JP3863854B2 - Separable heat pump type hot water supply system - Google Patents

Separable heat pump type hot water supply system Download PDF

Info

Publication number
JP3863854B2
JP3863854B2 JP2003044911A JP2003044911A JP3863854B2 JP 3863854 B2 JP3863854 B2 JP 3863854B2 JP 2003044911 A JP2003044911 A JP 2003044911A JP 2003044911 A JP2003044911 A JP 2003044911A JP 3863854 B2 JP3863854 B2 JP 3863854B2
Authority
JP
Japan
Prior art keywords
hot water
refrigerant
heat
water supply
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044911A
Other languages
Japanese (ja)
Other versions
JP2004251596A (en
Inventor
哲也 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003044911A priority Critical patent/JP3863854B2/en
Publication of JP2004251596A publication Critical patent/JP2004251596A/en
Application granted granted Critical
Publication of JP3863854B2 publication Critical patent/JP3863854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、圧縮機の吐出ガス冷媒から放出される熱を利用して温水を生成するヒートポンプ式給湯装置、特に冷媒回路を構成する機器を二つのユニットに分離して収納した分離型ヒートポンプ式給湯装置に関する。
【0002】
【従来の技術】
近年給湯装置として、エネルギー効率の向上、火災防止の観点からヒートポンプ式給湯装置が注目されている。また、ヒートポンプ式給湯装置に用いられる冷媒として、HCFC冷媒はオゾン係数が大きく全廃方向で検討が進められており、その代替冷媒としてHFC系冷媒が採り上げられているが、HFC系冷媒は温暖化指数が大きいという問題を抱えている。このようなことから、ヒートポンプ式給湯装置に用いられる冷媒としては、炭酸ガス(CO2)が注目されている。
【0003】
炭酸ガス冷媒を使用したヒートポンプ式給湯装置としては、例えば特許文献1に記載されたものがある。このヒートポンプ式給湯装置では、圧縮機、給湯用熱交換器(本発明にいう加熱用熱交換器)、膨張弁、室外側熱交換器、アキュムレータを順次冷媒配管により接続し、冷媒として炭酸ガスを用いてヒートポンプサイクルが構成されている。そして、給湯用水は給湯用熱交換器で圧縮機からの吐出ガスにより加熱され、加熱された給湯用水は貯湯槽に蓄えられている。また、このヒートポンプ式給湯装置は、冷媒回路が一体的に形成されたものであって、上記ヒートポンプサイクルを構成する室外側熱交換器と給湯用熱交換器(本発明にいう加熱用熱交換器)とを別ユニットに収納する構成ではなかった。
【0004】
【特許文献1】
特開2001−82803号公報
【0005】
【発明が解決しようとする課題】
したがって、この特許文献1記載のヒートポンプ式給湯装置のように、冷媒回路を一つのユニットに収納する場合は、全ての機器を一つのユニットに収納するか、または、貯湯槽を別ユニットに収納するかになる。
しかしながら、前者の場合は、ヒートポンプ式給湯装置が大型化し、搬入時及び据付時の取扱いが不便となる。また、外気と熱交換させる室外側熱交換器に適した場所にヒートポンプ式給湯装置を設置する場合には、貯湯槽が屋内の給湯用設備から遠くなり給湯回路が長くなることにより熱ロスが多くなるという問題がある。また、屋内給湯設備に近い場所にヒートポンプ式給湯装置を設置する場合には、外気を給排気するのに適した場所を選択することが容易でないという問題がある。
また、後者の場合は、給湯用熱交換器と貯湯槽との距離が長くなり、この間を接続する給湯回路が長くなることにより熱ロスが多くなるという問題がある。
【0006】
本発明は、このような従来の技術に存在する問題点に着目してなされたものであって、給湯回路からの熱ロスを少なくし、更にヒートポンプサイクルの熱効率を向上させた分離型のヒートポンプ式給湯装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明に係る分離型ヒートポンプ式給湯装置は、圧縮機、圧縮機の吐出ガス冷媒を水で冷却する加熱用熱交換器、膨張装置、外気を熱源媒体とする室外側熱交換器を接続して密閉回路を形成し、この密閉回路に炭酸ガス冷媒を充填した冷媒回路と、加熱用熱交換器、加熱用熱交換器で加熱された温水を貯湯する貯湯槽、及び加熱用熱交換器と貯湯槽との間で給湯用の水を循環させるための循環ポンプを接続して形成した給湯回路とを備えたヒートポンプ式給湯装置であって、少なくとも前記加熱用熱交換器を含む給湯回路及び圧縮機を備えた本体と、少なくとも室外側熱交換器及び膨張装置を備えた室外機とに分離され、本体と室外機とを連絡配管で接続するように構成されてなり、更に、連絡配管部分に本体から室外機へ流通する冷媒と室外機から本体へ流通する冷媒とを熱交換させる熱交換部が設けられていることを特徴とするものである。
【0008】
このようにすると、ヒートポンプ式給湯装置が、少なくとも加熱用熱交換器を含む給湯回路及び圧縮機を備えた本体と少なくとも室外側熱交換器及び膨張装置を備えた室外機との二つのユニットに分割されるので、搬入時及び据付時の取扱いが容易になる。
また、この発明に係るヒートポンプ式給湯装置では、加熱用熱交換器と貯湯槽とを本体内に収納しているので、加熱用熱交換器を貯湯槽の近傍に設置することが可能となり、両者を接続する給湯回路からの熱ロスを減少させることができる。また、本体を屋内の給湯設備に近い場所を選定して設置することができるので、本体と屋内給湯設備との間を接続する給湯回路からの熱ロスも少なくすることができる。また、室外機を、外気の取入れ及び排出に都合の良い場所を選定して設置することができる。
また、この発明に係るヒートポンプ式給湯装置では、本体と室外機を接続する連絡配管のうち、本体から室外機へ冷媒を流す連絡配管が加熱用熱交換器と膨張装置を連絡する高圧側回路となり、室外機から本体へ冷媒を流す連絡配管が圧縮機吸入側の低圧側回路となる。したがって、これら連絡配管を流通する冷媒を熱交換させると、加熱用熱交換器出口の高圧ガス冷媒を冷却するとともに蒸発器として作用する室外側熱交換器出口の冷媒を加熱させる所謂内部熱交換器として作用し、冷凍サイクルの熱効率を向上させることができる。因みに、室外側熱交換器のみを室外機に収納し、膨張装置を本体に収納するような配置にすると連絡配管は全て高圧側回路となるので、上記のような内部熱交換器を形成することができない。また、室外側熱交換器及び圧縮機を室外機に収納し、膨張装置を本体に収納した場合は、一部の連絡配管は圧縮機の吐出ガスを流通させる高圧側回路となり、他の連絡配管は膨張装置を出た後の冷媒、すなわち蒸発器として作用する室外側熱交換器入口側の冷媒となるのでこの両者を熱交換させても熱効率が低下するだけで意味がない。また、この熱交換部については、連絡配管部分に設けられるので特別のスペースを必要としないという利点がある。
【0009】
上記分離型ヒートポンプ式給湯装置において、前記熱交換部は、本体から室外機への冷媒を流通させる連絡配管と室外機から本体へ冷媒を流通させる連絡配管とを接触するように添わせて配置するように構成してもよい。このように構成すると、熱交換部分を簡単に形成することができる。
【0010】
また、前記熱交換部は、連絡配管を挿入して装着する孔を備えた伝熱性材料からなる押出成形品に対し、連絡配管を前記孔に挿入して装着させてなる構成としてもよい。このように構成すると、両連絡配管の熱交換量をより多くすることができ、ヒートポンプの熱効率を向上させることができる。
【0011】
また、前記熱交換部は、室外機から本体へ冷媒を流す冷媒通路と本体から室外機へ冷媒を流す冷媒通路とが押出成形により一体成型された成形品からなるものとしてもよい。このように構成すると、両連絡配管の熱交換量をさらに多くすることができ、ヒートポンプの熱効率を向上させることができる。
【0012】
【発明の実施の形態】
(実施の形態1)
以下、本発明の実施の形態1を、図1を参照しながら詳細に説明する。なお、図1は実施の形態1に係るヒートポンプ式給湯装置の回路図である。
【0013】
図1に示すように、実施の形態1に係るヒートポンプ式給湯装置は、本体1と室外機2とからなる。
【0014】
本体1は、圧縮機17の吐出ガス冷媒を給湯用の水で冷却して温水を得る加熱用熱交換器11と、加熱用熱交換器11で加熱された温水を貯湯する貯湯槽12、加熱用熱交換器11で加熱された温水を貯湯槽12に送り貯湯槽12からの水を加熱用熱交換器11へ送る循環ポンプ14が接続された給湯回路13とを備えている。そして、給湯回路13からの放熱ロスを少なくするために、貯湯槽12と加熱用熱交換器11とは近傍に設置され、給湯回路13が短くなるように配慮されている。なお、貯湯槽12の上部には温水を供給する給湯管15が接続されており、貯湯槽12の下部には、貯湯槽12に水を供給するための給水管16が接続されている。
【0015】
本体1には、本ヒートポンプ式給湯装置の冷媒回路の一部が収納されている。この冷媒回路の一部は、閉鎖弁33、圧縮機17、加熱用熱交換器11及び閉鎖弁34を順次接続したものである。なお、閉鎖弁33,34は、それぞれ配管接手33a、34aを備えている。この配管接手33a、34aには、連絡配管31、32を接続できるように本体1の外部に露出して取り付けられている。また、工場出荷時には、閉鎖弁33、34を閉鎖した状態とし、この冷媒回路の中に所定量の冷媒が封入されている。
【0016】
圧縮機17の上部には、冷凍機油タンク19が設置されている。この冷凍機油タンク19の上部及び下部が配管により圧縮機17内の冷凍機油貯留空間に接続されている。なお、冷凍機油タンク19の下部と圧縮機17とを接続する配管には手動弁、電磁弁などの開閉弁20が接続されている。
【0017】
室外機2には、室外側熱交換器21、室外側熱交換器21に冷媒の蒸発熱源としての外気を循環させるための室外ファン22及び膨張装置18が収納されている。また、膨張装置の入口側に配管接手32aが接続され、室外側熱交換器21の出口側に配管接手31aが接続されている。配管接手31a、32aは、連絡配管31、32を接続するためのもので、室外機2の外部に露出するように取り付けられている。そして、工場出荷の段階ではこの室外機2の冷媒回路中には、現地据付までの間に空気が浸入しないように窒素ガスが封入されている。
【0018】
なお、室外機2は、連絡配管31を配管接手31aと閉鎖弁33の配管接手33aとの間に接続するとともに、連絡配管32を配管接手32aと閉鎖弁34の配管接手34aとの間に接続することにより本体1に接続される。なお、連絡配管31、32の接続に際しては、本体1内に充填された冷媒により室外側熱交換器21及び連絡配管31、32がエアーパージされる。
【0019】
また、連絡配管31、32の中間部には、本体1から室外機2へ流通する高圧ガス冷媒と、室外機2から本体1へ流通する低圧ガス冷媒とを熱交換させる熱交換部40が設けられている。
この実施の形態1における熱交換部40は、図2に示すように、2本の連絡配管を密接させ、この2本の連絡配管31、32を銅板などの熱伝導性板41を巻き付け、その周りを断熱材42で被覆して構成している。この構成により、2本の連絡配管31、32は直接的に熱交換可能であり、また、熱伝導性板41を介し熱交換される。本体1及び室外機2は、このように、熱交換部40を挟んで連絡配管31、32を接続することにより、圧縮機17、加熱用熱交換器11、膨張装置18、室外側熱交換器21を順次接続する密閉回路からなる冷媒回路が形成される。
【0020】
本体1の冷媒回路に充填される冷媒は炭酸ガス冷媒(CO2)である。炭酸ガス冷媒は次のような理由から選択されている。従来のフロン冷媒に代わる自然冷媒として、ハイドロカーボン(HC:プロパンやイソブタンなど)、アンモニア、空気、炭酸ガス(CO2)等が挙げられる。しかしながら、冷媒特性として、ハイドロカーボンとアンモニアはエネルギー効率が良いという反面可燃性や毒性の問題があり、空気は超低温域以外でエネルギー効率が劣るなどといった問題がある。これに対し炭酸ガスは、可燃性や毒性がなく安全であり、また、冷媒として用いた場合、高温の圧縮機吐出ガス冷媒を得ることができるという特徴を備えている。このようなことから、炭酸ガス冷媒は、地球の環境破壊問題を回避し得る冷媒として、特に、給湯用ヒートポンプ式冷凍装置の冷媒として適している。
【0021】
冷凍機油タンク19の下部と圧縮機17とを接続する配管に設けられた開閉弁20は、連絡配管31、32が本体1と室外機2との間に接続された後開放される。開閉弁20を開放することにより、冷凍機油タンク19に貯留した冷凍機油を自然落下させて圧縮機17内の冷凍機油貯留スペースに移送する。これにより所定量の冷凍機油が圧縮機17の冷凍機油貯留スペースに移送され、圧縮機17内に適切な量の冷凍機油が貯留される。
【0022】
次に、上記構成のヒートポンプ式給湯装置の給湯運転は次のように行われる。このヒートポンプ式給湯装置の給湯運転では、圧縮機17が駆動され、冷媒が図1における実線矢視の方向に循環する。このヒートポンプ式給湯装置における冷凍サイクルは、炭酸ガス冷媒の臨界点が低いため、超臨界冷凍サイクルを形成する。すなわち、圧縮機17から吐出された高温高圧のガス冷媒は、加熱用熱交換器11で給湯用の水と熱交換して冷却され、水は加熱され温水となる。このとき高圧圧力が臨界点以上の圧力であるため、冷媒は加熱用熱交換器11では凝縮しない。加熱用熱交換器11で冷却された高圧ガスは、熱交換部40で圧縮機17に吸入される低圧ガス冷媒により更に冷却される。冷却された高圧ガス冷媒は、膨張装置18で減圧され低温低圧の気液2相流となって、室外機2の室外側熱交換器21に流れる。低温低圧の気液2相流冷媒は、室外側熱交換器21で外気と熱交換し蒸発する。室外側熱交換器21を流出した低圧冷媒は、熱交換部40で加熱用熱交換器11を流出した冷媒から熱を奪って更に加熱され、圧縮機17に戻る。したがって、この冷凍サイクルは、熱交換部における熱交換作用により、低圧側の冷媒に吸収される熱量が大きくなり、冷凍サイクルの熱効率が大きくなる。
【0023】
また、上記ヒートポンプ式給湯装置により得られる温水は、圧縮機17の吐出ガス冷媒がフロンガス冷媒使用のヒートポンプ式給湯装置の場合に比し高温高圧となるため、フロンガス冷媒使用のヒートポンプ式給湯装置の場合に比し高温となる。
【0024】
一方、貯湯槽12は、給水管16から水が供給され常に満水の状態になるように形成されている。そして、屋内の給湯設備に温水を供給するときは、循環ポンプ14が駆動される。これにより、貯湯槽12内の下部の水が加熱用熱交換器11に供給される。加熱用熱交換器11で加熱された温水は貯湯槽12の上部に戻る。このような循環が繰り返されることにより貯湯槽12内の上部に温水が供給される。また、温水と水とは混ざり合わないので、時間の経過とともに上層の温水量が増加し、下層の低温水の量が少なくなって、最終的には貯湯槽12が温水で満たされるようになる。なお、浴槽、洗面室等の給湯設備への温水の供給は、貯湯槽12の上部に接続された給湯管15により貯湯槽12の上部に貯湯された温水が供給される。
【0025】
本実施の形態1は上記のように構成されているので、次の効果を奏することができる。
(1) このヒートポンプ式給湯装置は、本体1と室外機2のユニットに分割されているので、搬入時及び据付時の取扱いが容易になる。
【0026】
(2) 本体1内において、加熱用熱交換器11と貯湯槽12とが近傍に設置されているため、両者を接続する給湯回路からの熱ロスを減少させることができる。また、本体1を屋内の給湯設備に近い場所を選定して設置することができるので、本体1と屋内給湯設備との間を接続する給湯回路からの熱ロスも少なくすることができる。また、室外機2を、外気の取入れ及び排出に都合の良い場所を選定して設置することができる。
【0027】
(3) 本体1と室外機2を接続する2本の連絡配管31、32のうち、本体1から室外機2へ冷媒を流す連絡配管32が加熱用熱交換器11と膨張装置18を連絡する高圧側回路となり、室外機2から本体1へ冷媒を流す連絡配管31が圧縮機吸入側の低圧側回路となる。したがって、これら連絡配管31、32を流通する冷媒を熱交換させる熱交換部40において、加熱用熱交換器11出口の高圧ガス冷媒から蒸発器として作用する室外側熱交換器21出口の冷媒へ熱が移動され、この熱交換部40が所謂内部熱交換器として作用し、冷凍サイクルの熱効率を向上させることができる。
【0028】
(4) また、この実施の形態1における熱交換部40は、連絡配管31、32を接触させて両者を添わせて配置した構成であるので、簡単な作業で、かつ、現地で熱交換部を形成することができる。また、両配管31、32を沿わせた状態で固定する部材は、銅板などの熱伝導性板41を巻き付けているだけであるので、嵩張らず熱交換も促進することができる。
【0029】
(実施の形態2)
次に実施の形態2について、図3に基づき説明する。なお、実施の形態2は、実施の形態1における熱交換部40を変形したものであって、熱交換部以外は実施の形態1と同一である。以下において、実施の形態2の熱交換部50のみ説明する。
【0030】
実施の形態2における熱交換部50は、連絡配管31、32を挿入して装着する孔52、53を備えた伝熱性材料からなる押出成形品51に、連絡配管31、32を挿入して装着したものである。なお、図3では省略されているが、この成形品51の外周には実施の形態1の場合と同様断熱材が被せられて使用される。
このような成形品により両連絡配管31、32を固定すると、本体1から室外機2へ流通する冷媒と室外機2から本体1へ流通する冷媒との熱交換量をより多くすることができる。
【0031】
(実施の形態3)
次に、実施の形態3について、図4に基づき説明する。なお、実施の形態3は、実施の形態1における熱交換部40を変形したものであって、熱交換部以外は実施の形態1と同一である。以下において、実施の形態3の熱交換部60のみ説明する。
【0032】
実施の形態3における熱交換部60は、連絡配管31、32の途中に、室外機2から本体1へ冷媒を流す冷媒通路61と、本体1から室外機2へ冷媒を流す冷媒通路62とが上下2段に一体成型された押出成形品63からなる。この熱交換部60は、アルミニウム等の押し代成形が可能で熱伝導性の優れた部材を材料とする。冷媒通路61,62は、長手方向に複数形成されたマイクロチャネル(小流路)である。また、なお、図4では省略されているが、この成形品63の外周には実施の形態1の場合と同様断熱材が被せられて使用される。
このように構成すると、本体1から室外機2へ流通する冷媒と室外機2から本体1へ流通する冷媒との熱交換量をさらに多くすることができる。
【0033】
【発明の効果】
本発明に係るヒートポンプ式給湯装置は、本体と室外機のユニットに分割されているので、搬入時及び据付時の取扱いが容易になる。また、本体内において、加熱用熱交換器を貯湯槽の近傍に設置することが可能となり、両者を接続する給湯回路からの熱ロスを減少させることができる。また、本体を屋内の給湯設備に近い場所を選定して設置することができるので、本体と屋内給湯設備との間を接続する給湯回路からの熱ロスも少なくすることができる。また、室外機を外気の取入れ及び排出に都合の良い場所を選定して設置することができる。また、本体から室外機へ冷媒を流す連絡配管が加熱用熱交換器と膨張装置を連絡する高圧側回路となり、室外機から本体へ冷媒を流す連絡配管が圧縮機吸入側の低圧側回路となる、更に、両連絡配管を流れる冷媒の間で熱交換させているので、冷凍サイクルの熱効率を向上させることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る回路図である。
【図2】本発明の実施の形態1に係る熱交換部の断面図である。
【図3】本発明の実施の形態2に係る熱交換部の断面図である。
【図4】本発明の実施の形態3に係る熱交換部の断面図である。
【符号の説明】
1 本体
2 室外機
11 加熱用熱交換器
12 貯湯槽
13 給湯回路
14 循環ポンプ
17 圧縮機
18 膨張装置
21 室外側熱交換器
31 連絡配管
32 連絡配管
40 熱交換部
41 熱伝導性板
42 断熱材
50 熱交換部
51 成形品
52 孔
53 孔
60 熱交換部
61 冷媒通路
62 冷媒通路
63 成形品
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump type hot water supply apparatus that generates hot water using heat released from refrigerant discharged from a compressor, and in particular, a separate type heat pump type hot water supply in which devices constituting a refrigerant circuit are stored separately in two units. Relates to the device.
[0002]
[Prior art]
In recent years, heat pump hot water supply devices have attracted attention as hot water supply devices from the viewpoint of improving energy efficiency and preventing fire. In addition, HCFC refrigerant has a large ozone coefficient as a refrigerant used in heat pump hot water supply devices, and studies are being made in the direction of total abolition. HFC refrigerants have been taken up as alternative refrigerants, but HFC refrigerants have a warming index. Have a big problem. For these reasons, carbon dioxide (CO 2 ) has attracted attention as a refrigerant used in heat pump hot water supply devices.
[0003]
An example of a heat pump type hot water supply apparatus using a carbon dioxide refrigerant is described in Patent Document 1. In this heat pump type hot water supply apparatus, a compressor, a hot water supply heat exchanger (heating heat exchanger referred to in the present invention), an expansion valve, an outdoor heat exchanger, and an accumulator are sequentially connected by a refrigerant pipe, and carbon dioxide gas is used as a refrigerant. The heat pump cycle is configured by using. The hot water supply water is heated by the hot water supply heat exchanger by the discharge gas from the compressor, and the heated hot water supply water is stored in the hot water storage tank. Further, this heat pump type hot water supply apparatus has an integrally formed refrigerant circuit, and includes an outdoor heat exchanger and a hot water supply heat exchanger (heating heat exchanger referred to in the present invention) constituting the heat pump cycle. ) In a separate unit.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-82803
[Problems to be solved by the invention]
Therefore, when the refrigerant circuit is stored in one unit as in the heat pump hot water supply device described in Patent Document 1, all the devices are stored in one unit, or the hot water storage tank is stored in another unit. It becomes.
However, in the former case, the heat pump type hot water supply apparatus becomes large, and handling during loading and installation becomes inconvenient. In addition, when installing a heat pump type hot water supply device in a location suitable for an outdoor heat exchanger that exchanges heat with the outside air, heat loss increases because the hot water storage tank is far away from the indoor hot water supply equipment and the hot water supply circuit is lengthened. There is a problem of becoming. Further, when the heat pump hot water supply apparatus is installed in a place close to the indoor hot water supply facility, there is a problem that it is not easy to select a place suitable for supplying and exhausting outside air.
In the latter case, the distance between the hot water supply heat exchanger and the hot water storage tank becomes long, and there is a problem that heat loss increases due to the length of the hot water supply circuit connecting between them.
[0006]
The present invention has been made paying attention to such problems existing in the prior art, and reduces heat loss from the hot water supply circuit and further improves the thermal efficiency of the heat pump cycle. The object is to provide a water heater.
[0007]
[Means for Solving the Problems]
The separation type heat pump type hot water supply apparatus according to the present invention includes a compressor, a heat exchanger for heating that cools a discharge gas refrigerant of the compressor with water, an expansion device, and an outdoor heat exchanger that uses outside air as a heat source medium. A refrigerant circuit in which a closed circuit is formed and the carbon dioxide refrigerant is filled in the closed circuit, a heating heat exchanger, a hot water storage tank for storing hot water heated by the heating heat exchanger, and a heating heat exchanger and hot water storage A heat pump type hot water supply apparatus provided with a hot water supply circuit formed by connecting a circulation pump for circulating hot water supply with a tank, and comprising at least the heating heat exchanger and a compressor And an outdoor unit having at least an outdoor heat exchanger and an expansion device, and configured to connect the main body and the outdoor unit with a communication pipe. And the refrigerant circulating from the outdoor unit to the outdoor unit And refrigerant flowing from the machine to the main body and is characterized in that the heat exchange unit for heat exchange is provided.
[0008]
In this way, the heat pump type hot water supply apparatus is divided into two units: a hot water supply circuit including at least a heat exchanger for heating and a main body including a compressor, and an outdoor unit including at least an outdoor heat exchanger and an expansion device. Therefore, handling at the time of carry-in and installation becomes easy.
Further, in the heat pump hot water supply apparatus according to the present invention, since the heating heat exchanger and the hot water storage tank are housed in the main body, the heating heat exchanger can be installed in the vicinity of the hot water storage tank. It is possible to reduce heat loss from the hot water supply circuit that connects the two. In addition, since the main body can be selected and installed at a location close to the indoor hot water supply equipment, heat loss from the hot water supply circuit connecting the main body and the indoor hot water supply equipment can be reduced. In addition, the outdoor unit can be installed by selecting a location convenient for taking in and discharging outside air.
Moreover, in the heat pump hot water supply apparatus according to the present invention, among the connecting pipes connecting the main body and the outdoor unit, the connecting pipe for flowing the refrigerant from the main body to the outdoor unit becomes a high-pressure side circuit connecting the heat exchanger for heating and the expansion device. The connecting pipe for flowing the refrigerant from the outdoor unit to the main body serves as a low pressure side circuit on the compressor suction side. Therefore, when the refrigerant flowing through these connecting pipes is subjected to heat exchange, a so-called internal heat exchanger that cools the high-pressure gas refrigerant at the outlet of the heat exchanger for heating and heats the refrigerant at the outlet of the outdoor heat exchanger that acts as an evaporator. As a result, the thermal efficiency of the refrigeration cycle can be improved. Incidentally, if only the outdoor heat exchanger is accommodated in the outdoor unit and the expansion device is accommodated in the main body, all the connecting pipes become high-pressure side circuits, so the above internal heat exchanger should be formed. I can't. Also, when the outdoor heat exchanger and the compressor are stored in the outdoor unit and the expansion device is stored in the main body, some of the communication pipes become high-pressure side circuits that circulate the discharge gas of the compressor, and other communication pipes Becomes the refrigerant after exiting the expansion device, that is, the refrigerant on the inlet side of the outdoor heat exchanger that acts as an evaporator, so that heat exchange between both of them does not make sense because it only decreases the thermal efficiency. Moreover, since this heat exchange part is provided in the connecting pipe part, there is an advantage that no special space is required.
[0009]
In the separated heat pump type hot water supply apparatus, the heat exchanging unit is disposed so that a communication pipe for circulating the refrigerant from the main body to the outdoor unit and a communication pipe for flowing the refrigerant from the outdoor unit to the main body are in contact with each other. You may comprise as follows. If comprised in this way, a heat exchange part can be formed easily.
[0010]
Moreover, the said heat exchange part is good also as a structure which inserts and connects a communication piping to the said hole with respect to the extrusion molded product which consists of a heat conductive material provided with the hole which inserts and connects a communication piping. If comprised in this way, the amount of heat exchange of both connection piping can be increased more, and the thermal efficiency of a heat pump can be improved.
[0011]
The heat exchanging section may be formed of a molded product in which a refrigerant passage for flowing a refrigerant from the outdoor unit to the main body and a refrigerant passage for flowing the refrigerant from the main body to the outdoor unit are integrally formed by extrusion molding. If comprised in this way, the amount of heat exchange of both connection piping can be increased further, and the thermal efficiency of a heat pump can be improved.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(Embodiment 1)
Hereinafter, Embodiment 1 of the present invention will be described in detail with reference to FIG. FIG. 1 is a circuit diagram of the heat pump hot water supply apparatus according to the first embodiment.
[0013]
As shown in FIG. 1, the heat pump hot water supply apparatus according to Embodiment 1 includes a main body 1 and an outdoor unit 2.
[0014]
The main body 1 includes a heating heat exchanger 11 that obtains hot water by cooling the discharge gas refrigerant of the compressor 17 with hot water, a hot water storage tank 12 that stores hot water heated by the heating heat exchanger 11, And a hot water supply circuit 13 connected to a circulation pump 14 for sending hot water heated by the heat exchanger 11 to the hot water tank 12 and sending water from the hot water tank 12 to the heating heat exchanger 11. And in order to reduce the heat dissipation loss from the hot water supply circuit 13, the hot water storage tank 12 and the heat exchanger 11 for heating are installed in the vicinity, and it is considered that the hot water supply circuit 13 becomes short. A hot water supply pipe 15 for supplying hot water is connected to the upper part of the hot water tank 12, and a water supply pipe 16 for supplying water to the hot water tank 12 is connected to the lower part of the hot water tank 12.
[0015]
The main body 1 houses a part of the refrigerant circuit of the heat pump type hot water supply apparatus. A part of this refrigerant circuit is obtained by sequentially connecting a closing valve 33, a compressor 17, a heat exchanger 11 for heating, and a closing valve 34. The shut-off valves 33 and 34 are provided with pipe joints 33a and 34a, respectively. The pipe joints 33a and 34a are attached to the outside of the main body 1 so that the connection pipes 31 and 32 can be connected. At the time of shipment from the factory, the closing valves 33 and 34 are closed, and a predetermined amount of refrigerant is sealed in the refrigerant circuit.
[0016]
A refrigeration oil tank 19 is installed above the compressor 17. The upper and lower portions of the refrigerator oil tank 19 are connected to the refrigerator oil storage space in the compressor 17 by piping. An on-off valve 20 such as a manual valve or an electromagnetic valve is connected to a pipe connecting the lower part of the refrigerator oil tank 19 and the compressor 17.
[0017]
The outdoor unit 2 accommodates an outdoor heat exchanger 21 and an outdoor fan 22 and an expansion device 18 for circulating outside air as an evaporation heat source of refrigerant in the outdoor heat exchanger 21. A pipe joint 32 a is connected to the inlet side of the expansion device, and a pipe joint 31 a is connected to the outlet side of the outdoor heat exchanger 21. The pipe joints 31 a and 32 a are for connecting the connection pipes 31 and 32, and are attached so as to be exposed to the outside of the outdoor unit 2. At the time of factory shipment, nitrogen gas is sealed in the refrigerant circuit of the outdoor unit 2 so that air does not enter before the field installation.
[0018]
The outdoor unit 2 connects the communication pipe 31 between the pipe joint 31a and the pipe joint 33a of the shut-off valve 33, and connects the communication pipe 32 between the pipe joint 32a and the pipe joint 34a of the shut-off valve 34. By doing so, the main body 1 is connected. When connecting the communication pipes 31 and 32, the outdoor heat exchanger 21 and the communication pipes 31 and 32 are air purged by the refrigerant filled in the main body 1.
[0019]
In addition, a heat exchanging unit 40 that exchanges heat between the high-pressure gas refrigerant that flows from the main body 1 to the outdoor unit 2 and the low-pressure gas refrigerant that flows from the outdoor unit 2 to the main body 1 is provided in an intermediate portion of the communication pipes 31 and 32. It has been.
As shown in FIG. 2, the heat exchanging unit 40 in the first embodiment closely contacts two communication pipes, winds the two communication pipes 31 and 32 around a heat conductive plate 41 such as a copper plate, The periphery is covered with a heat insulating material 42. With this configuration, the two communication pipes 31 and 32 can exchange heat directly, and exchange heat through the heat conductive plate 41. The main body 1 and the outdoor unit 2 are thus connected to the communication pipes 31 and 32 with the heat exchange unit 40 interposed therebetween, so that the compressor 17, the heating heat exchanger 11, the expansion device 18, and the outdoor heat exchanger are connected. A refrigerant circuit composed of a sealed circuit that sequentially connects 21 is formed.
[0020]
The refrigerant charged in the refrigerant circuit of the main body 1 is a carbon dioxide refrigerant (CO 2 ). Carbon dioxide refrigerant is selected for the following reasons. Examples of natural refrigerants that can replace conventional refrigerants include hydrocarbons (HC: propane, isobutane, etc.), ammonia, air, carbon dioxide (CO 2 ), and the like. However, as a refrigerant characteristic, hydrocarbon and ammonia have high energy efficiency, but there are problems of flammability and toxicity, and air has problems such as inferior energy efficiency outside the ultra-low temperature range. On the other hand, carbon dioxide gas is safe without flammability and toxicity, and has a feature that when used as a refrigerant, a high-temperature compressor discharge gas refrigerant can be obtained. For these reasons, the carbon dioxide refrigerant is suitable as a refrigerant that can avoid the problem of environmental destruction of the earth, and particularly as a refrigerant for a heat pump refrigeration system for hot water supply.
[0021]
The on-off valve 20 provided in the pipe connecting the lower part of the refrigerator oil tank 19 and the compressor 17 is opened after the connection pipes 31 and 32 are connected between the main body 1 and the outdoor unit 2. By opening the on-off valve 20, the refrigeration oil stored in the refrigeration oil tank 19 is naturally dropped and transferred to the refrigeration oil storage space in the compressor 17. As a result, a predetermined amount of refrigerating machine oil is transferred to the refrigerating machine oil storage space of the compressor 17, and an appropriate amount of refrigerating machine oil is stored in the compressor 17.
[0022]
Next, the hot water supply operation of the heat pump type hot water supply apparatus configured as described above is performed as follows. In the hot water supply operation of this heat pump hot water supply apparatus, the compressor 17 is driven, and the refrigerant circulates in the direction of the solid arrow in FIG. The refrigeration cycle in this heat pump type hot water supply apparatus forms a supercritical refrigeration cycle because the critical point of the carbon dioxide gas refrigerant is low. That is, the high-temperature and high-pressure gas refrigerant discharged from the compressor 17 is cooled by exchanging heat with hot-water supply water in the heating heat exchanger 11, and the water is heated to become hot water. At this time, since the high pressure is equal to or higher than the critical point, the refrigerant is not condensed in the heat exchanger 11 for heating. The high-pressure gas cooled by the heating heat exchanger 11 is further cooled by the low-pressure gas refrigerant sucked into the compressor 17 by the heat exchange unit 40. The cooled high-pressure gas refrigerant is decompressed by the expansion device 18 and becomes a low-temperature and low-pressure gas-liquid two-phase flow and flows to the outdoor heat exchanger 21 of the outdoor unit 2. The low-temperature and low-pressure gas-liquid two-phase refrigerant is evaporated by exchanging heat with the outside air in the outdoor heat exchanger 21. The low-pressure refrigerant that has flowed out of the outdoor heat exchanger 21 is further heated by removing heat from the refrigerant that has flowed out of the heating heat exchanger 11 in the heat exchanging unit 40, and returns to the compressor 17. Therefore, in this refrigeration cycle, the amount of heat absorbed by the low-pressure side refrigerant increases due to the heat exchange action in the heat exchange section, and the thermal efficiency of the refrigeration cycle increases.
[0023]
In addition, the hot water obtained by the heat pump type hot water supply apparatus has a higher temperature and pressure than the heat pump type hot water supply apparatus in which the discharge gas refrigerant of the compressor 17 uses a chlorofluorocarbon refrigerant. Higher than that.
[0024]
On the other hand, the hot water storage tank 12 is formed such that water is supplied from the water supply pipe 16 and is always full. And when supplying warm water to indoor hot water supply equipment, circulation pump 14 is driven. Thereby, the lower water in the hot water storage tank 12 is supplied to the heat exchanger 11 for heating. The hot water heated by the heating heat exchanger 11 returns to the upper part of the hot water tank 12. By repeating such circulation, hot water is supplied to the upper part of the hot water tank 12. Moreover, since warm water and water do not mix, the amount of hot water in the upper layer increases with the passage of time, the amount of low-temperature water in the lower layer decreases, and eventually the hot water tank 12 is filled with warm water. . Note that hot water supplied to hot water supply facilities such as a bathtub and a washroom is supplied with hot water stored in the upper part of the hot water tank 12 through a hot water pipe 15 connected to the upper part of the hot water tank 12.
[0025]
Since the first embodiment is configured as described above, the following effects can be obtained.
(1) Since this heat pump type hot water supply apparatus is divided into units of the main body 1 and the outdoor unit 2, handling at the time of carrying in and installation becomes easy.
[0026]
(2) Since the heat exchanger 11 for heating and the hot water storage tank 12 are installed in the vicinity in the main body 1, heat loss from the hot water supply circuit connecting the two can be reduced. Moreover, since the main body 1 can be selected and installed at a location close to the indoor hot water supply facility, heat loss from the hot water supply circuit connecting the main body 1 and the indoor hot water supply facility can be reduced. Moreover, the outdoor unit 2 can be installed by selecting a place convenient for taking in and discharging outside air.
[0027]
(3) Of the two communication pipes 31 and 32 that connect the main body 1 and the outdoor unit 2, the communication pipe 32 that flows the refrigerant from the main body 1 to the outdoor unit 2 connects the heating heat exchanger 11 and the expansion device 18. The connecting pipe 31 that flows the refrigerant from the outdoor unit 2 to the main body 1 becomes the low pressure side circuit on the compressor suction side. Therefore, in the heat exchanging unit 40 that exchanges heat between the refrigerants flowing through the communication pipes 31 and 32, heat is transferred from the high-pressure gas refrigerant at the outlet of the heating heat exchanger 11 to the refrigerant at the outlet of the outdoor heat exchanger 21 that acts as an evaporator. The heat exchanging portion 40 acts as a so-called internal heat exchanger, and the thermal efficiency of the refrigeration cycle can be improved.
[0028]
(4) Moreover, since the heat exchange part 40 in this Embodiment 1 is the structure which contacted the piping 31 and 32 and arrange | positioned both together, it is a simple operation | work and a heat exchange part on-site. Can be formed. Moreover, since the member fixed in the state where both piping 31 and 32 was along is only winding the heat conductive plates 41, such as a copper plate, heat exchange can also be accelerated | stimulated without being bulky.
[0029]
(Embodiment 2)
Next, the second embodiment will be described with reference to FIG. The second embodiment is a modification of the heat exchange unit 40 in the first embodiment, and is the same as the first embodiment except for the heat exchange unit. Only the heat exchanging unit 50 of the second embodiment will be described below.
[0030]
The heat exchanging unit 50 in the second embodiment inserts and attaches the connecting pipes 31 and 32 to an extrusion product 51 made of a heat conductive material having holes 52 and 53 into which the connecting pipes 31 and 32 are inserted and attached. It is a thing. Although omitted in FIG. 3, the outer periphery of the molded product 51 is used by being covered with a heat insulating material as in the first embodiment.
When both connecting pipes 31 and 32 are fixed by such a molded product, the amount of heat exchange between the refrigerant flowing from the main body 1 to the outdoor unit 2 and the refrigerant flowing from the outdoor unit 2 to the main body 1 can be increased.
[0031]
(Embodiment 3)
Next, Embodiment 3 will be described with reference to FIG. The third embodiment is a modification of the heat exchange unit 40 in the first embodiment, and is the same as the first embodiment except for the heat exchange unit. Only the heat exchanging unit 60 of the third embodiment will be described below.
[0032]
In the heat exchanging unit 60 according to the third embodiment, a refrigerant passage 61 for flowing a refrigerant from the outdoor unit 2 to the main body 1 and a refrigerant passage 62 for flowing a refrigerant from the main body 1 to the outdoor unit 2 are provided in the middle of the communication pipes 31 and 32. It consists of an extrusion-molded product 63 integrally molded in two upper and lower stages. This heat exchanging portion 60 is made of a material that can be subjected to press margin molding such as aluminum and has excellent thermal conductivity. The refrigerant passages 61 and 62 are microchannels (small flow paths) formed in the longitudinal direction. In addition, although omitted in FIG. 4, the outer periphery of the molded product 63 is used while being covered with a heat insulating material as in the first embodiment.
If comprised in this way, the amount of heat exchange with the refrigerant | coolant which distribute | circulates from the main body 1 to the outdoor unit 2 and the refrigerant | coolant which distribute | circulates from the outdoor unit 2 to the main body 1 can be increased further.
[0033]
【The invention's effect】
Since the heat pump hot water supply apparatus according to the present invention is divided into a main body and an outdoor unit, handling at the time of carry-in and installation becomes easy. Moreover, it becomes possible to install the heat exchanger for heating in the vicinity of the hot water storage tank in the main body, and heat loss from the hot water supply circuit connecting the two can be reduced. In addition, since the main body can be selected and installed near the indoor hot water supply facility, heat loss from the hot water supply circuit connecting the main body and the indoor hot water supply facility can be reduced. In addition, the outdoor unit can be installed at a location convenient for taking in and discharging outside air. In addition, the communication pipe that flows the refrigerant from the main unit to the outdoor unit becomes a high-pressure side circuit that connects the heat exchanger for heating and the expansion device, and the communication pipe that flows the refrigerant from the outdoor unit to the main unit becomes the low-pressure side circuit on the compressor suction side Furthermore, since heat is exchanged between the refrigerants flowing through the two connecting pipes, the thermal efficiency of the refrigeration cycle can be improved.
[Brief description of the drawings]
FIG. 1 is a circuit diagram according to a first embodiment of the present invention.
FIG. 2 is a cross-sectional view of a heat exchange unit according to Embodiment 1 of the present invention.
FIG. 3 is a cross-sectional view of a heat exchange unit according to Embodiment 2 of the present invention.
FIG. 4 is a cross-sectional view of a heat exchange unit according to Embodiment 3 of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Main body 2 Outdoor unit 11 Heat exchanger 12 for heating Hot water storage tank 13 Hot water supply circuit 14 Circulation pump 17 Compressor 18 Expansion apparatus 21 Outdoor heat exchanger 31 Connection pipe 32 Connection pipe 40 Heat exchange part 41 Thermal conductive plate 42 Insulation material 50 Heat Exchanger 51 Molded Product 52 Hole 53 Hole 60 Heat Exchanger 61 Refrigerant Passage 62 Refrigerant Passage 63 Molded Product

Claims (4)

圧縮機、圧縮機の吐出ガス冷媒を水で冷却する加熱用熱交換器、膨張装置、外気を熱源媒体とする室外側熱交換器を接続して密閉回路を形成し、この密閉回路に炭酸ガス冷媒を充填した冷媒回路と、加熱用熱交換器、加熱用熱交換器で加熱された温水を貯湯する貯湯槽、及び加熱用熱交換器と貯湯槽との間で給湯用の水を循環させるための循環ポンプを接続して形成した給湯回路とを備えたヒートポンプ式給湯装置であって、
少なくとも前記加熱用熱交換器を含む給湯回路及び圧縮機を備えた本体と、少なくとも室外側熱交換器及び膨張装置を備えた室外機とに分離され、本体と室外機とを連絡配管で接続するように構成されてなり、更に、連絡配管部分に本体から室外機へ流通する冷媒と室外機から本体へ流通する冷媒とを熱交換させる熱交換部が設けられていることを特徴とする分離型ヒートポンプ式給湯装置。
A compressor, a heating heat exchanger that cools the refrigerant discharged from the compressor with water, an expansion device, and an outdoor heat exchanger that uses outside air as a heat source medium are connected to form a sealed circuit. Refrigerant circuit filled with refrigerant, heating heat exchanger, hot water storage tank for storing hot water heated by the heating heat exchanger, and hot water supply water are circulated between the heating heat exchanger and the hot water storage tank. A heat pump type hot water supply device provided with a hot water supply circuit formed by connecting a circulation pump for
The main body is provided with a hot water supply circuit including at least the heat exchanger for heating and a compressor, and the outdoor unit is provided with at least an outdoor heat exchanger and an expansion device, and the main body and the outdoor unit are connected by a communication pipe. And a heat exchanging part for exchanging heat between the refrigerant flowing from the main body to the outdoor unit and the refrigerant flowing from the outdoor unit to the main body is provided in the connecting pipe portion. Heat pump water heater.
前記熱交換部は、本体から室外機への冷媒を流通させる連絡配管と室外機から本体へ冷媒を流通させる連絡配管とを接触するように添わせて配置してなることを特徴とする請求項1記載の分離型ヒートポンプ式給湯装置。The heat exchanging section is arranged such that a communication pipe for circulating a refrigerant from the main body to the outdoor unit and a communication pipe for flowing the refrigerant from the outdoor unit to the main body are arranged so as to contact each other. The separation type heat pump type hot water supply apparatus according to 1. 前記熱交換部は、連絡配管を挿入して装着し得る孔を備えた伝熱性材料からなる押出成形品に対し、連絡配管を前記孔に挿入して装着してなることを特徴とする請求項1記載の分離型ヒートポンプ式給湯装置。The heat exchanging part is formed by inserting a connecting pipe into the hole and mounting the extruded product made of a heat transfer material having a hole into which the connecting pipe can be inserted and mounted. The separation type heat pump type hot water supply apparatus according to 1. 前記熱交換部は、室外機から本体へ冷媒を流す冷媒通路と本体から室外機へ冷媒を流す冷媒通路とが押出成形により一体成型された成形品からなることを特徴とする請求項1記載の分離型ヒートポンプ式給湯装置。The said heat exchange part consists of a molded product by which the refrigerant path which flows a refrigerant | coolant from an outdoor unit to a main body, and the refrigerant path which flows a refrigerant | coolant from a main body to an outdoor unit were integrally molded by extrusion molding. Separable heat pump type water heater.
JP2003044911A 2003-02-21 2003-02-21 Separable heat pump type hot water supply system Expired - Fee Related JP3863854B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044911A JP3863854B2 (en) 2003-02-21 2003-02-21 Separable heat pump type hot water supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044911A JP3863854B2 (en) 2003-02-21 2003-02-21 Separable heat pump type hot water supply system

Publications (2)

Publication Number Publication Date
JP2004251596A JP2004251596A (en) 2004-09-09
JP3863854B2 true JP3863854B2 (en) 2006-12-27

Family

ID=33027480

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044911A Expired - Fee Related JP3863854B2 (en) 2003-02-21 2003-02-21 Separable heat pump type hot water supply system

Country Status (1)

Country Link
JP (1) JP3863854B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4634357B2 (en) * 2006-09-29 2011-02-16 三菱電機株式会社 Heat pump water heater
FR2928997B1 (en) * 2008-03-20 2014-06-20 Valeo Systemes Thermiques HEAT EXCHANGER AND INTEGRATED AIR CONDITIONING ASSEMBLY COMPRISING SUCH AN EXCHANGER.
US10584927B2 (en) * 2015-12-30 2020-03-10 General Electric Company Tube thermal coupling assembly

Also Published As

Publication number Publication date
JP2004251596A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US10302343B2 (en) Defrost system for refrigeration apparatus, and cooling unit
JP4982864B2 (en) Air conditioning equipment and construction method
US20110146310A1 (en) Refrigerator and operation control method thereof
KR100759655B1 (en) Cooling box
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JP2007218459A (en) Refrigerating cycle device and cool box
JP2005337700A (en) Refrigerant cooling circuit
KR100956550B1 (en) Heat pump system for cooling and heating with defrosting function
TWI440806B (en) Cooling unit and method of making the same
JP2008102683A (en) Automatic vending machine
KR20210053277A (en) Facility area heat exchange system using indirect heat exchange
JP3863854B2 (en) Separable heat pump type hot water supply system
JP2004053055A (en) Refrigerator
KR101557708B1 (en) Refrigeration cycle radiator system heat exchanger
WO2019224870A1 (en) Showcase
KR101348826B1 (en) A heat pump heating apparatus
JP3825755B2 (en) Heat pump type water heater
EP3217117A1 (en) Air-conditioning/hot-water supply system
JP2006038306A (en) Freezer
JP6912673B2 (en) Defrost system
CN113108390A (en) Defrosting system, refrigeration plant and air-cooler
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
KR101286699B1 (en) heating and cooling system and using a heat pump
CN215175630U (en) Defrosting system, refrigeration plant and air-cooler
JPH04257660A (en) Two stage compression refrigerating cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees