JP3867812B2 - Axial compressor blade - Google Patents

Axial compressor blade Download PDF

Info

Publication number
JP3867812B2
JP3867812B2 JP17976095A JP17976095A JP3867812B2 JP 3867812 B2 JP3867812 B2 JP 3867812B2 JP 17976095 A JP17976095 A JP 17976095A JP 17976095 A JP17976095 A JP 17976095A JP 3867812 B2 JP3867812 B2 JP 3867812B2
Authority
JP
Japan
Prior art keywords
length
compressor
blade
tip
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17976095A
Other languages
Japanese (ja)
Other versions
JPH0932501A (en
Inventor
邦之 今成
嗣治 中野
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP17976095A priority Critical patent/JP3867812B2/en
Publication of JPH0932501A publication Critical patent/JPH0932501A/en
Application granted granted Critical
Publication of JP3867812B2 publication Critical patent/JP3867812B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はガスタービンやジェットエンジンに用いられる軸流圧縮機の動翼に関する。
【0002】
【従来の技術】
図6は従来のガスタービンやジェットエンジンに用いられる軸流圧縮機の動翼を示し、(A)が展開図、(B)は動翼のルート部(付根部)とチップ(先端)部での圧縮機の軸心Cに対する角度を示す。(A)に示すようにハブ2に取り付けられた動翼1のルート部4のコード長(翼弦長)とチップ部5のコード長はほぼ同じ長さとなっている。また、(B)に示すように動翼1は圧縮機軸心Cに対してルート部翼型8はθ1,チップ部翼型9はθ2(>θ1)の角度で取り付けられており、軸心Cに対するコード長の投影長さはルート部がL1、チップ部がL2であり、L2はL1の範囲内に納まっている。チップ部5とケーシング3の間はチップ間隙6を構成する。なお、図6の動翼は高圧圧縮機HPCを表し、ファンジェットエンジンのファンのような低圧圧縮機LPCは対象外とする。以下の説明もHPCに対して行う。
【0003】
【発明が解決しようとする課題】
多段軸流圧縮機では流れ場を正しく算出し、それに合わせた翼型を設計するが、流れ場の正確な算出が困難であるため、実際の流れと、設計した翼と、その取り付け角とを完全に適合させることは極めて困難であり、殆ど不可能である。この結果、図5の黒丸で示すように効率が流量によって大きく変化し、特にピーク効率の流量の前後で急激に変化する。このため予定した流量における予定した効率を得られない場合が多い。効率としては、ピーク効率より多少低くても広い範囲の流量にわたり、ほぼ一定となることが望ましい。
【0004】
本発明は、上述の問題点に鑑みてなされたもので、流量の変動により変化を少なくした軸流圧縮機動翼を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するため請求項1の発明では、軸流圧縮機動翼のコード長を付根部より先端部へ向かう途中位置から長くしてゆき、先端コード長の圧縮機軸心への投影長さが付根コード長の圧縮機軸心の投影長さの範囲内とする。
【0006】
動翼の効率が流量によって急激に変化するのは、動翼のチップ間隙におけるもれ流れによる圧力損失が支配的であることが三次元粘性解析による数値実験で明らかになった。このもれ流れとは圧力の高い翼下面から圧力の低い翼上面に向かう流れで、このもれ流れによる圧力損失を少なくすることにより効率の低下を少なくし、流量の変化による効率の変化を少なくすることができる。もれ流れはチップコード長を大きくすると少なくなることも上述の数値実験で明らかになったので、チップコード長をできるだけ大きくする。この限度としてチップ部コード長を伸ばしても動翼の圧縮機軸方向の長さが長くならない範囲とする。このためルート部コード長の圧縮機の軸心への投影長さの範囲内にチップ部コード長の軸心への投影長が納まる長さとすればよい。動翼のチップ部はルート部に対して図6で示したようにねじれているので、ルート部コード長よりチップ部コード長が長くてもチップ部コード長の軸心への投影範囲をルート部コード長の軸心への投影範囲内に納めることができる。
【0007】
請求項2の発明では、前記途中位置は動翼の付根を0%、先端を100%の高さとし、50%から80%の範囲とする。チップ部コード長を大きく伸ばす場合は50%から増大させ、比較的伸ばしが少ない場合は80%から伸ばすのが適切である。
【0008】
【実施例】
以下、本発明の実施例を図面を参照して説明する。
図1は実施例の軸流圧縮機動翼の形状を示す図で、(A)は展開図を示し、(B)は付根部(ルート部)と先端部(チップ部)の翼取付角を示す。(A)に示すように動翼1はハブ2に取り付けられたルート部4からケーシング3近傍のチップ部5まで到る途中の位置からそのコード長が変化している。動翼1の高さをルート部4で0%、チップ部5で100%とすると、ほぼ50%までは同一コード長で、それ以上でコード長が増大しチップ部5で最大値となる。(B)は動翼1が取り付けられる軸流圧縮機の軸心Cに対する動翼1の取付角度の一例を示す。軸心Cに対し、ルート部翼型8は例えば40°の角度で取り付けられ、チップ部翼型9は例えば60°の角度となっている。つまり、チップ部翼型9はルート部翼型8に対して20°よじれている。チップ部翼型9の軸心Cへの投影長L2はルート部翼型8の軸心Cへの投影長L1の範囲内となっている。これはチップ部翼型9の軸心Cへの投影長L2がルート部翼型8の軸心Cへの投影範囲を越えて長くなると、動翼1が圧縮機の軸方向に長くなることになり、圧縮機を軸方向に伸ばす必要が生じる。このため圧縮機の重量も増大し、悪影響も現れるので、動翼1が圧縮機軸方向へ大きくならない範囲内でチップコード長を増大する。
【0009】
次にこのようにチップ部5のコード長をルート部4のコード長より大きくした動翼1の性能について説明する。図2は図1の動翼の形状を三次元で表示したものである。図3は図2に示した動翼1のコード長さを表す図である。コード長はハブ2から50%程度まではほぼ同じ長さで、50%を越えると長くなっている。
【0010】
図4は図2に示した1段の動翼の三次元粘性解析による数値実験結果で、流量に対する圧力比を示す。白丸が図2に示す動翼を示し、黒丸はコード長さがほぼ一定の従来の動翼を示す。両者はほぼ同一の曲線となり、チップ部コード長を長くしても圧力比には殆ど影響を及ぼさないことを示している。
【0011】
図5は図2に示した1段の動翼の三次元粘性解析による数値実験結果で、流量に対する断熱効率を示す。白丸が図2に示す動翼を示し、黒丸はコード長さがほぼ一定の従来の動翼を示す。従来の動翼では流量によって断熱効率が変化し、ピーク値を有するが、図2に示す動翼では、断熱効率は流量が変化してもほぼ一定の値となっている。この一定値は従来の動翼のピーク値よりも小さいが、ピーク値近傍以外では従来の動翼よりも断熱効率が高くなっており、本実施例の動翼は流量の広い範囲にわたり、高い断熱効率を維持することがわかる。
【0012】
図2に示した動翼ではチップ部コード長が大きいのでコード長の増大はハブ2から50%を越えた位置から行ったが、チップ部コード長がそれ程大きくない場合は、ハブ2から80%程度の位置からコード長を増大させても図5に示すように流量の広い範囲に対し断熱効率を高い値で一定とすることができる。
【0013】
【発明の効果】
以上の説明より明らかなように、本発明は、軸流圧縮機の動翼のコード長をチップ部へ近づくにつれて大きくしてゆくことにより、従来の動翼に比べて流量の広い範囲にわたって、ほぼ一定の高い効率を維持することができる。
【図面の簡単な説明】
【図1】実施例の動翼の形状を示し、(A)は展開図、(B)は軸流圧縮機の軸心に対する付根部と先端部の翼角度の一例を示す図である。
【図2】性能解析に用いた動翼の三次元表示図を示す。
【図3】図2に示す動翼のコード長さを示す図である。
【図4】図2に示す動翼の圧力比を従来の動翼と比較した図である。
【図5】図2に示す動翼の断熱効率を従来の動翼と比較した図である。
【図6】従来の動翼の形状を示し、(A)は展開図、(B)は軸流圧縮機の軸心に対する付根部と先端部の翼角度を示す図である。
【符号の説明】
1 動翼
2 ハブ
3 ケーシング
4 ルート部
5 チップ部
6 チップ間隙
8 ルート部翼型
9 チップ部翼型
C 圧縮機軸心
L1 圧縮機軸心Cに対するルート部コード長の投影長さ
L2 圧縮機軸心Cに対するチップ部コード長の投影長さ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a moving blade of an axial compressor used in a gas turbine or a jet engine.
[0002]
[Prior art]
6A and 6B show a moving blade of an axial compressor used in a conventional gas turbine or jet engine. FIG. 6A is a development view, and FIG. 6B shows a root portion (root portion) and a tip (tip) portion of the moving blade. The angle with respect to the axial center C of the compressor is shown. As shown in (A), the cord length (blade chord length) of the root portion 4 of the moving blade 1 attached to the hub 2 and the cord length of the tip portion 5 are substantially the same length. Further, as shown in (B), the rotor blade 1 is attached to the compressor axis C at an angle of θ for the root portion airfoil 8 and θ2 for the tip portion airfoil 9 (> θ1). The projected length of the code length is L1 at the root portion and L2 at the tip portion, and L2 is within the range of L1. A tip gap 6 is formed between the tip portion 5 and the casing 3. 6 represents a high-pressure compressor HPC, and a low-pressure compressor LPC such as a fan of a fan jet engine is excluded. The following description is also given to the HPC.
[0003]
[Problems to be solved by the invention]
In a multistage axial compressor, the flow field is correctly calculated and the blade shape is designed accordingly.However, since it is difficult to calculate the flow field accurately, the actual flow, the designed blade, and its mounting angle are It is very difficult and almost impossible to fit perfectly. As a result, as shown by the black circles in FIG. 5, the efficiency changes greatly depending on the flow rate, and particularly changes rapidly before and after the peak efficiency flow rate. For this reason, the planned efficiency at the planned flow rate is often not obtained. The efficiency is preferably substantially constant over a wide range of flow rates, even slightly lower than the peak efficiency.
[0004]
The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an axial-flow compressor rotor blade that is less changed by fluctuations in flow rate.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, the cord length of the axial compressor rotor blade is lengthened from a midway position toward the tip portion from the root portion, and the projection length of the tip cord length on the compressor axis is set. Within the range of the projected length of the compressor shaft center of the root cord length.
[0006]
Numerical experiments using three-dimensional viscosity analysis revealed that the efficiency of the rotor blades changed abruptly depending on the flow rate, because the pressure loss due to leakage flow in the tip gap of the rotor blades was dominant. This leakage flow is a flow from the lower surface of the blade with high pressure to the upper surface of the blade with low pressure. By reducing the pressure loss due to this leakage flow, the decrease in efficiency is reduced and the change in efficiency due to the change in flow rate is reduced. can do. Since it has become clear from the above-described numerical experiment that the leakage flow is reduced when the chip code length is increased, the chip code length is increased as much as possible. As this limit, the length of the rotor blade in the axial direction of the compressor is not increased even if the tip portion cord length is extended. Therefore, the length of the projection length of the tip portion code length on the axis of the compressor may be within the range of the length of projection of the root portion code length on the axis of the compressor. Since the tip portion of the rotor blade is twisted with respect to the root portion as shown in FIG. 6, even if the tip portion cord length is longer than the root portion cord length, the projection range onto the axis of the tip portion cord length is determined as the root portion. It can be kept within the projection range of the code length on the axis.
[0007]
In the invention of claim 2, the intermediate position is set to a range of 50% to 80% with the root of the moving blade being 0% and the tip being 100%. It is appropriate to increase from 50% when the tip portion cord length is greatly extended, and from 80% when the extension is relatively small.
[0008]
【Example】
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a diagram showing the shape of an axial compressor rotor blade according to an embodiment. FIG. 1A is a development view, and FIG. 1B is a blade attachment angle between a root portion (root portion) and a tip portion (tip portion). . As shown in (A), the blade length of the moving blade 1 changes from a position on the way from the root portion 4 attached to the hub 2 to the tip portion 5 near the casing 3. Assuming that the height of the moving blade 1 is 0% at the root portion 4 and 100% at the tip portion 5, up to almost 50% is the same cord length, and the cord length increases beyond that to become the maximum value at the tip portion 5. (B) shows an example of the attachment angle of the moving blade 1 with respect to the axial center C of the axial compressor to which the moving blade 1 is attached. The root airfoil 8 is attached to the axis C at an angle of 40 °, for example, and the tip airfoil 9 is at an angle of 60 °, for example. That is, the tip part airfoil 9 is twisted by 20 ° with respect to the root part airfoil 8. The projection length L2 of the tip portion airfoil 9 on the axis C is within the range of the projection length L1 of the root portion airfoil 8 on the axis C. This is because if the projection length L2 of the tip part airfoil 9 on the axis C is longer than the projection range of the root part airfoil 8 on the axis C, the moving blade 1 becomes longer in the axial direction of the compressor. Therefore, it is necessary to extend the compressor in the axial direction. For this reason, the weight of the compressor also increases, and adverse effects also appear. Therefore, the tip code length is increased within a range in which the moving blade 1 does not increase in the axial direction of the compressor.
[0009]
Next, the performance of the rotor blade 1 in which the cord length of the tip portion 5 is made larger than the cord length of the root portion 4 will be described. FIG. 2 shows the shape of the moving blade of FIG. 1 in three dimensions. FIG. 3 is a diagram showing the cord length of the moving blade 1 shown in FIG. The cord length is approximately the same from the hub 2 to about 50%, and longer than 50%.
[0010]
FIG. 4 is a numerical experiment result based on a three-dimensional viscosity analysis of the one-stage moving blade shown in FIG. 2, and shows a pressure ratio to a flow rate. A white circle shows the moving blade shown in FIG. 2, and a black circle shows a conventional moving blade having a substantially constant cord length. Both curves are almost the same curve, indicating that the pressure ratio is hardly affected even if the tip cord length is increased.
[0011]
FIG. 5 shows the results of numerical experiments based on the three-dimensional viscosity analysis of the one-stage moving blade shown in FIG. A white circle shows the moving blade shown in FIG. 2, and a black circle shows a conventional moving blade having a substantially constant cord length. In the conventional moving blade, the adiabatic efficiency changes depending on the flow rate and has a peak value. However, in the moving blade shown in FIG. 2, the adiabatic efficiency is a substantially constant value even if the flow rate changes. This constant value is smaller than the peak value of the conventional rotor blade, but the heat insulation efficiency is higher than that of the conventional rotor blade except in the vicinity of the peak value, and the rotor blade of this embodiment has a high heat insulation over a wide range of flow rates. It can be seen that efficiency is maintained.
[0012]
In the moving blade shown in FIG. 2, since the tip portion cord length is large, the cord length is increased from a position exceeding 50% from the hub 2. However, if the tip portion cord length is not so large, the tip portion cord length is 80% from the hub 2. Even if the cord length is increased from a certain position, the heat insulation efficiency can be made constant at a high value over a wide range of flow rate as shown in FIG.
[0013]
【The invention's effect】
As is clear from the above description, the present invention increases the cord length of the rotor blade of the axial flow compressor as it approaches the tip portion, so that the flow rate is substantially over a wide range compared to the conventional rotor blade. A constant high efficiency can be maintained.
[Brief description of the drawings]
FIG. 1 shows the shape of a moving blade of an embodiment, (A) is a developed view, and (B) is a view showing an example of blade angles of a root portion and a tip portion with respect to the axial center of an axial compressor.
FIG. 2 shows a three-dimensional display diagram of a moving blade used for performance analysis.
FIG. 3 is a diagram showing a cord length of the moving blade shown in FIG. 2;
FIG. 4 is a diagram comparing the pressure ratio of the moving blade shown in FIG. 2 with a conventional moving blade.
FIG. 5 is a diagram comparing the heat insulation efficiency of the blade shown in FIG. 2 with that of a conventional blade.
FIG. 6 shows the shape of a conventional moving blade, (A) is a developed view, and (B) is a view showing blade angles of a root portion and a tip portion with respect to the axial center of the axial compressor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Rotating blade 2 Hub 3 Casing 4 Root part 5 Tip part 6 Tip gap 8 Root part airfoil 9 Tip part airfoil C Compressor axis L1 Projection length L2 of root part code length to the compressor axis C L2 Compressor axis C Projection length of tip code length

Claims (2)

軸流圧縮機動翼のコード長を付根部より先端部へ向かう途中位置から長くしてゆき、先端コード長の圧縮機軸心への投影長さが付根コード長の圧縮機軸心の投影長さの範囲内となっていることを特徴とする軸流圧縮機動翼。The length of the axial compressor blade is increased from the midway position from the root to the tip, and the projected length of the tip cord length on the compressor shaft is within the range of the projected length of the compressor shaft center An axial compressor rotor blade characterized by being inside. 前記途中位置は動翼の付根を0%、先端を100%の高さとし、50%から80%の範囲とすることを特徴とする請求項1記載の軸流圧縮機動翼。The axial flow compressor rotor blade according to claim 1, wherein the intermediate position is in a range of 50% to 80% with a root of the rotor blade having a height of 0% and a tip having a height of 100%.
JP17976095A 1995-07-17 1995-07-17 Axial compressor blade Expired - Lifetime JP3867812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17976095A JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17976095A JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Publications (2)

Publication Number Publication Date
JPH0932501A JPH0932501A (en) 1997-02-04
JP3867812B2 true JP3867812B2 (en) 2007-01-17

Family

ID=16071411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17976095A Expired - Lifetime JP3867812B2 (en) 1995-07-17 1995-07-17 Axial compressor blade

Country Status (1)

Country Link
JP (1) JP3867812B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1582695A1 (en) * 2004-03-26 2005-10-05 Siemens Aktiengesellschaft Turbomachine blade
US7497664B2 (en) * 2005-08-16 2009-03-03 General Electric Company Methods and apparatus for reducing vibrations induced to airfoils
DE112006002658B4 (en) * 2005-10-11 2021-01-07 General Electric Technology Gmbh Turbomachine Blade
DE102008031781B4 (en) * 2008-07-04 2020-06-10 Man Energy Solutions Se Blade grille for a turbomachine and turbomachine with such a blade grille
EP2299124A1 (en) * 2009-09-04 2011-03-23 Siemens Aktiengesellschaft Rotor blade for an axial compressor
CN115717552A (en) * 2022-11-08 2023-02-28 东方电气集团东方汽轮机有限公司 Turbine moving blade

Also Published As

Publication number Publication date
JPH0932501A (en) 1997-02-04

Similar Documents

Publication Publication Date Title
US9650896B2 (en) Turbine engine blade having improved stacking law
US6702552B1 (en) Impeller having blade(s) conforming to the golden section of a logarithmic curve
RU2255248C2 (en) Swept convex blade (version)
JP3982261B2 (en) Turbine blade
EP2623794B1 (en) Centrifugal compressor diffuser
RU2220329C2 (en) Curved blade of compressor
JP5351941B2 (en) Centrifugal compressor, its impeller, its operating method, and impeller design method
JP6017033B2 (en) Radial inflow axial flow turbine and turbocharger
US20070071606A1 (en) Turbine blade
KR20140012095A (en) Unflared compressor blade
JP4307814B2 (en) Transonic airfoils with reduced shock waves
JPH03138404A (en) Rotor for steam turbine
JP3867812B2 (en) Axial compressor blade
CN108005956A (en) A kind of volute structure used for automobile air conditioning
JP2837207B2 (en) Guide vanes for axial fans
JP2730268B2 (en) Centrifugal impeller
JPH10311294A (en) Centrifugal blower
JPS5941024B2 (en) Francis type runner
JPH03267506A (en) Stationary blade of axial flow turbine
JP4691788B2 (en) Axial fan blades
RU2792505C2 (en) Gas turbine engine blade made according to the rule of deflection of the blade profile with a large flutter margin
JP2002276593A (en) Impeller for centrifugal compressor
KR950006563B1 (en) Blade of siroco fan
KR20020074016A (en) Turbo compressor having variable diffuser vane
JPH0527201U (en) Axial turbine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091020

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101020

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111020

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121020

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131020

Year of fee payment: 7

EXPY Cancellation because of completion of term