JP3863638B2 - Optical image stabilization mechanism - Google Patents

Optical image stabilization mechanism Download PDF

Info

Publication number
JP3863638B2
JP3863638B2 JP16997097A JP16997097A JP3863638B2 JP 3863638 B2 JP3863638 B2 JP 3863638B2 JP 16997097 A JP16997097 A JP 16997097A JP 16997097 A JP16997097 A JP 16997097A JP 3863638 B2 JP3863638 B2 JP 3863638B2
Authority
JP
Japan
Prior art keywords
air
camera shake
optical
core coil
correction lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16997097A
Other languages
Japanese (ja)
Other versions
JPH1115037A (en
Inventor
茂男 榎本
Original Assignee
ペンタックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ペンタックス株式会社 filed Critical ペンタックス株式会社
Priority to JP16997097A priority Critical patent/JP3863638B2/en
Publication of JPH1115037A publication Critical patent/JPH1115037A/en
Application granted granted Critical
Publication of JP3863638B2 publication Critical patent/JP3863638B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Adjustment Of Camera Lenses (AREA)

Description

【0001】
【技術分野】
本発明は、光学装置の手振れ補正機構に関する。
【0002】
【従来技術及びその問題点】
カメラや双眼鏡を使用するときには、手振れによる撮影や観察の失敗が起こりやすい。こうした手振れを補正する手段としては、特開平5- 297443号のように、光学系内に設けた可動の補正レンズを、磁界を生成する複数の永久磁石と該磁界中の空芯コイルとを用いて電磁誘導で駆動制御するタイプがある。このタイプは光軸と直交する平面内で互いに直交する2方向へ補正レンズを動かすため、補正レンズの周囲で生成した磁界内に2つの扁平空芯コイルを配している。コイルに作用する磁束を生成する永久磁石は、それぞれのコイルの導線部分に対向して複数が配置されて閉磁気回路を形成するが、永久磁石の磁束を有効に利用するには、複数の磁石の間隔が広くなるように、扁平空芯コイルの空芯部(空芯空間)を広く取ることが好ましい。しかし従来はこの空芯部が空きスペースとされていたために、手振れ補正機構の正面投影面積が大きくなりがちで、光学装置の小型化の妨げになっていた。
【0003】
【発明の目的】
本発明は、正面投影面積が小さく、光学装置の小型化に寄与する手振れ補正機構を提供することを目的とする。
【0004】
【発明の概要】
本発明は、光軸と直交する平面内で直進移動可能に支持された移動枠と、この移動枠に光軸上に位置させて支持された補正レンズと、磁界生成手段と、この磁界生成手段が生成する磁界中で上記移動枠と相対固定され、通電により発生する推力で上記補正レンズを駆動させる空芯コイルとを備えた光学装置の手振れ補正機構において、磁界生成手段が、光軸方向に位置を異ならせて設けた磁石とヨークからなり、空心コイルが、光軸方向において磁石及びヨークと並んで位置し、かつ補正レンズの光路を囲むように導線を巻回して形成されその空芯部内に補正レンズの光路位置させていることを特徴とする。この構成によれば、従来利用されていなかった空芯コイルの空芯空間が光学系の光路として利用されるので、スペース効率が向上し、補正機構の正面投影面積を小さくできる。また、空芯空間が十分に大きく取られるので、空芯コイルに対向させて設けられる磁界生成用の磁石を互いに離して置き、磁束を有効に利用することができる。また、磁石とヨークと空心コイルが光軸方向に並んで位置されるので、磁石とヨークからなる磁界生成手段の補正レンズの径方向への突出が抑えられ、手振れ補正機構の小型化に寄与する。
【0005】
双眼鏡のように光学装置が左右に一対の光軸を有するとき、上記移動枠は該一対の光軸上にそれぞれ左右一対の補正レンズを位置させて一体に支持しており、空芯コイルは、左右の補正レンズに共通で、両補正レンズの光路上に単一の空芯部を位置させるための横長形状をなすことが望ましい。つまり、複数光軸であっても個別に補正レンズの駆動機構を設けるのではなく、共通の空芯コイルを用いて一体に駆動させるため、駆動機構の構成を簡単にできる。
【0006】
また、上記移動枠を光軸と直交する平面内で互いに直交する2方向へ直進移動可能に支持された2方向直進移動枠とし、この2方向直進移動枠の移動方向と平行な推力軸をそれぞれ有する一対の空芯コイルが、その空芯部を補正レンズの光路上に位置させて2方向直進移動枠の前後位置にそれぞれ設けられることが望ましい。この構成により、上下方向及び左右方向など2方向に手振れ補正を行う場合でも、手振れ補正機構をコンパクトに構成できる。また、一対の空芯コイルを補正レンズの前後位置に離して配置することで、各コイルに作用する磁界相互の干渉を避けることができる。
【0008】
以上の構成において、磁界生成手段を構成する磁石とヨークの一方と他方が、空芯コイルを挟んだ光軸方向の前方位置と後方位置に分けて設けられることが好ましい。
【0009】
【発明の実施の形態】
図1から図3に示す手振れ補正ユニット10は、カメラの手振れ補正機構であり、光軸上に補正レンズ12を位置させるように設置された補正レンズ枠11を有している。各図においてx軸及びy軸は、補正レンズ12の光軸Oと直交する平面内において互いに直交する2つの軸であり、x軸はカメラ本体の左右方向、y軸は上下方向に一致する。
【0010】
補正レンズ枠11の外周には、光軸Oと直交する平面内で移動支持枠11aが延設されている。補正レンズ枠11はまた、この移動支持枠11aの前後に、該移動支持枠11aと平行な前側フランジ11bと後側フランジ11cを有している。上記補正レンズ12は、光軸方向には移動支持枠11aの内側に保持されている。移動支持枠11aは、その上側及び下側辺部の内部に、x方向に平行に延びる一対のx貫通孔13を有している。この一対のx貫通孔13には、ロ字形をなすガイド枠15のうち平行をなす一対のxシャフト15aが摺動自在に支持されている。一方、カメラ本体には一対の固定支持部材16が形成されており、各支持部材16の内部には上記x貫通孔13と直交してy方向に延びるy貫通孔16aが形成されている。y貫通孔16a内には、上記ガイド枠15を構成する、上記一対のxシャフト15aに直交する一対のyシャフト15bがそれぞれ摺動自在に支持されている。従って補正レンズ枠11は、xシャフト15aとx貫通孔13の関係によりx方向へ移動可能で、yシャフト15bとy貫通孔16aの関係によりy方向へ移動可能であり、補正レンズ枠11がxまたはy方向に駆動されると、これに保持される補正レンズ12が一体に動く。なお、補正レンズ枠11の移動が手振れ補正ユニット10の自重で生じないように、ガイド枠15と各貫通孔(x貫通孔13、y貫通孔16a)の摺接部分には、手振れ補正時に補正レンズ枠11の駆動を妨げない程度で一定のフリクションが与えられている。また補正レンズ枠11の自重による移動を抑え、かつ非駆動時に所定の中立位置に保持させるためには、ガイド枠15と補正レンズ枠11の間、及びガイド枠15と固定支持部材16の間に、x及びy方向で補正レンズ枠11の位置を一定に保持するばね部材を配してもよい。
【0011】
この補正レンズ枠11の前側フランジ11bの前部には、第1固定ヨーク板18がカメラ内に固定されている。また、前側フランジ11bと移動支持枠11aに挟まれる位置には、第2固定ヨーク板19が固定されている。磁性材料からなる第1固定ヨーク板18及び第2固定ヨーク板19は、いずれも上記補正レンズ12の光路を確保するために中央部に開口を有している。なお、図1では第1固定ヨーク板18を透視した状態で補正レンズ枠11を示している。
【0012】
補正レンズ枠11の前側フランジ11bの前面には、y駆動用空芯コイル20が固着されている。y駆動用空芯コイル20は、前側フランジ11b前面の外周形状に沿って枠状に導線が巻回された扁平空芯コイルであり、その空芯部20aは、光軸Oと平行な方向から見ると補正レンズ12の径方向断面より広くなっており、この空芯部20aの内側に補正レンズ12が位置するように配置されている(図1)。つまり、y駆動用空芯コイル20の空芯部20aは、補正レンズ12に入射する光束の光路となっている。上記第1固定ヨーク板18には、この枠状のy駆動用空芯コイル20のうちx方向に延びる一対の平行導線部に対向させて、一対のy駆動用固定磁石21a、21bが固着されている。
【0013】
y駆動用固定磁石21a、21bは、y駆動用空芯コイル20の厚み方向(光軸方向)に着磁された永久磁石であり、この一対の磁石21a、21bと上記固定ヨーク板18、19とによって図3に矢印αで示す閉磁気回路が形成される。この磁気回路の磁束は、y駆動用空芯コイル20の導線部の一対の平行部分に垂直に鎖交しているため、該コイル20に通電すると磁束及び電流に直交する方向への推力が発生する。すなわち、図1の矢印A方向へ電流を流すと同図の上方向へ、矢印B方向へ電流を流すと下方向への推力が、y駆動用空芯コイル20に作用する。コイル20は補正レンズ枠11に固定されており、補正レンズ枠11は上記ガイド枠15と固定支持部材16を介して図1のy方向に案内されているから、y駆動用空芯コイル20への通電により発生した推力は補正レンズ枠11をy方向に移動させる。つまり、y駆動用空芯コイル20の通電方向を変化させると補正レンズ12を上下方向で正逆に駆動させることができる。補正レンズ12をy方向に駆動させる推力は、y駆動用空芯コイル20に流す電流に比例している。
【0014】
一方、補正レンズ枠11の移動支持枠11aと後側フランジ11cに挟まれる位置には、第3固定ヨーク部材22が固定され、後側フランジ11cの後部には第4固定ヨーク部材23が固定されている。第3固定ヨーク部材22及び第4固定ヨーク部材23は、いずれも上記補正レンズ12の光路を確保するために中央部に開口を有している。
【0015】
移動支持枠11aの後面には、x駆動用空芯コイル24が固着されている。x駆動用空芯コイル24は、y駆動用空芯コイル20と略同一形状をなす扁平空芯コイルであり、その空芯部24aは補正レンズ12の径方向断面より広く、この空芯部24aの内側に補正レンズ12が位置するように設置されている。つまり空芯部24aが補正レンズ12から出射する光束の光路となっている。上記第4固定ヨーク部材23には、x駆動用空芯コイル24のうちx方向に延びる一対の平行導線部に対向させて、一対のx駆動用固定磁石25a、25bが固着されている。
【0016】
y駆動用固定磁石21a、21bと同様に、x駆動用固定磁石25a、25bもx駆動用空芯コイル24の厚み方向(光軸方向)に着磁された永久磁石であり、この一対の磁石21a、21bと固定ヨーク部材22、23とによって図2に矢印βで示す閉磁気回路が形成される。この磁気回路の磁束はx駆動用空芯コイル24の一対の平行導線部に垂直に鎖交しており、コイル24に電流を流すと磁束及び電流に直交する方向への推力が発生する。すなわち、図1の矢印C方向へ電流を流すと同図の左方向へ、矢印D方向へ電流を流すと右方向への推力が、x駆動用空芯コイル24に作用する。コイル24は補正レンズ枠11に固定されており、補正レンズ枠11は上記ガイド枠15と移動支持枠11a(x貫通孔13)を介してx方向に移動可能に支持されているから、x駆動用空芯コイル24への通電により発生した推力は補正レンズ枠11をx方向に移動させる。つまり、x駆動用空芯コイル24の通電方向を変化させると補正レンズ12を左右方向に正逆に移動させることができる。この左右方向の推力は、x駆動用空芯コイル24に流す電流に比例している。
以上において、y駆動用空芯コイル20及びx駆動用空芯コイル24に通電しない状態では、それぞれの空芯部20a、24aの空芯中心は補正レンズ12を通る光軸Oに一致する。
【0017】
カメラ内にはさらに、y位置検出センサ26とx位置検出センサ27が補正レンズ枠11の前方に設置されている。このy位置検出センサ26とx位置検出センサ27はそれぞれ公知の受光素子と発光素子からなり、補正レンズ枠11に穿設したスリット(不図示)の位置を検出して、補正レンズ枠11のx及びy方向での移動位置を検出することができる。
【0018】
この手振れ補正ユニット10に関する電気回路を図4に示した。カメラ内には、この電気回路が上下方向用と左右方向用に1系統ずつ、計2系統設けられている。例えば上下方向での手振れ補正では、使用者がカメラを把持する際に生じた上下方向の手振れは、ジャイロセンサ28で光軸のy方向の振れ速度として検出され、さらに積分器29で積分されて振れ角度出力となる。一方、y位置検出センサ26で検出される補正レンズ12のy方向の位置出力は、誤差増幅器30において上記振れ角度出力と比較増幅されてから電力増幅器31で増幅される。そして補正レンズ12の位置出力と振れ角度出力の間の誤差が減る(ゼロになる)方向へ補正レンズ12を駆動させるようにy駆動用空芯コイル20にコイル電流が流れる。これにより補正レンズ12がy方向に駆動されて上下方向の手振れ補正が行われる。微分器32はレンズ駆動を安定させる役割を有する。
【0019】
左右方向の手振れ発生時にも同様に、ジャイロセンサから得られる左右方向の手振れの大きさ及び方向に応じて、x位置検出センサ27で補正レンズ12のx方向での位置を検出しながらx駆動用空芯コイル24へ通電制御を行い、x方向の手振れを解消する方向に補正レンズ12を駆動させる。これにより左右方向の手振れ補正が行われる。
【0020】
以上の構造から、y駆動用空芯コイル20及びx駆動用空芯コイル24のコイル電流の通電方向を制御することにより、補正レンズ12を光軸Oと直交する平面内で移動させて手振れを補正することができる。補正レンズ駆動用の一対の空芯コイル20、24は、その空芯部20a、24aを補正レンズ12の光路として利用しているのでスペース効率がよい。加えて磁界を生成する永久磁石とヨーク板も、この空芯コイルの前後に配されている。従って、手振れ補正ユニット10の正面投影面積が小さく抑えられている。この構成であれば空芯コイルの空芯部を広く取ることができるので、コイルに対向する永久磁石の設置間隔を離して磁束の有効利用を図ることができる。なお本実施形態では、補正レンズ12が駆動されたときに固定ヨークや永久磁石が光路に干渉しないように、空芯コイル20、24の空芯部20a、24aは、その駆動分を見込んで補正レンズ12の径サイズよりも広く形成されている。
【0021】
手振れ補正ユニット10では、補正レンズ12の周縁に移動支持枠11aやガイド枠15からなる駆動支持機構を設け、この駆動支持機構の前後位置に上下方向補正用と左右方向補正用の電磁駆動機構を配している。この配置であると両電磁駆動機構を光路上に置きつつ、上下方向用と左右方向用の磁界生成手段が互いに離れて置かれるためそれぞれの磁界が相互に干渉しにくい。そして補正ユニット10を光軸方向にもコンパクトに構成できる。
【0022】
上記実施形態は単光軸のカメラに関するものであるが、本発明は双眼鏡のように複数の光軸を有する光学装置にも有効である。例えば双眼鏡の場合、上記の手振れ補正ユニット10を2つ並列に配置して、左右一対の光学系に対して個別に手振れ補正を行うことが可能である。しかし、手振れは一対の光学系を内蔵する双眼鏡の鏡体の動作によって生じるものであり、その補正方向は左右の光軸とも同じである。よって同一の方向に作動する補正機構を2つ設けるのでは、スペースや部品に無駄があり、重量的にも不利である。
【0023】
そこで、構造が簡単でスペース効率に優れる、双眼鏡用の手振れ補正機構の実施形態を図5に示す。この手振れ補正ユニット40は、上記補正レンズ枠11に比して横長の補正レンズ枠41に、左右一対の補正レンズ42、43が左右の光軸O上に保持されている。図5においてx軸及びy軸は、左右の光軸Oと直交する平面内において互いに直交する2つの軸であり、x軸は双眼鏡の左右方向、y軸は上下方向に一致する。補正レンズ枠41は、横長ロ字形のガイド枠44を介して、上記x方向及びy方向へ移動可能に支持されている。補正レンズ枠41の前面には横長のy駆動用空芯コイル45が固着されており、その空芯部45aは、左右の補正レンズ42、43に入射する光束を通す開口となっている。このy駆動用空芯コイル45を挟む前後には図示しない一対の固定ヨークが設置されており、このうち前側の固定ヨークには、y駆動用空芯コイル45のうちx方向に延びる一対の平行導線部(長辺部)に対向させて、一対のy駆動用固定磁石46が固定されている。一方、補正レンズ枠41の後面には、補正レンズ42、43両方からの射出光束を通す空芯部47aを有する横長枠状のx駆動用空芯コイル47が固着され、これを挟む前後位置に上記とは異なる一対の固定ヨーク(不図示)が配される。このうち後側の固定ヨークには、x駆動用空芯コイル47のy方向に延びる一対の平行導線部(短辺部)に対向する一対のx駆動用固定磁石48が固定されている。
【0024】
一対のy駆動用固定磁石46は、x駆動用空芯コイル45の厚み方向(光軸方向)に着磁されており、その磁束が該コイル45のx方向の平行導線部に略垂直に鎖交する。一対のx駆動用固定磁石48は、x駆動用空芯コイル47の厚み方向(光軸方向)に着磁されており、その磁束が該コイル47のy方向の平行導線部と略垂直に鎖交する。コイル45、47に電流を流したときに発生する推力の方向は、上記補正レンズ枠41の可動方向(x及びy方向)と同じである。よって、ジャイロセンサ等で検出される手振れの方向と大きさに応じて、磁界内に置かれたy駆動用空芯コイル45またはx駆動用空芯コイル47を通電制御することにより、補正レンズ枠41を光軸Oと直交する平面内の所望位置へ駆動させることができる。これにより補正レンズ42及び補正レンズ43が一体に移動されて、左右の光学系で同時かつ一体に手振れを補正することができる。このように光軸が複数であっても、コイル形状を変化させることで一つの空芯コイルを各光軸上の補正レンズに共通に用いることができるので、手振れ補正ユニット40は構成が簡単である。そして先の実施形態と同様に、空芯コイルの空芯部を光路上に位置させたためスペース効率が良く、手振れ補正ユニットの正面投影面積を小さく抑えることができる。
【0028】
本発明は、上記実施形態に限定されるものではない。例えば、第1の実施形態及び第2の実施形態では、補正レンズの前側の光路上に上下方向用、後側の光路上に左右方向用の電磁駆動機構を配置したが、この配置は前後で逆とすることができる。また、想定される使用条件や対象とする使用者によっては電磁駆動機構は上下方向用または左右方向用のいずれか一方のみを設けてもよい。この場合、空芯コイルを含む電磁駆動機構は1つで足り、構成がより簡単になる。その際、空芯コイル及び磁界生成手段の設置位置は、空芯空間を光路として利用するのであれば補正レンズの前後のいずれであってもよい。
【0029】
【発明の効果】
以上のように本発明は、補正レンズを駆動する電磁駆動機構において、磁界生成手段を構成する磁石とヨークを光軸方向に位置を異ならせて設け、光軸方向においてこの磁石及びヨークと並んで位置しかつ補正レンズの光路を囲むように導線を巻回して空心コイルを形成し、この空芯コイルの空芯部内に光学系の光路を位置させたため、手振れ補正機構の正面投影面積を小さく抑えて光学装置の小型化に寄与することができる。
【図面の簡単な説明】
【図1】 本発明を適用した手振れ補正機構の第1の実施形態を表す正面図である。
【図2】 図1のII-II線に沿う断面図である。
【図3】 図1のIII-III線に沿う断面図である。
【図4】 手振れ補正機構の制御回路の一例を表すブロック図である。
【図5】 本発明による手振れ補正機構の第2の実施形態を表す正面図である。
【符号の説明】
O 光軸
10 40 手振れ補正ユニット
11 41 補正レンズ枠
11a 移動支持枠
12 42 43 補正レンズ(系)
13 x貫通孔
15 44 ガイド枠
16 固定支持部材
16a y貫通孔
18 19 22 23 固定ヨーク板
20 45 y駆動用空芯コイル
20a 24a 45a 47a 空芯部
21a 21b 46 y駆動用固定磁石
24 47 x駆動用空芯コイル
25a 25b 48 x駆動用固定磁石
[0001]
【Technical field】
The present invention relates to a camera shake correction mechanism for an optical device.
[0002]
[Prior art and its problems]
When using a camera or binoculars, shooting and observation failures due to camera shake are likely to occur. As a means for correcting such camera shake, a movable correction lens provided in an optical system, as in JP-A-5-297443, uses a plurality of permanent magnets for generating a magnetic field and an air-core coil in the magnetic field. There is a type that controls driving by electromagnetic induction. In this type, in order to move the correction lens in two directions orthogonal to each other in a plane orthogonal to the optical axis, two flat air-core coils are arranged in a magnetic field generated around the correction lens. A plurality of permanent magnets that generate magnetic fluxes acting on the coils are arranged facing the conductive wire portions of the respective coils to form a closed magnetic circuit. To effectively use the magnetic fluxes of the permanent magnets, a plurality of magnets are used. It is preferable that the air core portion (air core space) of the flat air-core coil is widened so that the distance between the flat air-core coils is large. However, in the past, since the air core portion has been an empty space, the front projection area of the camera shake correction mechanism tends to be large, which hinders miniaturization of the optical device.
[0003]
OBJECT OF THE INVENTION
An object of the present invention is to provide a camera shake correction mechanism that has a small front projection area and contributes to downsizing of an optical device.
[0004]
Summary of the Invention
The present invention includes a movable frame which is linearly movably supported in a plane perpendicular to the optical axis, and a correction lens which is supported by located on the optical axis in the moving frame, and a magnetic field generating means, the magnetic field generating means In the camera shake correction mechanism of the optical device, which is fixed relative to the moving frame in the magnetic field generated by the lens and drives the correction lens with the thrust generated by energization, the magnetic field generating means is arranged in the optical axis direction. The air core is formed of a magnet and a yoke provided at different positions, and an air core coil is formed by winding a conducting wire so as to be positioned alongside the magnet and the yoke in the optical axis direction and surround the optical path of the correction lens. characterized in that it is positioned an optical path of the correcting lens within. According to this configuration, since the air-core space of the air-core coil that has not been conventionally used is used as the optical path of the optical system, the space efficiency is improved and the front projection area of the correction mechanism can be reduced. In addition, since the air core space is sufficiently large, the magnetic field generating magnets provided facing the air core coil can be placed apart from each other to effectively use the magnetic flux. In addition, since the magnet, the yoke, and the air-core coil are positioned side by side in the optical axis direction, the magnetic field generating means composed of the magnet and the yoke can be prevented from protruding in the radial direction of the correction lens, contributing to the downsizing of the camera shake correction mechanism. .
[0005]
When the optical device has a pair of left and right optical axes like binoculars, the moving frame integrally supports a pair of left and right correction lenses positioned on the pair of optical axes, It is desirable for the right and left correction lenses to have a horizontally long shape for positioning a single air core on the optical path of both correction lenses. That is, even if there are a plurality of optical axes, the driving mechanism of the correction lens is not provided individually, but is driven integrally using a common air-core coil, so that the configuration of the driving mechanism can be simplified.
[0006]
The moving frame is a two-way linear moving frame supported so as to be linearly movable in two directions orthogonal to each other in a plane orthogonal to the optical axis, and thrust axes parallel to the moving direction of the two-way linear moving frame are respectively set. It is desirable that the pair of air-core coils have the air-core portions on the optical path of the correction lens and are respectively provided at the front and rear positions of the two-way rectilinear movement frame. With this configuration, even when camera shake correction is performed in two directions such as the vertical direction and the horizontal direction, the camera shake correction mechanism can be configured in a compact manner. Further, by arranging the pair of air-core coils apart from the front and rear positions of the correction lens, it is possible to avoid interference between magnetic fields acting on the coils.
[0008]
In the above configuration, it is preferable that one and the other of the magnet and the yoke constituting the magnetic field generating means are provided separately in a front position and a rear position in the optical axis direction with the air- core coil interposed therebetween.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
A camera shake correction unit 10 shown in FIGS. 1 to 3 is a camera shake correction mechanism, and includes a correction lens frame 11 installed so as to position a correction lens 12 on the optical axis. In each figure, the x-axis and the y-axis are two axes that are orthogonal to each other in a plane orthogonal to the optical axis O of the correction lens 12, and the x-axis coincides with the left-right direction of the camera body and the y-axis coincides with the up-down direction.
[0010]
On the outer periphery of the correction lens frame 11, a movable support frame 11a is extended in a plane orthogonal to the optical axis O. The correction lens frame 11 also has a front flange 11b and a rear flange 11c parallel to the moving support frame 11a before and after the moving support frame 11a. The correction lens 12 is held inside the movable support frame 11a in the optical axis direction. The movable support frame 11a has a pair of x through holes 13 extending in parallel to the x direction inside the upper and lower side portions. A pair of x shafts 15a that are parallel to each other in a pair of x-shaped guide frames 15 are slidably supported in the pair of x through holes 13. On the other hand, a pair of fixed support members 16 are formed in the camera body, and a y through hole 16 a extending in the y direction perpendicular to the x through hole 13 is formed inside each support member 16. In the y through hole 16a, a pair of y shafts 15b constituting the guide frame 15 and orthogonal to the pair of x shafts 15a are slidably supported. Accordingly, the correction lens frame 11 can move in the x direction due to the relationship between the x shaft 15a and the x through hole 13, and can move in the y direction due to the relationship between the y shaft 15b and the y through hole 16a. Alternatively, when driven in the y direction, the correction lens 12 held by the lens moves together. In order to prevent movement of the correction lens frame 11 due to the weight of the camera shake correction unit 10, the sliding contact portion between the guide frame 15 and each through hole (x through hole 13 and y through hole 16a) is corrected during camera shake correction. A certain amount of friction is given to the extent that the driving of the lens frame 11 is not hindered. In addition, in order to suppress the movement of the correction lens frame 11 due to its own weight and hold it at a predetermined neutral position when it is not driven, between the guide frame 15 and the correction lens frame 11 and between the guide frame 15 and the fixed support member 16. A spring member that keeps the position of the correction lens frame 11 constant in the x and y directions may be provided.
[0011]
A first fixed yoke plate 18 is fixed in the camera at the front portion of the front flange 11b of the correction lens frame 11. A second fixed yoke plate 19 is fixed at a position between the front flange 11b and the movable support frame 11a. Each of the first fixed yoke plate 18 and the second fixed yoke plate 19 made of a magnetic material has an opening in the central portion in order to secure the optical path of the correction lens 12. In FIG. 1, the correction lens frame 11 is shown with the first fixed yoke plate 18 seen through.
[0012]
A y-drive air-core coil 20 is fixed to the front surface of the front flange 11 b of the correction lens frame 11. The y-drive air-core coil 20 is a flat air-core coil in which a conducting wire is wound in a frame shape along the outer peripheral shape of the front surface of the front flange 11b, and the air-core portion 20a extends from a direction parallel to the optical axis O. When viewed, the correction lens 12 is wider than the radial cross section, and the correction lens 12 is disposed inside the air core portion 20a (FIG. 1). That is, the air core portion 20 a of the y-drive air core coil 20 is an optical path of the light beam incident on the correction lens 12. A pair of y driving fixed magnets 21 a and 21 b are fixed to the first fixed yoke plate 18 so as to face a pair of parallel conductor portions extending in the x direction of the frame-shaped y driving air-core coil 20. ing.
[0013]
The y driving fixed magnets 21 a and 21 b are permanent magnets magnetized in the thickness direction (optical axis direction) of the y driving air-core coil 20, and the pair of magnets 21 a and 21 b and the fixed yoke plates 18 and 19. As a result, a closed magnetic circuit indicated by an arrow α in FIG. 3 is formed. Since the magnetic flux of this magnetic circuit is vertically linked to a pair of parallel portions of the lead wire portion of the air-driving coil 20 for driving y, when the coil 20 is energized, a thrust in a direction perpendicular to the magnetic flux and current is generated. To do. That is, when a current is passed in the direction of arrow A in FIG. 1, a thrust is applied to the y-drive air-core coil 20 in the upward direction of FIG. The coil 20 is fixed to the correction lens frame 11, and the correction lens frame 11 is guided in the y direction of FIG. 1 through the guide frame 15 and the fixed support member 16. The thrust generated by this energization moves the correction lens frame 11 in the y direction. That is, when the energization direction of the y-drive air-core coil 20 is changed, the correction lens 12 can be driven forward and backward in the vertical direction. The thrust for driving the correction lens 12 in the y direction is proportional to the current flowing through the y driving air-core coil 20.
[0014]
On the other hand, the third fixed yoke member 22 is fixed at a position sandwiched between the movable support frame 11a and the rear flange 11c of the correction lens frame 11, and the fourth fixed yoke member 23 is fixed to the rear portion of the rear flange 11c. ing. Each of the third fixed yoke member 22 and the fourth fixed yoke member 23 has an opening in the central portion in order to secure the optical path of the correction lens 12.
[0015]
An x driving air-core coil 24 is fixed to the rear surface of the movable support frame 11a. The x-drive air-core coil 24 is a flat air-core coil having substantially the same shape as the y-drive air-core coil 20, and its air-core portion 24a is wider than the radial cross section of the correction lens 12, and this air-core portion 24a. The correction lens 12 is installed on the inside. That is, the air core portion 24a is an optical path of the light beam emitted from the correction lens 12. A pair of x driving fixed magnets 25 a and 25 b are fixed to the fourth fixed yoke member 23 so as to face a pair of parallel conductor portions extending in the x direction of the x driving air-core coil 24.
[0016]
Similarly to the y driving fixed magnets 21a and 21b, the x driving fixed magnets 25a and 25b are also permanent magnets magnetized in the thickness direction (optical axis direction) of the x driving air core coil 24. 21a and 21b and the fixed yoke members 22 and 23 form a closed magnetic circuit indicated by an arrow β in FIG. The magnetic flux of this magnetic circuit is vertically linked to the pair of parallel conductor portions of the x-drive air core coil 24, and when a current is passed through the coil 24, a thrust in a direction perpendicular to the magnetic flux and the current is generated. That is, when a current is passed in the direction of arrow C in FIG. 1, a thrust in the left direction in the figure and a current in the direction of arrow D is applied to the x-drive air core coil 24. The coil 24 is fixed to the correction lens frame 11, and the correction lens frame 11 is supported so as to be movable in the x direction via the guide frame 15 and the movable support frame 11a (x through hole 13). The thrust generated by energizing the air core coil 24 moves the correction lens frame 11 in the x direction. That is, when the energization direction of the x-drive air-core coil 24 is changed, the correction lens 12 can be moved forward and backward in the left-right direction. This left-right thrust is proportional to the current flowing through the x-drive air-core coil 24.
In the above, in the state where the y driving air core coil 20 and the x driving air core coil 24 are not energized, the air core centers of the air core portions 20 a and 24 a coincide with the optical axis O passing through the correction lens 12.
[0017]
A y position detection sensor 26 and an x position detection sensor 27 are further installed in front of the correction lens frame 11 in the camera. Each of the y position detection sensor 26 and the x position detection sensor 27 includes a known light receiving element and light emitting element, detects the position of a slit (not shown) formed in the correction lens frame 11, and detects the x of the correction lens frame 11. And the movement position in the y direction can be detected.
[0018]
An electric circuit related to the camera shake correction unit 10 is shown in FIG. In the camera, two electric circuits are provided, one for the vertical direction and one for the horizontal direction. For example, in the camera shake correction in the vertical direction, the camera shake in the vertical direction generated when the user holds the camera is detected as the shake speed in the y direction of the optical axis by the gyro sensor 28 and further integrated by the integrator 29. The deflection angle is output. On the other hand, the position output in the y direction of the correction lens 12 detected by the y position detection sensor 26 is amplified by the power amplifier 31 after being compared and amplified by the error amplifier 30 with the deflection angle output. A coil current flows through the y driving air-core coil 20 so as to drive the correction lens 12 in a direction in which the error between the position output of the correction lens 12 and the deflection angle output decreases (becomes zero). As a result, the correction lens 12 is driven in the y direction, and vertical camera shake correction is performed. The differentiator 32 has a role of stabilizing lens driving.
[0019]
Similarly, when left and right hand shake occurs, the x position detection sensor 27 detects the position of the correction lens 12 in the x direction according to the size and direction of the left and right hand shake obtained from the gyro sensor. The energization control is performed on the air-core coil 24, and the correction lens 12 is driven in a direction to eliminate the camera shake in the x direction. Thereby, camera shake correction in the left-right direction is performed.
[0020]
From the above structure, by controlling the energization direction of the coil current of the y-drive air core coil 20 and the x-drive air core coil 24, the correction lens 12 is moved in a plane orthogonal to the optical axis O, thereby causing camera shake. It can be corrected. Since the pair of air-core coils 20 and 24 for driving the correction lens use the air-core portions 20a and 24a as the optical path of the correction lens 12, the space efficiency is good. In addition, permanent magnets and yoke plates that generate a magnetic field are also arranged before and after the air-core coil. Therefore, the front projection area of the camera shake correction unit 10 is kept small. With this configuration, the air core portion of the air core coil can be widened, and the magnetic flux can be effectively used by separating the installation interval of the permanent magnets facing the coil. In the present embodiment, the air core portions 20a and 24a of the air core coils 20 and 24 are corrected in anticipation of the driving amount so that the fixed yoke and the permanent magnet do not interfere with the optical path when the correction lens 12 is driven. It is formed wider than the diameter size of the lens 12.
[0021]
In the camera shake correction unit 10, a drive support mechanism including a movable support frame 11 a and a guide frame 15 is provided on the periphery of the correction lens 12, and electromagnetic drive mechanisms for vertical and horizontal correction are provided at front and rear positions of the drive support mechanism. Arranged. With this arrangement, both the electromagnetic drive mechanisms are placed on the optical path, and the magnetic field generating means for the vertical direction and the horizontal direction are placed apart from each other, so that the respective magnetic fields are unlikely to interfere with each other. The correction unit 10 can be configured compactly also in the optical axis direction.
[0022]
Although the above embodiment relates to a single optical axis camera, the present invention is also effective for an optical apparatus having a plurality of optical axes such as binoculars. For example, in the case of binoculars, it is possible to perform the camera shake correction individually for the pair of left and right optical systems by arranging two camera shake correction units 10 in parallel. However, camera shake is caused by the operation of a mirror of binoculars incorporating a pair of optical systems, and the correction direction is the same for the left and right optical axes. Therefore, providing two correction mechanisms that operate in the same direction is wasteful in space and parts, which is disadvantageous in terms of weight.
[0023]
FIG. 5 shows an embodiment of a camera shake correction mechanism for binoculars that has a simple structure and is excellent in space efficiency. In the camera shake correction unit 40, a pair of left and right correction lenses 42 and 43 are held on a left and right optical axis O in a correction lens frame 41 that is horizontally longer than the correction lens frame 11. In FIG. 5, the x-axis and the y-axis are two axes orthogonal to each other in a plane orthogonal to the left and right optical axes O, the x-axis coincides with the left-right direction of the binoculars, and the y-axis coincides with the up-down direction. The correction lens frame 41 is supported via a horizontally long guide frame 44 so as to be movable in the x and y directions. A horizontally long y driving air-core coil 45 is fixed to the front surface of the correction lens frame 41, and the air-core portion 45a is an opening through which light beams incident on the left and right correction lenses 42 and 43 are passed. A pair of fixed yokes (not shown) are provided before and after sandwiching the y driving air-core coil 45, and among these, the front fixed yoke is a pair of parallel extending in the x direction of the y driving air-core coil 45. A pair of y driving fixed magnets 46 are fixed so as to face the conductor portion (long side portion). On the other hand, on the rear surface of the correction lens frame 41, a horizontally long frame-shaped x-drive air core coil 47 having an air core portion 47a through which light beams emitted from both of the correction lenses 42 and 43 pass is fixed. A pair of fixed yokes (not shown) different from the above are arranged. A pair of x driving fixed magnets 48 that are opposed to a pair of parallel conductor portions (short side portions) extending in the y direction of the x driving air-core coil 47 are fixed to the rear fixed yoke.
[0024]
The pair of y driving fixed magnets 46 are magnetized in the thickness direction (optical axis direction) of the x driving air-core coil 45, and the magnetic flux is chained substantially perpendicular to the parallel conducting wire portion of the coil 45 in the x direction. Interact. The pair of x driving fixed magnets 48 is magnetized in the thickness direction (optical axis direction) of the x driving air-core coil 47, and the magnetic flux is chained substantially perpendicularly to the parallel conductor portion in the y direction of the coil 47. Interact. The direction of thrust generated when current is passed through the coils 45 and 47 is the same as the movable direction (x and y directions) of the correction lens frame 41. Therefore, the correction lens frame is controlled by energizing the y driving air-core coil 45 or the x driving air-core coil 47 placed in the magnetic field in accordance with the direction and magnitude of the camera shake detected by the gyro sensor or the like. 41 can be driven to a desired position in a plane orthogonal to the optical axis O. As a result, the correction lens 42 and the correction lens 43 are moved together, and the camera shake can be corrected simultaneously and integrally by the left and right optical systems. Thus, even if there are a plurality of optical axes, a single air-core coil can be commonly used for the correction lens on each optical axis by changing the coil shape, so the camera shake correction unit 40 has a simple configuration. is there. As in the previous embodiment, since the air core portion of the air core coil is positioned on the optical path, the space efficiency is good, and the front projection area of the camera shake correction unit can be kept small.
[0028]
The present invention is not limited to the above embodiment. For example, in the first and second embodiments, the electromagnetic drive mechanism for the vertical direction is arranged on the optical path on the front side of the correction lens, and the electromagnetic drive mechanism for the horizontal direction is arranged on the optical path on the rear side. It can be reversed. Further, depending on the assumed usage conditions and the intended user, the electromagnetic drive mechanism may be provided with only one for the vertical direction or the horizontal direction. In this case, the electromagnetic drive mechanism including an air-core coil is sufficient in one configuration is easier. At that time, the installation position of the air-core coil and the magnetic field generation means may be either before or after the correction lens as long as the air-core space is used as an optical path.
[0029]
【The invention's effect】
As described above, according to the present invention, in the electromagnetic drive mechanism for driving the correction lens, the magnet and the yoke constituting the magnetic field generating means are provided at different positions in the optical axis direction, and are aligned with the magnet and the yoke in the optical axis direction. An air core coil is formed by winding a lead wire so as to surround the optical path of the correction lens, and the optical path of the optical system is positioned in the air core portion of the air core coil. It is possible to contribute to the miniaturization of the optical device while keeping it small.
[Brief description of the drawings]
FIG. 1 is a front view illustrating a first embodiment of a camera shake correction mechanism to which the present invention is applied.
2 is a cross-sectional view taken along line II-II in FIG.
3 is a cross-sectional view taken along line III-III in FIG.
FIG. 4 is a block diagram illustrating an example of a control circuit of a camera shake correction mechanism.
FIG. 5 is a front view showing a second embodiment of a camera shake correction mechanism according to the present invention.
[Explanation of symbols]
O Optical axis
10 40 Camera shake correction unit 11 41 Correction lens frame 11a Moving support frame
12 42 43 Correction lens (system)
13 x through hole 15 44 guide frame 16 fixed support member 16a y through hole 18 19 22 23 fixed yoke plate 20 45 y driving air-core coil
20a 24a 45a 47a Air core 21a 21b 46 y driving fixed magnet 24 47 x driving air core coil 25a 25b 48 x driving fixed magnet

Claims (4)

光軸と直交する平面内で直進移動可能に支持された移動枠と、この移動枠に光軸上に位置させて支持された補正レンズと、磁界生成手段と、この磁界生成手段が生成する磁界中で上記移動枠と相対固定され、通電により発生する推力で上記補正レンズを駆動させる空芯コイルとを備えた手振れ補正機構において、
上記磁界生成手段は、光軸方向に位置を異ならせて設けた磁石とヨークからなり、
上記空心コイルは、光軸方向において上記磁石及びヨークと並んで位置し、かつ補正レンズの光路を囲むように導線を巻回して形成されその空芯部内に補正レンズの光路位置させていることを特徴とする光学装置の手振れ補正機構。
A moving frame supported so as to be linearly movable in a plane orthogonal to the optical axis, a correction lens supported by the moving frame positioned on the optical axis, a magnetic field generating unit, and a magnetic field generated by the magnetic field generating unit In a camera shake correction mechanism including an air-core coil that is fixed relative to the moving frame and drives the correction lens with a thrust generated by energization.
The magnetic field generation means is composed of a magnet and a yoke provided with different positions in the optical axis direction,
The air-core coil is in the direction of the optical axis is located alongside the the magnet and the yoke, and is formed by winding a conductor wire so as to surround the optical path of the correcting lens is positioned an optical path of the correcting lens in its empty core A camera shake correction mechanism for an optical device.
請求項1記載の手振れ補正機構において、光学装置は左右に一対の光軸を有し、上記移動枠は該一対の光軸上にそれぞれ左右一対の補正レンズを位置させて一体に支持しており、
上記空芯コイルは、左右の補正レンズに共通で、両補正レンズの光路上に単一の空芯部を位置させるための横長形状をなしている光学装置の手振れ補正機構。
2. The camera shake correction mechanism according to claim 1, wherein the optical device has a pair of left and right optical axes, and the movable frame integrally supports the pair of right and left correction lenses positioned on the pair of optical axes. ,
The air core coil is a camera shake correction mechanism for an optical device which is common to the right and left correction lenses and has a horizontally long shape for positioning a single air core portion on the optical path of both correction lenses.
請求項1または2記載の手振れ補正機構において、上記移動枠は光軸と直交する平面内で、互いに直交する2方向へ直進移動可能に支持された2方向直進移動枠であり、
この2方向直進移動枠の移動方向と平行な推力軸をそれぞれ有する一対の上記空芯コイルが、その空芯部を補正レンズの光路上に位置させて2方向直進移動枠の前方位置と後方位置に設けられる光学装置の手振れ補正機構。
The camera shake correction mechanism according to claim 1 or 2, wherein the moving frame is a two-way linear movement frame supported so as to be linearly movable in two directions orthogonal to each other within a plane orthogonal to the optical axis,
A pair of said air-core coil having parallel thrust axis and movement direction of the two directions linearly moving frame, respectively, the forward and rearward positions of the two directions linearly moving frame by positioning the optical path of the correcting lens and the air-core section shake correction mechanism of an optical device provided in.
請求項1ないしいずれか1項記載の手振れ補正機構において、上記空芯コイルを挟んだ光軸方向の前後位置に、上記磁界生成手段を構成する磁石とヨークの一方と他方が設けられる光学装置の手振れ補正機構。In the camera shake correction mechanism of claims 1 to 3 any one of claims, the empty core coil longitudinal position of the optical axis direction across the while the optical device other is provided in the magnet and the yoke constituting the magnetic field generating means Camera shake correction mechanism.
JP16997097A 1997-06-26 1997-06-26 Optical image stabilization mechanism Expired - Fee Related JP3863638B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16997097A JP3863638B2 (en) 1997-06-26 1997-06-26 Optical image stabilization mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16997097A JP3863638B2 (en) 1997-06-26 1997-06-26 Optical image stabilization mechanism

Publications (2)

Publication Number Publication Date
JPH1115037A JPH1115037A (en) 1999-01-22
JP3863638B2 true JP3863638B2 (en) 2006-12-27

Family

ID=15896196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16997097A Expired - Fee Related JP3863638B2 (en) 1997-06-26 1997-06-26 Optical image stabilization mechanism

Country Status (1)

Country Link
JP (1) JP3863638B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000352651A (en) * 1999-06-14 2000-12-19 Ishikawajima Harima Heavy Ind Co Ltd Lens holder
JP4650594B2 (en) * 2000-09-28 2011-03-16 富士フイルム株式会社 Anti-vibration adapter
JP4671626B2 (en) * 2004-05-31 2011-04-20 Hoya株式会社 Imaging device
JP4691326B2 (en) * 2004-06-08 2011-06-01 Hoya株式会社 Image blur correction device
JP4747520B2 (en) * 2004-06-15 2011-08-17 ソニー株式会社 Lens driving mechanism and imaging apparatus
JP5140502B2 (en) * 2007-07-27 2013-02-06 富士フイルム株式会社 XY stage and photographing apparatus
JP5106998B2 (en) 2007-11-16 2012-12-26 パナソニック株式会社 Optical element driving apparatus and imaging apparatus
JP4910998B2 (en) * 2007-11-19 2012-04-04 ソニー株式会社 Image blur correction device, lens barrel, and imaging device
JP5140573B2 (en) * 2008-04-30 2013-02-06 日本電産サンキョー株式会社 Optical unit with shake correction function
JP5203168B2 (en) 2008-12-17 2013-06-05 富士フイルム株式会社 Camera shake correction apparatus and optical apparatus

Also Published As

Publication number Publication date
JPH1115037A (en) 1999-01-22

Similar Documents

Publication Publication Date Title
CN107329348B (en) Lens driving device with anti-shake function
US5883742A (en) Image vibration reduction device
US6112028A (en) Image-shake correcting device
KR101643160B1 (en) Tilting type optical image stabilizer camera module
US20100020184A1 (en) Image shake correction apparatus, and camera having image shake correction apparatus
JP3863638B2 (en) Optical image stabilization mechanism
CN109426047B (en) Drive device with drive unit using magnetic circuit
JP2011090064A (en) Lens driving device, autofocus camera and cellular phone with camera
KR20190137730A (en) Lens assembly
JP3365925B2 (en) Lens drive
KR20190087801A (en) Lens assembly and Camera module comprising the same
JP2011112709A (en) Lens drive device, autofocus camera, and cellular phone having built-in camera
KR100417573B1 (en) Lens barrel
JP2011118131A (en) Lens driving device, autofocus camera, and camera-equipped cellphone
JP5827923B2 (en) Lens drive magnetic circuit
JP2017184600A (en) Stage device
JP2013109248A (en) Anti-vibration actuator
JP2000199920A (en) Vibration proofing device for camera
JPH0886948A (en) Optical equipment
CN110632730A (en) Electromagnetic driving device, lens driving device, camera device and electronic apparatus
JP2000193875A (en) Lens barrel, and optical instrument having the lens barrel
JP2004101721A (en) Lens barrel and camera
JP4751618B2 (en) Stage device and camera shake correction device using the stage device
JPH086089A (en) Shake preventing device
JP4584662B2 (en) Image blur correction mechanism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060929

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees