JP3870847B2 - pump - Google Patents

pump Download PDF

Info

Publication number
JP3870847B2
JP3870847B2 JP2002166249A JP2002166249A JP3870847B2 JP 3870847 B2 JP3870847 B2 JP 3870847B2 JP 2002166249 A JP2002166249 A JP 2002166249A JP 2002166249 A JP2002166249 A JP 2002166249A JP 3870847 B2 JP3870847 B2 JP 3870847B2
Authority
JP
Japan
Prior art keywords
pump
flow path
chamber
outlet channel
pump chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002166249A
Other languages
Japanese (ja)
Other versions
JP2004011535A5 (en
JP2004011535A (en
Inventor
毅 瀬戸
邦彦 高城
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2002166249A priority Critical patent/JP3870847B2/en
Priority to US10/430,314 priority patent/US7011507B2/en
Priority to EP03010687A priority patent/EP1369584A3/en
Priority to CNB031363938A priority patent/CN1307367C/en
Publication of JP2004011535A publication Critical patent/JP2004011535A/en
Publication of JP2004011535A5 publication Critical patent/JP2004011535A5/ja
Application granted granted Critical
Publication of JP3870847B2 publication Critical patent/JP3870847B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ピストンあるいはダイヤフラム等により、ポンプ室内の容積を変更して動作流体の移動を行うポンプに関する。
【0002】
【従来の技術】
従来のこの種のポンプとしては、特開平10−220357号公報に示されている、入口流路及び出口流路と容積が変更可能なポンプ室との間に、逆止弁が取り付けられている構成のものが一般的である。
【0003】
また、弁部に可動部品を使わず、ポンプの信頼性を向上させるポンプ構成として、特表平8−506874号公報に示されている、入口流路、出口流路ともに圧力降下が流れの方向によって異なる流路形状をした圧縮構成要素を備えた構成のものがある。
【0004】
【発明が解決しようとする課題】
しかしながら、特開平10−220357号公報の構成では、入口流路及び出口流路ともに逆止弁が必要であり、動作流体が2個所の逆止弁を通過すると圧力損失が大きいという問題があるため、小型軽量で高出力のポンプの実現は不可能であった。
【0005】
特表平8−506874号公報の構成は、ポンプ室体積の増減に従い圧縮構成要素を通過する流体の、流れの方向による圧力降下の違いにより正味流量を一方向に流す構成のため、ポンプ出口側の外部圧力(負荷圧力)が高くなるにつれて逆流量が増えてしまい、高負荷圧力ではポンプ動作をしなくなる問題がある。1996 IEEE 9th International Workshop on Micro Electro Mechanical Systemsにおいて発表された論文「An improved valve-less pump fabricated using deep reactive ion etching」によると、最大負荷圧力は0.76気圧程度である。
【0006】
また、双方の従来例とも、ポンプで送出される全ての動作流体は、薄いポンプ室内部を通過するため、ポンプ室内の流路抵抗による損失が大きいことも、出力を大きくできない要因となっていた。
【0007】
そこで本発明は、機械的開閉弁の個数を減らして、圧力損失を減らすとともにポンプの信頼性を高め、さらに、流体抵抗の大きなポンプ室を、全ての動作流体が通過する必要を無くすことにより、小型軽量高出力なポンプを実現でき、かつ、高負荷圧力にも対応するポンプを提供することを目的とする。
【0008】
【課題を解決するための手段】
上記課題を解決するために、本発明の一態様に係るポンプによれば、容積が変更可能なポンプ室と、前記ポンプ室と接続流路によって連通する圧力室と、前記圧力室に流体を流入する入口流路と、前記圧力室から流体を流出する出口流路と、前記入口流路の前記圧力室との連通部分に逆止弁と、を備えたポンプであって、前記入口流路の合成イナータンス値が前記出口流路の合成イナータンス値よりも小さく、前記接続流路の断面積は前記ポンプ室の断面積より小さいことを特徴とする。
また、本発明の一態様に係るポンプによれば、容積が変更可能なポンプ室と、前記ポンプ室と接続流路によって連通する圧力室と、前記圧力室に流体を流入する入口流路と、前記圧力室から流体を流出する出口流路と、前記入口流路の前記圧力室との連通部分に逆止弁と、を備えたポンプであって、前記入口流路の合成イナータンス値が前記出口流路の合成イナータンス値よりも小さく、前記出口流路はポンプ動作時も含め常に前記ポンプ室と連通しており、前記接続流路の断面積は前記ポンプ室の断面積より小さいことを特徴とする。
【0009】
ここで、イナータンス値Lとは、流路の断面積をS、流路の長さをL、動作流体の密度をρとした場合に、L=ρL/Sで与えられる。流路の差圧をP、流路を流れる流量をQとした場合に、イナータンス値Lを用いて流路内流体の運動方程式を変形することで、P=L×dQ/dtという関係が導出される。つまりイナータンス値とは単位圧力が流量の時間変化に与える影響度合を示しており、イナータンス値が大きいほど流量の時間変化が小さく、イナータンス値が小さいほど流量の時間変化が大きくなる。
【0010】
また、複数の流路の並列接続や、複数の形状が異なる流路の直列接続に関する合成イナータンス値は、個々の流路のイナータンス値を、電気回路におけるインダクタンスの並列接続、直列接続と同様に合成して算出すれば良い。
【0011】
また、本発明の一態様に係るポンプによれば、前記接続流路は前記逆止弁と正対していることを特徴とする。
また、本発明の一態様に係るポンプによれば、前記入口流路から前記逆止弁を経て流出する流体の流線方向に前記出口流路が開口していることを特徴とする。
【0012】
また、本発明の一態様に係るポンプによれば、前記接続流路には、前記ポンプ室の容積変化量の変形が可能な隔膜が備えられ、前記ポンプ室には流体が充填されていることを特徴とする。
また、本発明の一態様に係るポンプによれば、前記出口流路は、前記圧力室に連通する第1の出口流路と、前記第1の出口流路に連通する第2の出口流路とから構成され、前記第2の出口流路の断面積は前記第1の出口流路の断面積よりも大きいことを特徴とする。
【0013】
また、本発明の一態様に係るポンプによれば、前記ポンプ室は、ピストン、あるいは、圧電素子により弾性変形されるダイヤフラムにより容積が変更可能に駆動されることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明にかかわる実施形態を図面に基づいて説明する。
【0015】
図1は、本発明にかかわる、ポンプの縦断面を示している。ダイヤフラム13は外周縁がケース10に固定支持されて弾性変形自在となっている。ダイヤフラム13の底面には、ダイヤフラム13を動かすためのアクチュエータとして、図面の上下方向に伸縮する圧電素子12が配置されている。
【0016】
ポンプ室17は、ダイヤフラム13とケース10との間に形成され、圧力室21とは、ポンプ室17より、ポンプ室17の断面積より小さい断面積の接続流路22によって連通している。この圧力室21へ向けて流体抵抗要素である逆止弁16を設けた入口流路15と、出口流路19とが開口している。この逆止弁16は、接続流路22に正対し、さらに逆止弁16から流出する動作流体の流線方向に出口流路19が開口している。流線方向とは、逆止弁16の弁の開く方向である。出口流路19は、圧力室下流直後は、その断面積が小さい出口流路細管部18を含む。
【0017】
次に、本発明のポンプの動作について、図1を用いて説明する。ここで矢印は、本発明のポンプの動作流体の送出方向である。
【0018】
まず、ダイヤフラム13がポンプ室17の容積を小さくする方向に動作すると、ポンプ室内の動作流体が接続流路22を経て圧力室21側に移動する。その結果、圧力室21の圧力は上昇し、入口流路15では動作流体が流出する方向となるため逆止弁16は閉鎖し、流体抵抗が大きくなるため、入口流路15からの動作流体の流出は微少、若しくは、ゼロとなる。一方、出口流路細管部18を含む出口流路19においては、動作流体の圧縮率に従って圧力室内の圧力が高まると、その圧力と負荷圧力との圧力差と、イナータンス値に従って動作流体が圧力室21から流出する方向の流量が増加する。
【0019】
次に、ダイヤフラム13がポンプ室17の容積を大きくする方向に動作する場合、圧力室21内の動作流体はポンプ室17側に移動する。その結果、圧力室21内部の圧力が減少する。入口流路15の外部圧力よりも圧力室内の圧力が低下すると、入口流路15では動作流体が流入する方向となるため逆止弁16は開放しその流体抵抗が小さくなるため、圧力差と入口流路15のイナータンス値に従って、動作流体が圧力室へ流入する方向の流量が増加する。一方、出口流路細管部18を含む出口流路19においては、負荷圧力と圧力室内の圧力との圧力差と、イナータンス値に従って動作流体が圧力室から流出する方向の流量が減少する。
【0020】
この際、入口流路15では、流入流量の増加率が大きい程、出口流路細管部18を含む出口流路19における流出流量の減少量が少ないうちに、圧力室内から流出した体積分の動作流体をポンプ室内へ流入させることができる。この状態において、入口流路15から流入した動作流体が圧力室を経由して直接、出口流路細管部18を含む出口流路19へ流出するため、ダイヤフラム13の変形によるポンプ室17の体積変化より、大きな流量を送出できるのである。
【0021】
この効果を大きくするには、本発明のように入口流路15の合成イナータンス値を出口流路細管部18を含む出口流路19の合成イナータンス値よりも小さくすると良い。出口流路細管部18は、断面積が小さくL=ρL/Sで与えられるイナータンス値が大きくなっている。
【0022】
さらに、本発明では、逆止弁16から流出する動作流体の流線方向に出口流路19が開口していることから、動作流体への流体抵抗が小さく、さらに大きな流量を流すことができる。
【0023】
また、圧電素子をポンプの駆動に用いる場合、その変位量が小さいいため、ダイヤフラムやピストンの断面積を大きくしなければならない。しかし、一方、ポンプ室の圧力を高めようとすると、動作流体自体が圧縮されてしまい、ポンプの体積効率を悪化させることになる。そこで、ポンプ室の厚さを薄くすることでポンプ室体積を小さくさせる解決法があるが、この場合、入口流路や出口流路が直接ポンプ室に開口していると、薄いポンプ室内部がその流路となるため、流体抵抗が増加してしまう。
【0024】
本発明においては、圧力室21は、ポンプ室のようなダイヤフラムあるいはピストンの断面積による制約が無く、ポンプ室からの接続流路の断面積は、ポンプ室断面積より小さいため、体積を小さくしたまま、流路抵抗の少ない形状にでき、損失の小さい流路が構成できるのである。
【0025】
以上のような構成で、逆止弁等の流体抵抗要素の個数を減らして、圧力損失を減少し、小型軽量高出力なポンプを実現できる。
【0026】
さらに、本発明では、流体抵抗要素である逆止弁16を、ポンプ室17と圧力室21を連通する接続流路22に正対させているため、ダイヤフラム13がポンプ室17の容積を小さくする方向に動作するとき、ポンプ室から圧力室への動作流体の移動によって、圧力室内に流れが発生し、その流れによる圧力が、逆止弁16を閉鎖する方向に作用する。その結果、逆止弁16は速やかに閉鎖し、高圧負荷に対しても逆流の少ない高効率高出力のポンプが構成できるのである。
【0027】
次に、本発明の第2の実施形態について、図2に基づいて説明する。図2は本発明にかかわるポンプの縦断面図である。
【0028】
基本的な構成は、第1の実施形態と同様であるが、ポンプ室17には液体が充填され、接続流路22に薄い樹脂フィルム製の隔膜20が固定してある。この隔膜20は、ポンプ室17の容積変化量の変形が可能な薄いフィルムであるため、接続流路22内の微小な動作流体移動にほとんど影響を与える事がない。例えば接続流路22断面積がポンプ室断面積の1/10である場合においても、圧電素子12の伸張量は数μmであるため、接続流路22における動作流体の移動量も数十μmである。従って、圧電素子等による微小な動作流体の流れにおいては、接続流路によってポンプ室と圧力室が連通していることと等価となり、その動作は実施形態1とまったく同様である。
【0029】
本実施形態において、動作流体の含まれる気体成分が、流路内で気泡となっても、隅部の多いポンプ室を通過しないため、動作流体の送出とともに、外部に効率よく排出される。気泡が、ポンプ室内に溜まると、ポンプ室の容積が変化しても、期待の圧縮性から圧力上昇が小さくなり、出力が低下してしまう。しかしながら、本発明において、ポンプ室は動作流体と隔離されているため、圧力損失の原因となる気泡ポンプ室内では発生しないのである。また、動作流体とポンプ室内液体が異なっても良いため、圧縮率の小さく、気体含有率の小さい液体をポンプ室内に封入しておくことが可能である。
【0030】
また、隔膜には、両面から同じ圧力がかかるため、引っ張り方向の強度は小さくてもいいため、薄い材料を用いることで厚み方向の高い剛性が確保でき、圧力損失が小さくなる。また、金属ベローズ等の使用も可能である
【0031】
以上のように、本発明のポンプは、弁を入口流路だけに配置すれば良く、弁での入口流路から出口流路までの間で生じる圧力損失を減らすとともに、流体抵抗の少ない流路の構成が可能で、小型軽量で高出力が実現できる。
【0032】
以上の実施形態において、ダイヤフラムは円形に限定するものではない。また、ダイヤフラムを動かすアクチュエータは圧電素子に限定するものではなく、伸縮するアクチュエータであれば良い。さらに、逆止弁は動作流体の圧力差によって開閉するものだけではなく、動作流体の圧力差以外の力で開閉を制御することができるタイプのものを使用しても構わない。
【0033】
【発明の効果】
以上説明したように、請求項1から請求項3記載の発明によると、弁等の流体抵抗要素を入口流路だけに配置すれば良いため、入口流路から出口流路までの間で生じる流体抵抗要素での圧力損失を小さいこと、及び、動作流体が、形状自由度の小さいポンプ室を経由せず、主に、入口流路、圧力室、出口流路の流路抵抗の少ない経路を流れるため、動作流体のエネルギー損失も小さいため小型軽量で高出力のポンプが実現できる。
【0034】
また、請求項5の発明によると、あらかじめ動作流体とは別の液体を、ポンプ室封入できるため、圧縮率の小さい液体を封入して、圧電素子等の駆動素子の伸張を無駄なく動作流体に伝えることが可能でより高出力高効率化できる。さらに、ポンプ動作時には、気泡の残渣を少なくでき、高効率化に繋がる。
【図面の簡単な説明】
【図1】本発明に係わる実施形態のポンプの縦断面を示した図である。
【図2】本発明に係わる別の実施形態のポンプの縦断面を示した図である。
【符号の説明】
10 ケース
12 圧電素子
13 ダイヤフラム
15 入口流路
16 逆止弁
17 ポンプ室
18 出口流路細管部
19 出口側流路
20 隔膜
21 圧力室
22 接続流路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pump that moves a working fluid by changing a volume in a pump chamber by a piston or a diaphragm.
[0002]
[Prior art]
As a conventional pump of this type, a check valve is installed between an inlet channel and an outlet channel and a pump chamber whose volume can be changed, as disclosed in JP-A-10-220357. A configuration is common.
[0003]
In addition, as a pump configuration that improves the reliability of the pump without using moving parts in the valve section, the direction of the flow of pressure drop in both the inlet channel and the outlet channel is shown in JP-T-8-506874. Depending on the type, there is a configuration including a compression component having a different flow path shape.
[0004]
[Problems to be solved by the invention]
However, the configuration of Japanese Patent Laid-Open No. 10-220357 requires check valves for both the inlet channel and the outlet channel, and there is a problem that the pressure loss is large when the working fluid passes through the two check valves. It was impossible to realize a small, lightweight and high output pump.
[0005]
The structure of JP-T-8-506874 is configured to flow a net flow rate in one direction due to the difference in pressure drop depending on the flow direction of the fluid passing through the compression component according to the increase or decrease of the pump chamber volume. As the external pressure (load pressure) increases, the reverse flow rate increases, and there is a problem that the pump operation is not performed at a high load pressure. According to a paper “An improved valve-less pump fabricated using deep reactive ion etching” published in 1996 IEEE 9th International Workshop on Micro Electro Mechanical Systems, the maximum load pressure is about 0.76 atm.
[0006]
In both conventional examples, since all the working fluid delivered by the pump passes through the thin pump chamber, the loss due to the flow path resistance in the pump chamber is also a factor that cannot increase the output. .
[0007]
Therefore, the present invention reduces the number of mechanical on-off valves, reduces pressure loss and enhances the reliability of the pump, and further eliminates the need for all working fluid to pass through the pump chamber having a large fluid resistance. An object of the present invention is to provide a pump that can realize a small, lightweight, and high-output pump and that can handle a high load pressure.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, according to a pump according to an aspect of the present invention, a pump chamber whose volume can be changed, a pressure chamber communicating with the pump chamber by a connection flow path, and a fluid flowing into the pressure chamber And a check valve at a communicating portion of the inlet channel with the pressure chamber, wherein the inlet channel A combined inertance value is smaller than a combined inertance value of the outlet flow path, and a cross-sectional area of the connection flow path is smaller than a cross-sectional area of the pump chamber.
Further, according to the pump according to one aspect of the present invention, a pump chamber whose volume can be changed, a pressure chamber communicating with the pump chamber by a connection flow channel, an inlet flow channel for flowing a fluid into the pressure chamber, A pump comprising an outlet channel for flowing fluid out of the pressure chamber, and a check valve in a communication portion of the inlet channel with the pressure chamber, wherein a combined inertance value of the inlet channel is the outlet It is smaller than the combined inertance value of the flow path, the outlet flow path is always in communication with the pump chamber even during pump operation, and the cross-sectional area of the connection flow path is smaller than the cross-sectional area of the pump chamber. To do.
[0009]
Here, the inertance value L is given by L = ρL / S, where S is the cross-sectional area of the flow path, L is the length of the flow path, and ρ is the density of the working fluid. When the differential pressure in the flow path is P and the flow rate through the flow path is Q, the equation of motion of the fluid in the flow path is transformed using the inertance value L, and the relationship P = L × dQ / dt is derived. Is done. That is, the inertance value indicates the degree of influence that the unit pressure has on the time change of the flow rate. The larger the inertance value, the smaller the time change of the flow rate, and the smaller the inertance value, the greater the time change of the flow rate.
[0010]
In addition, the combined inertance value for parallel connection of multiple flow paths and serial connection of flow paths of different shapes is combined with the inertance values of individual flow paths in the same way as the parallel connection and series connection of inductances in electrical circuits. To calculate.
[0011]
Moreover, according to the pump which concerns on 1 aspect of this invention, the said connection flow path is facing the said non-return valve, It is characterized by the above-mentioned.
In the pump according to one aspect of the present invention, the outlet flow path is opened in the streamline direction of the fluid flowing out from the inlet flow path through the check valve.
[0012]
In the pump according to one aspect of the present invention, the connection flow path is provided with a diaphragm capable of changing the volume change amount of the pump chamber, and the pump chamber is filled with fluid. It is characterized by.
In the pump according to the aspect of the present invention, the outlet channel includes a first outlet channel communicating with the pressure chamber, and a second outlet channel communicating with the first outlet channel. The sectional area of the second outlet channel is larger than the sectional area of the first outlet channel.
[0013]
In the pump according to one aspect of the present invention, the pump chamber is driven by a piston or a diaphragm elastically deformed by a piezoelectric element so that the volume can be changed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EMBODIMENTS Embodiments according to the present invention will be described below with reference to the drawings.
[0015]
FIG. 1 shows a longitudinal section of a pump according to the present invention. Diaphragm 13 is elastically deformable with its outer peripheral edge fixedly supported by case 10. On the bottom surface of the diaphragm 13, a piezoelectric element 12 that expands and contracts in the vertical direction of the drawing is arranged as an actuator for moving the diaphragm 13.
[0016]
The pump chamber 17 is formed between the diaphragm 13 and the case 10, and the pressure chamber 21 communicates with the pressure chamber 21 through a connection channel 22 having a smaller cross-sectional area than the pump chamber 17. An inlet channel 15 provided with a check valve 16 that is a fluid resistance element and an outlet channel 19 are opened toward the pressure chamber 21. This check valve 16 faces the connection flow path 22, and an outlet flow path 19 is opened in the streamline direction of the working fluid flowing out from the check valve 16. The streamline direction is the direction in which the check valve 16 opens. The outlet channel 19 includes an outlet channel capillary 18 having a small cross-sectional area immediately after the downstream of the pressure chamber.
[0017]
Next, operation | movement of the pump of this invention is demonstrated using FIG. Here, the arrow indicates the delivery direction of the working fluid of the pump of the present invention.
[0018]
First, when the diaphragm 13 operates in a direction to reduce the volume of the pump chamber 17, the working fluid in the pump chamber moves to the pressure chamber 21 side via the connection flow path 22. As a result, the pressure in the pressure chamber 21 rises and the working fluid flows in the inlet flow path 15, so the check valve 16 is closed and the fluid resistance increases, so that the working fluid from the inlet flow path 15 increases. The outflow is negligible or zero. On the other hand, in the outlet channel 19 including the outlet channel narrow tube portion 18, when the pressure in the pressure chamber increases according to the compressibility of the working fluid, the working fluid flows into the pressure chamber according to the pressure difference between the pressure and the load pressure and the inertance value. The flow rate in the direction of flowing out from 21 increases.
[0019]
Next, when the diaphragm 13 operates in a direction to increase the volume of the pump chamber 17, the working fluid in the pressure chamber 21 moves to the pump chamber 17 side. As a result, the pressure inside the pressure chamber 21 decreases. When the pressure in the pressure chamber is lower than the external pressure of the inlet channel 15, the working fluid flows in the inlet channel 15, so that the check valve 16 is opened and its fluid resistance is reduced. According to the inertance value of the flow path 15, the flow rate in the direction in which the working fluid flows into the pressure chamber increases. On the other hand, in the outlet channel 19 including the outlet channel narrow tube portion 18, the flow rate in the direction in which the working fluid flows out of the pressure chamber decreases according to the pressure difference between the load pressure and the pressure in the pressure chamber, and the inertance value.
[0020]
At this time, in the inlet channel 15, the larger the increase rate of the inflow rate, the smaller the amount of decrease in the outflow rate in the outlet channel 19 including the outlet channel narrow tube portion 18, while the smaller the outflow rate decreases. Fluid can flow into the pump chamber. In this state, since the working fluid flowing in from the inlet channel 15 flows out directly to the outlet channel 19 including the outlet channel capillary 18 through the pressure chamber, the volume change of the pump chamber 17 due to the deformation of the diaphragm 13 A larger flow rate can be sent out.
[0021]
In order to increase this effect, it is preferable that the combined inertance value of the inlet channel 15 is made smaller than the combined inertance value of the outlet channel 19 including the outlet channel narrow tube portion 18 as in the present invention. The outlet channel narrow tube portion 18 has a small cross-sectional area and a large inertance value given by L = ρL / S.
[0022]
Further, in the present invention, since the outlet channel 19 is opened in the direction of the flow line of the working fluid flowing out from the check valve 16, the fluid resistance to the working fluid is small and a larger flow rate can be flowed.
[0023]
Further, when the piezoelectric element is used for driving the pump, since the displacement amount is small, the cross-sectional area of the diaphragm or piston must be increased. However, if the pressure in the pump chamber is increased, the working fluid itself is compressed, and the volumetric efficiency of the pump is deteriorated. Therefore, there is a solution to reduce the volume of the pump chamber by reducing the thickness of the pump chamber. In this case, if the inlet channel and the outlet channel are directly open to the pump chamber, Since it becomes the flow path, fluid resistance will increase.
[0024]
In the present invention, the pressure chamber 21 is not limited by the cross-sectional area of the diaphragm or piston as in the pump chamber, and the volume of the pressure chamber 21 is reduced because the cross-sectional area of the connection flow path from the pump chamber is smaller than the cross-sectional area of the pump chamber. As a result, it is possible to form a flow path with low loss and a low loss flow path.
[0025]
With the configuration as described above, the number of fluid resistance elements such as check valves can be reduced, pressure loss can be reduced, and a small, light and high output pump can be realized.
[0026]
Furthermore, in the present invention, since the check valve 16 that is a fluid resistance element is directly opposed to the connection flow path 22 that communicates the pump chamber 17 and the pressure chamber 21, the diaphragm 13 reduces the volume of the pump chamber 17. When operating in the direction, a flow is generated in the pressure chamber by the movement of the working fluid from the pump chamber to the pressure chamber, and the pressure due to the flow acts in the direction of closing the check valve 16. As a result, the check valve 16 closes quickly, and a high-efficiency and high-power pump with little backflow can be configured even for high-pressure loads.
[0027]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a longitudinal sectional view of a pump according to the present invention.
[0028]
The basic configuration is the same as that of the first embodiment, but the pump chamber 17 is filled with liquid, and a thin resin film diaphragm 20 is fixed to the connection flow path 22. Since the diaphragm 20 is a thin film that can deform the volume change amount of the pump chamber 17, it hardly affects the movement of the minute working fluid in the connection flow path 22. For example, even when the cross-sectional area of the connection flow path 22 is 1/10 of the cross-sectional area of the pump chamber, the amount of extension of the piezoelectric element 12 is several μm, so the amount of movement of the working fluid in the connection flow path 22 is also several tens μm. is there. Therefore, the flow of the minute working fluid by the piezoelectric element or the like is equivalent to the communication between the pump chamber and the pressure chamber by the connection flow path, and the operation is exactly the same as in the first embodiment.
[0029]
In this embodiment, even if the gas component contained in the working fluid becomes a bubble in the flow path, it does not pass through the pump chamber having many corners, so that it is efficiently discharged to the outside as the working fluid is sent out. If bubbles accumulate in the pump chamber, even if the volume of the pump chamber changes, the pressure increase is reduced due to the expected compressibility, and the output decreases. However, in the present invention, since the pump chamber is isolated from the working fluid, it does not occur in the bubble pump chamber that causes pressure loss. In addition, since the working fluid and the pump chamber liquid may be different, it is possible to enclose a liquid having a small compressibility and a small gas content in the pump chamber.
[0030]
Further, since the same pressure is applied from both sides to the diaphragm, the strength in the pulling direction may be small. Therefore, by using a thin material, high rigidity in the thickness direction can be secured, and pressure loss is reduced. It is also possible to use metal bellows etc. [0031]
As described above, in the pump of the present invention, the valve only needs to be arranged in the inlet flow path, and the pressure loss generated between the inlet flow path and the outlet flow path in the valve is reduced, and the flow path with low fluid resistance is provided. It is possible to achieve a high output with a small size and light weight.
[0032]
In the above embodiment, the diaphragm is not limited to a circular shape. Further, the actuator for moving the diaphragm is not limited to the piezoelectric element, and any actuator that expands and contracts may be used. Further, the check valve is not only one that opens and closes due to the pressure difference of the working fluid, but may be a type that can control opening and closing with a force other than the pressure difference of the working fluid.
[0033]
【The invention's effect】
As described above, according to the first to third aspects of the present invention, a fluid resistance element such as a valve may be disposed only in the inlet channel, so that the fluid generated between the inlet channel and the outlet channel. The pressure loss in the resistance element is small, and the working fluid does not pass through the pump chamber having a small shape freedom, but mainly flows through the path with low channel resistance such as the inlet channel, the pressure chamber, and the outlet channel. Therefore, since the energy loss of the working fluid is small, a compact, lightweight and high output pump can be realized.
[0034]
According to the invention of claim 5, since a liquid different from the working fluid can be sealed in advance in the pump chamber, a liquid having a small compressibility is sealed so that the expansion of the driving element such as a piezoelectric element can be used as a working fluid without waste. It is possible to communicate and higher output and higher efficiency. Furthermore, when the pump is operated, bubble residues can be reduced, leading to higher efficiency.
[Brief description of the drawings]
FIG. 1 is a view showing a longitudinal section of a pump according to an embodiment of the present invention.
FIG. 2 is a view showing a longitudinal section of a pump according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Case 12 Piezoelectric element 13 Diaphragm 15 Inlet flow path 16 Check valve 17 Pump chamber 18 Outlet flow path narrow tube part 19 Outlet side flow path 20 Diaphragm 21 Pressure chamber 22 Connection flow path

Claims (7)

容積が変更可能なポンプ室と、前記ポンプ室と接続流路によって連通する圧力室と、前記圧力室に流体を流入する入口流路と、前記圧力室から流体を流出する出口流路と、前記入口流路の前記圧力室との連通部分に逆止弁と、を備えたポンプであって、
前記入口流路の合成イナータンス値が前記出口流路の合成イナータンス値よりも小さく、
前記接続流路の断面積は前記ポンプ室の断面積より小さいことを特徴とするポンプ。
A pump chamber whose volume can be changed, a pressure chamber communicating with the pump chamber by a connection flow path, an inlet flow path for flowing fluid into the pressure chamber, an outlet flow path for flowing fluid from the pressure chamber, A check valve in a communication portion of the inlet channel with the pressure chamber,
The combined inertance value of the inlet channel is smaller than the combined inertance value of the outlet channel;
A pump characterized in that a cross-sectional area of the connection flow path is smaller than a cross-sectional area of the pump chamber.
容積が変更可能なポンプ室と、前記ポンプ室と接続流路によって連通する圧力室と、前記圧力室に流体を流入する入口流路と、前記圧力室から流体を流出する出口流路と、前記入口流路の前記圧力室との連通部分に逆止弁と、を備えたポンプであって、
前記入口流路の合成イナータンス値が前記出口流路の合成イナータンス値よりも小さく、
前記出口流路はポンプ動作時も含め常に前記ポンプ室と連通しており、
前記接続流路の断面積は前記ポンプ室の断面積より小さいことを特徴とするポンプ。
A pump chamber whose volume can be changed, a pressure chamber communicating with the pump chamber by a connection flow path, an inlet flow path for flowing fluid into the pressure chamber, an outlet flow path for flowing fluid from the pressure chamber, A check valve in a communication portion of the inlet channel with the pressure chamber,
The combined inertance value of the inlet channel is smaller than the combined inertance value of the outlet channel;
The outlet channel is always in communication with the pump chamber, including during pump operation,
A pump characterized in that a cross-sectional area of the connection flow path is smaller than a cross-sectional area of the pump chamber.
請求項1または2において、
前記接続流路は前記逆止弁と正対していることを特徴とするポンプ。
In claim 1 or 2,
The pump characterized in that the connection flow path faces the check valve.
請求項1乃至3のいずれかにおいて、
前記入口流路から前記逆止弁を経て流出する流体の流線方向に前記出口流路が開口していることを特徴とするポンプ。
In any one of Claims 1 thru | or 3,
The pump characterized in that the outlet channel opens in the streamline direction of fluid flowing out from the inlet channel through the check valve.
請求項1乃至4のいずれかにおいて、
前記接続流路には、前記ポンプ室の容積変化量の変形が可能な隔膜が備えられ、前記ポンプ室には流体が充填されていることを特徴とするポンプ。
In any one of Claims 1 thru | or 4,
The pump characterized in that the connection flow path is provided with a diaphragm capable of changing the volume change amount of the pump chamber, and the pump chamber is filled with fluid.
請求項1乃至5のいずれかにおいて、
前記出口流路は、前記圧力室に連通する第1の出口流路と、前記第1の出口流路に連通する第2の出口流路とから構成され、
前記第2の出口流路の断面積は前記第1の出口流路の断面積よりも大きいことを特徴とするポンプ。
In any one of Claims 1 thru | or 5,
The outlet channel includes a first outlet channel communicating with the pressure chamber and a second outlet channel communicating with the first outlet channel,
The pump characterized in that a cross-sectional area of the second outlet channel is larger than a cross-sectional area of the first outlet channel.
請求項1乃至6のいずれかにおいて、
前記ポンプ室は、ピストン、あるいは、圧電素子により弾性変形されるダイヤフラムにより容積が変更可能に駆動されることを特徴とするポンプ。
In any one of Claims 1 thru | or 6.
The pump chamber is driven by a piston or a diaphragm elastically deformed by a piezoelectric element so that the volume thereof can be changed.
JP2002166249A 2002-06-04 2002-06-06 pump Expired - Fee Related JP3870847B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002166249A JP3870847B2 (en) 2002-06-06 2002-06-06 pump
US10/430,314 US7011507B2 (en) 2002-06-04 2003-05-07 Positive displacement pump with a combined inertance value of the inlet flow path smaller than that of the outlet flow path
EP03010687A EP1369584A3 (en) 2002-06-04 2003-05-13 Diaphragm pump
CNB031363938A CN1307367C (en) 2002-06-04 2003-06-04 Pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002166249A JP3870847B2 (en) 2002-06-06 2002-06-06 pump

Publications (3)

Publication Number Publication Date
JP2004011535A JP2004011535A (en) 2004-01-15
JP2004011535A5 JP2004011535A5 (en) 2005-04-21
JP3870847B2 true JP3870847B2 (en) 2007-01-24

Family

ID=30433881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002166249A Expired - Fee Related JP3870847B2 (en) 2002-06-04 2002-06-06 pump

Country Status (1)

Country Link
JP (1) JP3870847B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5828372B2 (en) 2010-09-21 2015-12-02 セイコーエプソン株式会社 Cooling device and projector
JP5776447B2 (en) 2011-08-30 2015-09-09 セイコーエプソン株式会社 Control device and excision device used in connection with fluid ejection device for excising biological tissue by ejected fluid
US9243619B2 (en) 2011-09-13 2016-01-26 Seiko Epson Corporation Liquid feed pump and circulation pump with detection units to detect operating states of the pumps
CN110541807A (en) * 2018-05-29 2019-12-06 哈尔滨工业大学 single-valve double-cavity piezoelectric pump and working method thereof

Also Published As

Publication number Publication date
JP2004011535A (en) 2004-01-15

Similar Documents

Publication Publication Date Title
US6623256B2 (en) Pump with inertance value of the entrance passage being smaller than an inertance value of the exit passage
US7011507B2 (en) Positive displacement pump with a combined inertance value of the inlet flow path smaller than that of the outlet flow path
JP3035854B2 (en) Fluid pump without check valve
JP4396095B2 (en) pump
US6874999B2 (en) Micropumps with passive check valves
JP4378937B2 (en) pump
US20040037718A1 (en) Method of making piezo-driven micropump in laminate substrate
US20040120836A1 (en) Passive membrane microvalves
JP2006316785A (en) Pump
JP2002322986A (en) Pump
JP4544114B2 (en) Diaphragm pump liquid discharge control device
US6910869B2 (en) Valveless micropump
JP3870847B2 (en) pump
CN116857159A (en) Flow guiding structure and valveless piezoelectric micropump
JP5477271B2 (en) Pump and fluid system
JP2005127246A (en) Method for driving pump
JP4877369B2 (en) pump
JP2004162547A (en) Pump
JP4479306B2 (en) pump
JP3975837B2 (en) pump
JP3894121B2 (en) pump
JP4791702B2 (en) pump
JP2004011535A5 (en)
JP2005113777A (en) Pump
JP5003700B2 (en) pump

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040610

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121027

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131027

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees