JP3865159B2 - Thermal mass flow meter - Google Patents

Thermal mass flow meter Download PDF

Info

Publication number
JP3865159B2
JP3865159B2 JP20562397A JP20562397A JP3865159B2 JP 3865159 B2 JP3865159 B2 JP 3865159B2 JP 20562397 A JP20562397 A JP 20562397A JP 20562397 A JP20562397 A JP 20562397A JP 3865159 B2 JP3865159 B2 JP 3865159B2
Authority
JP
Japan
Prior art keywords
sensor pipe
sensor
mounting base
pipe
thermal mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20562397A
Other languages
Japanese (ja)
Other versions
JPH1151728A (en
Inventor
田中  誠
泰一 徳久
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP20562397A priority Critical patent/JP3865159B2/en
Publication of JPH1151728A publication Critical patent/JPH1151728A/en
Application granted granted Critical
Publication of JP3865159B2 publication Critical patent/JP3865159B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、マスフローコントローラ等に使用される熱式質量流量計に関し、センサーパイプをその取付基台に固定する構造の改良に関するものである。
【0002】
【従来の技術】
従来、腐食性が非常に強いハロゲン系ガスに対しても耐食性に優れ、かつ計測できる最大流量レンジも大きく取れるようにした熱式質量流量計が特開平3−295418号に開示されている。このものは、センサーパイプをステンレス鋼よりも耐食性に富むと共にステンレス鋼よりも熱伝導率の高い金属材料、例えばニッケル材から構成するという手段をとったものであった。通常センサーパイプは略U字状に曲げられ、その両端は取付基台を貫通して固定する必要があるから、ここでは図4に示すようにステンレス材(SUS316L)の取付基台2とニッケル材のセンサーパイプ1の間にステンレス材(SUS316L)のパイプ9を嵌装し、これらニッケルセンサーパイプ1とステンレスパイプ9を電子ビーム溶接Yをした上でステンレスパイプ9とステンレス取付基台2をニッケルろう付けZをして固定するようにしていた。
【0003】
【発明が解決しようとする課題】
このようにセンサーパイプをニッケル材にすると耐食性の向上と使用流量範囲の拡大は望めるが、取付基台とセンサーパイプの固定が面倒でコスト的にも高いものとなっていた。すなわち、両者の固定構造としては耐食性と作業性及びコストの面から通常ニッケルろう材が使用されている。しかしこの場合ニッケルセンサーパイプと取付基台を直接ニッケルろう材を用いてろう付けしようとすると、ろう材中の不純物がセンサーパイプに溶け込んでその融点を下げセンサーパイプが溶けてしまう。よって仲介材としてステンレスパイプ9を必要とし、さらにこのステンレスパイプとセンサーパイプを電子ビーム溶接するようにしていた。以上のことから従来は、電子ビーム溶接Yとニッケルろう付けZの両方を必要としていた。
【0004】
本発明は上記問題を解決するもので、ニッケルセンサーパイプと取付基台の固定構造に関し、構造簡単でかつコスト的にも安価にできる熱式質量流量計を提供することを目的とする。
【0005】
【発明を解決するための手段】
本発明は、被測定流体が流れるセンサーパイプと、このセンサーパイプの上流側と下流側の外周にそれぞれ感熱抵抗線からなる上流側コイルと下流側コイルを巻いて設け、この上流側コイルと下流側コイルと他の抵抗とによって構成したセンサー回路と、前記センサーパイプを貫通させてこれを固定する取付基台とを備えた熱式質量流量計において、前記センサーパイプをニッケル材から形成すると共に、前記取付基台は、前記センサーパイプに比べ大きな熱容量を持つ取付基台であって、前記取付基台の前記センサーパイプを貫通させる貫通孔の周囲に環状凹溝を設け、前記取付基台の貫通孔下端に突出部を形成し、前記突出部端からセンサーパイプの先端部を突出させることなく同一面となすとともに、この突出部先端内周前記センサーパイプの先端部の外周とが、それぞれ溶融するようにバランスよく熱を伝え、溶接して固定した熱式質量流量計である。

【0006】
ここで取付基台はステンレス材から形成し、突出部の幅(厚さ)は電子ビーム溶接の溶接部の大きさにもよるがおよそセンサーパイプの肉厚の10倍までが望ましく、高さ(深さ)は溶接時の熱を適度に保留できる程の熱容量に設定することが好ましく、およそ0.2〜1.0mm程度が望ましい。
【0007】
ここで例えば、従来構造のままでニッケルセンサーパイプと取付基台を直接電子ビーム溶接しようとすると、先ず大きな平面の一部にセンサーパイプと取付基台の接合部があるだけなのでビームの狙いが定まらず溶接がしにくい。また、取付基台側はセンサーパイプに比べて非常に大きな熱容量を持つことになるので溶接時の熱バランスが取れずに良好な溶接ができない。という不都合が生じる。この点で突出部を設けたことによって、この突出部とセンサパイプの端面は電子ビーム溶接のいわば開先部となるが、これらが同一平面内にあるので溶接部のビーム位置が容易に定められ溶接が容易に且つきれいに仕上がる。また、溶接時の熱は熱伝導の良いセンサパイプ側に積極的に逃げるのであるが、突出部自体の熱容量は小さく伝導しやすいので突出部にもバランスよく熱が伝わり効率的に良好な溶接部を得ることができる。以上によってニッケルセンサーパイプと取付基台を直接固定することが出来るようになった。
【0008】
【発明の実施の形態】
以下、本発明の実施例を図面を参照して説明する。
図1は本発明の一実施例を示す熱式質量流量計のケースを取り除いた正面図である。図2はセンサーパイプと取付基台の固定部拡大断面図である。
【0009】
図1においてケース4はアルミ材からなり対称に形成されたケース4´(図示せず)と一対となっている。図1はケース4´を外した正面図であるが、ケース4,4´の合せ面3に形成した溝5内には、セラミック繊維をペーパ状に成形したセラミックペーパからなる断熱材6を装填して、センサーパイプ1を抱くように組立てられている。センサーパイプ1はここでは略U字状に折曲した細管で、センサーパイプの両端1a,1bが取付基台2を貫通して固定される。センサーパイプ1は、例えば外径0.6mm、内径0.52mmの細管をほぼ全量ニッケルによって構成したものを用いている。因みにその熱伝導率κはκ=94W/m/Kであり(理科年表60年度版による)、ステンレス鋼のκ=24.5W/m/K(同前)と比べて約3.8倍大きい。例えばマスフローコントローラでは、このセンサーパイプ1の両端1a,1bは図示しないメイン流路に連絡されており、このメイン流路にはセンサーパイプ1と並列にバイパス流路が形成されている。そしてセンサーパイプ1の流量Qsとバイパス流路の流量の比が一定になるように設定されており、こうしてセンサーパイプ1の流量Qsを検出することによりメイン流路の全流量が求められるようになっている。
【0010】
さて、センサーパイプ1の外周には一対のコイル7,8が巻回されており、ケース4,4´内の溝5に収納されている。コイル7,8は加熱要素であると同時に感温要素でもあり、白金、鉄−ニッケルなどを芯線とする極細のエナメル被覆金属線によって形成されている。センサーパイプ1の外面には、ポリイミド樹脂をトルエンで希釈した絶縁材が薄く塗布され、その上から上記ヒータ兼センサーコイル7,8をセンサーパイプ1の長さ方向に100〜200回程巻回し、更に上記絶縁材を塗布して絶縁被膜を形成して、コイル間及びコイルとセンサーパイプとの間の絶縁を図っている。そして、センサー回路については他の抵抗体と共にブリッジ回路を構成して定電流センサ(特公昭56-23094号)、定温度センサ(特公平4-49893号)あるいは定温度差センサ(特開平1-150817号)等の質量流量センサを適宜構成する。
【0011】
センサーパイプ1内に流す流体が例えば半導体製造分野に用いられるClF3の場合、高温になるほど腐食速度が増し、ステンレス鋼では120°C以下の温度でしか使用に耐えず、それ以上の温度では短時間で腐食が発生する。この点本実施例のセンサーパイプ1はステンレス鋼よりも耐食性に富むニッケル材で構成されているため、600°Cの高温状態まで十分使用に耐えることができる。このため特に腐食性の強い上記ハロゲンガス等の流体を高温域状態で多く流すときにも、長期寿命を確保することが出来るようになった。またニッケルセンサーパイプとしたことによって熱伝導が良いので検出できる比例流量域が拡大されて結果的に大流量まで制御ができるようになった。
【0012】
次に、図2に示す取付基台2はステンレス材(SUS316L)によって形成しており、上記したセンサーパイプ1はこの取付基台2に少なくとも固定する必要がある。そこで本実施例では取付基台2の貫通孔21の下端に突出部20を形成し、貫通孔下端面22にセンサーパイプ1の端面12を面一に合わせるようにした。そしてこの突出部20とセンサーパイプの端面12を直接電子ビーム溶接Xして両者を固定している。この例では取付基台2の下部に環状凹溝23を形成して突出部20を形成したが、これに限定されることはなく例えば図3のように取付基台の下面22から直接突出部20を形成するようにしてもよい。
【0013】
さて、図2の例の場合センサーパイプの肉厚は0.04mm、突出部の厚さWは0.3mm、深さhは0.5mmとした。また電子ビーム溶接の溶接部Xはおよそ0.3mm程度の幅に仕上がっている。このように突出部20を形成することによって電子ビーム溶接のビームの狙いが集中して行えミスのないきれいな溶接が出来る。また溶接時の熱はセンサーパイプ側から積極的に逃げるのであるが、このような突出部を部分的に設けたことによって適度な熱が突出部20にも伝導して結果として効率的な溶接が行える。またセンサーパイプの端面を突出部の端面に合わせる構造であるのでセンサーパイプの固定や位置合わせが容易となる。
【0014】
【発明の効果】
以上のように本発明によれば、ニッケルセンサーパイプと取付基台の固定が構造的に簡単でかつ直接的に行える。従って、耐食性と適用流量範囲が広く優れていると共に安価に製造できる熱式質量流量計となった。
【図面の簡単な説明】
【図1】 本発明の一実施例を示す熱式質量流量計の正面図である。
【図2】 センサーパイプと取付基台の固定部を示す拡大断面図である。
【図3】 センサーパイプと取付基台の固定部の他の実施例の拡大断面図である。
【図4】 従来のセンサーパイプと取付基台の固定部を示す断面図である。
【符号の説明】
1:センサーパイプ 2:取付基台
3:合わせ面 4:ケース
5:溝 6:断熱材
7:上流側コイル 8:下流側コイル
9:ステンレスパイプ 12:センサーパイプの下端面
20:突出部 21:貫通孔
22:貫通孔下端面 23:環状凹溝
X、Y:電子ビーム溶接 Z:ニッケルろう付け
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermal mass flow meter used for a mass flow controller or the like, and relates to an improvement in a structure for fixing a sensor pipe to its mounting base.
[0002]
[Prior art]
Conventionally, Japanese Patent Laid-Open No. 3-295418 discloses a thermal mass flowmeter that is excellent in corrosion resistance against a halogen gas having a very strong corrosive property and has a large maximum flow range that can be measured. This took the means that the sensor pipe is made of a metal material having a higher corrosion resistance than stainless steel and having a higher thermal conductivity than stainless steel, for example, a nickel material. Usually, the sensor pipe is bent in a substantially U shape, and both ends of the sensor pipe need to be fixed through the mounting base. Therefore, here, as shown in FIG. 4, the mounting base 2 made of stainless steel (SUS316L) and the nickel material A stainless steel (SUS316L) pipe 9 is fitted between the sensor pipe 1 and the nickel sensor pipe 1 and the stainless steel pipe 9 are subjected to electron beam welding Y, and then the stainless steel pipe 9 and the stainless steel mounting base 2 are nickel brazed. It was supposed to be fixed by attaching Z.
[0003]
[Problems to be solved by the invention]
As described above, if the sensor pipe is made of nickel, it can be expected to improve the corrosion resistance and expand the flow rate range, but fixing the mounting base and the sensor pipe is cumbersome and expensive. That is, a nickel brazing material is usually used as the fixing structure for both in terms of corrosion resistance, workability, and cost. However, in this case, if the nickel sensor pipe and the mounting base are to be brazed directly using a nickel brazing material, impurities in the brazing material melt into the sensor pipe, lowering its melting point, and the sensor pipe melts. Therefore, the stainless steel pipe 9 is required as an intermediary material, and the stainless steel pipe and the sensor pipe are further electron beam welded. From the above, conventionally, both electron beam welding Y and nickel brazing Z have been required.
[0004]
The present invention solves the above problems, and relates to a structure for fixing a nickel sensor pipe and a mounting base, and an object of the present invention is to provide a thermal mass flow meter that is simple in structure and inexpensive.
[0005]
[Means for Solving the Invention]
The present invention provides a sensor pipe through which a fluid to be measured flows, and an upstream coil and a downstream coil made of a thermal resistance wire are wound around the upstream and downstream outer circumferences of the sensor pipe, respectively. a sensor circuit configured by the coil and the other resistor, the thermal mass flow meter and a mounting base for fixing it by penetrating the sensor pipe, the sensor pipe and forming a nickel material, the The mounting base is a mounting base having a larger heat capacity than the sensor pipe, and an annular concave groove is provided around a through hole that penetrates the sensor pipe of the mounting base, and the through hole of the mounting base the protruding portion is formed at the lower end, with formed flush with without protruding the distal end portion of the sensor pipe from the protrusion end, and the projecting tip in peripheral, the sensor And the outer periphery of the distal end portion of Paipu, respectively convey a balanced heat to melt a thermal mass flow meter and fixed by welding.

[0006]
Here, the mounting base is made of stainless steel, and the width (thickness) of the protruding portion is preferably up to 10 times the thickness of the sensor pipe, although it depends on the size of the welded portion of electron beam welding. The depth) is preferably set to a heat capacity such that the heat during welding can be appropriately retained, and is preferably about 0.2 to 1.0 mm.
[0007]
Here, for example, if the nickel sensor pipe and the mounting base are to be directly electron beam welded with the conventional structure, the beam aim is not determined because there is only a joint between the sensor pipe and the mounting base on a part of the large plane. It is difficult to weld. Moreover, since the mounting base side has a very large heat capacity compared to the sensor pipe, the heat balance at the time of welding cannot be taken and good welding cannot be performed. The inconvenience arises. By providing the projection at this point, the projection and the end surface of the sensor pipe become a groove portion in the so-called electron beam welding, but since they are in the same plane, the beam position of the weld is easily determined. Welding is easy and clean. In addition, the heat during welding actively escapes to the sensor pipe side with good heat conduction, but the heat capacity of the protrusion itself is small and easy to conduct. Can be obtained. As a result, the nickel sensor pipe and the mounting base can be directly fixed.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a front view of a thermal mass flow meter with one embodiment of the present invention removed. FIG. 2 is an enlarged cross-sectional view of the fixing portion of the sensor pipe and the mounting base.
[0009]
In FIG. 1, the case 4 is paired with a case 4 ′ (not shown) made of an aluminum material and formed symmetrically. FIG. 1 is a front view with the case 4 'removed, but in the grooves 5 formed on the mating surfaces 3 of the cases 4 and 4', a heat insulating material 6 made of ceramic paper in which ceramic fibers are formed into a paper shape is loaded. The sensor pipe 1 is assembled. Here, the sensor pipe 1 is a thin tube bent in a substantially U shape, and both ends 1 a and 1 b of the sensor pipe are fixed through the mounting base 2. As the sensor pipe 1, for example, a thin tube having an outer diameter of 0.6 mm and an inner diameter of 0.52 mm made of nickel is used. Incidentally, the thermal conductivity κ is κ = 94W / m / K (according to the 60th edition of the science chronology), which is about 3.8 times larger than κ = 24.5W / m / K (same as above) for stainless steel. For example, in the mass flow controller, both ends 1a and 1b of the sensor pipe 1 are connected to a main flow path (not shown), and a bypass flow path is formed in parallel with the sensor pipe 1 in the main flow path. The ratio of the flow rate Qs of the sensor pipe 1 and the flow rate of the bypass flow path is set to be constant, and thus the total flow rate of the main flow path is obtained by detecting the flow rate Qs of the sensor pipe 1. ing.
[0010]
A pair of coils 7 and 8 are wound around the outer periphery of the sensor pipe 1 and are accommodated in the grooves 5 in the cases 4 and 4 '. The coils 7 and 8 are not only a heating element but also a temperature-sensitive element, and are formed by an extremely fine enamel-coated metal wire having platinum, iron-nickel or the like as a core wire. An insulating material obtained by diluting polyimide resin with toluene is thinly applied to the outer surface of the sensor pipe 1, and the heater and sensor coils 7 and 8 are wound about 100 to 200 times in the length direction of the sensor pipe 1. The insulating material is applied to form an insulating film to insulate the coil and between the coil and the sensor pipe. As for the sensor circuit, a bridge circuit is formed together with other resistors, and a constant current sensor (Japanese Patent Publication No. 56-23094), a constant temperature sensor (Japanese Patent Publication No. 4-49893) or a constant temperature difference sensor (Japanese Patent Laid-Open No. 150817) or the like is appropriately configured.
[0011]
For example, when the fluid flowing in the sensor pipe 1 is ClF3, which is used in the semiconductor manufacturing field, the corrosion rate increases as the temperature increases, and stainless steel can only be used at temperatures below 120 ° C, and at higher temperatures it is short. Corrosion occurs. In this respect, the sensor pipe 1 of the present embodiment is made of a nickel material having a higher corrosion resistance than stainless steel, and therefore can sufficiently withstand use up to a high temperature state of 600 ° C. For this reason, a long life can be secured even when a large amount of fluid such as the halogen gas, which is particularly corrosive, flows in a high temperature range. In addition, the nickel sensor pipe has good heat conduction, so the proportional flow rate range that can be detected is expanded, and as a result, control up to a large flow rate is possible.
[0012]
Next, the mounting base 2 shown in FIG. 2 is made of stainless steel (SUS316L), and the sensor pipe 1 described above needs to be fixed to the mounting base 2 at least. Therefore, in this embodiment, the protrusion 20 is formed at the lower end of the through hole 21 of the mounting base 2, and the end surface 12 of the sensor pipe 1 is flush with the through hole lower end surface 22. The protrusion 20 and the end surface 12 of the sensor pipe are directly electron beam welded X to fix them. In this example, the annular groove 23 is formed in the lower portion of the mounting base 2 to form the protruding portion 20, but the present invention is not limited to this. For example, as shown in FIG. 20 may be formed.
[0013]
In the case of the example of FIG. 2, the thickness of the sensor pipe is 0.04 mm, the thickness W of the protrusion is 0.3 mm, and the depth h is 0.5 mm. Further, the welded portion X of electron beam welding is finished to a width of about 0.3 mm. By forming the projecting portion 20 in this way, the aim of the beam of electron beam welding can be concentrated and clean welding with no mistakes can be performed. In addition, the heat at the time of welding actively escapes from the sensor pipe side, but by providing such a protrusion partly, moderate heat is conducted also to the protrusion part 20 and as a result, efficient welding is achieved. Yes. In addition, since the sensor pipe has an end face that matches the end face of the protrusion, the sensor pipe can be easily fixed and positioned.
[0014]
【The invention's effect】
As described above, according to the present invention, the nickel sensor pipe and the mounting base can be fixed structurally easily and directly. Accordingly, the thermal mass flowmeter has a wide and excellent corrosion resistance and applicable flow range and can be manufactured at low cost.
[Brief description of the drawings]
FIG. 1 is a front view of a thermal mass flow meter showing an embodiment of the present invention.
FIG. 2 is an enlarged cross-sectional view showing a fixing portion between a sensor pipe and a mounting base.
FIG. 3 is an enlarged cross-sectional view of another embodiment of the sensor pipe and the mounting base fixing portion.
FIG. 4 is a cross-sectional view showing a conventional sensor pipe and a fixing portion of a mounting base.
[Explanation of symbols]
1: sensor pipe 2: mounting base 3: mating surface 4: case 5: groove 6: heat insulating material 7: upstream coil 8: downstream coil 9: stainless steel pipe 12: lower end surface 20 of sensor pipe 20: protrusion 21: Through hole 22: Through hole lower end surface 23: Annular groove X, Y: Electron beam welding Z: Nickel brazing

Claims (2)

被測定流体が流れるセンサーパイプと、このセンサーパイプの上流側と下流側の外周にそれぞれ感熱抵抗線からなる上流側コイルと下流側コイルを巻いて設け、この上流側コイルと下流側コイルと他の抵抗とによって構成したセンサー回路と、前記センサーパイプを貫通させてこれを固定する取付基台とを備えた熱式質量流量計において、前記センサーパイプをニッケル材から形成すると共に、前記取付基台は、前記センサーパイプに比べ大きな熱容量を持つ取付基台であって、前記取付基台の前記センサーパイプを貫通させる貫通孔の周囲に環状凹溝を設け、前記取付基台の貫通孔下端に突出部を形成し、前記突出部端からセンサーパイプの先端部を突出させることなく同一面となすとともに、この突出部先端内周前記センサーパイプの先端部の外周とが、それぞれ溶融するようにバランスよく熱を伝え、溶接して固定したことを特徴とする熱式質量流量計。A sensor pipe through which the fluid to be measured flows, and an upstream coil and a downstream coil made of a thermal resistance wire are wound around the upstream and downstream peripheries of the sensor pipe, respectively. In a thermal mass flowmeter provided with a sensor circuit constituted by a resistor and an attachment base that penetrates and fixes the sensor pipe, the sensor pipe is formed from a nickel material, and the attachment base is A mounting base having a larger heat capacity than the sensor pipe, wherein an annular groove is provided around a through hole through which the sensor pipe of the mounting base penetrates, and a protruding portion is formed at a lower end of the through hole of the mounting base. forming a said with the protrusion end formed flush with without protruding the distal end portion of the sensor pipe, and the projecting tip in peripheral, the sensor pipe And the outer periphery of the tip, respectively convey a balanced heat to melt, thermal mass flow meter, characterized in that fixed by welding. 前記突出部と前記センサーパイプの先端部を電子ビーム溶接して固定したことを特徴とする請求項1記載の熱式質量流量計。  The thermal mass flowmeter according to claim 1, wherein the protrusion and the tip of the sensor pipe are fixed by electron beam welding.
JP20562397A 1997-07-31 1997-07-31 Thermal mass flow meter Expired - Fee Related JP3865159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20562397A JP3865159B2 (en) 1997-07-31 1997-07-31 Thermal mass flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20562397A JP3865159B2 (en) 1997-07-31 1997-07-31 Thermal mass flow meter

Publications (2)

Publication Number Publication Date
JPH1151728A JPH1151728A (en) 1999-02-26
JP3865159B2 true JP3865159B2 (en) 2007-01-10

Family

ID=16509959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20562397A Expired - Fee Related JP3865159B2 (en) 1997-07-31 1997-07-31 Thermal mass flow meter

Country Status (1)

Country Link
JP (1) JP3865159B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1014797C2 (en) * 2000-03-30 2001-10-02 Berkin Bv Mass flow meter.
JP5548355B2 (en) * 2008-10-30 2014-07-16 日立オートモティブシステムズ株式会社 Thermal gas flow meter
JP5398510B2 (en) * 2009-12-18 2014-01-29 株式会社東芝 Impregnated cathode structure

Also Published As

Publication number Publication date
JPH1151728A (en) 1999-02-26

Similar Documents

Publication Publication Date Title
US11614353B2 (en) Thermal, flow measuring device and arrangement with a tube or pipe and the thermal, flow measuring device
JPH0495820A (en) Thermal mass flowmeter
US5763774A (en) Fluid flow meter with reduced orientation sensitivity
JP7458409B2 (en) Improved temperature sensor for a gas burner and assembly comprising the temperature sensor and burner
JP3865159B2 (en) Thermal mass flow meter
US20200191629A1 (en) Method for producing a sensing element for a thermal flow meter, sensing element and flow meter
US7469583B2 (en) Flow sensor
JPH04366727A (en) Flow rate sensor
JPH04254716A (en) Air-flow detecting element
JP2670882B2 (en) Thermal mass flow sensor
CN108139253B (en) Thermal flowmeter and method for manufacturing same
JPH08189847A (en) Thermal type mass flow-meter
US10612950B2 (en) Thermal, flow measuring device and arrangement with a tube or pipe and the thermal, flow measuring device
US10794743B2 (en) Thermal, flow measuring device and a method for manufacturing a thermal, flow measuring device
JP5292201B2 (en) RTD
JPS6115380A (en) Thermocouple
US20240271975A1 (en) Thermal flowmeter and method for operating a thermal flowmeter
JP2003254807A (en) Thermal sensor, installing method thereof, and mass flowmeter
JPH08105776A (en) Mass flow rate sensor
JP3716249B2 (en) Heating device and manufacturing method thereof
JPH0765916B2 (en) Insert type thermal flow meter
JP5492802B2 (en) Vortex flow meter and method for manufacturing the same
JP2000019030A (en) Heat flux meter
JP2001212666A (en) Electric soldering iron with thermo couple
CN117480359A (en) Thermal flowmeter and method for operating a thermal flowmeter

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060915

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060928

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees