JP3872995B2 - Bare chip mounting method - Google Patents

Bare chip mounting method Download PDF

Info

Publication number
JP3872995B2
JP3872995B2 JP2002079807A JP2002079807A JP3872995B2 JP 3872995 B2 JP3872995 B2 JP 3872995B2 JP 2002079807 A JP2002079807 A JP 2002079807A JP 2002079807 A JP2002079807 A JP 2002079807A JP 3872995 B2 JP3872995 B2 JP 3872995B2
Authority
JP
Japan
Prior art keywords
bare chip
printing
chip mounting
solder
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002079807A
Other languages
Japanese (ja)
Other versions
JP2003282630A (en
Inventor
勉 安井
敏行 永塚
孝彰 土門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2002079807A priority Critical patent/JP3872995B2/en
Publication of JP2003282630A publication Critical patent/JP2003282630A/en
Application granted granted Critical
Publication of JP3872995B2 publication Critical patent/JP3872995B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Wire Bonding (AREA)
  • Printing Plates And Materials Therefor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ベアチップを基板にフリップチップ接合で実装するためのベアチップ実装方法に関する。
【0002】
【従来の技術】
近年、大容量、高速データ通信に必要な実装技術としてフリップチップ接合が挙げられる。従来は、主にワイヤーボンディング法を用いて、パッケージ化やフェイスアップでベアチップを直接基板に実装していたが、高周波化が進みワイヤーボンディングの配線長等が特性に与える影響が大きくなることで、配線長を短くすることができるフリップチップ接合の必要性が増している。また、機器の小型化、薄型化、軽量化等の観点からも注目されている。フリップチップ接合の方法としては、超音波、荷重、熱を利用したものが挙げられ、それぞれ、接合材等によって使い分けられている。接合材としてはんだを用いた主なフリップチップ接合の方法を下記に示す。
【0003】
▲1▼回路が形成されたウエハー上でめっき法や印刷法(特開平11−274209号公報、特開平11−340270号公報)によってバンプを形成し、個片に切断することによりベアチップ作る。バンプつきのベアチップを配線基板に接合するときは、基板電極又はバンプにフラックス塗布を行い、ベアチップ搭載、リフローの順で行う。
【0004】
▲2▼回路が形成されたウエハーを個片に切断することによりベアチップを製作する。このときはベアチップにはバンプ加工が行われていない。ベアチップを配線基板に接続するときは、あらかじめ、配線基板にフラックスとはんだボールを供給(特開平11−297886号公報の方法やはんだボール搭載機等)しておき、その上にベアチップを載せリフローすることにより接続を行う。
【0005】
▲3▼特開平11−103155号公報のように基板上のレジスト内にクリームはんだを塗布、溶融、硬化しレジストを除去することにより、はんだバンプを形成する。
【0006】
▲4▼特開平11−67823号公報のように配線基板上にめっき及びエッチングでバンプを形成する。
【0007】
▲5▼特開平10−4127号公報のようにはんだペーストを充填した凹板を基板に重ね、その状態で加熱、冷却することにより、基板にはんだバンプを形成する。
【0008】
▲6▼特開平8−204322号公報のように印刷法にて基板にバンプを形成する。
【0009】
▲7▼特開2001−308268号公報のように基板側に印刷法にてクリームはんだを印刷し、バンプ付きチップを搭載した後、リフローすることにより接合を行う。
【0010】
【発明が解決しようとする課題】
上記▲1▼の場合、回路を形成した後ウエハーにバンプを形成するため、パワーアンプモジュール等に使用されるGaAs等の脆い化合物半導体のウエハーでは、ウエハーに負荷が掛かることでマイクロクラック等の発生要因になる可能性が考えられる。特に印刷法の場合、スキージによってウエハーに直接、圧力が掛かるためマイクロクラックの発生要因になる可能性が非常に高い。また、バンプを形成しないときに比べ製造コストの上昇につながる。
【0011】
上記▲2▼の場合、ウエハーにバンプを形成しないため、脆い化合物半導体等には有利である。またバンプ加工の工程が入らないため、ベアチップのコストを抑えられる。しかし、バンプ形成するためには、専用のはんだボール搭載機等が必要となり、工程数増加に伴い製造コストの上昇につながる。一般に市販されているはんだボール搭載機の場合、製品の品種別に高価な専用治具(2〜3百万円/1治具)が必要となるため、製造コスト低下は望めない。
【0012】
上記▲3▼の場合、配線基板製作時のコスト上昇につながり、基板購入コストの上昇につながる。
【0013】
上記▲4▼の場合、従来から使用していたプリント配線基板と異なるため、配線基板のコスト上昇につながる。また、電極やパターンを印刷で形成するセラミック基板等にバンプ接続を行うことができない。
【0014】
上記▲5▼の場合、はんだペーストを充填する専用の凹版が必要となることや、凹版も一緒に加熱するため、凹版の熱容量分、加熱温度を上昇させることになり基板等に熱的ダメージを与えることになる。
【0015】
上記▲6▼の場合、配線基板にベアチップと表面実装部品(SMD)の両者を搭載する場合、ベアチップ用のバンプ印刷を行った後に、再度、表面実装部品用の印刷を行う必要があり、印刷工程が2回必要となるため、工程数が増え製造コストを抑えることが難しくなると考えられる。
【0016】
上記▲7▼の場合、バンプ付きベアチップを使用するため、ベアチップがGaAs等の脆い化合物半導体であっても、それにバンプ形成する必要があり、マイクロクラック等が発生する可能性がある。また、ベアチップを搭載するときは、はんだが未溶融状態であるため、クリームはんだの溶剤分がリフロー時に基板とベアチップの隙間で毛細管現象が起こし、ブリッジやキャピラリーボール(はんだボール)を発生させる可能性が考えられる。
【0017】
近年、回路の高周波化が進みつつあり、ベアチップを作製する半導体ウエハーの材質としてGaAs等の非常に脆い化合物半導体が使用されるようになってきた。また、高周波化が進むと従来は問題にならなかった配線長さにおいても極力短くする必要があり、フリップチップ接合の必要性が高まってきている。フリップチップ接合に使用される化合物半導体ウエハー等の場合、バンプ加工時等に負荷が掛かるとマイクロクラック等が発生する可能性があり、出来るだけウエハーに負荷が掛からないようにすることが重要である。
【0019】
本発明の目的は、ベアチップ側にはバンプを形成せずに基板側にバンプを形成するようにし、しかもチップ部品等の表面実装部品接合用はんだとバンプ用のはんだを同時に印刷しておき、表面実装部品のはんだリフローの際にはんだバンプが基板面に形成されるようにして、製造コストの低減と化合物半導体等のベアチップへのストレス抑制を図り、ひいてはマイクロクラック等の発生防止を図ったベアチップ実装方法を提供することにある。
【0021】
本発明のその他の目的や新規な特徴は後述の実施の形態において明らかにする。
【0022】
【課題を解決するための手段】
上記目的を達成するために、本願請求項1の発明に係るベアチップ実装方法は、基板の一面の表面実装部品搭載領域へのクリームはんだ印刷と、ベアチップ搭載領域へのクリームはんだ印刷とを同時に実行する印刷工程と、
前記印刷工程の終了した前記基板の前記表面実装部品搭載領域に表面実装部品を載置しリフローすることで前記表面実装部品を前記基板に実装するとともに前記ベアチップ搭載領域のクリームはんだの前記リフローによるはんだバンプを形成するバンプ形成工程と、
前記バンプ形成工程の終了した前記基板の前記ベアチップ搭載領域に、ベアチップの電極を前記はんだバンプに対面させて載置し、リフローによりはんだ接合するベアチップ実装工程とを備えることを特徴としている。
【0024】
本願請求項の発明に係るベアチップ実装方法は、請求項において、前記クリームはんだが無鉛クリームはんだであることを特徴としている。
【0025】
本願請求項の発明に係るベアチップ実装方法は、請求項1又は2において、表面実装部品搭載領域へのクリームはんだ印刷と、ベアチップ搭載領域へのクリームはんだ印刷とを、表面実装接合用開口とバンプ接合用開口の両者を有する印刷マスクを用いて行うことを特徴としている。
【0026】
本願請求項の発明に係るベアチップ実装方法は、請求項において、前記バンプ接合用開口寸法を前記基板のベアチップ搭載領域の電極パッド寸法の1.6倍以下としたことを特徴としている。
【0027】
本願請求項の発明に係るベアチップ実装方法は、請求項3又は4において、前記印刷マスクの開口壁面粗さを
Ra<0.84、かつRy<6.54
としたことを特徴としている。
【0028】
本願請求項の発明に係るベアチップ実装方法は、請求項3,4又は5において、前記印刷マスクの各開口は角部の無い形状であることを特徴としている。
【0029】
本願請求項の発明に係るベアチップ実装方法は、請求項3,4,5又は6において、前記表面実装接合用開口のマスク厚みよりも前記バンプ接合用開口のマスク厚みを薄くして、前記表面実装部品搭載領域へのクリームはんだ印刷厚みよりも前記ベアチップ搭載領域へのクリームはんだ印刷厚みを薄く設定したことを特徴としている。
【0031】
【発明の実施の形態】
以下、本発明に係るベアチップ実装方法の実施の形態を図面に従って説明する。
【0032】
図1乃至図7を用いて本発明のベアチップ実装方法の実施の形態について説明する。
【0033】
図1はチップ部品等の表面実装部品(SMD)及び化合物半導体等のベアチップの配線基板への搭載手順を示し、図2は従来の技術の項目で説明した従来工法▲1▼及び従来工法▲2▼の場合と、本発明の場合の表面実装部品とベアチップの実装工程フローを対比した工程フローを示し、図3乃至図5は印刷マスクを示し、図6は配線基板の支持構造を示し、図7はクリームはんだ印刷のための印刷マスクの清掃方法を示す。
【0034】
図2の印刷工程#1において、配線基板の一面の表面実装部品搭載領域へのクリームはんだ印刷と、ベアチップ搭載領域へのクリームはんだ印刷とを1つの印刷マスクを用いて同時に実行する(クリームはんだのスクリーン印刷で行う)。
この結果、図1(A)のように樹脂基板やセラミック基板等の配線基板1の上面の電極パッド2,3上に表面実装部品(SMD)20を搭載するための表面実装部品用クリームはんだ印刷層12が表面実装部品搭載領域に、ベアチップ用はんだバンプ形成のためのバンプ用クリームはんだ印刷層13がベアチップ搭載領域にそれぞれ形成される。
【0035】
図3のように、前記印刷工程#1に用いる印刷マスク30は表面実装接合用開口32とバンプ接合用開口33の両者を有するが、表面実装部品用のクリームはんだ量と比較してバンプ用は非常に少ないため、印刷マスク30においてバンプ接合用開口33のマスク厚みと、開口形状及び寸法を工夫して、はんだ量のコントロールを行う。バンプ接合用開口33周辺部のマスク厚を変える方法としてハーフエッチング処理等を行い、同一マスクで2種類の厚みがあるマスク構造とする。つまり、表面実装接合用開口32のマスク厚みよりも前記バンプ接合用開口33のマスク厚みを薄くして、図1(A)の配線基板面における表面実装部品搭載領域へのクリームはんだ印刷層12の厚みよりもベアチップ搭載領域へのクリームはんだ印刷層13の厚みを薄く設定する。
【0036】
前記印刷マスク30の開口形状については、図4(A)のように開口32,33の角部(コーナー)があると角部にクリームはんだの粒子が残り、印刷したクリームはんだ量のばらつきにつながるため、図4(B)のように角部がない長円形状(半円同士を平行な直線で接続した形状)を採用し、クリームはんだの版抜け性を向上させ、開口部にクリームはんだ粒子が残りにくいようにする。但し、開口ピッチに余裕がある場合には円形の開口でもよい。
【0037】
前記印刷マスク30の開口32,33の開口寸法については、図5(A)の円形パッドの場合、同図(B)の方形パッドの場合で示すように、はんだ溶融時の凝集力よって、電極パッド2,3上に印刷したはんだが確実に戻る寸法(パッド寸法(直径又は辺)の1.6倍以下)とした。
【0038】
さらに、前記印刷マスク30の製作方法においても、開口内壁面の粗さが少ないもの(算術平均粗さ:Ra≦0.3μm程度)を製作し版抜け性を向上させた。本実施の形態で採用したマスク開口の壁面粗さと、一般に使用されているSMT用のアディティブマスク、レーザーマスクの壁面粗さの値を以下の表1に示す。但し、表1中、Ry:最大粗さ(測定範囲における高低差の最大値)である。
【0039】
【表1】

Figure 0003872995
【0040】
本実施の形態で使用する印刷マスクの開口壁面粗さは、アディティブマスクよりも滑らかな開口壁面、具体的には、Ra<0.84、かつRy<6.54であることが必要であり、好ましくは、表1の「採用したマスク」で示されるように、横方向及び縦方向共にRa≦0.3μmを満足するように設定するのがよい。
【0041】
クリームはんだについては、微小印刷用の粒径が5〜15μmの真球粉で、印刷時のローリング性、版抜け時の形状、版抜け後の形状保持性等の実験結果より、粘度260±30Pa・sと通常使用されている粘度(200Pa・s前後)よりも硬いものを使用することが好ましい。スクリーン印刷装置側においても、前記配線基板、前記印刷マスク、スキージ走りの平行精度をR20μm以内(真の平行からのずれが20μm以内)とすることが好ましい。
【0042】
なお、配線基板の支持固定構造としては、図6(A)の基板固定テーブル5の平坦面上に配線基板1を載置、固定する全面受け構造や、同図(B)の固定テーブル5より支持手段6を立設し、支持手段6で配線基板1を支えるポイント受け構造が一般的であるが、本実施の形態では、印刷後の印刷マスク清掃の工夫により、版抜け(クリームはんだが開口を通過すること)が常に安定して行われるようにするため、同図(C)の掘り込み基板固定テーブルのように、基板固定テーブル5に配線基板1の厚さに一致する深さに掘り込んだ基板支持面7を形成し、基板1上面と基板固定テーブル5上面の高さを同一にし、且つ印刷マスク上を移動してクリームはんだを塗布するためのスキージのサイズを被印刷物となる配線基板幅よりも大きくすることによって、印刷マスク上のクリームはんだをスキージによって配線基板サイズより広い範囲で完全にかきとる方法を採用している。その結果、印刷マスク上面からの清掃を可能にしている。
【0043】
印刷マスクの清掃方法は、図7に示すように、配線基板に接触する印刷マスク30上に洗浄用布50をしき、マスク30の開口形成領域全体を覆う。その布50上にノズル51から均一に溶剤52を定量滴下(又は吹き付け)する溶剤処理工程を実行後、マスク30下側より吸引ユニット55と乾式ペーパー56の繰り出し、巻き取り手段57を備えた下部ユニット58をマスク下面に沿って移動させ、布50にしみこませた溶剤52を吸引ユニット55で吸引しながら、開口及びその周辺部等に付着したはんだ粒子やフラックスを乾式ペーパー56で拭いて除去する(吸引除去工程)。その後、マスク30上部の洗浄用布50を待避させ、自然放置又はエアー、窒素ガス等にて乾燥を行い清掃を終了する。
【0044】
図2の印刷工程#1によるクリームはんだのスクリーン印刷によって、表面実装部品接合用とバンプ接合用クリームはんだを同時に印刷した後、図1(A)の配線基板1上に表面実装部品20を搭載し、リフロー炉に通炉してはんだリフローを実行することにより、図1(B)のように表面実装部品20の配線基板1へのはんだ接合と、はんだバンプ23を同時に形成する。つまり、はんだバンプ23を有するベアチップ実装用基板が得られる。
【0045】
上記図3乃至図6、表1で説明した印刷マスクの工夫や使用するクリームはんだの工夫等、さらに図7の印刷マスクの清掃方法の採用等による版抜けの改善効果により、クリームはんだ印刷時における不具合(ブリッジ等)やはんだ量のばらつきが抑えられ、バンプ径100μm、ピッチ200μm、バンプ高さばらつき10μm以下というバンプ形成をクリームはんだ印刷法で可能にした。これにより、表面実装部品用とバンプ用はんだを同時に印刷する工法を実現できた。
【0046】
また、近年、環境対策として使用されるようになったPbフリーはんだ(無鉛はんだ)を用いて、上記工法で径100μm、ピッチ200μmのバンプ形成を行い、上記同様に高さばらつきが小さいバンプ形成が可能であることを確認した。
【0047】
図1(B)のように表面実装部品20の配線基板1へのはんだ接合と、はんだバンプ23の形成を同時に行った後、図2のように外観検査し、検査結果が良好なものに対してベアチップ搭載用フラックス塗布した後、ベアチップ搭載工程#2を実行し、バンプの無いベアチップ40の電極パッド41を下向きにしてはんだバンプ23上に載せる(電極パッド41をバンプ23に対面させる)。その状態で、リフロー炉に通炉してはんだリフローを実行することにより、図1(C)のように配線基板1上にベアチップ40をフリップチップ接合(フェースダウンはんだ接合)する。
【0048】
その後は、必要ならば洗浄、アンダーフィル(ベアチップと配線基板間の隙間に充填する接着材等)塗布、アンダーフィル硬化、検査の各工程を経て配線基板上に表面実装部品とベアチップの両者を搭載した部品が得られる。
【0049】
本実施の形態によれば、従来から使用されているスクリーン印刷装置とマスク開口の内壁面粗さを滑らかにして(好ましくはRa≦0.3μm)、はんだ量のばらつきを抑えた印刷マスクを使用し、バンプ形成用と表面実装部品接合用のクリームはんだを同時に印刷し、その後の工程で表面実装部品の搭載、リフローを行うことで、基板上に表面実装部品のはんだ付けが終了し、かつフリップチップ接合用の極小のはんだバンプが形成された状態にすることが可能である。この工法は、SMTの印刷工程で基板側にフリップチップ接合用はんだを供給、リフローでバンプ形成するため、パワーアンプモジュール等に使用されるGaAs等の非常に脆い化合物半導体のベアチップであってもベアチップ側にバンプ加工を行わなくともフリップチップ実装が可能となる。従ってウエハー側への負荷が軽減でき、且つ高価な専用設備と治具を必要としないので、製造コストも低減させることができる。
【0050】
以上本発明の実施の形態について説明してきたが、本発明はこれに限定されることなく請求項の記載の範囲内において各種の変形、変更が可能なことは当業者には自明であろう。
【0051】
【発明の効果】
以上説明したように、本発明によれば、次の効果を奏することができる。
【0052】
(1) チップ部品等の表面実装部品の接合用はんだ印刷と同時に、同一基板上にベアチップのフリップチップ接合用はんだの印刷が可能である。その際、従来から使用されているクリームはんだ用のスクリーン印刷機を利用して、はんだバンプ形成のための微小なはんだ量を基板面に印刷することができ、バンプ形成用のはんだボール搭載機及び専用の治具を必要としないため、製造コスト面においても非常に有利である。
【0053】
(2) チップ部品等の表面実装部品の搭載後、リフローにて表面実装部品を接合するのと同時に、同一基板上にベアチップのフリップチップ接合用はんだバンプの形成が可能である。
【0054】
(3) 環境対策に対応したPbフリーはんだであっても、微小バンプ形成をクリームはんだ印刷法で実現可能である。
【0055】
(4) ベアチップがパワーアンプモジュール等に使用される非常に脆い化合物半導体デバイスであっても、デバイス側に直接バンプを形成する必要がなくなり、デバイス自体へのマイクロクラック等の発生要因を低減可能である。また、ベアチップを作製するウエハー側にバンプ加工処理を必要としないため、ウエハーのコストを低減することが可能である。
【0056】
(5) ベアチップのフリップチップ接合の際に、超音波等を使用しないため、フリップチップ接合時に化合物半導体デバイス等のベアチップへの負荷を低減することが可能である。
【0057】
(6) フリップチップ実装により、基板と半導体デバイス等のベアチップ間の配線長を極端に短くすることができ高周波化を促進できる。
【図面の簡単な説明】
【図1】本発明の実施の形態であって、表面実装部品及びベアチップの搭載手順を示す説明図である。
【図2】本発明の実施の形態における表面実装部品とベアチップの実装工程フロー図である。
【図3】本発明の実施の形態で使用する印刷マスクの断面図である。
【図4】印刷マスクの開口形状であって、(A)は従来形状、(B)は本実施の形態の開口形状を示す平面図である。
【図5】本実施の形態で用いる印刷マスクの開口寸法であって、(A)は電極パッドが円形、(B)は電極パッドが方形の場合に対応した開口寸法の例を示す平面図である。
【図6】配線基板の固定方法であって、(A)は全面受け構造の基板固定テーブルの側面図、(B)はポイント受け構造の基板固定テーブルの側面図、(C)は本実施の形態で採用する掘り込み基板固定テーブルの側断面図である。
【図7】本発明の実施の形態における印刷マスク清掃方法を示す構成図である。
【符号の説明】
1 配線基板
2,3,41 電極パッド
5 基板固定テーブル
6 支持手段
12 表面実装部品用クリームはんだ印刷層
13 バンプ用クリームはんだ印刷層
20 表面実装部品
23 はんだバンプ
30 印刷マスク
32 表面実装接合用開口
33 バンプ接合用開口
40 ベアチップ
50 洗浄用布
51 ノズル
52 溶剤
55 吸引ユニット
56 乾式ペーパー
58 下部ユニット[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a bare chip mounting method for mounting a flip chip bonding a bare chip to the substrate.
[0002]
[Prior art]
In recent years, flip-chip bonding has been cited as a mounting technique necessary for large-capacity, high-speed data communication. Conventionally, the bare chip was directly mounted on the substrate by packaging or face up mainly using the wire bonding method, but the influence of the wire bonding wiring length etc. on the characteristics becomes larger as the frequency increases, There is an increasing need for flip chip bonding that can reduce the wiring length. In addition, it has attracted attention from the viewpoints of downsizing, thinning, and weight reduction of equipment. As a flip chip bonding method, there is a method using ultrasonic waves, a load, and heat, and each method is properly used depending on a bonding material or the like. The main flip chip bonding methods using solder as the bonding material are shown below.
[0003]
(1) A bump is formed on a wafer on which a circuit is formed by plating or printing (Japanese Patent Laid-Open Nos. 11-274209 and 11-340270), and a bare chip is made by cutting into bumps. When bonding a bare chip with bumps to a wiring board, flux application is performed on the substrate electrodes or bumps, followed by bare chip mounting and reflow.
[0004]
(2) A bare chip is manufactured by cutting a wafer on which a circuit is formed into individual pieces. At this time, the bump processing is not performed on the bare chip. When connecting the bare chip to the wiring board, the flux and solder balls are supplied to the wiring board in advance (the method of Japanese Patent Laid-Open No. 11-297886, solder ball mounting machine, etc.), and the bare chip is placed thereon and reflowed. To make a connection.
[0005]
(3) A solder bump is formed by applying, melting, and curing cream solder in a resist on a substrate and removing the resist as disclosed in JP-A-11-103155.
[0006]
(4) Bumps are formed on the wiring substrate by plating and etching as disclosed in JP-A-11-67823.
[0007]
(5) As described in Japanese Patent Application Laid-Open No. 10-4127, a concave plate filled with a solder paste is placed on a substrate, and heated and cooled in this state, thereby forming solder bumps on the substrate.
[0008]
(6) Bumps are formed on the substrate by a printing method as disclosed in JP-A-8-204322.
[0009]
(7) As described in JP-A-2001-308268, cream solder is printed on the substrate side by a printing method, a chip with bumps is mounted, and then joined by reflowing.
[0010]
[Problems to be solved by the invention]
In the case of (1) above, since bumps are formed on the wafer after the circuit is formed, a fragile compound semiconductor wafer such as GaAs used in a power amplifier module or the like generates a microcrack or the like when a load is applied to the wafer. It may be a factor. In particular, in the case of the printing method, since the pressure is directly applied to the wafer by the squeegee, there is a very high possibility of causing microcracks. Further, the manufacturing cost is increased as compared with the case where no bump is formed.
[0011]
In the case of (2), bumps are not formed on the wafer, which is advantageous for brittle compound semiconductors. In addition, since the bump processing step does not enter, the cost of the bare chip can be suppressed. However, in order to form bumps, a dedicated solder ball mounting machine or the like is required, which leads to an increase in manufacturing cost as the number of processes increases. In general, in the case of a solder ball mounting machine that is commercially available, an expensive dedicated jig (2 to 3 million yen / 1 jig) is required for each type of product, so a reduction in manufacturing cost cannot be expected.
[0012]
In the case of (3) above, the cost for manufacturing the wiring board is increased, and the cost for purchasing the board is increased.
[0013]
In the case of the above (4), since it is different from the printed wiring board used conventionally, the cost of the wiring board is increased. Further, bump connection cannot be made to a ceramic substrate or the like on which electrodes and patterns are formed by printing.
[0014]
In the case of (5) above, a dedicated intaglio filling with solder paste is required, and the intaglio is also heated together, which increases the heat capacity of the intaglio and heats the substrate. Will give.
[0015]
In the case of (6) above, when both the bare chip and the surface mount component (SMD) are mounted on the wiring board, it is necessary to perform the print for the surface mount component again after performing the bump print for the bare chip. Since the process is required twice, it is considered that the number of processes increases and it is difficult to suppress the manufacturing cost.
[0016]
In the case of (7) above, since a bare chip with bumps is used, even if the bare chip is a brittle compound semiconductor such as GaAs, it is necessary to form bumps on it, and microcracks or the like may occur. Also, when mounting a bare chip, the solder is in an unmelted state, so the solvent component of cream solder can cause capillary action in the gap between the substrate and the bare chip during reflow, which can generate bridges and capillary balls (solder balls) Can be considered.
[0017]
In recent years, the frequency of circuits has been increased, and a very fragile compound semiconductor such as GaAs has been used as a material of a semiconductor wafer for producing a bare chip. As the frequency increases, it is necessary to shorten the wiring length, which has not been a problem in the past, as much as possible, and the need for flip chip bonding is increasing. In the case of compound semiconductor wafers used for flip chip bonding, micro-cracks and the like may occur if a load is applied during bump processing, etc., so it is important to minimize the load on the wafer as much as possible. .
[0019]
The object of the present invention is to form bumps on the substrate side without forming bumps on the bare chip side, and also, solder for bonding surface mount components such as chip components and solder for bumps is printed at the same time. Bare chip mounting that reduces the manufacturing cost and suppresses stress on bare chips such as compound semiconductors by preventing solder bumps from being formed on the substrate surface during solder reflow of mounted parts, and thus prevents the occurrence of microcracks, etc. It is to provide a method.
[0021]
Other objects and novel features of the present invention will be clarified in embodiments described later.
[0022]
[Means for Solving the Problems]
In order to achieve the above object, a bare chip mounting method according to the invention of claim 1 of the present application simultaneously performs cream solder printing on a surface mounting component mounting region on one surface of a substrate and cream solder printing on a bare chip mounting region. Printing process;
The surface mount component is mounted on the substrate by mounting and reflowing the surface mount component on the surface mount component mounting region of the substrate after the printing process, and the solder by the reflow of the cream solder in the bare chip mounting region A bump forming process for forming bumps;
A bare chip mounting step of placing a bare chip electrode facing the solder bump in the bare chip mounting region of the substrate after the bump forming step and soldering by reflow .
[0024]
A bare chip mounting method according to a second aspect of the present invention is characterized in that, in the first aspect , the cream solder is a lead-free cream solder.
[0025]
The bare chip mounting method according to the invention of claim 3 is the method of claim 1 or 2, wherein the solder paste printing on the surface mounting component mounting area and the cream solder printing on the bare chip mounting area are performed by the surface mounting bonding opening and the bump. It is characterized by using a printing mask having both joint openings.
[0026]
According to a fourth aspect of the present invention, there is provided a bare chip mounting method according to the third aspect , wherein the bump bonding opening size is 1.6 times or less the electrode pad size of the bare chip mounting region of the substrate.
[0027]
The bare chip mounting method according to claim 5 of the present application is the method according to claim 3 or 4 , wherein the roughness of the opening wall surface of the printing mask is Ra <0.84 and Ry <6.54.
It is characterized by that.
[0028]
A bare chip mounting method according to a sixth aspect of the present invention is characterized in that, in the third, fourth, or fifth aspect , each opening of the printing mask has a shape having no corners.
[0029]
A bare chip mounting method according to a seventh aspect of the present invention is the bare chip mounting method according to the third, fourth, fifth or sixth aspect , wherein the mask thickness of the bump bonding opening is made thinner than the mask thickness of the surface mounting bonding opening, The cream solder printing thickness on the bare chip mounting region is set to be thinner than the cream solder printing thickness on the mounting component mounting region.
[0031]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of a bare chip mounting method according to the present invention will be described below with reference to the drawings.
[0032]
An embodiment of the bare chip mounting method of the present invention will be described with reference to FIGS.
[0033]
FIG. 1 shows a procedure for mounting a surface mount component (SMD) such as a chip component and a bare chip such as a compound semiconductor onto a wiring board, and FIG. 2 shows the conventional method (1) and the conventional method (2) described in the section of the prior art. FIG. 3 to FIG. 5 show a printing mask, FIG. 6 shows a wiring board support structure, and FIG. 6 shows a process flow comparing the surface mounting component and bare chip mounting process flow in the case of ▼ and the present invention. Reference numeral 7 denotes a method for cleaning a printing mask for cream solder printing.
[0034]
In the printing process # 1 in FIG. 2, cream solder printing on the surface mounting component mounting region on one side of the wiring board and cream solder printing on the bare chip mounting region are simultaneously performed using one printing mask (cream soldering). By screen printing).
As a result, as shown in FIG. 1A, cream solder printing for surface mount components for mounting the surface mount components (SMD) 20 on the electrode pads 2 and 3 on the upper surface of the wiring substrate 1 such as a resin substrate or a ceramic substrate. The layer 12 is formed in the surface mount component mounting region, and the bump cream solder printing layer 13 for forming the bare chip solder bump is formed in the bare chip mounting region.
[0035]
As shown in FIG. 3, the printing mask 30 used in the printing step # 1 has both a surface mounting bonding opening 32 and a bump bonding opening 33. Since it is very small, the amount of solder is controlled by devising the mask thickness, opening shape, and dimensions of the bump bonding opening 33 in the printing mask 30. Half-etching or the like is performed as a method of changing the mask thickness in the periphery of the bump bonding opening 33, thereby obtaining a mask structure having two types of thicknesses with the same mask. That is, the mask thickness of the bump bonding opening 33 is made thinner than the mask thickness of the surface mounting bonding opening 32 so that the cream solder printing layer 12 on the surface mounting component mounting region on the wiring board surface of FIG. The thickness of the cream solder printing layer 13 in the bare chip mounting region is set to be thinner than the thickness.
[0036]
As for the opening shape of the printing mask 30, if there are corners of the openings 32 and 33 as shown in FIG. 4A, cream solder particles remain at the corners, leading to variations in the amount of printed cream solder. Therefore, as shown in FIG. 4B, an oval shape with no corners (a shape in which semicircles are connected by parallel straight lines) is adopted to improve the soldering ability of the cream solder, and the cream solder particles in the opening. Make it difficult to remain. However, when there is a margin in the opening pitch, a circular opening may be used.
[0037]
With respect to the opening dimensions of the openings 32 and 33 of the printing mask 30, as shown in the case of the circular pad in FIG. 5A, the electrode is formed by the cohesive force at the time of melting the solder as shown in the case of the square pad in FIG. The dimensions were such that the solder printed on the pads 2 and 3 would surely return (1.6 times or less of the pad dimensions (diameter or side)).
[0038]
Further, in the manufacturing method of the printing mask 30, one having a small roughness of the inner wall surface of the opening (arithmetic average roughness: about Ra ≦ 0.3 μm) was manufactured to improve the plate slippage. Table 1 below shows values of the wall roughness of the mask opening employed in the present embodiment, and the commonly used SMT additive mask and laser mask wall roughness. However, in Table 1, Ry is the maximum roughness (maximum difference in elevation in the measurement range).
[0039]
[Table 1]
Figure 0003872995
[0040]
The opening wall roughness of the printing mask used in the present embodiment needs to be smoother than the additive mask, specifically, Ra <0.84 and Ry <6.54. Preferably, as indicated by “adopted mask” in Table 1, it should be set so that Ra ≦ 0.3 μm is satisfied in both the horizontal and vertical directions.
[0041]
The cream solder is a true spherical powder having a particle size of 5 to 15 μm for fine printing, and has a viscosity of 260 ± 30 Pa based on experimental results such as rolling property at the time of printing, shape at the time of plate removal, shape retention after plate removal, etc. It is preferable to use a material that is harder than s and normally used viscosity (around 200 Pa · s). Also on the screen printing apparatus side, it is preferable that the parallel accuracy of the wiring board, the printing mask, and the squeegee run is within R20 μm (the deviation from true parallel is within 20 μm).
[0042]
Note that the wiring board supporting and fixing structure is based on the entire surface receiving structure for mounting and fixing the wiring board 1 on the flat surface of the board fixing table 5 in FIG. 6A, or the fixing table 5 in FIG. A point receiving structure in which the supporting means 6 is erected and the wiring board 1 is supported by the supporting means 6 is generally used. However, in this embodiment, the plate omission (the cream solder is opened) by means of cleaning the printing mask after printing. In order to ensure that the process is always performed stably, the substrate fixing table 5 is dug to a depth corresponding to the thickness of the wiring board 1 as in the dug board fixing table of FIG. Forming a substrate support surface 7 that is embedded, the heights of the upper surface of the substrate 1 and the upper surface of the substrate fixing table 5 are the same, and the size of the squeegee for moving the surface of the printing mask and applying the cream solder becomes the printed material Larger than the board width By employs a completely scraping method in a wide range from the wiring substrate size cream solder on the printing mask by a squeegee. As a result, cleaning from the upper surface of the printing mask is possible.
[0043]
As shown in FIG. 7, the cleaning method for the printing mask is to apply the cleaning cloth 50 on the printing mask 30 that contacts the wiring board and cover the entire opening formation region of the mask 30. A lower part provided with a suction unit 55 and a dry paper 56 from the lower side of the mask 30 and a take-up means 57 after executing a solvent treatment step in which a solvent 52 is uniformly dropped (or sprayed) from the nozzle 51 onto the cloth 50. The unit 58 is moved along the lower surface of the mask, and the solvent 52 soaked in the cloth 50 is sucked by the suction unit 55, and the solder particles and flux adhering to the opening and its peripheral portion are wiped and removed by the dry paper 56. (Suction removal step). Thereafter, the cleaning cloth 50 on the upper portion of the mask 30 is withdrawn and left to stand naturally or dried with air, nitrogen gas or the like to finish cleaning.
[0044]
The surface mounting component 20 is mounted on the wiring board 1 of FIG. 1A after simultaneously printing the surface mounting component bonding solder and the bump bonding cream solder by screen printing of the cream solder in the printing process # 1 of FIG. By passing through a reflow furnace and executing solder reflow, solder bonding of the surface mount component 20 to the wiring board 1 and solder bumps 23 are simultaneously formed as shown in FIG. That is, a bare chip mounting substrate having the solder bumps 23 is obtained.
[0045]
3 through 6 and Table 1 and the soldering cream to be used, and the effect of improving the printing loss by adopting the cleaning method of the printing mask in FIG. The defect (bridge, etc.) and the variation in the amount of solder were suppressed, and bump formation with a bump diameter of 100 μm, a pitch of 200 μm, and a bump height variation of 10 μm or less was made possible by the cream solder printing method. As a result, it was possible to realize a method for simultaneously printing surface mount components and bump solder.
[0046]
In addition, bumps having a diameter of 100 μm and a pitch of 200 μm are formed by the above method using Pb-free solder (lead-free solder) that has recently been used as an environmental measure. Confirmed that it was possible.
[0047]
As shown in FIG. 1B, after soldering the surface mount component 20 to the wiring board 1 and forming the solder bumps 23 at the same time, an appearance inspection is performed as shown in FIG. After applying the bare chip mounting flux, bare chip mounting process # 2 is executed, and the electrode pads 41 of the bare chip 40 without bumps are placed face down on the solder bumps 23 (the electrode pads 41 face the bumps 23). In this state, by passing through a reflow furnace and executing solder reflow, the bare chip 40 is flip-chip bonded (face-down solder bonding) onto the wiring substrate 1 as shown in FIG.
[0048]
After that, if necessary, both surface mount components and bare chips are mounted on the wiring board after washing, underfill (adhesive material filling the gap between the bare chip and wiring board), underfill curing, and inspection. Parts are obtained.
[0049]
According to the present embodiment, a screen printing apparatus that has been used conventionally and a printing mask that smoothes the inner wall surface roughness of the mask opening (preferably Ra ≦ 0.3 μm) and suppresses variation in the amount of solder are used. Then, solder paste for surface mounting components is finished on the board by printing cream solder for bump formation and surface mounting component bonding at the same time, and mounting and reflowing surface mounting components in the subsequent process It is possible to form a state in which a very small solder bump for chip bonding is formed. In this method, solder for flip chip bonding is supplied to the substrate side in the SMT printing process, and bumps are formed by reflow, so even bare chip of fragile compound semiconductor such as GaAs used for power amplifier modules etc. Flip chip mounting is possible without bump processing on the side. Therefore, the load on the wafer side can be reduced, and expensive dedicated equipment and jigs are not required, so that the manufacturing cost can be reduced.
[0050]
Although the embodiments of the present invention have been described above, it will be obvious to those skilled in the art that the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of the claims.
[0051]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
[0052]
(1) Simultaneously with solder printing for bonding of surface mount components such as chip components, it is possible to print solder for flip chip bonding of bare chips on the same substrate. At that time, it is possible to print a small amount of solder for forming solder bumps on the substrate surface by using a conventional screen printing machine for cream solder, and a solder ball mounting machine for forming bumps, and Since a dedicated jig is not required, it is very advantageous in terms of manufacturing cost.
[0053]
(2) After mounting surface mount components such as chip components, solder bumps for bare chip flip chip bonding can be formed on the same substrate at the same time as surface mount components are bonded by reflow.
[0054]
(3) Even with Pb-free solder compatible with environmental measures, micro bump formation can be realized by the cream solder printing method.
[0055]
(4) Even if a bare chip is a very fragile compound semiconductor device used for a power amplifier module, etc., it is not necessary to form bumps directly on the device side, and it is possible to reduce the generation factors such as micro cracks on the device itself. is there. In addition, since the bump processing is not required on the wafer side where the bare chip is manufactured, it is possible to reduce the cost of the wafer.
[0056]
(5) Since no ultrasonic wave or the like is used during flip chip bonding of bare chips, it is possible to reduce the load on the bare chips such as compound semiconductor devices during flip chip bonding.
[0057]
(6) By flip chip mounting, the wiring length between a bare chip such as a substrate and a semiconductor device can be extremely shortened, and high frequency can be promoted.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is an explanatory diagram showing a mounting procedure of a surface mount component and a bare chip according to an embodiment of the present invention.
FIG. 2 is a flow chart of a mounting process of a surface mounting component and a bare chip in the embodiment of the present invention.
FIG. 3 is a cross-sectional view of a printing mask used in the embodiment of the present invention.
4A and 4B are opening shapes of a printing mask, where FIG. 4A is a conventional shape, and FIG. 4B is a plan view showing the opening shape of the present embodiment.
FIGS. 5A and 5B are opening dimensions of a printing mask used in the present embodiment, wherein FIG. 5A is a plan view showing an example of opening dimensions corresponding to a case where the electrode pad is circular and FIG. 5B is a rectangular electrode pad; is there.
6A is a side view of a substrate fixing table having a full surface receiving structure, FIG. 6B is a side view of a substrate fixing table having a point receiving structure, and FIG. It is a sectional side view of the digging board | substrate fixed table employ | adopted with a form.
FIG. 7 is a configuration diagram illustrating a printing mask cleaning method according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Wiring board 2, 3, 41 Electrode pad 5 Board | substrate fixing table 6 Support means 12 Cream solder printing layer 13 for surface mounting components 13 Cream solder printing layer 20 for bumps Surface mounting components 23 Solder bump 30 Printing mask 32 Opening 33 for surface mounting joining Bump bonding opening 40 Bare chip 50 Cleaning cloth 51 Nozzle 52 Solvent 55 Suction unit 56 Dry paper 58 Lower unit

Claims (7)

基板の一面の表面実装部品搭載領域へのクリームはんだ印刷と、ベアチップ搭載領域へのクリームはんだ印刷とを同時に実行する印刷工程と、
前記印刷工程の終了した前記基板の前記表面実装部品搭載領域に表面実装部品を載置しリフローすることで前記表面実装部品を前記基板に実装するとともに前記ベアチップ搭載領域のクリームはんだの前記リフローによるはんだバンプを形成するバンプ形成工程と、
前記バンプ形成工程の終了した前記基板の前記ベアチップ搭載領域に、ベアチップの電極を前記はんだバンプに対面させて載置し、リフローによりはんだ接合するベアチップ実装工程とを備えることを特徴とするベアチップ実装方法。
A printing process for simultaneously performing cream solder printing on the surface mounting component mounting area on one side of the substrate and cream solder printing on the bare chip mounting area;
The surface mount component is mounted on the substrate by mounting and reflowing the surface mount component on the surface mount component mounting region of the substrate after the printing process, and the solder by the reflow of the cream solder in the bare chip mounting region A bump forming process for forming bumps;
A bare chip mounting method comprising: a bare chip mounting step in which a bare chip electrode is placed facing the solder bump in the bare chip mounting region of the substrate after the bump forming step and soldered by reflow .
前記クリームはんだが無鉛クリームはんだである請求項記載のベアチップ実装方法。Bare chip mounting method of claim 1, wherein the cream solder is a lead-free solder paste. 表面実装部品搭載領域へのクリームはんだ印刷と、ベアチップ搭載領域へのクリームはんだ印刷とを、表面実装接合用開口とバンプ接合用開口の両者を有する印刷マスクを用いて行う請求項1又は2記載のベアチップ実装方法。And cream solder printing on a surface mount component mounting region, and a solder paste printing to bare chip mounting region is performed using a printing mask having both surface-mounted junction opening and the bump junction opening of claim 1 or 2, wherein Bare chip mounting method. 前記バンプ接合用開口寸法を前記基板のベアチップ搭載領域の電極パッド寸法の1.6倍以下とした請求項記載のベアチップ実装方法。The bare chip mounting method according to claim 3, wherein the bump bonding opening dimension is 1.6 times or less the electrode pad dimension of the bare chip mounting region of the substrate. 前記印刷マスクの開口壁面粗さを
Ra<0.84、かつRy<6.54
とした請求項3又は4記載のベアチップ実装方法。
The opening wall roughness of the printing mask is Ra <0.84 and Ry <6.54.
The bare chip mounting method according to claim 3 or 4 .
前記印刷マスクの各開口は角部の無い形状である請求項3,4又は5記載のベアチップ実装方法。The bare chip mounting method according to claim 3, 4 or 5, wherein each opening of the printing mask has a shape without a corner portion. 前記表面実装接合用開口のマスク厚みよりも前記バンプ接合用開口のマスク厚みを薄くして、前記表面実装部品搭載領域へのクリームはんだ印刷厚みよりも前記ベアチップ搭載領域へのクリームはんだ印刷厚みを薄く設定した請求項3,4,5又は6記載のベアチップ実装方法。The mask thickness of the bump bonding opening is made thinner than the mask thickness of the surface mounting bonding opening, and the cream solder printing thickness on the bare chip mounting area is made thinner than the cream solder printing thickness on the surface mounting component mounting area. The bare chip mounting method according to claim 3, 4, 5, or 6 .
JP2002079807A 2002-03-20 2002-03-20 Bare chip mounting method Expired - Lifetime JP3872995B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002079807A JP3872995B2 (en) 2002-03-20 2002-03-20 Bare chip mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002079807A JP3872995B2 (en) 2002-03-20 2002-03-20 Bare chip mounting method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2006168521A Division JP4189931B2 (en) 2006-06-19 2006-06-19 Cleaning method of printing mask

Publications (2)

Publication Number Publication Date
JP2003282630A JP2003282630A (en) 2003-10-03
JP3872995B2 true JP3872995B2 (en) 2007-01-24

Family

ID=29229096

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002079807A Expired - Lifetime JP3872995B2 (en) 2002-03-20 2002-03-20 Bare chip mounting method

Country Status (1)

Country Link
JP (1) JP3872995B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3893100B2 (en) 2002-10-29 2007-03-14 新光電気工業株式会社 Electronic component mounting method on wiring board
JP2006080493A (en) 2004-08-12 2006-03-23 Ricoh Microelectronics Co Ltd Electrode substrate
KR100949551B1 (en) 2009-04-10 2010-03-25 (주)비엠케이테크놀로지 Hybrid memory module and method for manufacturing the same
TWI407536B (en) 2010-12-10 2013-09-01 Univ Nat Cheng Kung Method for manufacturing heat dissipation bulk of semiconductor device

Also Published As

Publication number Publication date
JP2003282630A (en) 2003-10-03

Similar Documents

Publication Publication Date Title
US10037966B2 (en) Semiconductor device and manufacturing method therefor
JP4720438B2 (en) Flip chip connection method
JP2002190488A (en) Method for manufacturing semiconductor device and the semiconductor device
US20010051396A1 (en) Method for fabricating electronic circuit device, semiconductor device and electronic circuit device
KR101053091B1 (en) Manufacturing Method of Mounting Board
KR20130063017A (en) Production method for solder transfer base matrerial, solder precoating method, and solder transfer base material
US8154123B2 (en) Solder bump, semiconductor chip, method of manufacturing the semiconductor chip, conductive connection structure, and method of manufacturing the conductive connection structure
JP2962385B2 (en) Method for manufacturing semiconductor device
KR101493340B1 (en) Solder transfer base, method for producing solder transfer base, and method for transferring solder
JP3872995B2 (en) Bare chip mounting method
US6220499B1 (en) Method for assembling a chip carrier to a semiconductor device
JP4189931B2 (en) Cleaning method of printing mask
JPH11168116A (en) Electrode bump for semiconductor chip
JPH08111578A (en) Manufacture of board for mounting ball grid array package
JPH02206138A (en) Method of mounting flip-chip
KR100746365B1 (en) Method for Manufacturing substrate used to mount flip chip
JP3235192B2 (en) Wiring board connection method
TWI418276B (en) Method for making package substrate with wingless conductive bump
KR100378092B1 (en) Flip chip bonding method
JP2000277566A (en) Electronic part unit and its manufacture
JP2003158141A (en) Semiconductor device
JP3489489B2 (en) Semiconductor device manufacturing method and semiconductor device
US7235429B2 (en) Conductive block mounting process for electrical connection
JPS595639A (en) Hybrid integrated circuit
JP2023021807A (en) Mounting board and method for manufacturing mounting board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060419

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060718

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060907

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060928

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061023

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3872995

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

EXPY Cancellation because of completion of term