JP3873204B2 - Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping - Google Patents

Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping Download PDF

Info

Publication number
JP3873204B2
JP3873204B2 JP2000314474A JP2000314474A JP3873204B2 JP 3873204 B2 JP3873204 B2 JP 3873204B2 JP 2000314474 A JP2000314474 A JP 2000314474A JP 2000314474 A JP2000314474 A JP 2000314474A JP 3873204 B2 JP3873204 B2 JP 3873204B2
Authority
JP
Japan
Prior art keywords
electrode
liquid
pseudo
auxiliary
doughnut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000314474A
Other languages
Japanese (ja)
Other versions
JP2002081400A (en
Inventor
良一 花岡
新三 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2000314474A priority Critical patent/JP3873204B2/en
Publication of JP2002081400A publication Critical patent/JP2002081400A/en
Application granted granted Critical
Publication of JP3873204B2 publication Critical patent/JP3873204B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、いわゆるEHD(Electrohydrodynamic:電気流体力学)ポンピング現象を利用して液体(電気絶縁性液体)を噴出させる方法とその噴出方法で液体ジェットを発生させるための装置に関するものである。
【0002】
【従来の技術】
電気絶縁性の気体や液体に高電圧を加えると、それらの流体中における電場と流れ場の相互作用によって、EHDポンピング現象と言われる流体の流動現象が生ずることが古くから知られている。そしてEHDポンピング現象を応用すれば機械的な可動機構を要することなく液体を流動させることができることから、将来特に液体のEHDポンピング現象が、例えばヒートパイプ、ポンプ、噴水装置、液体循環装置、熱交換システム、あるいは液体ジェット流による動力装置などの種々の実用分野で工業的に幅広く活用できるものと期待されている。
【0003】
液体中で発生するEHDポンピング現象については未だ不明な点が多いが、既に幾つかの発生メカニズムが報告されている。その最も一般的なメカニズムはイオンドラッグポンピングと言われる流動メカニズムで、高電圧が印加された鋭利な電極の先端から、電界放出、電界電離、コロナ放電などに基づいて液体中に注入されたイオンが、電界によりクーロン力を受け、中性分子とのエネルギー変換によって発生する流動現象である。そして、流速約1m/sに達する液体ジェットが鋭利な電極(針状電極または刃型電極)から、これに対向する平板電極に向かって発生することが報告されている。
【0004】
またEHDポンピング現象の他の発生メカニズムとして、誘導ポンピングと言われる流動メカニズムが知られている。これは誘導電荷と電界との相互作用によって発生する流動現象で、電界で生ずるこの誘導電荷は、液体導電率の不均一性によって生じ、液体導電率の不均一性は、液体の不平等な温度分布あるいは液体の異質性(例えば、分離二層流体)によって生ずる。
【0005】
【発明が解決しようとする課題】
しかしながら液体のEHDポンピング現象を種々の産業分野で活用し実用化する際には、上記のイオンドラッグポンピングや誘導ポンピングの流動メカニズムに基づくEHDポンピング現象を利用しようとすると大きな難点がある。すなわち、イオンドラッグポンピングメカニズムに沿うEHDポンピングによる液体ジェット発生方法では、液体に荷電粒子が注入されることから、液体の電気的特性が次第に劣化して長期の使用に耐えられなくなる難点があり、また誘導ポンピングメカニズムに沿うEHDポンピングによる液体ジェット発生方法は、熱的に絶縁された一定温度の液体に対しては利用できないという根本的な難点がある。
【0006】
上記の現状に鑑み、この発明は、上記従来のイオンドラッグポンピングや誘導ポンピングの流動メカニズムに拠らず、また液体の分極効果に基づく電歪力に起因するという流動メカニズムとも全く異なる純伝導ポンピング現象、すなわち液体中に存在する電界質成分の解離/再結合反応が高電界の作用によって不平衡化し発生した解離イオンが電極表面付近にヘテロチャージ層を形成することによって電極とこのヘテロチャージ層との間に働く引力が流動をもたらすという流動メカニズムに着目することにより、鋭利な形状の電極を用いず従って絶縁性液体への電荷注入を伴うことなく、熱的に絶縁された一定温度の液体に対してもEHDポンピングによる指向性の高い液体ジェットを発生し得る液体ジェット発生方法と、その方法によってEHDポンピングによる指向性の高い液体ジェットを発生できる液体ジェット発生装置を得ようとするものである。そして長期に亘って絶縁性液体を劣化させず大きなポンピング圧力と高い指向性をもつ液体ジェットを発生させることを目的とする。
【0007】
【課題を解決するための手段】
上記目的に沿うEHDポンピングによる液体ジェットを発生させるために、この発明は、中心軸の方向に液体流通孔を貫通させた環状あるいは筒状でその両端面を滑らかな円弧状に成形した擬似ドーナッツ状電極の一端を平板電極に対し間隙をおいて対向させて電極系とし、その擬似ドーナッツ状電極と平板電極が対向する部分を含む電極系の少なくとも一部を電気絶縁性液体の中に置いて、その擬似ドーナッツ状電極と平板電極の間に直流高電圧を印加することにより、擬似ドーナッツ状電極の液体流通孔を通して擬似ドーナッツ状電極のいずれか一方の端面から上記の電気絶縁性液体を噴出させるようにする。
【0008】
また上記目的に沿うEHDポンピングによる液体ジェットの指向性を高めるために、この発明は、中心軸の方向に液体流通孔を貫通させた環状あるいは筒状でその両端面を滑らかな円弧状に成形した擬似ドーナッツ状電極の一端を平板電極に対し間隙をおいて対向させると共に、その擬似ドーナッツ状電極の液体流通孔と同軸状に繋がる絞り円錐状液体流通孔を貫通させたノズルを擬似ドーナッツ状電極の他端に結合させて電極系とし、その擬似ドーナッツ状電極と平板電極が対向する部分を含む前記電極系の少なくとも一部を電気絶縁性液体の中に置いて、擬似ドーナッツ状電極と平板電極の間に直流高電圧を印加することにより、前記擬似ドーナッツ状電極の液体流通孔を通してノズルの先端から上記電気絶縁性液体を噴出させるようにする。
【0009】
EHDポンピングによる液体ジェットの指向性をさらに高めるために、この発明は、中心軸の方向に液体流通孔を貫通させた環状あるいは筒状でその両端面を滑らかな円弧状に成形した擬似ドーナッツ状電極の一端を平板電極に対し間隙をおいて対向させると共に、その擬似ドーナッツ状電極の液体流通孔と同軸状に繋がる絞り円錐状液体流通孔と前記中心軸方向に対し垂直方向の流れ成分をもつ液流を前記絞り円錐状液体流通孔の根元の大径部へ導入する補助液体通路を形成したスパイラル・ノズルを擬似ドーナッツ状電極の他端に結合させ、その補助液体通路の入口周辺に補助リング電極を配設し、この補助リング電極に対して間隙を介して補助平板電極を対向させて電極系とし、擬似ドーナッツ状電極と平板電極が対向する部分および補助リング電極と補助平板電極が対向する部分を含む電極系の少なくとも一部を電気絶縁性液体の中に置いて、擬似ドーナッツ状電極と平板電極の間ならびに補助リング電極と補助平板電極の間に同時に直流高電圧を印加することにより、擬似ドーナッツ状電極の液体流通孔を通してスパイラル・ノズルの先端から上記電気絶縁性液体を噴出させるようにする。
【0010】
またEHDポンピングによる液体ジェットの流速とポンピング圧力を高めるために、この発明は前記電気絶縁性液体として、ジエチレングリコールモノブチルエーテルアセテートやドデカン二酸−nブチルを用いる。
【0011】
この発明では前記の目的に沿うEHDポンピングによる液体ジェットを発生させる装置として、中心軸の方向に液体流通孔が貫通した環状あるいは筒状でその両端面が滑らかな円弧状に成形された擬似ドーナッツ状電極と、この擬似ドーナッツ状電極の一端に間隙をおいて対向した平板電極をもって基本的な+電極系を形成し、少なくともその擬似ドーナッツ電極と平面電極の対向部分が電気絶縁性液体中に保持されるものとし、その擬似ドーナッツ状電極と平板電極の間に直流高電圧が印加される構成をとる。
【0012】
またこの発明のEHDポンピングによる液体ジェット発生装置は、液体ジェットの指向性を高めるために、中心軸の方向に液体流通孔が貫通した環状あるいは筒状でその両端面が滑らかな円弧状に成形された擬似ドーナッツ状電極と、この擬似ドーナッツ状電極の一端に間隙をおいて対向する平板電極と、その擬似ドーナッツ状電極の液体流通孔と同軸状に繋がる絞り円錐状液体流通孔が形成されて擬似ドーナッツ状電極の他端に結合するノズルをもって電極系を形成し、少なくともその擬似ドーナッツ状電極と平板電極の対向部分が電気絶縁性液体中に保持されるものとし、その擬似ドーナッツ状電極と平板電極の間に直流高電圧が印加される構成をとる。
【0013】
さらにこの発明のEHPポンピングによる液体ジェット発生装置は、液体ジェットの指向性を一層高めるために、中心軸の方向に液体流通孔が貫通した環状あるいは筒状でその両端面が滑らかな円弧状に成形された擬似ドーナッツ状電極と、この擬似ドーナッツ状電極の一端に間隙をおいて対向した平板電極と、この擬似ドーナッツ状電極の液体流通孔と同軌状に繋がる絞り円錐状液体流通孔が形成されると共に前記中心軸方向に対し垂直方向の流れ成分をもつ液流を絞り円錐状液体流通孔の根元大径部へ導入する補助液体通路が形成されて擬似ドーナッツ状電極の他端に結合したスパイラル・ノズルと、上記補助液体通路の入口周辺に配設された補助リング電極と、この補助リング電極に間隙を介して対向した補助平板電極をもって電極系を形成し、少なくとも上記の擬似ドーナッツ状電極と平板電極の対向部分および上記の補助リング電極と補助平板電極の対向部分が電気絶縁性液体中に保持されるものとし、擬似ドーナッツ状電極と平板電極の間ならびに補助リング電極と補助平板電極の間に同時に直流高電圧が印加される構成をとる。
【0014】
【発明の実施の形態】
この発明の基本的な実施形態の一つは、中心軸の方向に液体流通孔を貫通させた環状あるいは筒状でその両端面を滑らかな円弧状に成形した擬似ドーナッツ状電極の一端を平板電極に対し間隙をおいて対向させて電極系とし、その擬似ドーナッツ状電極と平板電極が対向する部分を含む電極系の少なくとも一部を電気絶縁性液体の中に置いて、その擬似ドーナッツ状電極と平板電極の間に直流高電圧を印加することにより、擬似ドーナッツ状電極の液体流通孔を通して擬似ドーナッツ状電極のいずれか一方の端面から前記電気絶縁性液体を噴出させるEHDポンピングによる液体ジェットの発生方法である。そしてこの原理は、液体中の解離イオンが電極表面付近に電極極性と異極性の非平衡層(ヘテロチャージ層)を形成することによる圧力の発生に起因した純伝導ポンピングに基づいている。
【0015】
またこの発明の他の基本的な実施形態は、中心軸の方向に液体流通孔が貫通した環状あるいは筒状でその両端面が滑らかな円弧状に成形された擬似ドーナッツ状電極と、この擬似ドーナッツ状電極の一端に間隙をおいて対向した平板電極を有し、少なくともその擬似ドーナッツ電極と平面電極の対向部分が電気絶縁性液体中に保持されてその擬似ドーナッツ状電極と平板電極の間に直流高電圧が印加される電極系を備えたEHDポンピングによる液体ジェットの発生装置である。
【0016】
【実施例】
以下この発明の実施例を図面を参考に説明する。図1は、この発明の一実施例を示すEHDポンピングによる液体ジェット発生装置の基本構成を示すものである。図1において、1は擬似ドーナッツ状電極(高電圧電極)、2は平板電極(接地電極)である。擬似ドーナッツ状電極1は、中心軸Z方向に液体流通孔1aを貫通させた環状あるいは円筒状でその両端面は滑らかな円弧Rに成形された形状であり、電界放出、電界電離、コロナ放電などが生ずるような鋭利な突部が存しないよう全表面が滑らかに成形されている。すなわち擬似ドーナッツ状電極1は、断面が円形のドーナッツ形状を中心軸Z方向に若干引き伸ばしたような形状である。そして擬似ドーナッツ状電極1の一端を平板電極2に対し間隙dをおいて対向させて電極系10とし、この電極系10を電気絶縁性液体3の中へ沈めて置き、直流高電圧電源4から擬似ドーナッツ状電極1と平板電極2の間に直流高電圧を印加することにより、すなわち平板電極2の電位に対し正または負の直流高電圧を擬似ドーナッツ状電極1に印加することにより、EHDポンピング現象によって擬似ドーナッツ状電極1の液体流通孔1aを通して擬似ドーナッツ状電極1のいずれか一方の端面から電気絶縁性液体3の液体ジェットが発生し、その液体ジェットは電気絶縁性液体3の液面を破って高く(長く)噴出する。矢印Aは電気絶縁性液体3のジェット方向を示しているが、この方向は、電気絶縁性液体3の種類や擬似ドーナッツ状電極1に印加される直流高電圧の極性によって反転し得る。
【0017】
なお、実験で用いた図1に示す電極系10の寸法は、擬似ドーナッツ状電極1の長さBが10mm,円弧Rの半径が2.5mm、液体流通孔1aの直径Cが3mm、間隙dが2mmである。
【0018】
また図1に示す実施例では、電極系10の全体を電気絶縁性液体3の中へ沈めているが、擬似ドーナッツ状電極1の一部を電気絶縁性液体3の中へ沈め、擬似ドーナッツ状電極1の噴出側を電気絶縁性液体3の液面から持ち上げて作動させることも、できる。その場合、少なくとも擬似ドーナッツ状電極1と平板電極2が対向する部分を含む前記電極系の一部を電気絶縁性液体3の中に置くことになる。
【0019】
図2は、この発明の他の実施例を示すEHDポンピングによる液体ジェット発生装置の構成を示すもので、液体ジェットの指向性を高めるものである。図2において、擬似ドーナッツ状電極1、流体流通孔1a,平板電極2、電気絶縁性流体(図示せず)、直流高電圧電源(図示せず)、間隙dとそれらの相互の関係は図1に示したところと同じである。25はポリエチレン製のノズルで、円柱素材の内部を円錐形にくり抜いて、液体の流れ方向に先細りの絞り円錐状液体流通孔25aを貫通させている。絞り円錐状液体流通孔25aは、中心軸Zを共有して擬似ドーナッツ状電極1の液体流通孔1aと同軸状に繋がり、擬似ドーナッツ状電極1の他端(平板電極2と対向しない端面)結合されている。そして、擬似ドーナッツ状電極1と平板電極2とノズル25によって電極系10が構成されており、少なくとも擬似ドーナッツ状電極1と平板電極2が対向する部分を含めて電極系10を電気絶縁性流体の中に入れ、擬似ドーナッツ状電極1と平板電極2の間に直流高電圧を印加することにより、擬似ドーナッツ状電極1の液体流通孔1aを通してノズル25の先端から電気絶縁性液体を噴出させるものである。図2に示す液体ジェット発生方法および装置によれば、絞り円錐状液体流通孔25aを有するノズル25を擬似ドーナッツ状電極1に付加することにより、液体ジェットの指向性が高まり液体ジェットの到達長を伸ばすことができる。なお、実験で用いた図2に示すノズル25の寸法は、長さE,Fがそれぞれ23mm,16mm、絞り円錐状液体流通孔25aの吐出口直径Gが2mmである。
【0020】
図3は、この発明のさらに他の実施例を示すEHDポンピングによる液体ジェット発生装置の構成を示すもので、液体ジェットの指向性、収斂性を一層高めるために、図2に示したノズルをさらに改良してスパイラル・ノズルにしたものである。図3において、擬似ドーナッツ状電極1、流体流通孔1a,平板電極2、電気絶縁性流体(図示せず)、間隙dとそれらの相互の関係は図1や図2に示したところと同じである。35はポリエチレン製のスパイラル・ノズルで、図2のノズル25と同様に、スパイラル・ノズル35は、液体の流れ方向に先細りの絞り円錐状液体流通孔35aを有し、絞り円錐状液体流通孔35aは、擬似ドーナッツ状電極1の液体流通孔1aと同軸状に繋がり、擬似ドーナッツ状電極1の他端(平板電極2と対向しない端面)結合される。
【0021】
スパイラル・ノズル35には、絞り円錐状液体流通孔35aに加えて、中心軸Z方向に対し垂直方向の流れ成分をもつ液流を絞り円錐状液体流通孔35aの根元の大径部35bへ導入する補助液体通路36を形成し、この補助液体通路36の入口周辺に小さな径の補助リング電極37を配設し、この補助リング電極37に対し間隙sを介して補助平板電極(接地電極)38を対向させたものである。そして擬似ドーナッツ状電極1、平板電極2、スパイラル・ノズル35、補助リング電極37、補助平板電極38によって電極系10が構成されており、少なくとも擬似ドーナッツ状電極1と平板電極2の対向部分および補助リング電極37と補助平板電極38の対向部分を含めて電極系10を電気絶縁性流体の中に入れて保持し、直流高電圧電源(図示せず)から、擬似ドーナッツ状電極1と平板電極2の間ならびに補助リング電極37と補助平板電極38の間に直流高電圧を印加することにより、擬似ドーナッツ状電極1の液体流通孔1aを通してスパイラル・ノズル35の先端から電気絶縁性液体を噴出させるものである。
【0022】
また、スパイラル・ノズル35の絞り用錐状液体流通孔35aの根元の大径部の内周壁の内側に短い円筒状案内体39を配設して、円筒状案内体39と絞り円錐状液体流通孔35aの根元大径部35bの内周壁の間に誘導溝(円環状スリット)40を形成すると共に、スパイラル・ノズル35の外周面から液体誘導溝40に通ずる小孔41を設け、この誘導溝40と小孔41によって補助液体通路36が形成されている。
【0023】
擬似ドーナッツ状電極1と平板電極2の間ならびに補助リング電極37と補助平板電極38の間に直流高電圧を印加すると、擬似ドーナッツ状電極1と平板電極2の間の間隙でEHD流動が生じ、これに起因して電気絶縁性液体の液体ジェットが生成され、その液体ジェットがスパイラル・ノズル35の先端から噴出するが、同時に補助リング電極37と補助平板電極38の間の間隙でもEHD流動が生じ、これに起因する液流が小孔41と誘導溝40を通ってスパイラル・ノズル35の絞り円錐状液体流通孔35aに噴出する。そして誘導溝40から噴出する液流は絞り円錐状液体流通孔35aの中心軸Zの方に向かう放射方向の流れ成分を有することから、絞り円錐状液体流通孔35a内の液体ジェットの主流に放射方向の速度ベクトルを与えることになる。この結果液体ジェットは中心軸Zに収斂し指向性が高まり、液体ジェットの到達長を伸ばすことができる。なお、実験で用いた図3に示すスパイラル・ノズル35の寸法は、小孔41の直径Mが1mm、補助リング電極37の径Nが5mm、補助平板電極38の長さHが20mm、補助リング電極37と補助平板電極38の間の間隙sが2mmである。
【0024】
EHDポンピングによる液体ジェットの発生に用いる電気絶縁性液体は種々考えられるが、この発明の過程で、ジエチレングリコールモノブチルエーテルアセテート(以下、「BCRA」と略す)、ドデカン二酸−nブチル(以下、「DBDN」と略す)、変圧器油(JIS−C2320)(以下「Tr−Oilと略す)、フッ素変成シリコーン油(以下、「FS−Oil」と略す)の4種類の電気絶縁性液体を用いて実験・思考し、それらの特性と実用上の優劣を見きわめた。図1に示した電極系を上記の4種類の電気絶縁性液体中に設置して、正または負の直流高電圧を印加した場合に生ずる液体ジェットは、液体の種類と印加電圧の極性によってそれぞれ異なる特性を示す。なお、上記電気絶縁性液体の性質に係わる物理的定数は図4に示す通りである。
【0025】
図5は、流速Uと印加電圧Vの関係を示している。これらの速度は、擬似ドーナッツ状電極1の上部先端から電極系10の中心軸Z上1mmの点で測定されたものである。また、BCRAとTr−Oilの流れは印加電圧の極性に関わらず常に平板電極2側から擬似ドーナッツ状電極1の液体流通孔5aを通って上方へ噴射し、DBDNとFS−Oilの流れは印加電圧の極性によって変化することが確認された。図5から明らかなように、BCRAやDBDNは所与の印加電圧に対し大きな流速を示し、特にBCRAが大きな流速を示す。このことからEHDポンピングによる液体ジェットを活用する場合、電気絶縁性液体としてBCRAやDBDNを用いることが有用である。
【0026】
図6は、ポンピング圧力Pと印加電圧Vの関係を示している。図6から明らかなように、BCRAとDBDNは所与の印加電圧に対し大きなポンピング圧力を発生し、ポンピング圧力Pは印加電圧Vのほぼ2乗に比例して変化している。したがってこの特性からも、EHDポンピングによる液体ジェットを活用する場合、電気絶縁性液体としてBCRAやDBDNを用いることが有用である。
【0027】
ノズルを設けない図1に示すような電極系の場合、擬似ドーナッツ状電極1の液体流通孔1a通過して上方向に噴出する液体ジェットは、擬似ドーナッツ状電極1の先端から離れるに従って乱流的成分が含まれて直線的な流れを維持できなくなる。そこでより高い収斂性と指向性をもつ液体ジェットを得るために図2に示したノズル25や、図3に示したスパイラル・ノズル35を擬似ドーナッツ状電極1に付加した電極系10を用いたが、図7ならびに図8には、これらノズル25やスパイラル・ノズル35を付加した効果が顕著に現れている。
【0028】
すなわち図7は、電極系10の中心軸Zに沿って、ノズルの先端から上方25mmまでの間で測定された速度分布を示し、最大速度を1.0に規格化して示したものである。図8は、ノズルの先端から上方20mmの位置で放射方向に測定された速度分布を示している。そして図7、図8のいずれにおいても、ノズルをもたない電極系(図1に示した電極系)と普通のノズルをもった電極系(図2に示した電極系)とスパイラル・ノズルをもった電極系(図3に示した電極系)を対比したものである。
【0029】
図7に示されるように、測定点が電極系から離れるにつれ電極系の違いによる差が大きく現れている。すなわち、スパイラル・ノズルをもつ電極系は、その先端から離れた点においても速度の減衰率が小さく、他の電極系の場合に比べて液体ジェットの指向性が最も良い。また、スパイラル・ノズルをもつ電極系の液体ジェットは、他の電極系に比べて最も収斂性の良いことが図8に現れている。
【0030】
【発明の効果】
上記実施例からも明らかなように、この発明によれば、擬似ドーナッツ状電極と平板電極を対向させた電極系に正または負の直流高電圧を印加することによって、一定温度の電気絶縁性液体中で指向性の高い液体ジェットを発生させることができ、また電極から電気絶縁性液体への電荷注入を伴わないので使用する電気絶縁性液体の劣化が抑制され実用上きわめて有効である。
【0031】
その上に擬似ドーナッツ状電極にノズル、とりわけスパイラル・ノズルを付加結合して電極系を構成することにより、液体ジェットの収斂性と指向性を更に高めることができる。そしてまた、電気絶縁性液体としてBCRAあるいはDBDNを用いることにより、液体ジェットの特性として良好な結果を得ることができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示すEHDポンピングによる液体ジェット発生装置の基本構成図。
【図2】この発明の他の実施例を示すEHDポンピングによる液体ジェット発生装置の構成図。
【図3】この発明の別の実施例を示すEHDポンピングによる液体ジェット発生装置の構成図。
【図4】この発明のEHDによる液体ジェット発生方法および装置で用いた電気絶縁性液体の物理的定数を示した特性説明図。
【図5】この発明の実験結果に基づく印加電圧と液体ジェット流速の関係図。
【図6】この発明の実験結果に基づく印加電圧とポンピング圧力の関係図。
【図7】この発明の実験結果に基づく流体ジェットの軸方向速度の特性図。
【図8】この発明の実験結果に基づく流体ジェットの放射方向速度の特性図。
【符号の説明】
1 : 擬似ドーナッツ状電極
1a: 液体流通孔
2 : 平板電極
3 : 電気絶縁性液体
4 : 直流高電圧電源
10 : 電極系
25 : ノズル
25a: 絞り円錐状液体流通孔
35 : スパイラル・ノズル
35a: 絞り円錐状液体流通孔
35b: 根元大径部
36 : 補助液体通路
37 : 補助リング電極
38 : 補助平板電極
39 : 円筒状案内体
40 : 誘導溝(円環スリット)
41 : 小孔
d : 間隙
R : 円弧
s : 間隙
Z : 中心軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for ejecting a liquid (electrically insulating liquid) using a so-called EHD (Electrohydrodynamic) pumping phenomenon and an apparatus for generating a liquid jet by the ejection method.
[0002]
[Prior art]
It has long been known that when a high voltage is applied to an electrically insulating gas or liquid, a fluid flow phenomenon called an EHD pumping phenomenon occurs due to the interaction between the electric field and the flow field in the fluid. And if the EHD pumping phenomenon is applied, the liquid can flow without requiring a mechanical moving mechanism. Therefore, in the future, especially the EHD pumping phenomenon of the liquid will be, for example, a heat pipe, a pump, a fountain device, a liquid circulation device, a heat exchange It is expected to be industrially widely applicable in various practical fields such as a system or a power device using a liquid jet flow.
[0003]
Although there are still many unclear points regarding the EHD pumping phenomenon that occurs in liquids, several generation mechanisms have already been reported. The most common mechanism is a flow mechanism called ion drag pumping. From the tip of a sharp electrode to which a high voltage is applied, ions injected into the liquid based on field emission, field ionization, corona discharge, etc. This is a flow phenomenon that occurs due to energy conversion with neutral molecules under the Coulomb force by an electric field. Then, it has been reported that a liquid jet reaching a flow velocity of about 1 m / s is generated from a sharp electrode (needle electrode or blade electrode) toward a flat plate electrode facing this.
[0004]
As another generation mechanism of the EHD pumping phenomenon, a flow mechanism called induction pumping is known. This is a flow phenomenon caused by the interaction between the induced charge and the electric field. This induced charge generated by the electric field is caused by the non-uniformity of the liquid conductivity, and the non-uniformity of the liquid conductivity is caused by the unequal temperature of the liquid. Caused by distribution or liquid heterogeneity (eg, separated two-layer fluid).
[0005]
[Problems to be solved by the invention]
However, when the liquid EHD pumping phenomenon is utilized and put into practical use in various industrial fields, there is a great difficulty in using the EHD pumping phenomenon based on the flow mechanism of the above-mentioned ion drag pumping or induction pumping. That is, in the liquid jet generation method by EHD pumping along the ion drag pumping mechanism, since charged particles are injected into the liquid, there is a problem that the electrical characteristics of the liquid gradually deteriorate and cannot withstand long-term use. The liquid jet generation method by EHD pumping along the inductive pumping mechanism has a fundamental difficulty that it cannot be used for thermally insulated constant temperature liquid.
[0006]
In view of the above situation, the present invention is not based on the flow mechanism of the conventional ion drag pumping and induction pumping, and is also completely different from the flow mechanism of electrostrictive force based on the polarization effect of the liquid. In other words, the dissociation / recombination reaction of the electrolyte component present in the liquid is unbalanced by the action of the high electric field, and the generated dissociated ions form a heterocharge layer near the electrode surface, so that the electrode and the heterocharge layer By focusing on the flow mechanism in which the attractive force acting in between brings about the flow, it does not use a sharply shaped electrode and therefore does not involve charge injection into the insulating liquid, and against a thermally insulated constant temperature liquid Even a liquid jet generation method capable of generating a highly directional liquid jet by EHD pumping, and the method It is intended to obtain a liquid jet generating apparatus capable of generating a highly directional liquid jets according to HD pumping. An object is to generate a liquid jet having a large pumping pressure and high directivity without deteriorating the insulating liquid over a long period of time.
[0007]
[Means for Solving the Problems]
In order to generate a liquid jet by EHD pumping that meets the above-mentioned purpose, the present invention provides a pseudo donut shape in which both end faces are formed into a smooth arc shape with an annular or cylindrical shape penetrating a liquid circulation hole in the direction of the central axis. One end of the electrode is opposed to the flat plate electrode with a gap therebetween to form an electrode system, and at least a part of the electrode system including the portion where the pseudo donut-like electrode and the flat plate electrode face each other is placed in the electrically insulating liquid, By applying a DC high voltage between the pseudo donut-like electrode and the flat plate electrode, the above-mentioned electrically insulating liquid is ejected from one end face of the pseudo donut-like electrode through the liquid flow hole of the pseudo donut-like electrode. To.
[0008]
In addition, in order to improve the directivity of the liquid jet by EHD pumping that meets the above-mentioned purpose, the present invention is formed in an annular shape or a cylindrical shape with a liquid flow hole penetrating in the direction of the central axis, and both end surfaces thereof are formed into smooth arc shapes. One end of the pseudo donut-like electrode is opposed to the flat plate electrode with a gap, and a nozzle that penetrates the conical conical liquid circulation hole connected coaxially with the liquid circulation hole of the pseudo donut-like electrode is connected to the pseudo donut-like electrode. An electrode system is formed by coupling to the other end, and at least a part of the electrode system including a portion where the pseudo donut-like electrode and the flat plate electrode face each other is placed in an electrically insulating liquid, and the pseudo donut-like electrode and the flat plate electrode By applying a direct current high voltage in between, the electrically insulating liquid is ejected from the tip of the nozzle through the liquid circulation hole of the pseudo donut-shaped electrode. That.
[0009]
In order to further enhance the directivity of the liquid jet by EHD pumping, the present invention provides a pseudo-doughnut-shaped electrode in which the liquid flow hole is penetrated in the direction of the central axis and is formed into a smooth arc shape at both ends thereof A liquid having a conical conical liquid flow hole that is concentrically connected to the liquid flow hole of the pseudo-doughnut-like electrode and a flow component perpendicular to the central axis direction. A spiral nozzle having an auxiliary liquid passage for introducing a flow into the large diameter portion at the base of the conical conical liquid circulation hole is coupled to the other end of the pseudo donut-like electrode, and an auxiliary ring electrode is provided around the inlet of the auxiliary liquid passage. The auxiliary plate electrode is opposed to the auxiliary ring electrode through a gap to form an electrode system, and the portion where the pseudo donut-like electrode and the flat plate electrode are opposed to each other, and Place at least a part of the electrode system including the part where the auxiliary ring electrode and the auxiliary plate electrode face each other in the electrically insulating liquid, and between the pseudo donut-like electrode and the plate electrode and between the auxiliary ring electrode and the auxiliary plate electrode. At the same time, by applying a high DC voltage, the electrically insulating liquid is ejected from the tip of the spiral nozzle through the liquid flow hole of the pseudo donut-shaped electrode.
[0010]
In order to increase the flow velocity and pumping pressure of the liquid jet by EHD pumping, the present invention uses diethylene glycol monobutyl ether acetate or dodecanedioic acid-nbutyl as the electrically insulating liquid.
[0011]
In the present invention, as a device for generating a liquid jet by EHD pumping that meets the above-mentioned purpose, a pseudo donut shape in which the liquid circulation hole penetrates in the direction of the central axis or a cylindrical shape, and both end surfaces thereof are formed into a smooth arc shape. A basic + electrode system is formed by an electrode and a flat plate electrode opposed to one end of the pseudo-doughnut-like electrode with a gap therebetween, and at least the facing part of the pseudo-doughnut electrode and the planar electrode is held in the electrically insulating liquid. It is assumed that a DC high voltage is applied between the pseudo donut-like electrode and the flat plate electrode.
[0012]
In addition, the liquid jet generator by EHD pumping of the present invention is formed in an annular or cylindrical shape in which the liquid flow hole penetrates in the direction of the central axis, and both end surfaces thereof are formed into a smooth arc shape in order to improve the directivity of the liquid jet. The pseudo-doughnut-shaped electrode, the flat plate electrode facing one end of the pseudo-doughnut-shaped electrode with a gap, and the conical liquid flow hole that is concentrically connected to the liquid flow hole of the pseudo-doughnut-shaped electrode are formed to simulate An electrode system is formed with a nozzle coupled to the other end of the doughnut-shaped electrode, and at least the opposing portion of the pseudo-doughnut-shaped electrode and the plate electrode is held in the electrically insulating liquid. The high DC voltage is applied between the two.
[0013]
Furthermore, in order to further enhance the directivity of the liquid jet, the liquid jet generator by EHP pumping according to the present invention is formed into an annular shape or a cylindrical shape in which the liquid flow hole penetrates in the direction of the central axis, and both end surfaces thereof are formed into a smooth arc shape. The pseudo-doughnut-shaped electrode, the flat plate electrode opposed to one end of the pseudo-doughnut-shaped electrode with a gap therebetween, and the conical liquid flow hole that is connected to the liquid flow hole of the pseudo-doughnut-shaped electrode are formed. And an auxiliary liquid passage for introducing a liquid flow having a flow component perpendicular to the direction of the central axis into the root large-diameter portion of the conical liquid circulation hole is formed and coupled to the other end of the pseudo-doughnut-shaped electrode An electrode system having a nozzle, an auxiliary ring electrode disposed around the inlet of the auxiliary liquid passage, and an auxiliary plate electrode opposed to the auxiliary ring electrode with a gap And at least the opposing portion of the pseudo donut-like electrode and the flat plate electrode and the opposing portion of the auxiliary ring electrode and the auxiliary flat plate electrode are held in the electrically insulating liquid. A high DC voltage is simultaneously applied between the auxiliary ring electrode and the auxiliary flat plate electrode.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
One of the basic embodiments of the present invention is that one end of a pseudo-doughnut-like electrode having a circular or cylindrical shape with a liquid circulation hole penetrating in the direction of the central axis and having both end surfaces formed into a smooth arc shape is a flat plate electrode. The electrode system is made to be opposed to each other with a gap, and at least a part of the electrode system including a portion where the pseudo donut-like electrode and the flat plate electrode face each other is placed in an electrically insulating liquid, A method of generating a liquid jet by EHD pumping in which the electrically insulating liquid is ejected from one end face of a pseudo donut-like electrode through a liquid flow hole of the pseudo donut-like electrode by applying a DC high voltage between the flat plate electrodes It is. This principle is based on pure conduction pumping caused by the generation of pressure due to the dissociated ions in the liquid forming a non-equilibrium layer (heterocharge layer) having a polarity different from that of the electrode in the vicinity of the electrode surface.
[0015]
In addition, another basic embodiment of the present invention includes a pseudo donut-like electrode having a circular or cylindrical shape with a liquid flow hole penetrating in the direction of the central axis, and a smooth arc shape at both ends thereof, and the pseudo donut A flat plate electrode opposed to one end of the electrode with a gap, and at least the facing portion of the pseudo donut electrode and the flat electrode is held in an electrically insulating liquid, and a direct current is provided between the pseudo donut electrode and the flat plate electrode. This is an apparatus for generating a liquid jet by EHD pumping equipped with an electrode system to which a high voltage is applied.
[0016]
【Example】
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows the basic configuration of a liquid jet generator using EHD pumping according to an embodiment of the present invention. In FIG. 1, 1 is a pseudo donut-shaped electrode (high voltage electrode), and 2 is a flat plate electrode (ground electrode). The pseudo donut-like electrode 1 has an annular shape or a cylindrical shape that penetrates the liquid circulation hole 1a in the central axis Z direction, and its both end surfaces are shaped into a smooth arc R, such as field emission, field ionization, and corona discharge. The entire surface is smoothly molded so that there is no sharp protrusion that causes That is, the pseudo donut-like electrode 1 has a shape in which a donut shape having a circular cross section is slightly extended in the central axis Z direction. Then, one end of the pseudo-doughnut-shaped electrode 1 is opposed to the flat plate electrode 2 with a gap d to form an electrode system 10, and the electrode system 10 is submerged in the electrically insulating liquid 3. By applying a DC high voltage between the pseudo-doughnut-like electrode 1 and the plate electrode 2, that is, by applying a positive or negative DC high voltage to the pseudo-doughnut-like electrode 1 with respect to the potential of the plate electrode 2, EHD pumping Due to the phenomenon, a liquid jet of the electrically insulating liquid 3 is generated from one end face of the pseudo donut-like electrode 1 through the liquid circulation hole 1a of the pseudo-donut-like electrode 1, and the liquid jet moves the liquid surface of the electrically insulating liquid 3. Break and squirt high (long). The arrow A indicates the jet direction of the electrically insulating liquid 3, but this direction can be reversed depending on the type of the electrically insulating liquid 3 and the polarity of the DC high voltage applied to the pseudo-doughnut-like electrode 1.
[0017]
The dimensions of the electrode system 10 shown in FIG. 1 used in the experiment are as follows: the length B of the pseudo-doughnut-like electrode 1 is 10 mm, the radius of the arc R is 2.5 mm, the diameter C of the liquid circulation hole 1a is 3 mm, and the gap d. Is 2 mm.
[0018]
In the embodiment shown in FIG. 1, the entire electrode system 10 is submerged in the electrically insulating liquid 3, but a portion of the pseudo donut-like electrode 1 is submerged in the electrically insulating liquid 3 to form a pseudo donut-like shape. The ejection side of the electrode 1 can be lifted from the liquid surface of the electrically insulating liquid 3 and operated. In that case, a part of the electrode system including at least a portion where the pseudo donut-like electrode 1 and the flat plate electrode 2 face each other is placed in the electrically insulating liquid 3.
[0019]
FIG. 2 shows the configuration of a liquid jet generating apparatus using EHD pumping according to another embodiment of the present invention, which improves the directivity of the liquid jet. In FIG. 2, the pseudo-doughnut-shaped electrode 1, the fluid flow hole 1a, the flat plate electrode 2, the electrically insulating fluid (not shown), the direct current high voltage power source (not shown), the gap d and their mutual relationship are shown in FIG. It is the same as shown in. A polyethylene nozzle 25 cuts out the inside of the cylindrical material into a conical shape and penetrates a conical constricted liquid circulation hole 25a that is tapered in the liquid flow direction. The conical constricted liquid circulation hole 25a is connected to the liquid circulation hole 1a of the pseudo-doughnut-like electrode 1 in a coaxial manner by sharing the central axis Z, and is coupled to the other end of the pseudo-doughnut-like electrode 1 (an end face not facing the flat plate electrode 2). Has been. The pseudo donut-like electrode 1, the flat plate electrode 2, and the nozzle 25 constitute an electrode system 10. The electrode system 10 including at least a portion where the pseudo donut-like electrode 1 and the flat plate electrode 2 face each other is made of an electrically insulating fluid. An electrically insulating liquid is ejected from the tip of the nozzle 25 through the liquid flow hole 1a of the pseudo donut-like electrode 1 by applying a DC high voltage between the pseudo donut-like electrode 1 and the plate electrode 2 is there. According to the method and apparatus for generating a liquid jet shown in FIG. 2, by adding the nozzle 25 having the conical liquid flow hole 25a to the pseudo-doughnut-shaped electrode 1, the directivity of the liquid jet is increased and the reach of the liquid jet is increased. Can be stretched. The dimensions of the nozzle 25 shown in FIG. 2 used in the experiment are lengths E and F of 23 mm and 16 mm, respectively, and the discharge port diameter G of the conical conical liquid circulation hole 25a is 2 mm.
[0020]
FIG. 3 shows a configuration of a liquid jet generating apparatus by EHD pumping showing still another embodiment of the present invention. In order to further improve the directivity and convergence of the liquid jet, the nozzle shown in FIG. It is an improved spiral nozzle. In FIG. 3, the pseudo-doughnut-shaped electrode 1, the fluid circulation hole 1a, the flat plate electrode 2, the electrically insulating fluid (not shown), the gap d, and their mutual relationship are the same as those shown in FIGS. is there. 35 is a spiral nozzle made of polyethylene, and similarly to the nozzle 25 of FIG. 2, the spiral nozzle 35 has a narrowed conical liquid circulation hole 35a tapered in the liquid flow direction, and the narrowed conical liquid circulation hole 35a. Are connected coaxially with the liquid circulation hole 1a of the pseudo-doughnut-like electrode 1 and coupled to the other end (end surface not opposed to the plate electrode 2) of the pseudo-doughnut-like electrode 1.
[0021]
In addition to the constricted conical liquid circulation hole 35a, the spiral nozzle 35 introduces a liquid flow having a flow component perpendicular to the central axis Z direction into the large-diameter portion 35b at the root of the conical conical liquid circulation hole 35a. The auxiliary liquid passage 36 is formed, and an auxiliary ring electrode 37 having a small diameter is disposed around the inlet of the auxiliary liquid passage 36, and an auxiliary plate electrode (ground electrode) 38 is provided to the auxiliary ring electrode 37 through a gap s. Are opposed to each other. The pseudo donut-like electrode 1, the plate electrode 2, the spiral nozzle 35, the auxiliary ring electrode 37, and the auxiliary plate electrode 38 constitute an electrode system 10, and at least the opposing portion of the pseudo donut-like electrode 1 and the plate electrode 2 and the auxiliary electrode. The electrode system 10 including the opposing portion of the ring electrode 37 and the auxiliary plate electrode 38 is held in an electrically insulating fluid, and the pseudo donut-like electrode 1 and the plate electrode 2 are supplied from a DC high voltage power source (not shown). The electric insulating liquid is ejected from the tip of the spiral nozzle 35 through the liquid flow hole 1a of the pseudo donut-like electrode 1 by applying a DC high voltage between the auxiliary ring electrode 37 and the auxiliary flat plate electrode 38. It is.
[0022]
In addition, a short cylindrical guide body 39 is disposed inside the inner peripheral wall of the large-diameter portion at the base of the conical liquid flow hole 35a for constriction of the spiral nozzle 35 so that the cylindrical guide body 39 and the conical liquid flow through the constriction cone. A guide groove (annular slit) 40 is formed between the inner peripheral walls of the base large-diameter portion 35b of the hole 35a, and a small hole 41 is provided from the outer peripheral surface of the spiral nozzle 35 to the liquid guide groove 40. An auxiliary liquid passage 36 is formed by 40 and the small hole 41.
[0023]
When a high DC voltage is applied between the pseudo donut-like electrode 1 and the flat plate electrode 2 and between the auxiliary ring electrode 37 and the auxiliary flat plate electrode 38, an EHD flow occurs in the gap between the pseudo donut-like electrode 1 and the flat plate electrode 2, As a result, a liquid jet of an electrically insulating liquid is generated, and the liquid jet is ejected from the tip of the spiral nozzle 35. At the same time, an EHD flow also occurs in the gap between the auxiliary ring electrode 37 and the auxiliary plate electrode 38. Then, the liquid flow resulting therefrom is ejected through the small hole 41 and the guide groove 40 to the conical liquid flow hole 35a of the spiral nozzle 35. Since the liquid flow ejected from the guide groove 40 has a flow component in the radial direction toward the central axis Z of the conical conical liquid circulation hole 35a, it radiates to the main flow of the liquid jet in the conical conical liquid circulation hole 35a. Will give a velocity vector in the direction. As a result, the liquid jet converges on the central axis Z and the directivity increases, and the reach of the liquid jet can be extended. The dimensions of the spiral nozzle 35 shown in FIG. 3 used in the experiment are as follows: the diameter M of the small hole 41 is 1 mm, the diameter N of the auxiliary ring electrode 37 is 5 mm, the length H of the auxiliary plate electrode 38 is 20 mm, and the auxiliary ring. The gap s between the electrode 37 and the auxiliary plate electrode 38 is 2 mm.
[0024]
Various electric insulating liquids used for generating a liquid jet by EHD pumping are conceivable. In the process of the present invention, diethylene glycol monobutyl ether acetate (hereinafter abbreviated as “BCRA”), dodecanedioic acid-n-butyl (hereinafter referred to as “DBDN”). ”), Transformer oil (JIS-C2320) (hereinafter abbreviated as“ Tr-Oil ”), and fluorine-modified silicone oil (hereinafter abbreviated as“ FS-Oil ”).・ Thinking, and identifying their characteristics and practical superiority or inferiority. The liquid jet generated when the electrode system shown in FIG. 1 is installed in the above four types of electrically insulating liquids and a positive or negative DC high voltage is applied depends on the type of liquid and the polarity of the applied voltage. Show different characteristics. The physical constants related to the properties of the electrical insulating liquid are as shown in FIG.
[0025]
FIG. 5 shows the relationship between the flow velocity U and the applied voltage V. These velocities are measured at a point 1 mm on the central axis Z of the electrode system 10 from the upper tip of the pseudo donut-shaped electrode 1. The flow of BCRA and Tr-Oil is always sprayed upward from the flat electrode 2 side through the liquid flow hole 5a of the pseudo donut-like electrode 1 regardless of the polarity of the applied voltage, and the flow of DBDN and FS-Oil is applied. It was confirmed that it changed depending on the polarity of the voltage. As is apparent from FIG. 5, BCRA and DBDN exhibit a large flow rate for a given applied voltage, and BCRA particularly exhibits a large flow rate. Therefore, when utilizing a liquid jet by EHD pumping, it is useful to use BCRA or DBDN as the electrically insulating liquid.
[0026]
FIG. 6 shows the relationship between the pumping pressure P and the applied voltage V. As is apparent from FIG. 6, BCRA and DBDN generate a large pumping pressure for a given applied voltage, and the pumping pressure P changes in proportion to the square of the applied voltage V. Therefore, also from this characteristic, it is useful to use BCRA or DBDN as the electrically insulating liquid when utilizing a liquid jet by EHD pumping.
[0027]
In the case of an electrode system as shown in FIG. 1 in which no nozzle is provided, the liquid jet ejected upward through the liquid flow hole 1 a of the pseudo-doughnut-like electrode 1 becomes turbulent as it moves away from the tip of the pseudo-doughnut-like electrode 1. It becomes impossible to maintain a linear flow because it contains components. Therefore, in order to obtain a liquid jet having higher convergence and directivity, the electrode system 10 in which the nozzle 25 shown in FIG. 2 or the spiral nozzle 35 shown in FIG. 3 is added to the pseudo-doughnut-shaped electrode 1 is used. 7 and 8, the effect of adding these nozzles 25 and spiral nozzles 35 is prominent.
[0028]
That is, FIG. 7 shows the velocity distribution measured from the tip of the nozzle to the upper 25 mm along the central axis Z of the electrode system 10, and the maximum velocity is normalized to 1.0. FIG. 8 shows the velocity distribution measured in the radial direction at a position 20 mm above the tip of the nozzle. 7 and FIG. 8, an electrode system having no nozzle (the electrode system shown in FIG. 1), an electrode system having an ordinary nozzle (the electrode system shown in FIG. 2), and a spiral nozzle are provided. This is a comparison of the electrode system (the electrode system shown in FIG. 3).
[0029]
As shown in FIG. 7, as the measurement point moves away from the electrode system, a difference due to the difference in the electrode system appears. That is, the electrode system having a spiral nozzle has a small velocity attenuation rate even at a point away from the tip, and the directivity of the liquid jet is the best as compared with other electrode systems. In addition, FIG. 8 shows that the liquid jet of the electrode system having a spiral nozzle has the best convergence compared to other electrode systems.
[0030]
【The invention's effect】
As is clear from the above embodiments, according to the present invention, a positive or negative DC high voltage is applied to the electrode system in which the pseudo-doughnut-like electrode and the flat plate electrode are opposed to each other, so that an electrically insulating liquid at a constant temperature is obtained. In particular, a highly directional liquid jet can be generated, and since there is no charge injection from the electrode into the electrically insulating liquid, deterioration of the electrically insulating liquid used is suppressed, which is extremely effective in practice.
[0031]
On top of that, a converging property and directivity of the liquid jet can be further enhanced by constructing an electrode system by additionally connecting a pseudo donut-like electrode with a nozzle, particularly a spiral nozzle. Also, by using BCRA or DBDN as the electrically insulating liquid, good results can be obtained as the characteristics of the liquid jet.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of an apparatus for generating a liquid jet by EHD pumping according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of an apparatus for generating a liquid jet by EHD pumping according to another embodiment of the present invention.
FIG. 3 is a configuration diagram of an apparatus for generating a liquid jet by EHD pumping according to another embodiment of the present invention.
FIG. 4 is a characteristic explanatory diagram showing physical constants of an electrically insulating liquid used in the method and apparatus for generating a liquid jet by EHD of the present invention.
FIG. 5 is a relationship diagram between an applied voltage and a liquid jet flow velocity based on an experimental result of the present invention.
FIG. 6 is a relationship diagram between applied voltage and pumping pressure based on the experimental results of the present invention.
FIG. 7 is a characteristic diagram of the axial velocity of a fluid jet based on the experimental results of the present invention.
FIG. 8 is a characteristic diagram of radial velocity of a fluid jet based on the experimental results of the present invention.
[Explanation of symbols]
1: Pseudo-doughnut-shaped electrode 1a: Liquid flow hole 2: Plate electrode 3: Electric insulating liquid 4: DC high voltage power supply 10: Electrode system 25: Nozzle 25a: Conical liquid flow hole 35: Spiral nozzle 35a: Restriction Conical liquid flow hole 35b: Large root diameter portion 36: Auxiliary liquid passage 37: Auxiliary ring electrode 38: Auxiliary plate electrode 39: Cylindrical guide body 40: Guide groove (annular slit)
41: Small hole d: Gap R: Arc s: Gap Z: Center axis

Claims (6)

中心軸の方向に液体流通孔を貫通させた環状あるいは筒状でその両端面を滑らかな円弧状に成形した擬似ドーナッツ状電極の一端を平板電極に対し間隙をおいて対向させると共に、前記擬似ドーナッツ状電極の液体流通孔と同軸状に繋がる絞り円錐状液体流通孔と前記中心軸方向に対し垂直方向の流れ成分をもつ液流を前記絞り円錐状液体流通孔の根元大径部へ導入する補助液体流通路を形成したスパイラル・ノズルを前記擬似ドーナッツ状電極の他端に結合させ、前記補助液体流通路の入口周辺に補助リング電極を配設しこの補助リング電極に対して間隙を介して補助平板電極を対向させて電極系とし、前記擬似ドーナッツ状電極と平板電極が対向する部分および前記補助リング電極と補助平板電極が対向する部分を含む前記電極系の少なくとも一部を電気絶縁性液体の中に置いて、前記擬似ドーナッツ状電極と平板電極の間ならびに前記補助リング電極と補助平板電極の間に同時に直流高電圧を印加することにより、前記擬似ドーナッツ状電極の液体流通孔を通して前記スパイラル・ノズルの先端から前記電気絶縁性液体を噴出させることを特徴とするEHDポンピングによる液体ジェット発生方法。  One end of a pseudo-doughnut-like electrode having a circular or cylindrical shape with a liquid flow hole penetrating in the direction of the central axis and having both end faces formed in a smooth arc shape is opposed to the flat plate electrode with a gap therebetween, and the pseudo-doughnut A conical liquid flow hole connected coaxially with the liquid flow hole of the electrode and an auxiliary for introducing a liquid flow having a flow component perpendicular to the central axis direction into the root large diameter portion of the conical liquid flow hole A spiral nozzle having a liquid flow passage is coupled to the other end of the pseudo-doughnut-like electrode, and an auxiliary ring electrode is disposed around the inlet of the auxiliary liquid flow passage, and the auxiliary ring electrode is assisted through a gap. There are few electrode systems including a portion where the pseudo donut-like electrode and the flat plate electrode face each other, and a portion where the auxiliary ring electrode and the auxiliary flat plate electrode face each other. In addition, by placing a part in an electrically insulating liquid and simultaneously applying a DC high voltage between the pseudo-doughnut-like electrode and the flat plate electrode and between the auxiliary ring electrode and the auxiliary flat-plate electrode, A method of generating a liquid jet by EHD pumping, characterized in that the electrically insulating liquid is ejected from the tip of the spiral nozzle through a liquid flow hole of an electrode. 電気絶縁性液体としてジエチレングリコールモノブチルエーテルアセテートを用いることを特徴とする請求項1に記載のEHDポンピングによる液体ジェット発生方法。2. The method of generating a liquid jet by EHD pumping according to claim 1, wherein diethylene glycol monobutyl ether acetate is used as the electrically insulating liquid. 電気絶縁性液体としてドデカン二酸―nブチルを用いることを特徴とする請求項1に記載のEHDポンピングによる液体ジェット発生方法。The method for generating a liquid jet by EHD pumping according to claim 1, wherein n-butyl dodecanedioate is used as the electrically insulating liquid. 中心軸の方向に液体流通孔が貫通した環状あるいは筒状でその両端面が滑らかな円弧状に成形された擬似ドーナッツ状電極と、前記擬似ドーナッツ状電極の一端に間隙をおいて対向した平板電極と、前記擬似ドーナッツ状電極の液体流通孔と同軸状に繋がる絞り円錐状液体流通孔が貫通すると共に前記中心軸方向に対し垂直方向の流れ成分をもつ液流を前記絞り円錐状液体流通孔の根元大径部へ導入する補助液体流通路が形成されて前記擬似ドーナッツ状電極の他端に結合したスパイラル・ノズルと、前記補助液体流通路の入口周辺に配設された補助リング電極と、この補助リング電極に間隙を介して対向した補助平板電極を有し、少なくとも前記擬似ドーナッツ状電極と平板電極の対向部分および前記補助リング電極と補助平板電極の対向部分が電気絶縁性液体中に保持され前記擬似ドーナッツ状電極と平板電極の間ならびに前記補助リング電極と補助平板電極の間に同時に直流高電圧が印加される電極系を備え、且つ、前記スパイラル・ノズルの絞り円錐状液体流通孔の根元大径部内周壁の内側に短い円筒状案内体を配設して、その円筒状案内体と前記根元大径部の間に、液体を絞り円錐状液体流通孔の中心に向けて付勢する誘導溝を形成すると共に、前記スパイラル・ノズルの外周面から前記誘導溝に通ずる小孔を設け、前記誘導溝と小孔で補助液体通路が形成されたことを特徴とするEHDポンピングによる液体ジェット発生装置。A pseudo-doughnut-shaped electrode having a liquid circulation hole passing through in the direction of the central axis or having a circular arc shape at both ends thereof and a flat plate electrode opposed to one end of the pseudo-doughnut-shaped electrode with a gap And a conical liquid flow hole that is concentrically connected to the liquid flow hole of the pseudo-doughnut-shaped electrode and a liquid flow having a flow component perpendicular to the central axis direction is passed through the conical liquid flow hole. A spiral nozzle formed in the auxiliary liquid flow passage to be introduced into the base large diameter portion and coupled to the other end of the pseudo-doughnut-shaped electrode, an auxiliary ring electrode disposed around the inlet of the auxiliary liquid flow passage, An auxiliary plate electrode opposed to the auxiliary ring electrode with a gap, at least a portion of the pseudo-doughnut-like electrode and the plate electrode facing each other, and a portion of the auxiliary ring electrode and the auxiliary plate electrode opposed to each other And an electrode system in which a DC high voltage is simultaneously applied between the pseudo-doughnut-like electrode and the flat plate electrode and between the auxiliary ring electrode and the auxiliary flat plate electrode. A short cylindrical guide body is arranged inside the inner peripheral wall of the base large diameter portion of the nozzle conical liquid flow hole of the nozzle, and the liquid is drawn between the cylindrical guide body and the base large diameter portion. A guide groove that is urged toward the center of the hole is formed, a small hole that communicates with the guide groove from the outer peripheral surface of the spiral nozzle is provided, and an auxiliary liquid passage is formed by the guide groove and the small hole. A liquid jet generator using EHD pumping. 電気絶縁性液体がジエチレングリコールモノブチルエーテルアセテートであることを特徴とする請求項4に記載のEHDポンピングによる液体ジェット発生装置。The apparatus for generating a liquid jet by EHD pumping according to claim 4, wherein the electrically insulating liquid is diethylene glycol monobutyl ether acetate. 電気絶縁性液体がドデカン二酸―nブチルであることを特徴とする請求項4に記載のEHDポンピングによる液体ジェット発生装置。5. The liquid jet generator by EHD pumping according to claim 4, wherein the electrically insulating liquid is dodecanedioic acid-n-butyl.
JP2000314474A 2000-09-06 2000-09-06 Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping Expired - Lifetime JP3873204B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000314474A JP3873204B2 (en) 2000-09-06 2000-09-06 Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000314474A JP3873204B2 (en) 2000-09-06 2000-09-06 Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping

Publications (2)

Publication Number Publication Date
JP2002081400A JP2002081400A (en) 2002-03-22
JP3873204B2 true JP3873204B2 (en) 2007-01-24

Family

ID=18793724

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000314474A Expired - Lifetime JP3873204B2 (en) 2000-09-06 2000-09-06 Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping

Country Status (1)

Country Link
JP (1) JP3873204B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531375B2 (en) * 2003-11-05 2010-08-25 学校法人東京電機大学 Actuator using EHD phenomenon
KR101399419B1 (en) * 2011-04-26 2014-06-30 엔젯 주식회사 method for forming front electrode of solar cell

Also Published As

Publication number Publication date
JP2002081400A (en) 2002-03-22

Similar Documents

Publication Publication Date Title
JP5180585B2 (en) Plasma processing apparatus and method
US5762775A (en) Method for electrically producing dispersions of a nonconductive fluid in a conductive medium
JP4677530B2 (en) Plasma generating apparatus and plasma generating method
IE54324B1 (en) Electrostatic entrainment pump for a spraying system
JP2006515708A (en) Plasma generation assembly
CN104411083A (en) Device and method for producing continuous low-temperature large-section atmospheric pressure plasma plumes
US3343022A (en) Transpiration cooled induction plasma generator
US3453488A (en) Plasma arc electrodes
JP3873204B2 (en) Liquid jet generation method by EHD pumping and liquid jet generation apparatus by EHD pumping
WO2008136697A1 (en) Method and apparatus for flow control of a gas
JPH04214004A (en) Device for generation of ozone
CN109538431B (en) Vacuum arc propeller based on multi-anode structure
Moreau et al. Ionic wind produced by a millimeter-gap DC corona discharge ignited between a plate and an inclined needle
CN210381423U (en) Device for realizing macroscopic visualization of gas plasma in liquid
CN109578233B (en) Ablation type pulse plasma propeller based on multi-anode electrode structure
Hanaoka et al. Properties of EHD pump with combination of rod-to-rod and meshy parallel plates electrode assemblies
Takeuchi et al. Wire-rod type electrohydrodynamic gas pumps with and without insulation cover over corona wire
EP0448098B1 (en) Method of generating a heat-plasma and coating apparatus employing said method
Zhang et al. Electrode biasing experiment in KMAX tandem mirror
US3453474A (en) Plasma arc electrodes
Yoshida et al. Enhancement of thin air jets produced by ring-shaped dielectric barrier discharges using an auxiliary electrode
Aliotta et al. Electrospray Jet Emission: An Alternative Interpretation Invoking Dielectrophoretic Forces
Tanski et al. Electrohydrodynamic gas pump with both insulated electrodes driven by dielectric barrier discharge
US3416128A (en) Electrode for electrohydraulic systems
Yambe et al. Experimental study on focusing multiple atmospheric-pressure plasma jets

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060427

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061011

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3873204

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101102

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111102

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121102

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131102

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term