JP3868137B2 - humidifier - Google Patents

humidifier Download PDF

Info

Publication number
JP3868137B2
JP3868137B2 JP02249399A JP2249399A JP3868137B2 JP 3868137 B2 JP3868137 B2 JP 3868137B2 JP 02249399 A JP02249399 A JP 02249399A JP 2249399 A JP2249399 A JP 2249399A JP 3868137 B2 JP3868137 B2 JP 3868137B2
Authority
JP
Japan
Prior art keywords
gas
water
circulating water
humidifier
suction port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02249399A
Other languages
Japanese (ja)
Other versions
JP2000223139A (en
Inventor
洋 菊地
龍太郎 森
健一郎 小阪
俊宏 谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP02249399A priority Critical patent/JP3868137B2/en
Publication of JP2000223139A publication Critical patent/JP2000223139A/en
Application granted granted Critical
Publication of JP3868137B2 publication Critical patent/JP3868137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、走行体に搭載される燃料電池の反応(燃料)ガス等を加湿する加湿器に関する。
【0002】
【従来の技術】
酸素と水素の反応で電力を発生させる燃料電池は、エネルギー効率が高く、音が静かで、排出されるのは水だけと、究極のクリーンな動力源として将来は自動車や水中航走体(無人潜水機)等の走行体にも応用(搭載)できるものと期待されている。
【0003】
搭載される燃料電池として、プロトン伝導性の電解質としてフッ素樹脂系のイオン交換膜を適用した「固体高分子型燃料電池(PEFC)」が、高性能、高耐久である点で注目されている。このフッ素樹脂系のイオン交換膜は含水状態で良好なプロトン伝導性を示し、膜の含水量は水蒸気の分圧(相対湿度)に大きく依存し、乾燥すると水を失い高抵抗体となるので、これを固体高分子型燃料電池に適用する場合には、膜を飽和水蒸気圧近傍の雰囲気に保持する水分管理が必要となる。
【0004】
そこで、現在開発中の水中航走体に搭載される固体高分子型燃料電池では、例えば図5に示すように、前記水分管理として、反応ガスを予め加湿し、セルに供給する手段が用いられている。即ち、燃料電池スタック1に酸素タンク2からの酸素ガスを酸素循環ブロワ3を介して循環供給する循環経路途中に酸素加湿器4が介装されると共に、同じく燃料電池スタック1に水素タンク5からの水素ガスを水素循環ブロワ6を介して循環供給する循環経路途中に水素加湿器7が介装されるのである。その内の水素加湿器7には、燃料電池スタック1で生成された水が循環水ポンプ8を介して循環供給されるようになっている。
【0005】
そして、前記水素加湿器7は、従来、図6に示すような構造となっている。即ち、円筒状容器体100 の下部周壁に循環水戻り口(管)101 と循環水ポンプ吸い込み口(管)102 とが対向して開口・接続されると共にこれらの中間に位置して(90°隔てて)未加湿ガス入口(管)103 が開口・接続される。一方、容器体100 の天井壁に加湿ガス出口(管)104 が開口・接続される。
【0006】
従って、図外の水素タンクから未加湿ガス入口(管)103 より容器体100 内に流入した水素ガスは、最低水位から最高水位の範囲で充填された水中を気泡を発生しながら通って加湿された後、加湿ガス出口(管)105 より図外の燃料電池スタックに循環・供給される。
【0007】
【発明が解決しようとする課題】
ところで、前述した従来の水素加湿器7にあっては、容器体100 内に充填された水中を水素ガスが流通するため、気泡の発生により水が加湿ガス出口(管)105 から水素ガスとともに同伴されるという不具合があった。即ち、水がキャリーオーバし、燃料電池スタック1まで到達すると電池性能が低下するのである。
【0008】
また、容器体100 内の水は、循環水ポンプ8を用いて循環するものであるため、前記気泡(水素ガス)が循環水ポンプ吸い込み口(管)102 から水とともに同伴されるという不具合があった。即ち、気泡が循環水ポンプ8に巻き込まれるとポンプ性能が低下するのである。
【0009】
また、この水素加湿器7(容器体100 )は、水中航走体の傾きにあわせて鉛直方向から角度θ(約60°)までの傾き(揺動)を許容する必要があり、かつ、この傾き状態は前後・左右に対して繰り返し発生する。従って、水中を水素ガスが流通するために生じる気泡の発生が無い場合でも、水面の揺動が生じ、上述した水のキャリーオーバやガスの巻き込みが発生するという問題点があった。
【0010】
そこで、本発明の目的は、水のキャリーオーバやガスの巻き込みを防止して安定したガス加湿と安定した循環水量の確保が図れる加湿器を提供することにある。
【0011】
【課題を解決するための手段】
前記課題を解決するための本発明に係る加湿器は、容器体内の循環水水面下に循環水戻り口及び循環水ポンプ吸い込み口と未加湿ガス入口が開口されると共に前記循環水水面上方に加湿ガス出口が開口された加湿器において、前記容器体内に、未加湿ガス入口からのガスが循環水ポンプ吸い込み口に吸い込まれる水に巻き込まれるのを防止する水・ガス分離隔壁を前記未加湿ガス入口より上方に位置する所定高さで二重筒状に起立し、この水・ガス分離隔壁内の下部に前記循環水ポンプ吸い込み口を開口したことを特徴とする。
【0015】
また、前記加湿器は、走行体に搭載された燃料電池の反応ガスを加湿することを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明に係る加湿器を実施例により図面を用いて詳細に説明する。
【0017】
[実施例]
図1は本発明の一実施例を示す加湿器の構造説明図であり、同図(a)は静止・循環時の断面図で同図(b)は揺動・循環時の断面図である。図2は図1(a)のA−A矢視図、図3は図1(a)のB−B矢視図、図4は図1(a)のC−C矢視図である。
【0018】
本実施例の加湿器は、図5に示したように、水中航走体に搭載される固体高分子型燃料電池の発電システムにおける水素加湿器7であり、燃料電池スタック1に水素タンク5からの水素ガスを水素循環ブロワ6を介して循環供給する循環経路途中に介装されて燃料の水素ガスを加湿するものである。
【0019】
前記水素加湿器7は、図1に示すように、円筒状容器体10の下部周壁に、容器体10内に最低水位から最高水位の範囲で充填された循環水の水面下に位置して、循環水戻り口(管)11と循環水ポンプ吸い込み口(管)12とが対向して開口・接続されると共にこれらの中間に位置して(90°隔てて)未加湿ガス入口(管)13が開口・接続される。一方、前記循環水水面上方の容器体10の天井壁に加湿ガス出口(管)14が開口・接続される。
【0020】
そして、前記容器体10内には、前記循環水水面上方の加湿ガス出口(管)14直下に位置して、多孔質体(焼結金属体)15が一段、蓋状に収装される。
【0021】
また、前記多孔質体15の下方に位置した容器体10内の上部には、図4にも示すように、切り欠き形バッフル板16が左右交互に各々の先端部をラップさせて四段、収装される。
【0022】
さらに、前記切り欠き形バッフル板16の下方に位置した容器体10内の中間部には、図3にも示すように、ドーナツ形バッフル板17が十段にわたって収装される。
【0023】
一方、前記容器体10内の底壁上には、図2にも示すように、所定高さ(容器体10の静止・循環時における循環水の最低水位近傍)の水・ガス分離隔壁18が二重筒状に起立され、この水・ガス分離隔壁18内に前記循環水ポンプ吸い込み口(管)12が開口・接続されている。
【0024】
また、前記水・ガス分離隔壁18の下端周縁には、水流通口19が適当数切り欠かれる等して形成される。さらに、水・ガス分離隔壁18内の上部にも、ドーナツ形バッフル板17が三段にわたって収装される。
【0025】
このように構成されるため、水素タンク5(図5参照)から未加湿ガス入口(管)13より容器体10内に流入した水素ガスは、最低水位から最高水位の範囲で充填された水中を気泡を発生しながら通ることにより、十分加湿されて加湿ガス出口(管)14より燃料電池スタック1(図5参照)に循環・供給される。
【0026】
この際、水中を水素ガスが流通するために生じる気泡の発生があっても、多孔質体15に衝突することによる抵抗と切り欠き形バッフル板16に衝突することによる気水分離及びかきおとし作用により、水が加湿ガス出口(管)14より燃料電池スタック1側に加湿ガスとともにキャリーオーバすることが防止され、燃料電池スタック1の電池性能低下が防止される。
【0027】
また、前記容器体10が水中航走体の傾きにあわせて鉛直方向から角度θ(約60°)まで傾き(図1の(b)参照)、この傾き状態が前後・左右に対して繰り返し発生した際には、多段に設けたドーナツ形バッフル板17の消波作用により水面の揺動が抑制される。これにより、水中を水素ガスが流通するために生じる気泡の発生が無い場合でも、上述した水のキャリーオーバが防止される。
【0028】
一方、未加湿ガス入口13と循環水ポンプ吸い込み口(管)12とが水・ガス分離隔壁18により隔絶され、未加湿ガス入口13より流入した水素ガスは、循環水ポンプ吸い込み口(管)12が開口・接続された水・ガス分離隔壁18内を通らずに容器体10の周壁と水・ガス分離隔壁18との間隙内を所定の高さにわたって上昇するようになっているため、水中を水素ガスが流通するために生じる気泡が循環水ポンプ吸い込み口(管)12から水とともに同伴されることが防止され、このガス巻き込みによる循環水ポンプ8のポンプ性能の低下が防止される。
【0029】
また、前述した容器体10の傾き状態が前後・左右に対して繰り返し発生した際には、多段に設けたドーナツ形バッフル板17の消波作用に加えて水・ガス分離隔壁18内に設けたドーナツ形バッフル板17の消波作用により、容器体10内及び水・ガス分離隔壁18内の水面の揺動が抑制される。これにより、水中を水素ガスが流通するために生じる気泡の発生が無い場合でも、上述したガスの巻き込みが防止される。
【0030】
このようにして本実施例の加湿器7によれば、水のキャリーオーバやガスの巻き込みを防止して安定したガス加湿と安定した循環水量の確保が図れる。
【0031】
尚、上記実施例では、多孔質体(焼結金属体)15と切り欠き形バッフル板16とを併設したが、いずれか一方を省略しても良い。また、多孔質体(焼結金属体)15を二段以上設けても良い。また、切り欠き形バッフル板16及びドーナツ形バッフル板17の段数は適宜変更しても良い。また、循環水ポンプ吸い込み口(管)12を水・ガス分離隔壁18内の容器体10の底壁に開口・接続しても良い。また、水・ガス分離隔壁18は筒壁に限らず、円弧状壁でも良い。また、水・ガス分離隔壁18内に設けたドーナツ形バッフル板17は省略しても良い。その他、本発明の要旨を逸脱しない範囲で各種変更が可能であることはいうまでもない。加えて、本発明の加湿器は、走行体等に搭載された燃料電池用に限らず、その他の機器にも適用できる。
【0032】
【発明の効果】
以上説明したように請求項1の発明によれば、容器体内の循環水水面下に循環水戻り口及び循環水ポンプ吸い込み口と未加湿ガス入口が開口されると共に前記循環水水面上方に加湿ガス出口が開口された加湿器において、前記容器体内に、未加湿ガス入口からのガスが循環水ポンプ吸い込み口に吸い込まれる水に巻き込まれるのを防止する水・ガス分離隔壁を前記未加湿ガス入口より上方に位置する所定高さで二重筒状に起立し、この水・ガス分離隔壁内の下部に前記循環水ポンプ吸い込み口を開口したので、ガスの巻き込みを防止して安定した循環水量の確保が図れる。
【0036】
請求項の発明によれば、前記加湿器は、走行体に搭載された燃料電池の反応ガスを加湿することを特徴とするので、水のキャリーオーバやガスの巻き込みを防止して電池性能や循環水ポンプ性能の低下を防止できる。
【図面の簡単な説明】
【図1】本発明の一実施例を示す加湿器の構造説明図であり、同図(a)は静止・循環時の断面図で同図(b)は揺動・循環時の断面図である。
【図2】同じく図1(a)のA−A矢視図である。
【図3】同じく図1(a)のB−B矢視図である。
【図4】同じく図1(a)のC−C矢視図である。
【図5】水中航走体に搭載される固体高分子型燃料電池の発電システム図である。
【図6】従来例の加湿器の構造説明図であり、同図(a)は静止・循環時の断面図で同図(b)は揺動・循環時の断面図である。
【符号の説明】
1 燃料電池スタック
2 酸素タンク
3 酸素循環ブロワ
4 酸素加湿器
5 水素タンク
6 水素循環ブロワ
7 水素加湿器
8 循環水ポンプ
10 容器体
11 循環水戻り口
12 循環水ポンプ吸い込み口
13 未加湿ガス入口
14 加湿ガス出口
15 多孔質体
16 切り欠き形バッフル板
17 ドーナツ形バッフル板
18 水・ガス分離隔壁
19 水流通口
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a humidifier for humidifying a reaction (fuel) gas or the like of a fuel cell mounted on a traveling body.
[0002]
[Prior art]
Fuel cells that generate electricity through the reaction of oxygen and hydrogen are highly energy efficient, quiet and emit only water, and as the ultimate clean power source in the future, cars and underwater vehicles (unmanned vehicles) It is expected to be applicable (mounted) to traveling bodies such as submersibles.
[0003]
As a fuel cell to be mounted, a “solid polymer fuel cell (PEFC)” in which a fluororesin ion exchange membrane is applied as a proton conductive electrolyte has attracted attention because of its high performance and high durability. This fluororesin-based ion-exchange membrane exhibits good proton conductivity in a water-containing state, and the water content of the membrane greatly depends on the partial pressure of water vapor (relative humidity). When this is applied to a polymer electrolyte fuel cell, it is necessary to manage moisture to keep the membrane in an atmosphere near the saturated water vapor pressure.
[0004]
Therefore, in a polymer electrolyte fuel cell mounted on an underwater vehicle currently under development, as shown in FIG. 5, for example, a means for previously humidifying a reaction gas and supplying it to the cell is used as the moisture management. ing. That is, an oxygen humidifier 4 is installed in the middle of a circulation path for supplying oxygen gas from the oxygen tank 2 to the fuel cell stack 1 via the oxygen circulation blower 3, and also from the hydrogen tank 5 to the fuel cell stack 1. A hydrogen humidifier 7 is interposed in the circulation path for supplying the hydrogen gas through the hydrogen circulation blower 6. The water generated in the fuel cell stack 1 is circulated and supplied to the hydrogen humidifier 7 through the circulating water pump 8.
[0005]
The hydrogen humidifier 7 has a conventional structure as shown in FIG. That is, the circulating water return port (pipe) 101 and the circulating water pump suction port (pipe) 102 are opened and connected to the lower peripheral wall of the cylindrical container body 100 so as to face each other (90 °). The unhumidified gas inlet (pipe) 103 is opened and connected. On the other hand, a humidified gas outlet (pipe) 104 is opened and connected to the ceiling wall of the container body 100.
[0006]
Accordingly, the hydrogen gas that has flowed into the container body 100 through the unhumidified gas inlet (pipe) 103 from the hydrogen tank (not shown) is humidified through the water filled in the range from the lowest water level to the highest water level while generating bubbles. After that, it is circulated and supplied to the fuel cell stack (not shown) from the humidified gas outlet (pipe) 105.
[0007]
[Problems to be solved by the invention]
By the way, in the conventional hydrogen humidifier 7 described above, since hydrogen gas flows through the water filled in the container body 100, water is accompanied by hydrogen gas from the humidified gas outlet (pipe) 105 due to the generation of bubbles. There was a problem of being. That is, when the water carries over and reaches the fuel cell stack 1, the cell performance decreases.
[0008]
Further, since the water in the container body 100 is circulated using the circulating water pump 8, there is a problem that the bubbles (hydrogen gas) are accompanied with water from the circulating water pump suction port (pipe) 102. It was. That is, when the bubbles are caught in the circulating water pump 8, the pump performance is lowered.
[0009]
Further, the hydrogen humidifier 7 (container body 100) needs to allow an inclination (swing) from the vertical direction to an angle θ (about 60 °) in accordance with the inclination of the underwater vehicle, and this The tilt state occurs repeatedly in the front / rear / left / right direction. Therefore, even when there is no generation of bubbles due to the flow of hydrogen gas in the water, there is a problem in that the water surface fluctuates, causing the above-described water carry-over and gas entrainment.
[0010]
Accordingly, an object of the present invention is to provide a humidifier capable of preventing stable carry of water and entrainment of gas and ensuring stable gas humidification and a stable amount of circulating water.
[0011]
[Means for Solving the Problems]
A humidifier according to the present invention for solving the above-described problems is provided with a circulating water return port, a circulating water pump suction port, and an unhumidified gas inlet opened below the circulating water surface in the container body, and a humidifier above the circulating water surface. In the humidifier having a gas outlet opened, a water / gas separation partition wall for preventing gas from an unhumidified gas inlet from being entrained in water sucked into a circulating water pump inlet into the container body. It is characterized in that it is erected in a double cylinder shape at a predetermined height located further upward, and the circulating water pump suction port is opened at the lower part in the water / gas separation partition wall .
[0015]
The humidifier humidifies the reaction gas of the fuel cell mounted on the traveling body.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a humidifier according to the present invention will be described in detail with reference to the accompanying drawings.
[0017]
[Example]
FIG. 1 is an explanatory view showing the structure of a humidifier according to an embodiment of the present invention. FIG. 1 (a) is a cross-sectional view at rest and circulation, and FIG. 1 (b) is a cross-sectional view at oscillation and circulation. . 2 is an AA arrow view of FIG. 1A, FIG. 3 is a BB arrow view of FIG. 1A, and FIG. 4 is a CC arrow view of FIG.
[0018]
As shown in FIG. 5, the humidifier of the present embodiment is a hydrogen humidifier 7 in a power generation system of a polymer electrolyte fuel cell mounted on an underwater vehicle, and the fuel cell stack 1 includes a hydrogen tank 5. The hydrogen gas of the fuel is humidified by being inserted in the middle of a circulation path for circulating and supplying the hydrogen gas via the hydrogen circulation blower 6.
[0019]
As shown in FIG. 1, the hydrogen humidifier 7 is located below the surface of the circulating water filled in the lower peripheral wall of the cylindrical container body 10 in the container body 10 in the range from the lowest water level to the highest water level, The circulating water return port (pipe) 11 and the circulating water pump suction port (pipe) 12 are opened and connected to face each other, and located between them (90 ° apart), the unhumidified gas inlet (pipe) 13. Is opened and connected. On the other hand, a humidified gas outlet (pipe) 14 is opened and connected to the ceiling wall of the container body 10 above the circulating water surface.
[0020]
In the container body 10, a porous body (sintered metal body) 15 is placed in a lid shape in a single stage, located immediately below the humidified gas outlet (pipe) 14 above the circulating water surface.
[0021]
In addition, as shown in FIG. 4, a notch-shaped baffle plate 16 wraps the tip portions alternately on the left and right sides in the upper part in the container body 10 positioned below the porous body 15, To be stowed.
[0022]
Further, as shown in FIG. 3, donut-shaped baffle plates 17 are accommodated in ten stages in an intermediate portion in the container body 10 located below the notch-shaped baffle plate 16.
[0023]
On the other hand, on the bottom wall in the container body 10, as shown in FIG. 2, a water / gas separation partition wall 18 having a predetermined height (near the lowest level of circulating water when the container body 10 is stationary / circulated) is provided. The circulating water pump suction port (pipe) 12 is opened and connected in the water / gas separation partition wall 18 while standing up in a double cylinder shape.
[0024]
In addition, an appropriate number of water circulation ports 19 are formed in the periphery of the lower end of the water / gas separation partition wall 18 by notching them. Further, a donut-shaped baffle plate 17 is also housed in three stages on the upper part in the water / gas separation partition wall 18.
[0025]
Because of this configuration, the hydrogen gas flowing into the container body 10 from the unhumidified gas inlet (pipe) 13 from the hydrogen tank 5 (see FIG. 5) passes through the water filled in the range from the lowest water level to the highest water level. By passing bubbles while generating air bubbles, the air is sufficiently humidified and circulated and supplied from the humidified gas outlet (tube) 14 to the fuel cell stack 1 (see FIG. 5).
[0026]
At this time, even if bubbles are generated due to the flow of hydrogen gas in the water, due to the resistance caused by collision with the porous body 15 and the separation of air and water caused by the collision with the notch-shaped baffle plate 16 and the action of scratching. Water is prevented from carrying over with the humidified gas to the fuel cell stack 1 side from the humidified gas outlet (tube) 14, and the cell performance of the fuel cell stack 1 is prevented from being lowered.
[0027]
Further, the container body 10 is inclined from the vertical direction to an angle θ (about 60 °) in accordance with the inclination of the underwater vehicle (see FIG. 1B), and this inclination state is repeatedly generated from front to back and left and right. In this case, the water surface is prevented from swinging due to the wave-dissipating action of the donut-shaped baffle plates 17 provided in multiple stages. This prevents the above-described carry-over of water even when no bubbles are generated due to the circulation of hydrogen gas in the water.
[0028]
On the other hand, the unhumidified gas inlet 13 and the circulating water pump suction port (pipe) 12 are isolated by the water / gas separation partition wall 18, and the hydrogen gas flowing in from the unhumidified gas inlet 13 flows into the circulating water pump suction port (pipe) 12. The water / gas separation partition 18 does not pass through the opening / connection, and the water / gas separation partition 18 rises in the gap between the peripheral wall of the container body 10 and the water / gas separation partition 18 over a predetermined height. Air bubbles generated due to the circulation of hydrogen gas are prevented from being entrained together with water from the circulating water pump suction port (pipe) 12, and the pump performance of the circulating water pump 8 due to the gas entrainment is prevented.
[0029]
In addition, when the above-described tilted state of the container body 10 repeatedly occurs in the front-rear and left-right directions, the container 10 is provided in the water / gas separation partition wall 18 in addition to the wave-dissipating action of the donut-shaped baffle plate 17 provided in multiple stages. Due to the wave-dissipating action of the donut-shaped baffle plate 17, swinging of the water surface in the container body 10 and the water / gas separation partition wall 18 is suppressed. Thereby, even when there is no generation | occurrence | production of the bubble produced because hydrogen gas distribute | circulates in water, the entrainment of the gas mentioned above is prevented.
[0030]
In this way, according to the humidifier 7 of the present embodiment, it is possible to prevent water carryover and gas entrainment and ensure stable gas humidification and a stable amount of circulating water.
[0031]
In the above embodiment, the porous body (sintered metal body) 15 and the notched baffle plate 16 are provided, but either one may be omitted. Further, two or more porous bodies (sintered metal bodies) 15 may be provided. Further, the number of steps of the notch-shaped baffle plate 16 and the donut-shaped baffle plate 17 may be changed as appropriate. Further, the circulating water pump suction port (pipe) 12 may be opened and connected to the bottom wall of the container body 10 in the water / gas separation partition wall 18. Further, the water / gas separation partition wall 18 is not limited to a cylindrical wall, and may be an arc-shaped wall. The donut-shaped baffle plate 17 provided in the water / gas separation partition wall 18 may be omitted. Needless to say, various modifications can be made without departing from the scope of the present invention. In addition, the humidifier of the present invention can be applied not only to a fuel cell mounted on a traveling body or the like but also to other devices.
[0032]
【The invention's effect】
As described above, according to the first aspect of the present invention, the circulating water return port, the circulating water pump suction port, and the unhumidified gas inlet are opened below the circulating water surface in the container, and the humidified gas is disposed above the circulating water surface. In the humidifier having an outlet, a water / gas separation partition wall for preventing gas from the unhumidified gas inlet from being caught in the water sucked into the circulating water pump suction port from the unhumidified gas inlet. Standing in a double cylinder with a predetermined height located above and opening the circulating water pump suction port in the lower part of this water / gas separation partition wall, preventing gas entrainment and ensuring a stable amount of circulating water Can be planned.
[0036]
According to the second aspect of the present invention, the humidifier humidifies the reaction gas of the fuel cell mounted on the traveling body. Therefore, the battery performance and water carry-over and gas entrainment are prevented. A reduction in circulating water pump performance can be prevented.
[Brief description of the drawings]
BRIEF DESCRIPTION OF DRAWINGS FIG. 1 is a structural explanatory view of a humidifier showing an embodiment of the present invention, wherein FIG. 1 (a) is a sectional view at rest and circulation, and FIG. 1 (b) is a sectional view at oscillation and circulation. is there.
FIG. 2 is a view taken along arrow AA in FIG.
3 is a view taken along arrow BB in FIG. 1 (a). FIG.
4 is a view taken along the line CC of FIG. 1 (a). FIG.
FIG. 5 is a power generation system diagram of a polymer electrolyte fuel cell mounted on an underwater vehicle.
6A and 6B are explanatory views of the structure of a conventional humidifier, in which FIG. 6A is a cross-sectional view when stationary and circulating, and FIG. 6B is a cross-sectional view when swinging and circulating.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Fuel cell stack 2 Oxygen tank 3 Oxygen circulation blower 4 Oxygen humidifier 5 Hydrogen tank 6 Hydrogen circulation blower 7 Hydrogen humidifier 8 Circulating water pump 10 Container body 11 Circulating water return port 12 Circulating water pump suction port 13 Unhumidified gas inlet 14 Humidification gas outlet 15 Porous body 16 Notch-shaped baffle plate 17 Donut-shaped baffle plate 18 Water / gas separation partition wall 19 Water flow port

Claims (2)

容器体内の循環水水面下に循環水戻り口及び循環水ポンプ吸い込み口と未加湿ガス入口が開口されると共に前記循環水水面上方に加湿ガス出口が開口された加湿器において、前記容器体内に、未加湿ガス入口からのガスが循環水ポンプ吸い込み口に吸い込まれる水に巻き込まれるのを防止する水・ガス分離隔壁を前記未加湿ガス入口より上方に位置する所定高さで二重筒状に起立し、この水・ガス分離隔壁内の下部に前記循環水ポンプ吸い込み口を開口したことを特徴とする加湿器。In a humidifier in which a circulating water return port, a circulating water pump suction port and an unhumidified gas inlet are opened below the circulating water surface in the container body and a humidified gas outlet is opened above the circulating water surface, A water / gas separation partition that prevents the gas from the unhumidified gas inlet from being caught in the water sucked into the circulating water pump suction port stands up in a double cylinder shape at a predetermined height located above the unhumidified gas inlet The humidifier is characterized in that the circulating water pump suction port is opened at a lower portion in the water / gas separation partition wall . 前記加湿器は、走行体に搭載された燃料電池の反応ガスを加湿することを特徴とする請求項記載の加湿器。The humidifier, the humidifier according to claim 1, wherein the humidifying the reaction gas in the fuel cell mounted on the traveling body.
JP02249399A 1999-01-29 1999-01-29 humidifier Expired - Fee Related JP3868137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02249399A JP3868137B2 (en) 1999-01-29 1999-01-29 humidifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02249399A JP3868137B2 (en) 1999-01-29 1999-01-29 humidifier

Publications (2)

Publication Number Publication Date
JP2000223139A JP2000223139A (en) 2000-08-11
JP3868137B2 true JP3868137B2 (en) 2007-01-17

Family

ID=12084270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02249399A Expired - Fee Related JP3868137B2 (en) 1999-01-29 1999-01-29 humidifier

Country Status (1)

Country Link
JP (1) JP3868137B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6984464B2 (en) * 2003-08-06 2006-01-10 Utc Fuel Cells, Llc Hydrogen passivation shut down system for a fuel cell power plant
JP4109667B2 (en) * 2004-11-24 2008-07-02 本田技研工業株式会社 Humidifier
JP2006318693A (en) * 2005-05-11 2006-11-24 Mitsubishi Heavy Ind Ltd Humidifier for fuel cell and fuel cell system using it
JP5170990B2 (en) * 2006-07-07 2013-03-27 株式会社Eneosセルテック Humidification tank for polymer electrolyte fuel cell
JP5494535B2 (en) * 2011-03-15 2014-05-14 トヨタ自動車株式会社 Water storage tank

Also Published As

Publication number Publication date
JP2000223139A (en) 2000-08-11

Similar Documents

Publication Publication Date Title
JP3203150B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell system
CN106476642B (en) Fuel-cell vehicle
CN103069222B (en) Fuel cell humidifier
CN107069067B (en) Fuel cell stack
JP2008226711A (en) Fuel cell system
JP2001118596A (en) Fuel cell stack
JP2017135073A (en) On-vehicle fuel cell stack
JP3868137B2 (en) humidifier
JP4598638B2 (en) In-vehicle fuel cell system
WO2006075595A1 (en) Fuel cell
JP2005337539A (en) Humidifying device
US7682715B2 (en) Vehicle equipped with fuel cell system
JP7380431B2 (en) fuel cell system
JP5241125B2 (en) Fuel cell module
JP2002063920A (en) Fuel cell device
JP5430318B2 (en) Fuel cell stack
CN110323472A (en) Fuel-cell vehicle and fuel cell-use fuel gas-detecting device
JP2006318693A (en) Humidifier for fuel cell and fuel cell system using it
JP5450312B2 (en) Fuel cell stack
JP2009076404A (en) Fuel battery cell and fuel battery stack
JP2007257991A (en) Fuel cell system
JP2024039504A (en) Fuel cell tanks and fuel cell modules
JP2016051612A (en) Fuel cell system
JP2021174694A (en) Fuel cell system
US20080280168A1 (en) Fuel Cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040527

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees