JP3873959B2 - Fuel property determination device for internal combustion engine - Google Patents

Fuel property determination device for internal combustion engine Download PDF

Info

Publication number
JP3873959B2
JP3873959B2 JP2003329357A JP2003329357A JP3873959B2 JP 3873959 B2 JP3873959 B2 JP 3873959B2 JP 2003329357 A JP2003329357 A JP 2003329357A JP 2003329357 A JP2003329357 A JP 2003329357A JP 3873959 B2 JP3873959 B2 JP 3873959B2
Authority
JP
Japan
Prior art keywords
cylinder
fuel
rotational speed
fuel injection
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003329357A
Other languages
Japanese (ja)
Other versions
JP2005098115A (en
Inventor
肇 安田
雅明 芦田
浩一 森
芳直 鵜篭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003329357A priority Critical patent/JP3873959B2/en
Priority to EP04021387A priority patent/EP1517024B1/en
Priority to DE602004010340T priority patent/DE602004010340T2/en
Priority to US10/942,906 priority patent/US7050901B2/en
Publication of JP2005098115A publication Critical patent/JP2005098115A/en
Application granted granted Critical
Publication of JP3873959B2 publication Critical patent/JP3873959B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0611Fuel type, fuel composition or fuel quality
    • F02D2200/0612Fuel type, fuel composition or fuel quality determined by estimation

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関において、使用燃料の性状(重軽質)を判定する装置に関する。   The present invention relates to an apparatus for determining the properties (heavy and light) of fuel used in an internal combustion engine.

特許文献1には、所定クランキング時期(例えばクランキング回転速度300rpm)となってから、所定サイクル(例えば機関1/2回転)毎に回転速度偏差を検出し、当該偏差の積算値が所定値以上となったときに、それまでの経過サイクル数が所定値以上であるか否かに基づいて、使用燃料の性状(重軽質)を判定することが記載されている。
特開平9−151777号公報
In Patent Document 1, a rotational speed deviation is detected every predetermined cycle (for example, engine 1/2 rotation) after a predetermined cranking time (for example, cranking rotational speed 300 rpm), and the integrated value of the deviation is a predetermined value. It is described that, when the above is reached, the property (heavy or light) of the fuel used is determined based on whether or not the number of elapsed cycles up to that time is equal to or greater than a predetermined value.
JP-A-9-151777

しかしながら、特許文献1のように、初爆後しばらくたってから燃料性状を判定したのでは、時間的にフィードバックが遅くなるのみならず、判定精度の低下を招く恐れがあった。
本発明は、始動時により速やかに精度良く燃料性状を判定できるようにすることを目的とする。
However, as in Patent Document 1, if the fuel property is determined after a while after the first explosion, not only the feedback is delayed in time but also the determination accuracy may be lowered.
An object of the present invention is to make it possible to quickly and accurately determine the fuel properties at the time of starting.

本発明は、吸気通路に各気筒毎に燃料噴射弁を有する内燃機関では、燃料噴射開始から一巡目内は、噴射した燃料が吸気ポートに壁流として付着し、気化率の悪い重質燃料では多くの燃料が吸気ポートに壁流として残ることから、燃料性状の差により筒内流入燃料量に差が出て、回転速度変化度合(上昇度合)に大きな差が現れることに着目した。
そこで、始動時の最初の燃料噴射気筒から一巡目の最後の燃料噴射気筒までの、各気筒の燃焼による気筒毎の回転速度変化度合を検出し、予め定められた回転速度変化度合のしきい値との比較に基づいて、使用燃料の重軽質を判定する。
In an internal combustion engine having a fuel injection valve for each cylinder in the intake passage, the present invention is such that the injected fuel adheres to the intake port as a wall flow within the first round from the start of fuel injection, and for heavy fuel with a low vaporization rate. Since a lot of fuel remains as a wall flow in the intake port, we paid attention to the difference in the amount of fuel flowing into the cylinder due to the difference in fuel properties, and a large difference in the rotational speed change (rise).
Therefore, the degree of change in rotational speed for each cylinder due to the combustion of each cylinder from the first fuel injection cylinder at the start to the last fuel injection cylinder in the first round is detected, and a predetermined threshold value for the degree of change in rotational speed is detected. Based on the comparison, the heavy and light fuel used is determined.

但し、一巡目内には、吸気行程にて燃料噴射を行う気筒と、吸気行程以外にて燃料噴射を行う気筒とがあり、燃料性状の差による回転速度変化度合への影響が異なるので、吸気行程にて燃料噴射を行う気筒と、吸気行程以外にて燃料噴射を行う気筒とで、前記しきい値を変更するか、吸気行程にて燃料噴射を行う気筒では、重軽質判定を禁止し、吸気行程以外にて燃料噴射を行う気筒で、重軽質判定を行う。   However, in the first round, there are cylinders that perform fuel injection in the intake stroke and cylinders that perform fuel injection in other than the intake stroke, and the effect on the rotational speed change due to the difference in fuel properties is different. In the cylinder that performs fuel injection in the stroke and the cylinder that performs fuel injection in other than the intake stroke, or the cylinder that performs fuel injection in the intake stroke, prohibits heavy / lightness determination, A heavy / light quality determination is performed in a cylinder that injects fuel outside the intake stroke.

本発明によれば、始動時に燃料噴射が一巡するまでという極めて短い時間で使用燃料の重軽質を精度良く判定でき、特に、一巡目内で吸気行程にて燃料噴射を行う気筒と、吸気行程以外にて燃料噴射を行う気筒とを区別して対処することで、更に判定精度を向上できる。   According to the present invention, it is possible to accurately determine the heavy and lightness of the used fuel in a very short time until the fuel injection is completed at the time of start-up, and in particular, a cylinder that performs fuel injection in the intake stroke within the first cycle, and other than the intake stroke In this case, the determination accuracy can be further improved by distinguishing and dealing with the cylinder that performs fuel injection.

以下に本発明の実施の形態を図面に基づいて説明する。図1は本発明の一実施形態を示す内燃機関(以下エンジンという)のシステム図である。
エンジン1の各気筒のピストン2により画成される燃焼室3には、点火栓4を囲むように、吸気弁5及び排気弁6を備えている。7は吸気通路、8は排気通路である。
吸気通路7には、吸気マニホールドの上流側に、スロットル弁9が設けられている。吸気通路7にはまた、吸気マニホールドの各ブランチ部(シリンダヘッド側の吸気ポートに臨む位置)に、各気筒毎に、電磁式の燃料噴射弁10が設けられており、吸気弁5に向けて燃料を噴射するようになっている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a system diagram of an internal combustion engine (hereinafter referred to as an engine) showing an embodiment of the present invention.
The combustion chamber 3 defined by the piston 2 of each cylinder of the engine 1 is provided with an intake valve 5 and an exhaust valve 6 so as to surround the spark plug 4. 7 is an intake passage and 8 is an exhaust passage.
A throttle valve 9 is provided in the intake passage 7 upstream of the intake manifold. The intake passage 7 is also provided with an electromagnetic fuel injection valve 10 for each cylinder at each branch portion (position facing the intake port on the cylinder head side) of the intake manifold. Fuel is injected.

ここにおいて、燃料噴射弁10の作動は、エンジンコントロールユニット(以下ECUという)11により制御され、このECU11には、気筒判別用のカム角センサ12、エンジン回転に同期してクランク角信号を出力しこれによりクランク角位置と共にエンジン回転速度Neを検出可能なクランク角センサ13、吸気通路7のスロットル弁9上流にて吸入空気量Qaを検出するエアフローメータ14、エンジン冷却水温Twを検出する水温センサ15等から、信号が入力されている。   Here, the operation of the fuel injection valve 10 is controlled by an engine control unit (hereinafter referred to as ECU) 11, which outputs a crank angle signal in synchronism with a cam angle sensor 12 for cylinder discrimination and engine rotation. Thus, the crank angle sensor 13 capable of detecting the engine rotational speed Ne together with the crank angle position, the air flow meter 14 for detecting the intake air amount Qa upstream of the throttle valve 9 in the intake passage 7, and the water temperature sensor 15 for detecting the engine cooling water temperature Tw. The signal is input from the above.

ECU11による燃料噴射弁10の燃料噴射の制御については、吸入空気量Qaとエンジン回転速度Neとに基づいて基本燃料噴射量Tp=K・Qa/Ne(Kは定数)を演算し、これに各種補正を施して、最終的な燃料噴射量Ti=Tp・COEF(COFFは各種補正係数)を定め、このTiに相当するパルス幅の駆動パルス信号をエンジン回転に同期した所定のタイミングで各気筒の燃料噴射弁10に出力して、燃料噴射を行わせる。   Regarding the control of the fuel injection of the fuel injection valve 10 by the ECU 11, the basic fuel injection amount Tp = K · Qa / Ne (K is a constant) is calculated based on the intake air amount Qa and the engine speed Ne, After correction, a final fuel injection amount Ti = Tp · COEF (COFF is various correction coefficients) is determined, and a drive pulse signal having a pulse width corresponding to Ti is set at a predetermined timing synchronized with engine rotation. Output to the fuel injection valve 10 to cause fuel injection.

ここで、各気筒の燃料噴射タイミングは、各気筒の排気行程に設定される。これは次の理由による。
燃料噴射をいつ行うかについて考えるべき観点として、燃料気化状態という観点と、気筒吸入量という観点とがある。吸気行程噴射では、気筒に流入する空気と一緒になって噴射直後の燃料が気筒に吸込まれるので、気筒吸入量は排気行程噴射に比べて大きくなるが、燃料気化状態(燃料の微粒化)については不十分となって、燃え残りとなる燃料量が排気行程噴射に比べて増えることになる。排気行程噴射では、気筒流入量は吸気行程噴射に比べて小さくなるものの、吸気ポート内で一旦時間が置かれるために、燃料の気化の進行により燃料の微粒化が十分に行われて、燃え残りとなる燃料量が吸気行程噴射に比べて小さくなる。従って、エミッションに大きな影響を与える燃料気化状態を重視して、排気行程噴射としている。
Here, the fuel injection timing of each cylinder is set to the exhaust stroke of each cylinder. This is due to the following reason.
As viewpoints to consider when fuel injection is performed, there are a viewpoint of a fuel vaporization state and a viewpoint of a cylinder intake amount. In the intake stroke injection, the fuel immediately after injection is sucked into the cylinder together with the air flowing into the cylinder, so that the cylinder intake amount is larger than that in the exhaust stroke injection, but the fuel vaporization state (fuel atomization) Is insufficient, and the amount of fuel that remains unburned increases compared to the exhaust stroke injection. In the exhaust stroke injection, the cylinder inflow amount is smaller than that in the intake stroke injection, but because there is a time in the intake port, the fuel is sufficiently atomized by the progress of fuel vaporization, and the unburned fuel remains. The amount of fuel that becomes smaller becomes smaller than the intake stroke injection. Therefore, the exhaust stroke injection is performed with an emphasis on the fuel vaporization state that greatly affects the emission.

但し、気筒判別から初爆までの時間をできる限り短くするため、最初に燃焼させる気筒(初回噴射気筒)は吸気行程噴射とし、次に燃焼させる気筒から排気行程噴射としている。このため、初回噴射気筒への燃料噴射と、2回目の噴射気筒への燃料噴射は同時に行われる。
また、前記各種補正係数COEFは、次式のように、始動時及び始動後の燃料増量のための増量補正係数(以下始動後増量補正係数という)KASを含んでいる。
However, in order to shorten the time from cylinder discrimination to the first explosion as much as possible, the cylinder to be burned first (initial injection cylinder) is the intake stroke injection, and the cylinder to be burned next is the exhaust stroke injection. For this reason, the fuel injection to the first injection cylinder and the fuel injection to the second injection cylinder are performed simultaneously.
Further, the various correction coefficients COEF include an increase correction coefficient (hereinafter referred to as an increase correction coefficient after start) KAS for increasing the fuel at the start and after the start, as shown in the following equation.

COEF=1+KAS+・・・
また、この始動後増量補正係数KASは、次式により算出される。
KAS=MTKAS×TMKAS
MTKASは、エンジン冷却水温Twに応じたテーブル値(水温増量率)で、低水温時に大きく、水温の上昇と共に小さな値となる。そして、重質燃料の場合と軽質燃料の場合とで異なるテーブルが用いられる。図2は水温増量率(MTKAS)テーブルの概略図である。水温Twの低いところでは重質燃料と軽質燃料とで燃料気化率に大きな差があるが、水温Twの高いところでは差が縮まる。よって、燃料別に水温Twに応じて図示のように増量率MTKASを設定している。
COEF = 1 + KAS + ...
Further, the post-startup increase correction coefficient KAS is calculated by the following equation.
KAS = MTKAS × TMKAS
MTKAS is a table value (water temperature increase rate) corresponding to the engine coolant temperature Tw, and is large when the water temperature is low, and decreases as the water temperature increases. Different tables are used for heavy fuel and light fuel. FIG. 2 is a schematic diagram of a water temperature increase rate (MTKAS) table. There is a large difference in the fuel vaporization rate between the heavy fuel and the light fuel at a low water temperature Tw, but the difference is reduced at a high water temperature Tw. Therefore, the increase rate MTKAS is set according to the water temperature Tw for each fuel as shown in the figure.

TMKASは、始動後経過時間に応じたテーブル値(時間補正係数)で、始動後の時間経過と共に小さな値となる。
本発明は、上記のように始動後増量補正係数KASの設定のための水温増量率(MTKAS)テーブルを燃料性状により切換えるなど、燃料噴射量を燃料性状により補正する場合の燃料性状判定装置を提供するものである。
TMKAS is a table value (time correction coefficient) corresponding to the elapsed time after startup, and becomes smaller with the passage of time after startup.
The present invention provides a fuel property determination device for correcting the fuel injection amount based on the fuel property, such as switching the water temperature increase rate (MTKAS) table for setting the post-startup increase correction coefficient KAS as described above. To do.

本発明に係る燃料性状判定装置は、ECU12にて、所定のプログラムを実行することにより実現されるので、以下、フローチャートに従って説明する。
図3は燃料性状判定ルーチンのフローチャートである。尚、本実施形態は4気筒エンジンとする。
S1では、初回噴射気筒を判定する。すなわち、気筒別の燃料噴射制御のため、気筒判別を行って、各気筒がいずれの行程にあるかを判別しており、気筒判別結果に従って各気筒への燃料噴射を行っているので、初回噴射気筒(最初に燃料噴射が行われて膨張行程を迎える気筒)を判定する。
The fuel property determination device according to the present invention is realized by executing a predetermined program in the ECU 12, and will be described below according to a flowchart.
FIG. 3 is a flowchart of a fuel property determination routine. Note that this embodiment is a four-cylinder engine.
In S1, the initial injection cylinder is determined. That is, for fuel injection control by cylinder, cylinder discrimination is performed to determine which stroke each cylinder is in, and fuel injection to each cylinder is performed according to the cylinder discrimination result. Cylinders (cylinders that first undergo fuel injection and reach the expansion stroke) are determined.

初回噴射気筒(最初に燃料噴射が行われて膨張行程を迎える気筒)が判定されると、初回噴射気筒からの気筒数を示すNcを1として、S2へ進む。
S2では、初回噴射気筒(Nc=1)について、圧縮上死点(TDC)時の角速度ω1(deg/s )を検出する。すなわち、圧縮TDCのときに角速度ωを検出し、これを圧縮TDC時角速度ω1とする。
When it is determined that the initial injection cylinder (the cylinder in which fuel injection is first performed and the expansion stroke is reached), Nc indicating the number of cylinders from the initial injection cylinder is set to 1, and the process proceeds to S2.
In S2, the angular velocity ω1 (deg / s) at the time of compression top dead center (TDC) is detected for the first injection cylinder (Nc = 1). That is, the angular velocity ω is detected at the time of compression TDC, and this is set as the angular velocity ω1 at the time of compression TDC.

S3では、初回噴射気筒(Nc=1)について、膨張行程での最大角速度ω2(deg/s )を検出する。
具体的には、図4のサブルーチンにより算出する。図4のサブルーチンは、圧縮上死点(TDC)時の角速度ω1を検出した後に実行され、S31でωmax を初期化(ωmax =0)した後、S32で例えばクランク角10°毎のサンプリング間隔で角速度ωを検出する。そして、S33で検出したωとωmax とを比較し、ω>ωmax の場合にS34でωmax =ωとして、ωmax を更新する。そして、S35で膨張行程が終了する下死点(BDC)付近に達したか否かを判定し、達しない場合は、S32へ戻ってサンプリングを続ける。BDC付近に達した場合は、S36へ進んで現時点でのωmax を膨張行程最大角速度ω2とする。
In S3, the maximum angular velocity ω2 (deg / s) in the expansion stroke is detected for the initial injection cylinder (Nc = 1).
Specifically, the calculation is performed by a subroutine shown in FIG. The subroutine of FIG. 4 is executed after the angular velocity ω1 at the time of compression top dead center (TDC) is detected. After initializing ωmax in S31 (ωmax = 0), in S32, for example, at a sampling interval of every 10 ° crank angle. The angular velocity ω is detected. Then, ω detected in S33 is compared with ωmax, and when ω> ωmax, ωmax is updated with ωmax = ω in S34. In S35, it is determined whether or not the vicinity of the bottom dead center (BDC) at which the expansion stroke ends is reached. If not, the process returns to S32 and sampling is continued. When it reaches the vicinity of BDC, the process proceeds to S36, and the current ωmax is set to the expansion stroke maximum angular velocity ω2.

尚、膨張行程での最大角速度を検出する他、膨張行程での最大角速度近傍の値として、膨張行程の中間位置付近の角速度を検出したり、膨張行程の下死点(BDC)付近の角速度を検出するようにしてもよい。
S4では、圧縮TDC時角速度ω1と膨張行程最大角速度ω2とから、気筒毎の回転速度変化度合として、角加速度Δω=ω2−ω1を算出する。より正確に、角加速度Δω=(ω2−ω1)/dtとして算出してもよい。dtはω1の検出時からω2の検出時までの時間である。
In addition to detecting the maximum angular velocity in the expansion stroke, as a value near the maximum angular velocity in the expansion stroke, the angular velocity near the middle position of the expansion stroke is detected, or the angular velocity near the bottom dead center (BDC) of the expansion stroke is determined. You may make it detect.
In S4, angular acceleration Δω = ω2−ω1 is calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity ω2 as the degree of rotation speed change for each cylinder. More accurately, the angular acceleration Δω = (ω2−ω1) / dt may be calculated. dt is the time from the detection of ω1 to the detection of ω2.

S5では、初爆判定を行う。初爆判定は、気筒毎の回転速度変化度合である角加速度Δωと、予め定めたしきい値ΔωSとの比較に基づいて行い、Δω≧ΔωSとなったときに初爆と判定する。
初爆判定がなされなかった場合(Δω<ΔωSの場合)は、S6へ進む。
S6では、Nc=4(初回噴射気筒から4番目、すなわち4気筒の場合の一巡目の最後の噴射気筒)か否かを判定し、NOであれば、S7で気筒数Ncを1アップした後、S2〜S4を実行することで、次の気筒についての、圧縮TDC時角速度ω1と膨張行程最大角速度ω2とから、角加速度Δωを算出し、S5で再度初爆判定を行う。
In S5, the first explosion determination is performed. The initial explosion determination is performed based on a comparison between the angular acceleration Δω that is the degree of change in the rotational speed of each cylinder and a predetermined threshold value ΔωS. When Δω ≧ ΔωS, the initial explosion is determined.
When the initial explosion determination is not made (when Δω <ΔωS), the process proceeds to S6.
In S6, it is determined whether or not Nc = 4 (the fourth injection cylinder from the first injection cylinder, that is, the last injection cylinder in the case of four cylinders). If NO, the number of cylinders Nc is increased by 1 in S7. By executing S2 to S4, the angular acceleration Δω is calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity ω2 for the next cylinder, and the initial explosion determination is performed again in S5.

Nc=1からNc=4まで初爆判定を繰り返しても、初爆と判定されず、S6での判定で、Nc=4となった場合、すなわち、一巡目が終了しても初爆判定がなされない場合は、重軽質判定不能であるとして、処理を終了する。尚、このとき、一巡目内で初爆に至らないのは、燃料気化率が悪いからであるとして、重質と判定するようにしてもよい。
S5で一巡目内に初爆判定がなされた場合は、S8へ進む。
Even if the initial explosion determination is repeated from Nc = 1 to Nc = 4, it is not determined as the initial explosion. If the determination at S6 is Nc = 4, that is, even if the first round is completed, the initial explosion determination is not made. If not, it is determined that heavy / lightness determination is impossible, and the process ends. At this time, the reason why the first explosion is not reached within the first round is that the fuel vaporization rate is low, and it may be determined that the fuel is heavy.
If the first explosion determination is made in the first round in S5, the process proceeds to S8.

S8では、Nc=1(初回噴射気筒)か否か、すなわち、重軽質判定しようとするのが初回噴射気筒か否かを判定する。Nc=1である場合、すなわち、初回噴射気筒の場合は、吸気行程噴射であるので、S9へ進み、重軽質判定用の回転速度変化度合のしきい値ΔωLを比較的大きな値ΔωL1に設定する。これに対し、Nc=1でない場合、すなわち、2回目以降の噴射気筒の場合は、排気行程噴射であるので、S10へ進み、重軽質判定用の回転速度変化度合のしきい値ΔωLを比較的小さな値ΔωL2に設定する。ΔωL1>ΔωL2である。これらの後、S11へ進む。   In S8, it is determined whether or not Nc = 1 (initial injection cylinder), that is, whether or not it is the initial injection cylinder that is to be determined to be heavy or light. In the case of Nc = 1, that is, in the case of the first injection cylinder, since the intake stroke injection is performed, the process proceeds to S9, and the threshold value ΔωL of the rotational speed change degree for heavy / lightness determination is set to a relatively large value ΔωL1. . On the other hand, when Nc = 1, that is, in the case of the second and subsequent injection cylinders, since the exhaust stroke injection is performed, the process proceeds to S10 and the threshold value ΔωL of the degree of rotation speed change for heavy / light determination is relatively set. A small value ΔωL2 is set. ΔωL1> ΔωL2. After these, the process proceeds to S11.

S11では、S4(又は後述するS16)にて算出された気筒毎の回転速度変化度合である角加速度Δωと、S9又はS10にて設定したしきい値ΔωL(>ΔωS)とを比較し、Δω≧ΔωLとなったか否かを判定する。
Δω<ΔωLの場合は、S12へ進む。
S12では、Nc=4(初回噴射気筒から4番目、すなわち4気筒の場合の一巡目の最後の噴射気筒)か否かを判定し、NOであれば、S13で気筒数Ncを1アップした後、S2〜S4と同様、S14〜S16を実行することで、次の気筒についての、圧縮TDC時角速度ω1と膨張行程最大角速度ω2とから、角加速度Δωを算出する。そして、S8へ戻ることで、S10でしきい値ΔωLをΔωL2に設定した後、S11で再度Δω≧ΔωLか否かの判定を行う。
In S11, the angular acceleration Δω that is the degree of change in rotational speed for each cylinder calculated in S4 (or S16 described later) is compared with the threshold value ΔωL (> ΔωS) set in S9 or S10, and Δω It is determined whether or not ≧ ΔωL.
If Δω <ΔωL, the process proceeds to S12.
In S12, it is determined whether or not Nc = 4 (the fourth injection cylinder from the first injection cylinder, that is, the last injection cylinder in the case of four cylinders). If NO, the number of cylinders Nc is increased by 1 in S13. Like S2 to S4, by executing S14 to S16, the angular acceleration Δω is calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity ω2 for the next cylinder. Then, by returning to S8, after setting the threshold value ΔωL to ΔωL2 in S10, it is determined again whether Δω ≧ ΔωL in S11.

この結果、S11での判定で一巡目内でΔω≧ΔωLとなった場合は、その時点で、S17へ進み、軽質と判定して、処理を終了する。
これに対し、S11での判定でいずれの気筒についてもΔω<ΔωLのまま、S12での判定でNc=4となった場合、すなわち、一巡目内にΔω≧ΔωLとならなかった場合は、S12からS18へ進み、重質と判定して、処理を終了する。
As a result, if Δω ≧ ΔωL is satisfied in the first round in the determination in S11, the process proceeds to S17 at that time, and the process is determined to be light.
On the other hand, if Δc <ΔωL for any cylinder in the determination in S11 and Nc = 4 in the determination in S12, that is, if Δω ≧ ΔωL is not satisfied within the first round, S12 The process proceeds to S18, where it is determined that the vehicle is heavy, and the process ends.

図5(a)は、気筒判別後の膨張行程の回数でみて、2回目の膨張行程開始から6回目の膨張行程終了までのクランク角度を横軸として、角速度ω(deg/s )の変化の例を示している。
図5(b)は、気筒判別後の膨張行程の回数を横軸として、図5(a)の横軸と対応させ、図5(a)の角速度ωの変化から算出される気筒毎(膨張行程毎)の角加速度Δω(deg/s2)を示している。
FIG. 5A shows the change in the angular velocity ω (deg / s) with the horizontal axis representing the crank angle from the start of the second expansion stroke to the end of the sixth expansion stroke in terms of the number of expansion strokes after cylinder discrimination. An example is shown.
FIG. 5B shows the number of expansion strokes after cylinder discrimination as the horizontal axis corresponding to the horizontal axis in FIG. 5A, and is calculated for each cylinder (expansion) calculated from the change in the angular velocity ω in FIG. The angular acceleration Δω (deg / s2) for each stroke) is shown.

また、図5(a)及び(b)で実線は重質燃料の場合であり、点線は軽質燃料の場合である。
この例では、膨張行程回数3の気筒が初回噴射気筒である。いずれの燃料の場合も、初回噴射気筒(膨張行程回数3)にて圧縮TDC時角速度ω1と膨張行程最大角速度(膨張行程中間位置での角速度)ω2とから算出される角加速度Δω=(ω2−ω1)/dtに基づく判定で、ΔωS以上となって、初爆と判定される。軽質燃料の場合は、初回噴射気筒(膨張行程回数3)で、初爆判定と同時に、Δω>ΔωL1となるか、2回目〜4回目の噴射気筒(膨張行程回数4〜6)のいずれかにおいて、Δω>ΔωL2となって、軽質と判定される。重質燃料の場合は、初回噴射気筒(膨張行程回数3)で、Δω<ΔωL1、2回目〜4回目の噴射気筒(膨張行程回数4〜6)で、Δω<ΔωL2となり、重質と判定される。
In FIGS. 5A and 5B, the solid line represents the case of heavy fuel, and the dotted line represents the case of light fuel.
In this example, the cylinder with the number of expansion strokes of 3 is the initial injection cylinder. In any fuel, the angular acceleration Δω = (ω2−) calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity (angular velocity at the intermediate position of the expansion stroke) ω2 in the first injection cylinder (expansion stroke number 3). In the determination based on ω1) / dt, ΔωS or more is determined and the first explosion is determined. In the case of light fuel, in the first injection cylinder (expansion stroke number 3), at the same time as the first explosion determination, Δω> ΔωL1 or in the second to fourth injection cylinders (expansion stroke number 4 to 6) , Δω> ΔωL2, and it is determined as light. In the case of heavy fuel, Δω <ΔωL in the first injection cylinder (expansion stroke number 3), Δω <ΔωL2 in the first to fourth injection cylinders (expansion stroke number 4 to 6), and it is determined to be heavy. The

ここで、初回噴射気筒(吸気行程噴射気筒)と、それ以降の噴射気筒(排気行程噴射気筒)とで、重軽質判定用のしきい値ΔωLを変更しているのは、次の理由による。
初回噴射気筒は、吸気行程噴射気筒であるため、筒内吸入量が多くなる一方、燃料気化時間が短いため、重質燃料と軽質燃料とで、燃料性状(燃料気化率)の差による回転速度変化度合の差が小さくなる。
Here, the reason why the threshold value ΔωL for determining the heavy / lightness is changed between the initial injection cylinder (intake stroke injection cylinder) and the subsequent injection cylinders (exhaust stroke injection cylinder) is as follows.
Since the first injection cylinder is an intake stroke injection cylinder, the in-cylinder intake amount increases, but the fuel vaporization time is short, so the rotation speed due to the difference in fuel properties (fuel vaporization rate) between heavy fuel and light fuel. The difference in the degree of change is reduced.

すなわち、図6(a)に、吸気行程噴射の場合に、重質燃料の使用時に予想される回転速度変化度合(Δω)のばらつき範囲と、軽質燃料の使用時に予想される回転速度変化度合(Δω)のばらつき範囲を示すように、吸気行程噴射の場合は、重質燃料と軽質燃料とで、燃料性状(燃料気化率)の差による回転速度変化度合の差が小さくなることから、ばらつき範囲が一部重なるようになり、正確に判定することが困難となる。従って、この場合は、しきい値ΔωLを、重質燃料の使用時に予想される回転変化速度のばらつき範囲を上回る値ΔωL1に設定する。これは、重質燃料の使用時に、軽質燃料と誤判定すると、運転性の悪化を招くので、これを回避するためである(軽質燃料の使用時に、重質燃料と誤判定しても、燃費は悪化するが、運転性への影響は少ないからである)。従って、判定が難しい場合に、重質と判定することで、安全側に判定できる。但し、本実施形態では、回転速度変化度合(Δω)がしきい値ΔωLを超えた場合は、直ちに軽質と判定するが、超えない場合は、直ちに重質と判定するわけではないので、初回噴射気筒(吸気行程噴射気筒)に対するしきい値ΔωL1を高くしておくことで、誤判定を防止でき、判定精度を向上させることができる。   That is, FIG. 6 (a) shows the range of variation of the rotational speed change (Δω) expected when heavy fuel is used in the case of intake stroke injection, and the rotational speed change degree expected when light fuel is used ( As shown in the variation range of Δω), in the case of intake stroke injection, the difference in rotational speed change due to the difference in fuel properties (fuel vaporization rate) between the heavy fuel and the light fuel becomes small. Partly overlap, making accurate determination difficult. Therefore, in this case, the threshold value ΔωL is set to a value ΔωL1 that exceeds the variation range of the rotational speed change expected when heavy fuel is used. This is to avoid the fact that misjudgment as light fuel when using heavy fuel will lead to deterioration of drivability (even if misjudging as heavy fuel when using light fuel, Is worse, but it has less impact on drivability). Therefore, when it is difficult to determine, it can be determined to be safe by determining heavy. However, in this embodiment, when the degree of change in rotational speed (Δω) exceeds the threshold value ΔωL, it is immediately determined as light, but when it does not exceed it, it is not immediately determined as heavy. By making the threshold value ΔωL1 for the cylinder (intake stroke injection cylinder) high, erroneous determination can be prevented and determination accuracy can be improved.

一方、図6(b)に、排気行程噴射の場合に、重質燃料の使用時に予想される回転速度変化度合(Δω)のばらつき範囲と、軽質燃料の使用時に予想される回転速度変化度合(Δω)のばらつき範囲を示すように、排気行程噴射の場合は、重質燃料と軽質燃料とで、燃料性状(燃料気化率)の差による回転速度変化度合の差が大きくなり、ばらつき範囲の重なりも無くなる。従って、この場合は、しきい値ΔωLを、ΔωL1より小さく、重質燃料の使用時に予想される回転速度変化速度のばらつき範囲と軽質燃料の使用時に予想される回転速度変化度合のばらつき範囲との中間値であるΔωL2に設定する。このような設定により、判定精度を向上させることができる。   On the other hand, in FIG. 6B, in the case of exhaust stroke injection, the variation range of the rotational speed change degree (Δω) expected when heavy fuel is used and the rotational speed change degree expected when light fuel is used ( As shown in the variation range of Δω), in the case of exhaust stroke injection, the difference in rotational speed change due to the difference in fuel properties (fuel vaporization rate) between heavy fuel and light fuel increases, and the variation range overlaps. Will also disappear. Therefore, in this case, the threshold value ΔωL is smaller than ΔωL1, and the variation range of the rotational speed change rate expected when using heavy fuel and the variation range of the rotational speed change rate expected when using light fuel are determined. An intermediate value ΔωL2 is set. Such a setting can improve the determination accuracy.

図7は本発明での燃料性状判定を用いて燃料噴射量制御用に重質設定又は軽質設定を行う燃料噴射量制御用重軽質設定ルーチンのフローチャートであり、エンジンキースイッチの投入と同時に実行される。
S101では、初期設定として、重質設定を行う。これにより、図2の軽質燃料用テーブルと重質燃料用テーブルとのうち、重質燃料用テーブルが使用されるようになる。重質燃料を使用している場合に、軽質設定とすると、始動性が悪化するからである。
FIG. 7 is a flowchart of a heavy / light setting routine for fuel injection amount control for performing heavy setting or light setting for fuel injection amount control using the fuel property determination in the present invention, which is executed at the same time when the engine key switch is turned on. The
In S101, heavy setting is performed as an initial setting. As a result, the heavy fuel table of the light fuel table and the heavy fuel table shown in FIG. 2 is used. This is because if heavy fuel is used and the lightness is set, startability deteriorates.

S102では、重軽質判定(図3の燃料性状判定ルーチン)が終了したか否かを判定し、終了するのを待って、S103へ進む。
S103では、重軽質判定の結果に基づいて、分岐する。重質と判定された場合は、初期設定を変更する必要はないので処理を終了する。軽質と判定された場合は、軽質設定に変更する。これにより、図2の軽質燃料用テーブルと重質燃料用テーブルとのうち、軽質燃料用テーブルが使用されるようになり、燃費を向上できる。重軽質不定の場合(図3のS6の判定でYESとなり、処理を終了した場合)は、始動性及び始動後の安定性を重視して初期設定(重質設定)のままとして処理を終了する。
In S102, it is determined whether or not the heavy / lightness determination (fuel property determination routine in FIG. 3) is completed, and the process proceeds to S103 after waiting for the determination.
In S103, the process branches based on the result of the heavy / lightness determination. If it is determined to be heavy, it is not necessary to change the initial setting, and the process ends. If it is determined to be light, change to the light setting. As a result, the light fuel table of the light fuel table and the heavy fuel table in FIG. 2 is used, and fuel efficiency can be improved. In the case of heavy and indefinite (YES in the determination of S6 in FIG. 3 and the process is terminated), the process is terminated with the initial setting (heavy setting) being emphasized with emphasis on startability and stability after the start. .

本実施形態によれば、吸気通路に各気筒毎に燃料噴射弁を有するエンジンにおいて、始動時の最初の燃料噴射気筒から一巡目内は、吸気ポートが濡れておらず、噴射した燃料が壁流として付着し、気化率の悪い重質燃料ほど吸気ポートに壁流として残ることから、筒内流入燃料量に差が出て、回転速度変化度合(上昇度合)に大きな差が現れることに鑑み、始動時の最初の燃料噴射気筒から一巡目の最後の燃料噴射気筒までの、各気筒の燃焼による気筒毎の回転速度変化度合(Δω)を検出し、予め定められた回転速度変化度合のしきい値(ΔωL)との比較に基づいて、使用燃料の重軽質を判定することにより、始動時に燃料噴射が一巡するまでという極めて短い時間で使用燃料の重軽質を精度良く判定できる。   According to the present embodiment, in an engine having a fuel injection valve for each cylinder in the intake passage, the intake port is not wet and the injected fuel flows through the wall flow within the first round from the first fuel injection cylinder at the start. In view of the fact that a heavy fuel with a low vaporization rate remains as a wall flow in the intake port, a difference in the amount of fuel flowing into the cylinder appears, and a large difference appears in the rotational speed change degree (the degree of increase) A predetermined rotational speed change threshold is detected by detecting a rotational speed change degree (Δω) for each cylinder due to combustion of each cylinder from the first fuel injection cylinder at the start to the last fuel injection cylinder in the first round. Based on the comparison with the value (ΔωL), the heavy / lightness of the used fuel can be determined with high accuracy in a very short time until the fuel injection is completed at the start.

また、最初の燃料噴射気筒のように、一巡目内で吸気行程にて燃料噴射を行う気筒では、吸気行程以外(排気行程)にて燃料噴射を行う気筒に比べ、燃料性状の差による回転速度変化度合の差が小さくなり、これが誤判定の要因となるが、吸気行程にて燃料噴射を行う気筒と、吸気行程以外(排気行程)にて燃料噴射を行う気筒とで、前記しきい値(ΔωL)を変更し、特に、吸気行程にて燃料噴射を行う気筒での回転速度変化度合のしきい値(ΔωL1)を、吸気行程以外(排気行程)にて燃料噴射を行う気筒での回転速度変化度合のしきい値(ΔωL2)より大きくすることにより、診断精度を向上させることができる。   In addition, in the cylinder that performs fuel injection in the intake stroke within the first round, such as the first fuel injection cylinder, the rotational speed due to the difference in fuel properties compared to the cylinder that performs fuel injection in other than the intake stroke (exhaust stroke) The difference in the degree of change becomes small, and this causes an erroneous determination. However, the threshold value (in the cylinder in which fuel injection is performed in the intake stroke and the cylinder in which fuel injection is performed in other than the intake stroke (exhaust stroke) is performed. [Delta] [omega] L) is changed, and in particular, the rotational speed change threshold value ([Delta] [omega] L1) in the cylinder that performs fuel injection in the intake stroke is the rotational speed in the cylinder that performs fuel injection in other than the intake stroke (exhaust stroke). Diagnosis accuracy can be improved by making it larger than the threshold value (ΔωL2) of the degree of change.

また、本実施形態によれば、吸気行程にて燃料噴射を行う気筒において、重質燃料の使用時に予想される回転速度変化度合のばらつき範囲と、軽質燃料の使用時に予想される回転速度変化度合のばらつき範囲とが重なる場合に、吸気行程にて燃料噴射を行う気筒での回転速度変化度合のしきい値(ΔωL1)を、重質燃料の使用時に予想される回転速度変化度合のばらつき範囲を上回る値に設定することにより、的確に判定精度を向上させることができる。   Further, according to the present embodiment, in the cylinder that performs fuel injection in the intake stroke, the variation range of the rotational speed change degree expected when using heavy fuel and the rotational speed change degree expected when using light fuel. When the heavy fuel is used, the threshold value (ΔωL1) of the rotational speed change degree in the cylinder that performs fuel injection in the intake stroke is set. By setting the value to be higher, the determination accuracy can be improved accurately.

また、本実施形態によれば、気筒毎の回転速度変化度合は、膨張行程開始時(圧縮上死点付近)の角速度ω1と、膨張行程での最大角速度(若しくはその近傍の値)ω2との差(ω2−ω1)に基づいて算出することにより、回転速度変化度合を的確にとらえることができる。尚、膨張行程での最大角速度近傍の値として、膨張行程の中間位置付近の角速度、又は、膨張行程の下死点付近の角速度を検出することより、検出を容易にすることができる。特に膨張行程の中間位置付近の角速度を用いれば、絶対差が大きいところなので検知が容易になる。膨張行程の下死点付近の角速度を用いれば、膨張行程の仕事量を安定して検知できる。   Further, according to the present embodiment, the degree of change in the rotational speed of each cylinder is determined by the angular velocity ω1 at the start of the expansion stroke (near the compression top dead center) and the maximum angular velocity (or a value in the vicinity thereof) ω2 during the expansion stroke. By calculating based on the difference (ω2−ω1), it is possible to accurately grasp the degree of change in rotational speed. The detection can be facilitated by detecting the angular velocity near the intermediate position of the expansion stroke or the angular velocity near the bottom dead center of the expansion stroke as the value near the maximum angular velocity in the expansion stroke. In particular, if an angular velocity near the middle position of the expansion stroke is used, detection is easy because the absolute difference is large. If the angular velocity near the bottom dead center of the expansion stroke is used, the work amount of the expansion stroke can be detected stably.

また、本実施形態によれば、気筒毎の回転速度変化度合(Δω)としきい値(ΔωL)との比較に基づき、一巡目内のいずれかの気筒の回転速度変化度合(Δω)がしきい値(ΔωL)を超えたときに、軽質と判定することにより、より速やかに判定できる。
また、本実施形態によれば、気筒毎の回転速度変化度合(Δω)としきい値(ΔωL)との比較に基づき、一巡目内の全ての気筒の回転速度変化度合(Δω)がしきい値(ΔωL)を超えないときに、重質と判定することにより、精度良く判定できる。
Further, according to the present embodiment, based on the comparison between the rotational speed change degree (Δω) and the threshold value (ΔωL) for each cylinder, the rotational speed change degree (Δω) of any cylinder in the first round is the threshold. When the value (ΔωL) is exceeded, it can be determined more quickly by determining the lightness.
Further, according to the present embodiment, based on the comparison between the rotational speed change degree (Δω) and the threshold value (ΔωL) for each cylinder, the rotational speed change degree (Δω) of all the cylinders in the first round is set to the threshold value. When it does not exceed (ΔωL), it can be determined with high accuracy by determining that it is heavy.

また、本実施形態によれば、初爆判定を行い、一巡目内に初爆判定がなされなかった場合、回転速度変化度合に基づく重軽質判定を禁止することにより、誤判定を防止することができる。
また、本実施形態によれば、初爆判定は、気筒毎の回転速度変化度合(Δω)と、予め定められた回転速度変化度合の第2のしきい値(ΔωS)との比較に基づいて行うことにより、重軽質判定と同じパラメータを用いて初爆判定を実行できる。
In addition, according to the present embodiment, when the initial explosion determination is performed and the initial explosion determination is not made within the first round, the erroneous determination can be prevented by prohibiting the heavy / light determination based on the rotational speed change degree. it can.
Further, according to the present embodiment, the initial explosion determination is based on a comparison between the rotation speed change degree (Δω) for each cylinder and a second threshold value (ΔωS) of the predetermined rotation speed change degree. By doing so, it is possible to execute the initial explosion determination using the same parameters as the heavy / light determination.

次に本発明の他の実施形態について説明する。図8は他の実施形態での燃料性状判定ルーチンのフローチャートである。図8のフローについては、S5で一巡目内に初爆判定がなされて、S8へ進んだ後の処理が、図3のフローと異なるので、S8以降の処理について説明する。
S8では、Nc=1(初回噴射気筒)か否か、すなわち、重軽質判定しようとするのが初回噴射気筒か否かを判定する。
Next, another embodiment of the present invention will be described. FIG. 8 is a flowchart of a fuel property determination routine in another embodiment. Regarding the flow of FIG. 8, the process after the first explosion determination is made within the first round in S5 and the process proceeds to S8 is different from the flow of FIG.
In S8, it is determined whether or not Nc = 1 (initial injection cylinder), that is, whether or not it is the initial injection cylinder that is to be determined to be heavy or light.

Nc=1でない場合、すなわち、2回目以降の噴射気筒の場合は、排気行程噴射であるので、重軽質判定のため、S11へ進む。
S11では、S4にて算出された気筒毎の回転速度変化度合である角加速度Δωと、予め設定されたしきい値ΔωL(>ΔωS)とを比較し、Δω≧ΔωLとなったか否かを判定する。尚、ここで用いるしきい値ΔωLは、図5及び図6に示すΔωL2に相当する。
When Nc is not 1, that is, in the case of the second and subsequent injection cylinders, since the exhaust stroke injection is performed, the process proceeds to S11 for determination of heavy and light.
In S11, the angular acceleration Δω, which is the degree of change in rotational speed for each cylinder calculated in S4, is compared with a preset threshold value ΔωL (> ΔωS) to determine whether Δω ≧ ΔωL. To do. The threshold value ΔωL used here corresponds to ΔωL2 shown in FIGS.

Δω<ΔωLの場合は、S12へ進む。
S12では、Nc=4(初回噴射気筒から4番目、すなわち4気筒の場合の一巡目の最後の噴射気筒)か否かを判定し、NOであれば、S13で気筒数Ncを1アップした後、S2〜S4と同様、S14〜S16を実行することで、次の気筒についての、圧縮TDC時角速度ω1と膨張行程最大角速度ω2とから、角加速度Δωを算出する。そして、S11へ戻ることで、再度Δω≧ΔωLか否かの判定を行う。
If Δω <ΔωL, the process proceeds to S12.
In S12, it is determined whether or not Nc = 4 (the fourth injection cylinder from the first injection cylinder, that is, the last injection cylinder in the case of four cylinders). If NO, the number of cylinders Nc is increased by 1 in S13. Like S2 to S4, by executing S14 to S16, the angular acceleration Δω is calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity ω2 for the next cylinder. Then, by returning to S11, it is determined again whether Δω ≧ ΔωL.

一方、S8での判定で、Nc=1である場合、すなわち、初回噴射気筒の場合は、吸気行程噴射であるので、当該気筒についての重軽質判定は禁止する。このため、S8からS13へ進み、S13で気筒数Ncを1アップした後、S2〜S4と同様、S14〜S16を実行することで、次の気筒についての、圧縮TDC時角速度ω1と膨張行程最大角速度ω2とから、角加速度Δωを算出する。そして、S11へ戻ることで、Δω≧ΔωLか否かの判定を行う。   On the other hand, when Nc = 1 in the determination in S8, that is, in the case of the initial injection cylinder, since it is the intake stroke injection, the heavy / light determination for the cylinder is prohibited. Therefore, the process proceeds from S8 to S13, and after increasing the number of cylinders Nc by 1 in S13, S14 to S16 are executed in the same manner as S2 to S4, so that the compression TDC angular velocity ω1 and the expansion stroke maximum for the next cylinder The angular acceleration Δω is calculated from the angular velocity ω2. Then, by returning to S11, it is determined whether or not Δω ≧ ΔωL.

この結果、S11での判定で一巡目内でΔω≧ΔωLとなった場合は、その時点で、S17へ進み、軽質と判定して、処理を終了する。
これに対し、S11での判定でいずれの気筒についてもΔω<ΔωLのまま、S12での判定でNc=4となった場合、すなわち、一巡目内にΔω≧ΔωLとならなかった場合は、S12からS18へ進み、重質と判定して、処理を終了する。
As a result, if Δω ≧ ΔωL is satisfied in the first round in the determination in S11, the process proceeds to S17 at that time, and the process is determined to be light.
On the other hand, if Δc <ΔωL for any cylinder in the determination in S11 and Nc = 4 in the determination in S12, that is, if Δω ≧ ΔωL is not satisfied within the first round, S12 The process proceeds to S18, where it is determined that the vehicle is heavy, and the process ends.

本実施形態の場合、図5の例では、膨張行程回数3の気筒が初回噴射気筒である。いずれの燃料の場合も、初回噴射気筒(膨張行程回数3)にて圧縮TDC時角速度ω1と膨張行程最大角速度(膨張行程中間位置での角速度)ω2とから算出される角加速度Δω=(ω2−ω1)/dtに基づく判定で、ΔωS以上となって、初爆と判定されるが、吸気行程噴射気筒であるので、重軽質判定は禁止され、2回目以降の噴射気筒(排気行程噴射気筒)により重軽質判定を行う。軽質燃料の場合は、2回目〜4回目の噴射気筒(膨張行程回数4〜6)のいずれかで、Δω>ΔωL2となって、軽質と判定される。重質燃料の場合は、2回目〜4回目の噴射気筒(膨張行程回数4〜6)で、Δω<ΔωL2となり、重質と判定される。   In the case of this embodiment, in the example of FIG. 5, the cylinder with the number of expansion strokes of 3 is the initial injection cylinder. In any fuel, the angular acceleration Δω = (ω2−) calculated from the compression TDC angular velocity ω1 and the expansion stroke maximum angular velocity (angular velocity at the intermediate position of the expansion stroke) ω2 in the first injection cylinder (expansion stroke number 3). In the determination based on ω1) / dt, ΔωS or more is determined and the first explosion is determined. However, since it is the intake stroke injection cylinder, the heavy / light determination is prohibited and the second and subsequent injection cylinders (exhaust stroke injection cylinder) Make heavy and light judgments. In the case of light fuel, Δω> ΔωL2 is satisfied in any one of the second to fourth injection cylinders (expansion stroke number 4 to 6), and it is determined that the fuel is light. In the case of heavy fuel, Δω <ΔωL2 is satisfied in the second to fourth injection cylinders (expansion stroke number 4 to 6), and it is determined that the fuel is heavy.

特に、本実施形態によれば、最初の燃料噴射気筒のように、一巡目内で吸気行程にて燃料噴射を行う気筒では、重軽質判定を禁止し、一巡目内で吸気行程以外(排気行程)にて燃料噴射を行う気筒で、重軽質判定を行うことにより、吸気行程にて燃料噴射を行う気筒で燃料性状の差による回転速度変化度合の差が小さくなることに起因する誤判定を防止でき、吸気行程以外(排気行程)にて燃料噴射を行う気筒での回転速度変化度合に基づいて判定することで、判定精度を向上させることができる。   In particular, according to the present embodiment, in the cylinder that performs fuel injection in the intake stroke within the first round, such as the first fuel injection cylinder, heavy / lightness determination is prohibited, and other than the intake stroke (exhaust stroke) within the first round. ) Prevents misjudgment caused by small difference in rotational speed change due to fuel property difference in cylinder that performs fuel injection in the intake stroke. The determination accuracy can be improved by making a determination based on the degree of rotation speed change in the cylinder that performs fuel injection in other than the intake stroke (exhaust stroke).

本発明の一実施形態を示すエンジンのシステム図Engine system diagram showing an embodiment of the present invention 水温増量率テーブルの概略図Schematic diagram of water temperature increase rate table 燃料性状判定ルーチンのフローチャートFlow chart of fuel property determination routine 膨張行程最大角速度検出サブルーチンのフローチャートFlow chart of expansion stroke maximum angular velocity detection subroutine 気筒判別後の膨張行程回数に対する角速度及び角加速度の変化を示す図The figure which shows the change of angular velocity and angular acceleration with respect to the number of expansion strokes after cylinder discrimination Δωばらつき範囲としきい値との関係を示す図Diagram showing the relationship between Δω variation range and threshold 燃料噴射量制御用重軽質設定ルーチンのフローチャートFlow chart of heavy / lightness setting routine for fuel injection amount control 他の実施形態での燃料性状判定ルーチンのフローチャートFlowchart of fuel property determination routine in another embodiment

符号の説明Explanation of symbols

1 エンジン
7 吸気通路
10 燃料噴射弁
11 ECU
12 カム角センサ
13 クランク角センサ
1 engine
7 Intake passage
10 Fuel injection valve
11 ECU
12 Cam angle sensor
13 Crank angle sensor

Claims (13)

吸気通路に各気筒毎に燃料噴射弁を有する内燃機関において、
始動時の最初の燃料噴射気筒から一巡目の最後の燃料噴射気筒までの、各気筒の燃焼による気筒毎の回転速度変化度合を検出し、予め定められた回転速度変化度合のしきい値との比較に基づいて、使用燃料の重軽質を判定する一方、
一巡目内で吸気行程にて燃料噴射を行う気筒と、一巡目内で吸気行程以外にて燃料噴射を行う気筒とで、前記しきい値を変更することを特徴とする内燃機関の燃料性状判定装置。
In an internal combustion engine having a fuel injection valve for each cylinder in the intake passage,
From the first fuel injection cylinder at start-up to the last fuel injection cylinder in the first round, the degree of change in rotational speed for each cylinder due to combustion of each cylinder is detected, and a predetermined threshold value for rotational speed change is detected. While judging the heavy and light fuel used based on the comparison,
A fuel property determination of an internal combustion engine, wherein the threshold value is changed between a cylinder that performs fuel injection in an intake stroke within a first round and a cylinder that performs fuel injection outside of an intake stroke within a first round. apparatus.
吸気行程にて燃料噴射を行う気筒での回転速度変化度合のしきい値を、吸気行程以外にて燃料噴射を行う気筒での回転速度変化度合のしきい値より大きくすることを特徴とする請求項1記載の内燃機関の燃料性状判定装置。   The threshold value of the rotational speed change degree in the cylinder that performs fuel injection in the intake stroke is made larger than the threshold value of the rotational speed change degree in the cylinder that performs fuel injection in other than the intake stroke. Item 2. The fuel property determination device for an internal combustion engine according to Item 1. 吸気行程にて燃料噴射を行う気筒において、重質燃料の使用時に予想される回転速度変化度合のばらつき範囲と、軽質燃料の使用時に予想される回転速度変化度合のばらつき範囲とが重なる場合に、
吸気行程にて燃料噴射を行う気筒での回転速度変化度合のしきい値を、重質燃料の使用時に予想される回転速度変化度合のばらつき範囲を上回る値に設定することを特徴とする請求項1又は請求項2記載の内燃機関の燃料性状判定装置。
In the cylinder that performs fuel injection in the intake stroke, when the variation range of the rotational speed change degree expected when using heavy fuel and the dispersion range of the rotational speed change degree expected when using light fuel overlap,
The threshold value of the rotational speed change degree in the cylinder that performs fuel injection in the intake stroke is set to a value that exceeds a variation range of the rotational speed change degree that is expected when heavy fuel is used. The fuel property determination apparatus for an internal combustion engine according to claim 1 or 2.
吸気通路に各気筒毎に燃料噴射弁を有する内燃機関において、
始動時の最初の燃料噴射気筒から一巡目の最後の燃料噴射気筒までの、各気筒の燃焼による気筒毎の回転速度変化度合を検出し、予め定められた回転速度変化度合のしきい値との比較に基づいて、使用燃料の重軽質を判定する一方、
一巡目内で吸気行程にて燃料噴射を行う気筒では、重軽質判定を禁止し、一巡目内で吸気行程以外にて燃料噴射を行う気筒で、重軽質判定を行うことを特徴とする内燃機関の燃料性状判定装置。
In an internal combustion engine having a fuel injection valve for each cylinder in the intake passage,
From the first fuel injection cylinder at start-up to the last fuel injection cylinder in the first round, the degree of change in rotational speed for each cylinder due to combustion of each cylinder is detected, and a predetermined threshold value for rotational speed change is detected. While judging the heavy and light fuel used based on the comparison,
An internal combustion engine that prohibits heavy / lightness determination in a cylinder that performs fuel injection in an intake stroke within the first round, and performs heavy / lightness determination in a cylinder that performs fuel injection in other than the intake stroke within the first round Fuel property judgment device.
吸気行程にて燃料噴射を行う気筒は、最初の燃料噴射気筒であることを特徴とする請求項1〜請求項4のいずれか1つに記載の内燃機関の燃料性状判定装置。   The fuel property determination device for an internal combustion engine according to any one of claims 1 to 4, wherein the cylinder that performs fuel injection in the intake stroke is the first fuel injection cylinder. 吸気行程以外にて燃料噴射を行う気筒は、排気行程にて燃料噴射を行う気筒であることを特徴とする請求項1〜請求項5のいずれか1つに記載の内燃機関の燃料性状判定装置。   The fuel property determination device for an internal combustion engine according to any one of claims 1 to 5, wherein the cylinder that performs the fuel injection in other than the intake stroke is a cylinder that performs the fuel injection in the exhaust stroke. . 気筒毎の回転速度変化度合は、膨張行程開始時の角速度と、膨張行程での最大角速度若しくはその近傍の値との差に基づいて算出することを特徴とする請求項1〜請求項6のいずれか1つに記載の内燃機関の燃料性状判定装置。   The degree of change in rotational speed for each cylinder is calculated based on a difference between an angular velocity at the start of the expansion stroke and a maximum angular velocity in the expansion stroke or a value in the vicinity thereof. The fuel property determination apparatus for an internal combustion engine according to claim 1. 膨張行程での最大角速度近傍の値として、膨張行程の中間位置付近の角速度を検出することを特徴とする請求項7記載の内燃機関の燃料性状判定装置。   8. The fuel property determining apparatus for an internal combustion engine according to claim 7, wherein an angular velocity in the vicinity of an intermediate position in the expansion stroke is detected as a value in the vicinity of the maximum angular velocity in the expansion stroke. 膨張行程での最大角速度近傍の値として、膨張行程の下死点付近の角速度を検出することを特徴とする請求項7記載の内燃機関の燃料性状判定装置。   8. The fuel property determination apparatus for an internal combustion engine according to claim 7, wherein an angular velocity in the vicinity of the bottom dead center of the expansion stroke is detected as a value in the vicinity of the maximum angular velocity in the expansion stroke. 気筒毎の回転速度変化度合としきい値との比較に基づき、一巡目内のいずれかの気筒の回転速度変化度合がしきい値を超えたときに、軽質と判定することを特徴とする請求項1〜請求項9のいずれか1つに記載の内燃機関の燃料性状判定装置。   The lightness is determined when the rotational speed change degree of any cylinder in the first round exceeds the threshold value based on a comparison between the rotational speed change degree for each cylinder and a threshold value. The fuel property determination apparatus for an internal combustion engine according to any one of claims 1 to 9. 気筒毎の回転速度変化度合としきい値との比較に基づき、一巡目内の全ての気筒の回転速度変化度合がしきい値を超えないときに、重質と判定することを特徴とする請求項1〜請求項10のいずれか1つに記載の内燃機関の燃料性状判定装置。   The heavy engine is judged to be heavy when the degree of change in rotational speed of all cylinders in the first round does not exceed the threshold based on a comparison between the degree of change in rotational speed for each cylinder and a threshold value. The fuel property determination apparatus for an internal combustion engine according to any one of claims 1 to 10. 初爆判定を行い、一巡目内に初爆判定がなされなかった場合、回転速度変化度合に基づく重軽質判定を禁止することを特徴とする請求項1〜請求項11のいずれか1つに記載の内燃機関の燃料性状判定装置。   The heavy / light quality determination based on the rotation speed change degree is prohibited when the initial explosion determination is made and the initial explosion determination is not made within the first round. An internal combustion engine fuel property determination device. 初爆判定は、気筒毎の回転速度変化度合と、予め定められた回転速度変化度合の第2のしきい値との比較に基づいて行うことを特徴とする請求項12記載の内燃機関の燃料性状判定装置。   13. The fuel for an internal combustion engine according to claim 12, wherein the initial explosion determination is performed based on a comparison between a rotation speed change degree for each cylinder and a second threshold value of a predetermined rotation speed change degree. Property determination device.
JP2003329357A 2003-09-19 2003-09-22 Fuel property determination device for internal combustion engine Expired - Fee Related JP3873959B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003329357A JP3873959B2 (en) 2003-09-22 2003-09-22 Fuel property determination device for internal combustion engine
EP04021387A EP1517024B1 (en) 2003-09-19 2004-09-08 Fuel property determination system
DE602004010340T DE602004010340T2 (en) 2003-09-19 2004-09-08 Fuel properties Determination device
US10/942,906 US7050901B2 (en) 2003-09-19 2004-09-17 Fuel property determination system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003329357A JP3873959B2 (en) 2003-09-22 2003-09-22 Fuel property determination device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005098115A JP2005098115A (en) 2005-04-14
JP3873959B2 true JP3873959B2 (en) 2007-01-31

Family

ID=34458615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003329357A Expired - Fee Related JP3873959B2 (en) 2003-09-19 2003-09-22 Fuel property determination device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3873959B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4702085B2 (en) * 2006-02-15 2011-06-15 トヨタ自動車株式会社 Combustion state estimation device for internal combustion engine
JP4654983B2 (en) * 2006-06-07 2011-03-23 トヨタ自動車株式会社 Fuel injection control device and method for internal combustion engine
JP4306696B2 (en) 2006-06-13 2009-08-05 トヨタ自動車株式会社 Fuel property determination device for internal combustion engine
DE602006013475D1 (en) * 2006-10-23 2010-05-20 Delphi Tech Holding Sarl Method and device for controlling an internal combustion engine
JP5731735B2 (en) * 2008-07-23 2015-06-10 富士重工業株式会社 Engine control device
JP5385236B2 (en) * 2010-09-28 2014-01-08 本田技研工業株式会社 Engine control device
ITBO20110122A1 (en) 2011-03-15 2012-09-16 Magneti Marelli Spa METHOD OF RECOGNITION OF AT LEAST ONE FUEL CHARACTERISTIC IN AN INTERNAL COMBUSTION ENGINE
JP5993753B2 (en) * 2013-02-01 2016-09-14 ヤンマー株式会社 Engine control device

Also Published As

Publication number Publication date
JP2005098115A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP4404030B2 (en) Control device and control method for internal combustion engine
CN102439280B (en) Control device for internal combustion engine
JP6174264B2 (en) Control device and control method for internal combustion engine
JP2007120392A (en) Air fuel ratio control device for internal combustion engine
JP2005291182A (en) Misfire detection device
JP3978679B2 (en) Engine control device
JP3856100B2 (en) Fuel injection control device for internal combustion engine
US7050901B2 (en) Fuel property determination system
JP6252566B2 (en) Engine equipment
JP3873959B2 (en) Fuel property determination device for internal combustion engine
JP2007248119A (en) Method for determining wiebe function parameter and device for presuming heat release rate of internal combustion engine
JP2003286890A (en) Controller for engine
JP5409538B2 (en) Fuel injection control device for internal combustion engine
JPWO2003033896A1 (en) Engine control device
JP2007040208A (en) Controller for internal combustion engine
JP3873956B2 (en) Fuel property determination device for internal combustion engine
JP5246144B2 (en) Intake air amount calculation device for internal combustion engine, control device for internal combustion engine
JP3873954B2 (en) Fuel property determination device for internal combustion engine
JP3873955B2 (en) Fuel property determination device for internal combustion engine
US6571775B2 (en) Fuel injection control for start-up of internal combustion engine
JP2009185771A (en) Fuel injection control device of internal combustion engine
JP2008309006A (en) Control device for internal combustion engine
JP2017057803A (en) Engine torque estimation device for internal combustion engine
JP2006002610A (en) Engine starting performance improving device
JP4000972B2 (en) In-cylinder gas state acquisition device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050126

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060929

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091102

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees