JP3865872B2 - Vacuum suction holding device - Google Patents

Vacuum suction holding device Download PDF

Info

Publication number
JP3865872B2
JP3865872B2 JP17015397A JP17015397A JP3865872B2 JP 3865872 B2 JP3865872 B2 JP 3865872B2 JP 17015397 A JP17015397 A JP 17015397A JP 17015397 A JP17015397 A JP 17015397A JP 3865872 B2 JP3865872 B2 JP 3865872B2
Authority
JP
Japan
Prior art keywords
porous ceramic
workpiece
suction
vacuum suction
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17015397A
Other languages
Japanese (ja)
Other versions
JPH1110472A (en
Inventor
裕之 森岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP17015397A priority Critical patent/JP3865872B2/en
Publication of JPH1110472A publication Critical patent/JPH1110472A/en
Application granted granted Critical
Publication of JP3865872B2 publication Critical patent/JP3865872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Jigs For Machine Tools (AREA)
  • Dicing (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、保持面の吸着部が多孔質セラミックスからなる真空吸着保持装置に関するものであり、特に、半導体ウエハや薄膜磁気ヘッド用基板などの被加工物をブレードで切断分離するダイシング加工やスライシング加工に好適なものである。
【0002】
【従来の技術】
従来、半導体装置や薄膜磁気ヘッドの製造工程において、半導体ウエハや磁気ヘッド用基板などの被加工物を切断分離する工程では、被加工物を吸着保持するために真空吸着保持装置が使用されている。
【0003】
この種の真空吸着保持装置には、保持面の吸着部が多孔質セラミック体からなるものと、緻密質セラミック板に多数の吸引孔を穿設したものがあり、その中でも被加工物の切断分離工程では均一な吸着力が得られる多孔質タイプのものが多用されている。
【0004】
図4は一般的な多孔質タイプの真空吸着保持装置21を示したもので、ステンレス等の金属からなる基体24の中央に開口する凹部25に、被加工物Wより若干径の小さな多孔質セラミック体22を嵌合し、その上面を吸着面23とするとともに、該吸着面23を基体24のリム部27の頂面28と同一平面上に位置させることで被加工物Wの保持面29を形成したものであった。そして、上記基体24の凹部25に連通する排気孔26より真空吸引することで、前記保持面29に載置した被加工物Wを吸着させて固定するとともに、ダイヤモンドブレード30をリム部27の頂面28と微小に当接させ、接触したことを電気的に検知して切断開始状態としたあと、ダイヤモンドブレード30を保持面29上に沿って水平に移動させるか、あるいは真空吸着保持装置21を水平に移動させることで、被加工物Wを所定の形状に切断分離するようになっていた。
【0005】
【発明が解決しようとする課題】
ところが、図4の真空吸着保持装置21のように、基体24の凹部25に多孔質セラミック体22を嵌合した二体構造のものでは、金属からなる基体24と多孔質セラミック体22との間の熱膨張差が大きいために、被加工物Wの切断を行うとダイヤモンドブレード30との摩擦により発生する熱でもって真空吸着保持装置21の保持面29が微妙に変形するといった課題があった。その為、半導体ウエハや薄膜磁気ヘッド用基板などのように一枚の基板から多数の製品を所定の寸法通りに切り出すことができず、生産性を高めることができなかった。
【0006】
また、保持面29を構成する吸着面23とリム部27の頂面28は異材質からなるために同一平面を構成するように研削することは難しいものであった。
【0007】
即ち、リム部27を構成するステンレスは吸着面23を構成するセラミックスに比べて硬度が小さいことから、平面研削を行うと吸着面23に比べリム部27の頂面28が多く削られ、段差が形成されるといった課題があった。その為、被加工物Wとして半導体ウエハや薄膜磁気ヘッド用基板を切断すると、被加工物Wの周縁部がリム部27の頂面28で保持されていないことから、被加工物Wの周縁部より所定寸法の製品を切り出すことができなかった。
【0008】
しかも、図4の真空吸着保持装置21のように二体構造であると、吸着面23を構成する多孔質セラミック体22と基体24とを別々に形成しなければならないことから、部品点数が多くなるとともに、前述したように吸着面23とリム部27の頂面28とが同一平面上に位置するよう平坦化するために、多孔質セラミック体22及び基体24の寸法精度を厳密に管理しなければならないなどの不都合もあった。
【0009】
【課題を解決するための手段】
そこで、上記課題に鑑み、本発明の真空吸着保持装置は、多孔質セラミック板の主面を保持面とし、上記主面の周縁部に段差部を設けることにより形成される中央凸部表面を吸着面とするとともに、他方の主面の周縁部に段差部を設けることにより形成される中央凸部表面を吸引面とし、上記主面の周縁部、多孔質セラミック板の側面、他方の主面の周縁部封止材を塗着せしめて該封止材の頂面が吸着面と同一平面となるように平坦化して気密にシールするとともに、少なくとも上記主面の周縁部に塗着した封止材が導電性を有することを特徴とすることを特徴とするものである。
【0010】
【作用】
本発明の真空吸着保持装置は、多孔質セラミック板の側面及び吸着面の周縁部に、樹脂やガラスなどの封止材を塗着した一体構造としてあることから、従来の二体構造のように切断時に発生する加工熱による保持面の変形を抑えることができる。しかも、吸着面を含む被加工物の保持面を平坦に仕上げることができるとともに、上記封止材は多孔質セラミック板の気孔を埋めるように被覆含浸させてあることから周囲を確実にシールすることができる。
【0011】
さらに、少なくとも保持面の周縁部に塗着した封止材には導電性を持たせてあることから、ダイヤモンドブレードが微小に接触したことを電気的に検知することができ、保持面を傷付けることなく、被加工物を切断することができる。
【0012】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0013】
図1は本発明の真空吸着保持装置1の一例を示す図で、(a)は斜視図、(b)は(a)のX−X線断面図であり、図2は図1(b)のA部を拡大した断面図である。
【0014】
図1の真空吸着保持装置は、被加工物Wよりも大きな外径を有する円盤状の多孔質セラミック板2からなり、該多孔質セラミック板2の一主面の周縁部には深さh50〜500μm程度の段差部2bを設け、中央凸部2aの表面を吸着面3とするとともに、他方の一主面の周縁部にも深さh50〜500μm程度の段差部2dを設け、中央凸部2cの表面を吸引面4としてある。なお、吸着面3の外形は被加工物Wと同等あるいは若干小さくなるように形成してある。
【0015】
また、上記多孔質セラミック体2の側面と、上下一主面の段差部2b,2dには、封止材5として導電性を有する樹脂やガラスを多孔質セラミック体2の気孔を埋めるように塗布含浸させるとともに、上下一主面の段差部2b,2dを埋めるように被覆して気密にシールしてあり、段差部2bに塗着した封止材5の頂面と吸着面3とが同一平面を構成するように平坦化し、被加工物Wの保持面6としてある。
【0016】
その為、真空吸着保持装置1の保持面6に被加工物Wを載置し、吸引面4より真空ポンプ(不図示)で真空吸引すれば、被加工物Wを均一な吸着力でもって吸引することができるとともに、段差のない平坦な保持面6を有することから、被加工物Wを精度良く吸着保持することができる。
【0017】
また、保持面6に固定した被加工物Wを切断分離するには、まず、保持面6の周縁部に塗着する封止材5にダイヤモンドブレード30を当接させて切断開始状態とする。
【0018】
即ち、図1(b)に示すように、電源の一方をダイヤモンドブレード30に、他方を真空吸着保持装置1に塗着した封止材5にそれぞれ接続しておけば、該封止材5が導電性を有することから、ダイヤモンドブレード30を封止材5と接触させることにより導通をはかることができ、流れる電流を電流計で測定することによりダイヤモンドブレード30が真空吸着保持装置1の保持面6と微小に当接し、切断開始状態となったことを確認することができる。
【0019】
かくして、ダイヤモンドブレード30を水平方向に移動させるか、あるいは真空吸着保持装置1を水平方向に移動させることで被加工物Wを所定の形状に切断分離することができる。
【0020】
また、図1に示す真空吸着保持装置1は、多孔質セラミック体2からなる一体構造であることから、被加工物Wの保持面6を段差のない平坦面とすることができるとともに、切断時に発生する加工熱による保持面6の変形を抑えることができ、被加工物Wを所定の寸法精度に切断することができるため、例えば、半導体ウエハや薄膜磁気ヘッド用基板のように一枚の基板から多数の製品を切り出し、かつ一つ一つの製品に高い寸法精度が要求される被加工物Wを切断する時でも、全ての製品を所定の寸法通りに切り出すことができ、生産性を大幅に高めることができる。
【0021】
また、多孔質セラミック体2の側面及び保持面6の周縁部には、封止材5として導電性を有する樹脂やガラスを塗着し、気密にシールしてあることから、吸引面4より真空吸引すれば、所望の吸着力でもって吸着面3に被加工物Wを吸着保持することができるとともに、保持面6の周縁部に塗着した封止材5にダイヤモンドブレード30を接触させれば、確実に導通をはかることができるため、微小に当接したことを電気的に検知することができ、保持面6を傷付けることなく被加工物Wを切断分離することができる。
【0022】
ところで、このような一体構造の真空吸着保持装置1を構成する多孔質セラミック体2としては、保持面6の変形を抑えるために8000kg/mm2 以上の剛性(ヤング率)を有するものが良く、例えば、アルミナ、ジルコニア、窒化珪素、炭化珪素、窒化アルミニウムなどのセラミックスを使用することができる。
【0023】
また、被加工物Wを均一な吸着力で保持するには多孔質セラミック体2の平均気孔径が5〜50μmでかつ気孔率が5〜40%のものが良く、より好ましくは平均気孔径が5〜10μmでかつ気孔率が25〜35%のものが良い。これは、多孔質セラミック体2の平均気孔径が5μm未満であると、多孔質セラミック体2内を通過する気体の通気抵抗が大きすぎるために吸引力を高めたとしても大きな吸着力が得られないからであり、逆に、平均気孔径が50μmより大きくなると、厚みの薄い被加工物Wを吸着させた時に気孔部が凹に窪み、被加工物Wの平坦精度が阻害され、所定の寸法精度に切断することができなくなるからである。
【0024】
また、多孔質セラミック体2の気孔率が5未満では、吸着面3と吸引面4とを連通する開気孔が少ないために均一な吸着力が得られず、逆に、気孔率が40%より大きくなると多孔質セラミック板2の剛性が大きく低下し、保持面6が変形する恐れがあるからである。
【0025】
なお、本発明の多孔質セラミック板2としては、各種原料を造粒した顆粒を一軸加圧成形法や等加圧成形法など一般的に公知のセラミック成形手段により所定の形状に成形したあと、各種原料を完全に焼結させることができる温度より若干低い温度で焼成することにより得られる多孔質セラミックスを使用すれば良く、顆粒の粒子径や焼成温度を適宜調整することで、所定の平均気孔径及び気孔率に設定することができる。また、この他に、予め各種原料からなるセラミック球状体を形成しておき、これらをガラス等の接着成分で接合した多孔質セラミックスや、球状のセラミック仮焼体をバインダー等で接着したものを本焼成することで各セラミック仮焼体の接触部を焼結させて形成した多孔質セラミックスを用いることもでき、このような多孔質セラミックスを用いれば、セラミック球状体やセラミック仮焼体の粒子径を調整することで簡単に所定の平均気孔径及び気孔率に設定することができるとともに、より均一な吸着力を得ることができる。
【0026】
一方、多孔質セラミック体2の周囲を気密にシールする封止材5としては、各種樹脂やガラスに導電性付与剤を混ぜたものを用いれば良い。
【0027】
例えば、導電性を有する樹脂としては、樹脂材に、アクリル系、エポキシ系、シリコン系、ウレタン系、フェノール系等の樹脂を用いることができ、導電性付与剤としては、金(Au)、銀(Ag)、銅(Cu)、ニッケル(Ni)等の金属を用いれば良い。これらの導電性付与剤は上記樹脂材に対して60〜90重量%、好ましくは80〜85重量%の割合で均質に混合分散させることで樹脂の体積固有抵抗値を10Ω・cm以下とすることができる。その為、微少な電流も流すことができるため、ダイヤモンドブレード30が微小に当接したことを確実に検出することができる。
【0028】
また、導電性を有するガラスとしては、Li2 O−Al2 3 −SiO2 系ガラスに導電性付与剤としてFe2 3 、Ni2 3 、Cu2 Oのうち一種以上を含有させた表面抵抗が103 Ω未満の結晶化ガラス、あるいは、Na2 O−WO3 −P2 5 系ガラスやNa2 O−WO3 −B2 5 系ガラスからなり、その表層部にNa0.7 WO3 結晶を析出させた表面抵抗が1Ω程度の結晶化ガラス等を用いることができる。
【0029】
また、これらの封止材5はペースト状とすることができるため、多孔質セラミック板2に塗布したあと硬化させることで、気孔内にも適度に含浸させることができ、アンカー効果による確実な密着強度が得られ、気密にシールすることができる。
【0030】
なお、封止材5の厚み幅が薄すぎると、多孔質セラミック体2の外表面に存在する気孔を確実に塞ぐことが難しく、気密にシールできない恐れがあるため、多孔質セラミック体2中に含浸している部分も含め、封止材5の最も薄い部分の厚み幅は7μm以上、より好ましくは10μm以上とすることが良い。
【0031】
また、本実施形態では、吸着面の外形を円形としたものを示したが、被加工物Wの形状に合わせて適宜設計すれば良く、例えば、楕円形や多角形をしたもの、あるいは星形をしたものなどでも構わない。
【0032】
ところで、図1に示す真空吸着保持装置1では、多孔質セタミック板2の側面及び保持面6の周縁部を共に導電性を有する封止材5で気密にシールした例を示したが、本発明では少なくとも保持面6の周縁部を構成する封止材5が導電性を有していれば良く、例えば、多孔質セタミック板2の側面に導電性付与剤を含まない前記樹脂やガラス、あるいはそれ以外の周知の樹脂やガラスを塗着するとともに、保持面6の周縁部を構成する封止材5に導電性付与剤を含有した前記樹脂やガラスを塗着した構造とすることもできる。
【0033】
また、図1に示す真空吸着保持装置1では、多孔質セラミック板2の上下一主面に段差部2b,2dを設けた例を示したが、図3に示す真空吸着保持装置11ように、多孔質セラミック板12の上下一主面には段差部を設けず、吸着面13及び吸引面14を除く多孔質セラミック板12の周縁部に気孔を埋めるよう封止材15を十分に含浸させても良く、このような構造とすれば、被加工物Wの保持面16をより一層平坦化することができ、さらに被加工物Wの加工精度を高めることができる。
【0034】
(実施例)
以下、本発明の実施例を図1の真空吸着保持装置1を例にとって具体的に説明する。
【0035】
まず、真空吸着保持装置1の多孔質セラミック板2を形成するために、出発原料としてAl2 3 粉末を99重量%に対し、焼結助剤としてSiO2 、MgOを合計1重量%の範囲でバインダー及び溶媒とともに添加混合し、スプレードライヤーにより造粒して顆粒を製作した。そして、この顆粒を金型内に充填して円盤状に成形したあと、金型から取り出し、1700℃程度の温度で焼成することにより気孔率30%、平均気孔径10μmのアルミナセラミックスからなる多孔質セラミック板2を形成した。
【0036】
次に、多孔質セラミック板2の上下一主面の周縁部に研削加工を施して200μm程度の段差部2b,2dを形成するとともに、上側の中央凸部2aの頂面に研磨加工を施して吸着面3を形成し、さらに、下側の中央凸部2cの頂面に研磨加工を施して吸引面4を形成した。そして、導電性付与剤として銀(Ag)を80重量%混合分散したアクリル樹脂のスラリーを、上記多孔質セラミック板2の側面及び上下一主面の段差部2b,2dに塗布したあと硬化させ、導電性を有する封止材5でもって気密にシールし、しかるのち、上側の一主面に研磨加工を施して被加工物Wの保持面6を形成することにより図1に示す真空吸着保持装置1を形成した。
【0037】
そして、この真空吸着保持装置1を用いて8インチのシリコンウエハから50×50mmの寸法を有する製品の切り出し作業を行ったところ、全ての製品を切り出すことができ、また、これらの製品の寸法を測定したところ、寸法誤差を±0.005mmに抑えることができた。
【0038】
【発明の効果】
以上のように、本発明の真空吸着保持装置によれば、多孔質セラミック板の主面の周縁部、多孔質セラミック板の側面、他方の主面の周縁部に封止材を塗着せしめて該封止材の頂面が吸着面と同一平面となるように平坦化して気密にシールするとともに、少なくとも上記主面の周縁部に塗着した封止材が導電性を持たせたことにより、均一な吸着力でもって被加工物を精度良く保持することができる。しかも、ダイヤモンドブレードによる被加工物の切断工程において、保持面の周縁部を構成する封止材にダイヤモンドブレードを接触させれば、確実に導通をはかることができるため、微小に当接したことを電気的に検知することができ、保持面を傷付けることなく被加工物を切断分離することができる。
【0039】
その上、多孔質セラミック体からなる一体構造品であることから、切断時に発生する加工熱による保持面の変形を大幅に抑えることができるとともに、構造上部品点数が少なくてすみ、かつ製造が容易であるために製造コストを大幅に抑えることができる。
【0040】
かくして、本発明の真空吸着保持装置を半導体ウエハや薄膜磁気ヘッド用基板のダイシング加工やスライシング加工に用いれば、全ての製品を所定の寸法通りに切断分離することができ、生産性を高めることができる。
【図面の簡単な説明】
【図1】(a)は本発明の真空吸着保持装置の一実施形態を示す斜視図であり、(b)は(a)のX−X線断面図である。
【図2】図1(b)のA部を拡大した断面図である。
【図3】本発明の真空吸着保持装置の他の実施形態を示す断面図である。
【図4】従来の真空吸着保持装置を示す断面図である。
【符号の説明】
1・・・真空吸着保持装置
2・・・多孔質セラミック板
2a・・・凸部
2b・・・段差部
2c・・・凸部
2d・・・段差部
3・・・吸着面
4・・・吸引面
5・・・封止材
6・・・保持面
W・・・被加工物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum suction holding device in which a suction portion of a holding surface is made of porous ceramics, and in particular, a dicing process or a slicing process in which a workpiece such as a semiconductor wafer or a thin film magnetic head substrate is cut and separated by a blade. It is suitable for.
[0002]
[Prior art]
Conventionally, in the manufacturing process of a semiconductor device or a thin film magnetic head, in a process of cutting and separating a workpiece such as a semiconductor wafer or a substrate for a magnetic head, a vacuum suction holding device is used to hold the workpiece by suction. .
[0003]
There are two types of vacuum suction holding devices of this type: the suction part of the holding surface is made of a porous ceramic body, and the dense ceramic plate with a large number of suction holes. Among them, the workpiece is cut and separated. In the process, a porous type capable of obtaining a uniform adsorption force is often used.
[0004]
FIG. 4 shows a general porous type vacuum suction holding device 21, in which a porous ceramic having a slightly smaller diameter than the workpiece W is formed in a recess 25 opened in the center of a base 24 made of a metal such as stainless steel. The body 22 is fitted and the upper surface thereof is used as the suction surface 23, and the suction surface 23 is positioned on the same plane as the top surface 28 of the rim portion 27 of the base body 24, thereby holding the holding surface 29 of the workpiece W. It was formed. Then, the workpiece W placed on the holding surface 29 is adsorbed and fixed by vacuum suction from the exhaust hole 26 communicating with the concave portion 25 of the base 24, and the diamond blade 30 is fixed to the top of the rim portion 27. After making a slight contact with the surface 28 and electrically detecting the contact and setting the cutting start state, the diamond blade 30 is moved horizontally along the holding surface 29 or the vacuum suction holding device 21 is moved. The workpiece W was cut and separated into a predetermined shape by moving it horizontally.
[0005]
[Problems to be solved by the invention]
However, in the case of a two-body structure in which the porous ceramic body 22 is fitted in the recess 25 of the base 24 as in the vacuum suction holding device 21 of FIG. 4, the gap between the base 24 made of metal and the porous ceramic body 22 is between. Due to the large difference in thermal expansion, there is a problem that when the workpiece W is cut, the holding surface 29 of the vacuum suction holding device 21 is slightly deformed by heat generated by friction with the diamond blade 30. For this reason, a large number of products cannot be cut out according to predetermined dimensions from a single substrate such as a semiconductor wafer or a thin film magnetic head substrate, and productivity cannot be increased.
[0006]
Further, since the suction surface 23 constituting the holding surface 29 and the top surface 28 of the rim portion 27 are made of different materials, it is difficult to perform grinding so as to constitute the same plane.
[0007]
That is, since the stainless steel constituting the rim portion 27 has a lower hardness than the ceramics constituting the suction surface 23, the top surface 28 of the rim portion 27 is scraped more than the suction surface 23 when surface grinding is performed, and the level difference is reduced. There was a problem of being formed. Therefore, when a semiconductor wafer or a thin film magnetic head substrate is cut as the workpiece W, the peripheral portion of the workpiece W is not held by the top surface 28 of the rim portion 27. Further, a product having a predetermined dimension could not be cut out.
[0008]
In addition, when the two-body structure is used as in the vacuum suction holding device 21 of FIG. 4, the porous ceramic body 22 and the base body 24 constituting the suction surface 23 must be formed separately, so that the number of parts is large. In addition, as described above, in order to flatten the suction surface 23 and the top surface 28 of the rim portion 27 on the same plane, the dimensional accuracy of the porous ceramic body 22 and the base 24 must be strictly controlled. There were also inconveniences such as having to.
[0009]
[Means for Solving the Problems]
Therefore, in view of the above problems, the vacuum suction holding device of the present invention sucks the surface of the central convex portion formed by providing the main surface of the porous ceramic plate as the holding surface and providing a step portion on the peripheral edge of the main surface. And a central convex surface formed by providing a step on the peripheral portion of the other main surface as a suction surface, the peripheral portion of the main surface, the side surface of the porous ceramic plate, and the other main surface A sealant is applied to the peripheral part and flattened so that the top surface of the sealant is flush with the adsorption surface and hermetically sealed, and at least a seal applied to the peripheral part of the main surface The material is characterized by having conductivity .
[0010]
[Action]
Since the vacuum suction holding device of the present invention has an integrated structure in which a sealing material such as resin or glass is applied to the side surface of the porous ceramic plate and the peripheral portion of the suction surface, like a conventional two-body structure. Deformation of the holding surface due to processing heat generated during cutting can be suppressed. In addition, the holding surface of the workpiece including the adsorption surface can be finished flat, and the sealing material is coated and impregnated so as to fill the pores of the porous ceramic plate, so that the periphery can be reliably sealed. Can do.
[0011]
In addition, since the sealing material applied to at least the peripheral edge of the holding surface is made conductive, it can be electrically detected that the diamond blade has made a slight contact, and damages the holding surface. Without cutting, the workpiece can be cut.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described.
[0013]
1A and 1B are views showing an example of a vacuum suction holding apparatus 1 according to the present invention, in which FIG. 1A is a perspective view, FIG. 1B is a sectional view taken along line XX of FIG. It is sectional drawing to which the A section of was expanded.
[0014]
1 includes a disk-shaped porous ceramic plate 2 having an outer diameter larger than the workpiece W, and a depth h50 to a peripheral portion of one main surface of the porous ceramic plate 2. A step 2b having a height of about 500 μm is provided, the surface of the central protrusion 2a is used as the suction surface 3, and a step 2d having a depth of about 50 to 500 μm is also provided at the peripheral edge of the other main surface. This surface is the suction surface 4. The outer shape of the suction surface 3 is formed to be equal to or slightly smaller than the workpiece W.
[0015]
In addition, a conductive resin or glass is applied as a sealing material 5 on the side surface of the porous ceramic body 2 and the step portions 2b and 2d on the upper and lower main surfaces so as to fill the pores of the porous ceramic body 2. The top surface of the sealing material 5 applied to the stepped portion 2b and the suction surface 3 are flush with each other so that the stepped portions 2b and 2d on the upper and lower main surfaces are covered and hermetically sealed. Is formed as a holding surface 6 of the workpiece W.
[0016]
Therefore, if the workpiece W is placed on the holding surface 6 of the vacuum suction holding device 1 and vacuum suction is performed from the suction surface 4 with a vacuum pump (not shown), the workpiece W is sucked with a uniform suction force. In addition, since the flat holding surface 6 without a step is provided, the workpiece W can be adsorbed and held with high accuracy.
[0017]
In order to cut and separate the workpiece W fixed to the holding surface 6, first, the diamond blade 30 is brought into contact with the sealing material 5 applied to the peripheral edge portion of the holding surface 6 to set a cutting start state.
[0018]
That is, as shown in FIG. 1B, if one of the power sources is connected to the diamond blade 30 and the other is connected to the sealing material 5 applied to the vacuum suction holding device 1, the sealing material 5 Since it has electrical conductivity, the diamond blade 30 can be made conductive by bringing it into contact with the sealing material 5, and the diamond blade 30 can be held by the holding surface 6 of the vacuum suction holding device 1 by measuring the flowing current with an ammeter. It is possible to confirm that the cutting has been started.
[0019]
Thus, the workpiece W can be cut and separated into a predetermined shape by moving the diamond blade 30 in the horizontal direction or moving the vacuum suction holding device 1 in the horizontal direction.
[0020]
Further, since the vacuum suction holding device 1 shown in FIG. 1 has an integral structure made of the porous ceramic body 2, the holding surface 6 of the workpiece W can be a flat surface without a step, and at the time of cutting Since the deformation of the holding surface 6 due to the generated processing heat can be suppressed and the workpiece W can be cut with a predetermined dimensional accuracy, for example, a single substrate such as a semiconductor wafer or a thin film magnetic head substrate. Even when cutting a large number of products and cutting workpieces W that require high dimensional accuracy for each product, all products can be cut to the specified dimensions, greatly increasing productivity. Can be increased.
[0021]
In addition, a conductive resin or glass is applied as the sealing material 5 to the side surface of the porous ceramic body 2 and the peripheral surface of the holding surface 6 and hermetically sealed. If suction is performed, the workpiece W can be sucked and held on the suction surface 3 with a desired suction force, and if the diamond blade 30 is brought into contact with the sealing material 5 applied to the peripheral portion of the holding surface 6. Since electrical conduction can be ensured reliably, it is possible to electrically detect the minute contact, and the workpiece W can be cut and separated without damaging the holding surface 6.
[0022]
By the way, as the porous ceramic body 2 constituting the vacuum suction holding device 1 having such an integrated structure, in order to suppress the deformation of the holding surface 6, one having a rigidity (Young's modulus) of 8000 kg / mm 2 or more is good. For example, ceramics such as alumina, zirconia, silicon nitride, silicon carbide, and aluminum nitride can be used.
[0023]
Further, in order to hold the workpiece W with a uniform adsorption force, the porous ceramic body 2 preferably has an average pore diameter of 5 to 50 μm and a porosity of 5 to 40%, more preferably an average pore diameter. The thing of 5-10 micrometers and a porosity of 25-35% is good. This is because, if the average pore diameter of the porous ceramic body 2 is less than 5 μm, a large adsorbing force can be obtained even if the suction force is increased because the ventilation resistance of the gas passing through the porous ceramic body 2 is too large. On the contrary, when the average pore diameter is larger than 50 μm, the pore portion is recessed when the thin workpiece W is adsorbed, and the flatness accuracy of the workpiece W is hindered, and a predetermined dimension is obtained. This is because it becomes impossible to cut accurately.
[0024]
In addition, when the porosity of the porous ceramic body 2 is less than 5, since there are few open pores connecting the adsorption surface 3 and the suction surface 4, a uniform adsorption force cannot be obtained, and conversely, the porosity is more than 40%. This is because if the size is increased, the rigidity of the porous ceramic plate 2 is greatly reduced, and the holding surface 6 may be deformed.
[0025]
In addition, as the porous ceramic plate 2 of the present invention, after granulating granules obtained by granulating various raw materials into a predetermined shape by a generally known ceramic forming means such as a uniaxial pressure forming method or an equal pressure forming method, Porous ceramics obtained by firing at a temperature slightly lower than the temperature at which various raw materials can be completely sintered may be used. By appropriately adjusting the particle diameter and firing temperature of the granules, a predetermined average gas The pore diameter and porosity can be set. In addition to this, ceramic spheres made of various raw materials are formed in advance, and porous ceramics obtained by bonding them with an adhesive component such as glass, or those obtained by bonding spherical ceramic calcined bodies with a binder or the like. Porous ceramics formed by sintering the contact portion of each ceramic calcined body by firing can also be used. With such porous ceramics, the particle size of ceramic spherical bodies and ceramic calcined bodies can be reduced. By adjusting, it is possible to easily set the predetermined average pore diameter and porosity, and to obtain a more uniform adsorption force.
[0026]
On the other hand, as the sealing material 5 that hermetically seals the periphery of the porous ceramic body 2, a material obtained by mixing various resins and glass with a conductivity imparting agent may be used.
[0027]
For example, as a resin having conductivity, an acrylic resin, an epoxy resin, a silicon resin, a urethane resin, a phenol resin, or the like can be used as a resin material, and as a conductivity imparting agent, gold (Au), silver A metal such as (Ag), copper (Cu), nickel (Ni) may be used. These electrical conductivity-imparting agents should be uniformly mixed and dispersed in a proportion of 60 to 90% by weight, preferably 80 to 85% by weight with respect to the resin material, so that the volume resistivity of the resin is 10 Ω · cm or less. Can do. For this reason, even a minute current can be passed, so that it is possible to reliably detect that the diamond blade 30 is in minute contact.
[0028]
As the glass having conductivity was included one or more of Li 2 O-Al 2 O 3 Fe 2 O 3 in -SiO 2 based glass as conductive agent, Ni 2 O 3, Cu 2 O It consists of crystallized glass having a surface resistance of less than 10 3 Ω, Na 2 O—WO 3 —P 2 O 5 glass or Na 2 O—WO 3 —B 2 O 5 glass, and Na 0.7 O Crystallized glass having a surface resistance of about 1Ω on which WO 3 crystals are deposited can be used.
[0029]
Moreover, since these sealing materials 5 can be made into a paste form, they can be appropriately impregnated in the pores by being applied to the porous ceramic plate 2 and then cured, and reliable adhesion due to the anchor effect. Strength is obtained and it can be hermetically sealed.
[0030]
If the thickness width of the sealing material 5 is too thin, it is difficult to reliably block the pores existing on the outer surface of the porous ceramic body 2, and there is a possibility that it cannot be hermetically sealed. The thickness width of the thinnest part of the sealing material 5 including the impregnated part is preferably 7 μm or more, more preferably 10 μm or more.
[0031]
In this embodiment, the suction surface has a circular outer shape, but may be appropriately designed according to the shape of the workpiece W. For example, an elliptical shape, a polygonal shape, or a star shape may be used. You can also use something like this.
[0032]
By the way, in the vacuum suction holding apparatus 1 shown in FIG. 1, although the side surface of the porous ceramic plate 2 and the peripheral part of the holding surface 6 were both hermetically sealed with the conductive sealing material 5, the present invention was shown. Then, it is sufficient that the sealing material 5 constituting at least the peripheral portion of the holding surface 6 has conductivity. For example, the resin or glass containing no conductivity-imparting agent on the side surface of the porous ceramic plate 2, or the same Other known resins and glasses may be applied, and the sealing material 5 constituting the peripheral portion of the holding surface 6 may be coated with the resin or glass containing a conductivity-imparting agent.
[0033]
Moreover, in the vacuum suction holding apparatus 1 shown in FIG. 1, although the example which provided the level | step-difference part 2b, 2d in the upper and lower one main surface of the porous ceramic board 2 was shown, like the vacuum suction holding apparatus 11 shown in FIG. The upper and lower main surfaces of the porous ceramic plate 12 are not provided with a step portion, and the sealing material 15 is sufficiently impregnated so as to fill pores in the peripheral portion of the porous ceramic plate 12 excluding the adsorption surface 13 and the suction surface 14. If it is such a structure, the holding surface 16 of the workpiece W can be further flattened, and the processing accuracy of the workpiece W can be further increased.
[0034]
(Example)
Hereinafter, an embodiment of the present invention will be described in detail by taking the vacuum suction holding apparatus 1 of FIG. 1 as an example.
[0035]
First, in order to form the porous ceramic plate 2 of the vacuum adsorption holding device 1, a range of 99% by weight of Al 2 O 3 powder as a starting material and a total of 1% by weight of SiO 2 and MgO as sintering aids. The mixture was added and mixed together with a binder and a solvent, and granulated by a spray dryer to produce granules. And after filling this granule in a metal mold | die and shape | molding in a disk shape, it takes out from a metal mold | die and bakes at the temperature of about 1700 degreeC, The porous which consists of an alumina ceramics with a porosity of 30% and an average pore diameter of 10 micrometers A ceramic plate 2 was formed.
[0036]
Next, the peripheral portion of the upper and lower main surfaces of the porous ceramic plate 2 is ground to form step portions 2b and 2d of about 200 μm, and the top surface of the upper central convex portion 2a is ground. The suction surface 3 was formed, and the top surface of the lower central projection 2c was polished to form the suction surface 4. Then, an acrylic resin slurry in which 80% by weight of silver (Ag) is mixed and dispersed as a conductivity imparting agent is applied to the side surfaces of the porous ceramic plate 2 and the step portions 2b and 2d on the upper and lower main surfaces, and then cured, The vacuum suction holding apparatus shown in FIG. 1 is formed by sealing hermetically with the conductive sealing material 5 and then polishing the upper main surface to form the holding surface 6 of the workpiece W. 1 was formed.
[0037]
Then, when the product having a size of 50 × 50 mm was cut out from an 8-inch silicon wafer using this vacuum suction holding device 1, all the products could be cut out, and the dimensions of these products were When measured, the dimensional error could be suppressed to ± 0.005 mm.
[0038]
【The invention's effect】
As described above, according to the vacuum adsorption holding device of the present invention , the sealing material is applied to the peripheral portion of the main surface of the porous ceramic plate, the side surface of the porous ceramic plate, and the peripheral portion of the other main surface. The top surface of the sealing material is flattened so as to be flush with the adsorption surface and hermetically sealed, and at least the sealing material applied to the peripheral portion of the main surface has conductivity, The workpiece can be held with high accuracy with a uniform suction force. In addition, in the cutting process of the workpiece by the diamond blade, if the diamond blade is brought into contact with the sealing material that forms the peripheral portion of the holding surface, conduction can be ensured, so that the minute contact has occurred. It can be detected electrically and the workpiece can be cut and separated without damaging the holding surface.
[0039]
In addition, since it is a monolithic structure made of a porous ceramic body, deformation of the holding surface due to processing heat generated during cutting can be greatly suppressed, and the number of parts in the structure can be reduced, and manufacturing is easy. Therefore, the manufacturing cost can be greatly reduced.
[0040]
Thus, if the vacuum suction holding apparatus of the present invention is used for dicing processing or slicing processing of a semiconductor wafer or a thin film magnetic head substrate, all products can be cut and separated according to predetermined dimensions, thereby increasing productivity. it can.
[Brief description of the drawings]
FIG. 1A is a perspective view showing an embodiment of a vacuum suction holding apparatus of the present invention, and FIG. 1B is a sectional view taken along line XX of FIG.
FIG. 2 is an enlarged cross-sectional view of a part A in FIG.
FIG. 3 is a cross-sectional view showing another embodiment of the vacuum suction holding apparatus of the present invention.
FIG. 4 is a cross-sectional view showing a conventional vacuum suction holding device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Vacuum adsorption holding device 2 ... Porous ceramic board 2a ... Convex part 2b ... Step part 2c ... Convex part 2d ... Step part 3 ... Adsorption surface 4 ... Suction surface 5 ... Sealing material 6 ... Holding surface W ... Workpiece

Claims (1)

多孔質セラミック板の主面を保持面とし、上記主面の周縁部に段差部を設けることにより形成される中央凸部表面を吸着面とするとともに、他方の主面の周縁部に段差部を設けることにより形成される中央凸部表面を吸引面とし、上記主面の周縁部、多孔質セラミック板の側面、他方の主面の周縁部封止材を塗着せしめて該封止材の頂面が吸着面と同一平面となるように平坦化して気密にシールするとともに、少なくとも上記主面の周縁部に塗着した封止材が導電性を有することを特徴とする真空吸着保持装置。The main surface of the porous ceramic plate is used as a holding surface, the central convex surface formed by providing a step portion on the peripheral portion of the main surface is used as an adsorption surface, and a step portion is provided on the peripheral portion of the other main surface. The surface of the central convex portion formed by providing the suction surface is a suction surface, and a sealing material is applied to the peripheral edge of the main surface, the side surface of the porous ceramic plate, and the peripheral edge of the other main surface . A vacuum suction holding apparatus characterized in that the top surface is flattened and hermetically sealed so as to be flush with the suction surface, and at least the sealing material applied to the peripheral portion of the main surface has conductivity.
JP17015397A 1997-06-26 1997-06-26 Vacuum suction holding device Expired - Fee Related JP3865872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17015397A JP3865872B2 (en) 1997-06-26 1997-06-26 Vacuum suction holding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17015397A JP3865872B2 (en) 1997-06-26 1997-06-26 Vacuum suction holding device

Publications (2)

Publication Number Publication Date
JPH1110472A JPH1110472A (en) 1999-01-19
JP3865872B2 true JP3865872B2 (en) 2007-01-10

Family

ID=15899675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17015397A Expired - Fee Related JP3865872B2 (en) 1997-06-26 1997-06-26 Vacuum suction holding device

Country Status (1)

Country Link
JP (1) JP3865872B2 (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11226833A (en) * 1998-02-13 1999-08-24 Ckd Corp Adsorptive plate for vacuum chuck and manufacture thereof
TW541586B (en) * 2001-05-25 2003-07-11 Tokyo Electron Ltd Substrate table, production method therefor and plasma treating device
WO2005092564A1 (en) * 2004-03-25 2005-10-06 Ibiden Co., Ltd. Vacuum chuck and suction board
JP4907965B2 (en) * 2005-11-25 2012-04-04 浜松ホトニクス株式会社 Laser processing method
JP2009253247A (en) * 2008-04-11 2009-10-29 Ariake Materials Co Ltd Suction body for vacuum suction apparatus, and vacuum suction apparatus
JP5297823B2 (en) * 2009-01-27 2013-09-25 日東電工株式会社 Adsorption fixing sheet and manufacturing method thereof
JP5388700B2 (en) * 2009-05-29 2014-01-15 京セラ株式会社 Vacuum suction member and method of manufacturing vacuum suction member
JP2011009423A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
JP2011009424A (en) * 2009-06-25 2011-01-13 Disco Abrasive Syst Ltd Holding table assembly and method of manufacturing holding table
JP5378089B2 (en) * 2009-07-16 2013-12-25 株式会社ディスコ Protective tape peeling device
JP4724770B2 (en) * 2009-10-02 2011-07-13 株式会社タンケンシールセーコウ Adsorbent
JP6078297B2 (en) * 2012-10-31 2017-02-08 株式会社ディスコ Processing equipment
JP6179030B2 (en) * 2012-12-28 2017-08-16 日本特殊陶業株式会社 Vacuum adsorption apparatus and method for manufacturing the same
JP6543525B2 (en) * 2015-07-10 2019-07-10 株式会社ディスコ Chuck table manufacturing method
JP2018041776A (en) * 2016-09-06 2018-03-15 株式会社ディスコ Chuck table and transportation pad
JP7444428B2 (en) * 2019-03-15 2024-03-06 株式会社ナノテム Pad units, vacuum chuck devices and machine tools
CN110052424A (en) * 2019-05-20 2019-07-26 苏州富强科技有限公司 A kind of synchronous transfer type detection and split charging production line
JP7436250B2 (en) * 2020-03-13 2024-02-21 株式会社ディスコ Holding table, processing equipment, and spinner cleaning unit

Also Published As

Publication number Publication date
JPH1110472A (en) 1999-01-19

Similar Documents

Publication Publication Date Title
JP3865872B2 (en) Vacuum suction holding device
JP3469999B2 (en) Adsorber manufacturing method
US7654887B2 (en) Vacuum chuck and suction board
JPH1022184A (en) Substrate bonding device
JP2004510334A5 (en)
JP3880977B2 (en) Vacuum chuck
CN107406335A (en) Ceramic substrate, layered product and SAW device
JP4718397B2 (en) Manufacturing method of vacuum suction device
JP2000126960A (en) Vacuum-sucking device of workpiece
JPH11309638A (en) Vacuum suction pad
US20080132153A1 (en) Cmp conditioner
EP3795288A1 (en) Chuck table and method of manufacturing chuck table
JP2003133401A (en) Electrostatic chuck
JPH068086A (en) Vacuum suction device
JP2001007053A (en) Dicing blade and manufacture of electronic component
TW201637782A (en) Grinding wheel
JP4545536B2 (en) Vacuum suction jig
JP3325441B2 (en) Vacuum suction device
KR20000053507A (en) Polishing method for wafer and holding plate
JPH11243135A (en) Vacuum chucking board
JPH10229115A (en) Vacuum chuck for wafer
JP2002151580A (en) Wafer holding jig and method for manufacturing the same
JPH0751221Y2 (en) Vacuum chuck
JP2005118979A (en) Grinding/polishing vacuum chuck and sucking plate
US10000423B1 (en) Direct metal bonding on carbon-covered ceramic contact projections of a ceramic carrier

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050420

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees