 (en) High penetration prodrug compositions of peptides and peptide-related compounds
BG65065B1 (en) Peptide antiangiogenic drugs
NZ544750A (en) Compositions of amphomycin or aspartocin based lipopeptide antibiotic derivatives and methods of use thereof
JPH0364514B2 (en)
PT2132221E (en) Template-fixed peptidomimetics
FR2621317A1 (en) TRIPEPTIDES COMPRISING IMMUNOSTIMULANT AND ANTIMETASTASIC PROPERTIES AND PROCESS FOR THEIR PREPARATION
KR20000016700A (en) Depsipeptides and drugs containing the same as the active ingredient
CH637111A5 (en) POLYPEPTIDE COMPOUNDS WITH THERMAL OR ANTAGONIST ACTIVITY AND METHODS OF SYNTHESIS THEREOF.
JPH04500666A (en) peptide compounds
JP3874372B2 (en) Anticancer drug effect enhancer
JP4817335B2 (en) New antibacterial peptide
EP2235039A2 (en) Methods of peptide modification
SK173599A3 (en) Cyclic azapeptides with angiogenic effect
EP0687686B1 (en) Aureobasidins
EP1373305B1 (en) Process for producing trunkamide a compounds
EP1539803B1 (en) Fluoro-alkyl-cyclopeptide derivatives having anti-integrin activity
GB2227244A (en) Immunosuppressive fluorinated cyclosporin analogs
CN106083994A (en) Substituted oxazolidone soluble derivative and application thereof
WO2023039482A1 (en) Prodrugs of antibiotic teixobactin
JPH11263797A (en) Depsipeptide containing n-substituted glycine residual group

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061023

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term