JP3862290B2 - Purification method of lactate ester - Google Patents

Purification method of lactate ester Download PDF

Info

Publication number
JP3862290B2
JP3862290B2 JP17047894A JP17047894A JP3862290B2 JP 3862290 B2 JP3862290 B2 JP 3862290B2 JP 17047894 A JP17047894 A JP 17047894A JP 17047894 A JP17047894 A JP 17047894A JP 3862290 B2 JP3862290 B2 JP 3862290B2
Authority
JP
Japan
Prior art keywords
lactic acid
activated carbon
absorption
ethyl lactate
acid ester
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17047894A
Other languages
Japanese (ja)
Other versions
JPH0812621A (en
Inventor
威毅 松崎
則雄 高橋
道彦 五月女
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toho Chemical Industry Co Ltd
Original Assignee
Toho Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toho Chemical Industry Co Ltd filed Critical Toho Chemical Industry Co Ltd
Priority to JP17047894A priority Critical patent/JP3862290B2/en
Publication of JPH0812621A publication Critical patent/JPH0812621A/en
Application granted granted Critical
Publication of JP3862290B2 publication Critical patent/JP3862290B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【産業上の利用分野】
本発明は、乳酸エステルの精製方法に関する。更に詳しくは、醗酵法で製造された乳酸を原料として製造された乳酸エステルを活性炭処理した後、蒸留精製することを特徴とするフォトレジスト用溶剤として有用な乳酸エステルの精製方法に関する。
【0002】
【従来の技術】
従来、リゾグラフィ技術を利用して製造される半導体ディバイス、プリント配線板、あるいは印刷板などの広範囲な分野で用いられるフォトレジスト樹脂溶剤としては、エチルセロソルブアセテ−ト(以下ECAと呼ぶ)、ピルビン酸エチル、ジグライム、メチルセロソルブアセテ−ト等の有機溶剤が用いられてきた。特に、ECAはフォトレジスト用溶剤として優れた性能が評価され、その主流を占めてきた。
【発明が解決しようとする課題】
【0003】
しかし、ECAが体内に吸収されると生殖機能等の障害が出ることが発表されて以来、ECA代替溶剤の早急な出現が当該業界より強く要望されてきている。この様な状況の中でECA代替溶剤として、乳酸エステル、特に乳酸エチルがレジスト樹脂の溶解性の良いこと、あるいは安全性が高いこと等からフォトレジスト樹脂の溶剤として検討されている。
【0004】
しかしながら、醗酵法により製造された乳酸(以下醗酵乳酸と云う)を原料として製造された乳酸エステル(以下醗酵乳酸エステルと呼ぶ)の欠点は、微量の不純物(例えば、アクリル酸エステル等)の影響により、300nm以下の波長、所謂ディ−プUV(紫外線)領域の光を吸収する。このUV吸収の原因となる微量の不純物成分は、従来の精製手段(例えば、蒸留精製)では実質的に除去することは出来ない。
【0005】
例えば、醗酵乳酸エステルは糖類(甜菜、トウモロコシ、等)を醗酵させて造った醗酵乳酸をアルコ−ル(メタノ−ル、エタノ−ル、ブタノ−ル等)とエステル化反応させて造る。このようにして製造された醗酵乳酸エステル、例えば醗酵乳酸エチルは280nmのUV吸収が2.0以上であり、場合によっては3.0以上に達することもある。
【0006】
一方、半導体ディバイスにおける高密度化、高集積度化、又プリント配線板や印刷板におけるパタ−ンプロフィルの高解像度化の要求はますます強くなってきている。それに伴いリソグラフィ技術に関しては0.5μm以下の所謂ハ−フミクロンリソグラフィ技術による微細加工や高解像度化が要求される。
それ故、レジストに照射される光は例えば低圧水銀灯やエキシマレ−ザ−を光源とするディ−プUVが使われるが、この時の波長は300nm以下の光が使用される。
【0007】
従って、醗酵乳酸エステルを従来の精製方法で精製して、フォトレジスト用溶剤として使うと、照射する放射線量の増加、あるいは深部まで光が到達しないと云う問題が発生したり、更には、不純物、含有金属による半導体ディバイスの性能不良などの問題を発生する。従って、フォトレジスト用溶剤としては例えば280nmのUV吸収を1.0以下、好ましくは0.6以下で、しかも不純物が少なくて低金属の乳酸エステルが必要となっている。本発明はこれらの問題を解決するものである。即ち、本発明の目的は300nm以下のUV吸収を実質的に無視出来る程度まで低減し、しかも不純物が少なく低金属のフォトレジスト用に好適な乳酸エステルを得る為の醗酵乳酸エステルの精製方法を提供することである。
【0008】
本発明者らは、前述の問題点を解決すべく鋭意検討を重ねた結果、醗酵乳酸エステルを活性炭処理した後、100℃以下で蒸留精製することにより、300nm以下のUV吸収の低減された乳酸エステルが得られることを見い出し、本発明に到達したものである。即ち、本発明は醗酵乳酸エステルを蒸留精製するにあたり、あらかじめ活性炭処理して300nm以下のUV吸収を低減してから100℃以下で蒸留することを特徴とする乳酸エステルの精製方法である。
【0009】
本発明に使われる醗酵乳酸エステルとしては、例えば乳酸メチル、乳酸エチル、乳酸ブチル、乳酸プロピル等が挙げられる。又、本発明で使用される活性炭は特に限定されないが、その平均細孔径(D)が100Å以下のものが有効で、特に50Å以下のものが有効である。平均細孔径が100Å以上になると効果は若干減少する。活性炭の原料(ピ−ト、やし殻、木材、リグナイト、コ−ル 等)、賦活方法(化学賦活、水蒸気賦活)および形状(粒状炭、粉末炭)による処理効果への影響は実質的には小さい。
【0010】
本発明の方法に係わる活性炭処理方法は、通常の活性炭処理と同様に実施することが可能である。一般的には乳酸エステルと活性炭とを数分〜約10時間混合撹拌後濾過するか、あるいは活性炭をカラムに充填した固定床に乳酸エステルを通過させることにより実施される。いずれの方法においても活性炭中の成分の溶出を避けるため、活性炭処理は常温ないし若干の加温下で行うことが好ましい。粉末活性炭の場合は混合撹拌の方法が一般的で、通常処理すべき乳酸エステルに対し活性炭を0.1〜20wt%、一般的には0.5〜10wt%を添加して数分〜約10時間撹拌後、濾過して活性炭を除去する。又、粒状活性炭の場合は固定床の方法が適当で、通常処理すべき乳酸エステルに対し活性炭を0.3〜10wt%、一般的には0.5〜5wt%をカラムに充填し、活性炭量(体積)の0.5〜10容量/時間の乳酸エステルを通して接触させる。活性炭処理により乳酸エステルの280nmのUV吸収が通常2〜4であったものが、1以下に低減する。混合撹拌式の場合は濾過して活性炭を除去してから蒸留するが、固定床式の場合は特に濾過の必要はなく、流出液を直ちに蒸留することが出来る。
【0011】
レジスト用溶剤はUV吸収の少ないことと同時に高純度品、例えば99.9%以上の純度が要求される為、活性炭処理後の蒸留操作も重要な工程で、蒸留中の乳酸エステルの分解によるアルコ−ル、乳酸、及び縮合による乳酸ダイマ−の生成を極力抑制することが肝要である。
それ故、本発明の方法における蒸留は上記乳酸エステルの性質から、温度は100℃以下、圧力は100torr以下の条件で実施することが好ましい。蒸留温度が100℃以上になると乳酸エステルが分解や縮合を起し、高純度品(99.9%以上)を得ることはむずかしい。尚、安定剤等の添加も有効であるが、基本的には温度コントロ−ルによる分解抑制が最も有効である。
【0012】
【実施例】
以下に実施例を挙げて本発明の方法を更に具体的に説明する。
【実施例】
植物系粒状炭(日本ノリット社製、PK 0.6−2mm)の100mlをガラスカラムに充填し、醗酵乳酸エチル(純度98.1%、280nmのUV吸収は3.710)3リットルを500ml/hの速度で挿入し、活性炭処理を行った。処理後の乳酸エチルの280nmのUV吸収は0.414であった。次にこの乳酸エチル(2リットル)を段数20段相当の蒸留塔で温度90〜95℃、圧力100〜110torrの条件下に蒸留し、純度 99.987%、280nmのUV吸収 0.225の乳酸エチル1.8リットルを得た。又、金属類含有量は、Na:11ppb、K:0.5ppb、Fe:1.8ppbで低金属の乳酸エチルであることが分かった。
【0013】
【実施例2】
活性炭粒状炭(日本ノリット社製、RAX−1)の100mlを実施例−1と同じガラスカラムに充填し、醗酵乳酸エチル(純度 98.6%、280nmのUV吸収は2.874)3リットルを400ml/hrの速度で挿入し、活性炭処理を行った。処理後の乳酸エチルの280nmのUV吸収は0.524であった。
つぎにこの乳酸エチル(1リットル)を実施例−1と同じ蒸留塔で、温度80〜85℃、圧力450〜50torrの条件下に蒸留し、純度 99.992%、280nmのUV吸収 0.315の乳酸エチル0.78リットルを得た。又、金属類含有量はNa:1.0、K:0.9、Fe:1.1、Cu:0.4、Mn:1.2(ppb)で低金属の乳酸エチルであることが分かった。
【0014】
【実施例3】
植物系粉末炭(日本ノリット社製 SX−1)の40gを撹拌装置及び温度計の付いた1リットル四ッ口フラスコに仕込み、更に実施例−2と同じ醗酵乳酸エチル800gを仕込んで、室温(20〜25℃)下に6時間撹拌混合し、吸着処理を行った。処理後の乳酸エチルの280nmのUV吸収は0.308であった。
次にこの乳酸エチル(0.7リットル)を実施例−1と同じ蒸留塔で、温度90〜95℃、圧力70〜100torrの条件下に蒸留し、純度 99.978%、280nmのUV吸収 0.273の乳酸エチル0.62リットルを得た。又、金属類の含有量はNa:0.8、K:0.6、Fe:1.0、Cu:0.5、Mn:0.8、Mg:0.4、Ca:1.2(ppb)で低金属の乳酸エチルであることが分かった。
【0015】
【実施例4】
石炭系粒状炭(日本ノリット社製 GRANULAR DARCO)の50gを実施例−3と同じ四ッ口フラスコに仕込み、更に実施例−1と同じ醗酵乳酸エチル800gを仕込んで、室温(20〜25℃)下に10時間撹拌混合し、吸着処理を行った。処理後の乳酸エチルの280nmのUV吸収は0.647であった。
次に処理後の乳酸エチル(0.7リットル)を実施例−1と同じ蒸留塔で、温度55〜60℃、圧力15〜30torrの条件下に蒸留し、純度 99.995%、280nmのUV吸収 0.528であった。又、金属類の含有量はNa:2.1、K:1.2、Fe:2.8、Ca:1.0、Mn:0.8、Cu:0.9(ppb)で、低金属の乳酸エチルであることが分かった。
【0016】
【比較例】
【比較例1】
実施例−1と同じ醗酵乳酸エチル(1リットル)を実施例−1で使用した蒸留塔で、温度80〜85℃、圧力45〜50torrの条件下に蒸留し、純度 99.991%、280nmのUV吸収 3.518の乳酸エチルを0.85リットルを得た。蒸留精製だけでは280nmのUV吸収はほとんど削減していない。
【0017】
【比較例2】
実施例−1と同じ醗酵乳酸エチル(3リットル)を実施例−1と同じ条件下に活性炭処理を行った乳酸エチル(280nmのUV吸収 0.408)1リットルを実施例−1と同じ蒸留塔を使用して、温度110〜120℃、圧力130〜140torrの条件下に蒸留し、純度 99.08%、280nmのUV吸収 0.210の乳酸エチルを0.83リットルを得た。純度は99.9%に達していないことが分かった。
【0018】
【発明の効果】
本発明の方法によれば、高純度(99.9%以上)で且つUV吸収の削減された(1以下)乳酸エチルを得ることができる。
又、本発明の方法によれば、高純度、且つUV吸収の削減されたことに加え、低金属品(Na、K、Fe、Ca、Mn、その他の金属等が10ppb以下)を得ることができる。
[0001]
[Industrial application fields]
The present invention relates to a method for purifying a lactic acid ester. More specifically, the present invention relates to a method for purifying a lactic acid ester useful as a solvent for a photoresist, characterized by subjecting a lactic acid ester produced using a lactic acid produced by a fermentation method as a raw material to activated carbon treatment and then purifying it by distillation.
[0002]
[Prior art]
Conventionally, as a photoresist resin solvent used in a wide range of fields such as semiconductor devices, printed wiring boards, and printing plates manufactured using lithographic technology, ethyl cellosolve acetate (hereinafter referred to as ECA), pyruvic acid Organic solvents such as ethyl, diglyme and methyl cellosolve acetate have been used. In particular, ECA has been the mainstream because it has been evaluated for its excellent performance as a solvent for photoresist.
[Problems to be solved by the invention]
[0003]
However, since it has been announced that when ECA is absorbed into the body, it may cause problems such as reproductive function, the rapid appearance of ECA alternative solvents has been strongly demanded by the industry. Under such circumstances, lactate esters, particularly ethyl lactate, as a substitute solvent for ECA, are being investigated as solvents for photoresist resins because of their good solubility in resist resins and high safety.
[0004]
However, the disadvantage of lactic acid ester (hereinafter referred to as fermentation lactic acid ester) produced using lactic acid produced by fermentation (hereinafter referred to as fermentation lactic acid) as a raw material is due to the influence of a trace amount of impurities (for example, acrylic acid ester, etc.). Absorbs light in a wavelength of 300 nm or less, that is, a so-called deep UV (ultraviolet) region. The trace amount of impurity components that cause the UV absorption cannot be substantially removed by conventional purification means (for example, distillation purification).
[0005]
For example, a fermented lactic acid ester is produced by esterifying a fermented lactic acid produced by fermenting a saccharide (sugar beet, corn, etc.) with alcohol (methanol, ethanol, butanol, etc.). The fermented lactic acid ester produced in this way, for example, fermented ethyl lactate, has a UV absorption at 280 nm of 2.0 or more, and in some cases may reach 3.0 or more.
[0006]
On the other hand, demands for higher density and higher integration in semiconductor devices and higher resolution of pattern profiles in printed wiring boards and printed boards are increasing. Along with this, with respect to lithography technology, fine processing and high resolution by so-called half-micron lithography technology of 0.5 μm or less are required.
Therefore, for example, a deep UV using a low-pressure mercury lamp or an excimer laser as a light source is used as the light applied to the resist, and the wavelength at this time is 300 nm or less.
[0007]
Therefore, when the fermented lactic acid ester is purified by a conventional purification method and used as a solvent for a photoresist, there arises a problem that the amount of radiation to be irradiated is increased, or light does not reach the deep part, and further, impurities, Problems such as poor performance of semiconductor devices due to the contained metal occur. Therefore, as a solvent for photoresist, for example, UV absorption at 280 nm is 1.0 or less, preferably 0.6 or less, and there are few impurities and a low metal lactic acid ester is required. The present invention solves these problems. That is, the object of the present invention is to provide a method for purifying a fermentation lactate to reduce UV absorption below 300 nm to a level that can be substantially ignored, and to obtain a lactate suitable for a low-metal photoresist with few impurities. It is to be.
[0008]
As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention treated the fermented lactic acid ester with activated carbon and then purified by distillation at 100 ° C. or less, thereby reducing the UV absorption of 300 nm or less. The inventors have found that an ester can be obtained and have reached the present invention. That is, the present invention is a method for purifying a lactic acid ester, characterized in that when the fermented lactic acid ester is purified by distillation, it is treated with activated carbon in advance to reduce UV absorption of 300 nm or less and then distilled at 100 ° C. or less .
[0009]
Examples of the fermented lactic acid ester used in the present invention include methyl lactate, ethyl lactate, butyl lactate, and propyl lactate. The activated carbon used in the present invention is not particularly limited, but those having an average pore diameter (D) of 100 mm or less are effective, and those having an average pore diameter of 50 mm or less are particularly effective. When the average pore diameter is 100 mm or more, the effect is slightly reduced. The effect of the activated carbon raw material (peat, palm shell, wood, lignite, coal, etc.), activation method (chemical activation, steam activation) and shape (granular coal, powdered coal) on the treatment effect is substantially Is small.
[0010]
The activated carbon treatment method according to the method of the present invention can be carried out in the same manner as ordinary activated carbon treatment. In general, the reaction is carried out by mixing and stirring the lactic acid ester and activated carbon for several minutes to about 10 hours, or by passing the lactic acid ester through a fixed bed packed with activated carbon in a column. In any method, in order to avoid elution of components in the activated carbon, the activated carbon treatment is preferably performed at normal temperature or slightly heated. In the case of powdered activated carbon, the mixing and stirring method is generally used, and 0.1 to 20 wt%, generally 0.5 to 10 wt% of activated carbon is added to the lactic acid ester to be treated usually, and several minutes to about 10 After stirring for a time, the activated carbon is removed by filtration. In the case of granular activated carbon, a fixed bed method is suitable, and the column is packed with 0.3 to 10 wt%, generally 0.5 to 5 wt%, of activated carbon with respect to the lactic acid ester to be treated normally. Contact through (volume) 0.5 to 10 volumes / hour lactate. What the UV absorption of lactic acid ester was usually 2-4 by the activated carbon treatment is reduced to 1 or less. In the case of the mixed stirring type, the distillation is performed after removing the activated carbon by filtering, but in the case of the fixed bed type, there is no particular need for filtration, and the effluent can be distilled immediately.
[0011]
Resist solvents require high UV purity and high purity, for example, purity of 99.9% or higher, so distillation operation after activated carbon treatment is also an important process. -It is important to suppress as much as possible the production of lactic acid dimer due to condensation, lactic acid and condensation.
Therefore, the distillation in the method of the present invention is preferably carried out under the conditions of the temperature of 100 ° C. or lower and the pressure of 100 torr or lower because of the properties of the lactic acid ester. When the distillation temperature is 100 ° C. or higher, the lactic acid ester is decomposed and condensed, and it is difficult to obtain a high-purity product (99.9% or higher). Although addition of a stabilizer or the like is also effective, basically, suppression of decomposition by temperature control is most effective.
[0012]
【Example】
The method of the present invention will be described more specifically with reference to the following examples.
【Example】
A glass column is filled with 100 ml of plant-based granular charcoal (manufactured by Nippon Norit, PK 0.6-2 mm), and 3 liters of fermented ethyl lactate (purity 98.1%, UV absorption at 280 nm is 3.710) is 500 ml / Insertion was performed at a rate of h, and activated carbon treatment was performed. The UV absorption at 280 nm of the ethyl lactate after the treatment was 0.414. Next, this ethyl lactate (2 liters) was distilled in a distillation column corresponding to 20 plates under the conditions of a temperature of 90 to 95 ° C. and a pressure of 100 to 110 torr. The purity was 99.987%, 280 nm UV absorption 0.225 lactic acid 1.8 liters of ethyl was obtained. Further, it was found that the metal content was Na: 11 ppb, K: 0.5 ppb, Fe: 1.8 ppb and low metal ethyl lactate.
[0013]
[Example 2]
100 ml of activated carbon granular charcoal (Nihon Norit, RAX-1) is packed in the same glass column as Example 1, and fermented ethyl lactate (purity 98.6%, UV absorption at 280 nm 2.874) 3 liters. Insertion was performed at a rate of 400 ml / hr, and activated carbon treatment was performed. The UV absorption at 280 nm of ethyl lactate after the treatment was 0.524.
Next, this ethyl lactate (1 liter) was distilled in the same distillation column as in Example 1 under the conditions of a temperature of 80 to 85 ° C. and a pressure of 450 to 50 torr, and a purity of 99.992%, UV absorption of 280 nm 0.315. Of 0.78 liters of ethyl lactate was obtained. The metal content is Na: 1.0, K: 0.9, Fe: 1.1, Cu: 0.4, Mn: 1.2 (ppb). It was.
[0014]
[Example 3]
40 g of plant-based powdered charcoal (SX-1 manufactured by Nippon Norit) was charged into a 1-liter four-necked flask equipped with a stirrer and a thermometer, and further charged with 800 g of fermented ethyl lactate as in Example-2 at room temperature ( The mixture was stirred and mixed at 20 to 25 ° C. for 6 hours to carry out adsorption treatment. The UV absorption at 280 nm of ethyl lactate after the treatment was 0.308.
Next, this ethyl lactate (0.7 liter) was distilled in the same distillation column as in Example 1 under the conditions of a temperature of 90 to 95 ° C. and a pressure of 70 to 100 torr, and a purity of 99.978% and UV absorption of 280 nm. 0.63 liters of .273 ethyl lactate was obtained. The metal contents are Na: 0.8, K: 0.6, Fe: 1.0, Cu: 0.5, Mn: 0.8, Mg: 0.4, Ca: 1.2 ( ppb) was found to be a low metal ethyl lactate.
[0015]
[Example 4]
50 g of coal-based granular coal (GRANULAR DARCO, manufactured by Nippon Norit Co., Ltd.) is charged into the same four-necked flask as in Example-3, and further charged with 800 g of fermented ethyl lactate as in Example-1 at room temperature (20-25 ° C.). The mixture was stirred and mixed for 10 hours, and an adsorption treatment was performed. The UV absorption at 280 nm of the ethyl lactate after the treatment was 0.647.
Next, the treated ethyl lactate (0.7 liter) was distilled in the same distillation column as in Example 1 under the conditions of a temperature of 55-60 ° C. and a pressure of 15-30 torr, and a purity of 99.995%, UV of 280 nm. Absorption 0.528. The metal content is Na: 2.1, K: 1.2, Fe: 2.8, Ca: 1.0, Mn: 0.8, Cu: 0.9 (ppb), low metal Of ethyl lactate.
[0016]
[Comparative example]
[Comparative Example 1]
In the distillation column using the same fermented ethyl lactate (1 liter) as in Example-1 at the temperature of 80 to 85 ° C. and the pressure of 45 to 50 torr, the purity was 99.991%, 280 nm. 0.885 liters of ethyl lactate with UV absorption of 3.518 was obtained. By distillation purification alone, UV absorption at 280 nm is hardly reduced.
[0017]
[Comparative Example 2]
The same distillation column as in Example-1 except that 1 liter of ethyl lactate (280 nm UV absorption 0.408) obtained by subjecting the same fermented ethyl lactate (3 liters) as in Example-1 to activated carbon treatment under the same conditions as in Example-1 Was distilled under the conditions of a temperature of 110 to 120 ° C. and a pressure of 130 to 140 torr to obtain 0.83 liters of ethyl lactate having a purity of 99.08%, UV absorption of 0.280 nm and 0.210 nm. It was found that the purity did not reach 99.9%.
[0018]
【The invention's effect】
According to the method of the present invention, ethyl lactate having a high purity (99.9% or more) and reduced UV absorption (1 or less) can be obtained.
Moreover, according to the method of the present invention, in addition to high purity and reduced UV absorption, low metal products (Na, K, Fe, Ca, Mn, other metals, etc. are 10 ppb or less) can be obtained. it can.

Claims (1)

醗酵法で製造された乳酸を原料として製造された乳酸エステルを活性炭処理した後、100℃以下で蒸留精製することを特徴とする乳酸エステルの精製方法。A method for purifying a lactic acid ester, comprising subjecting a lactic acid ester produced using a lactic acid produced by a fermentation method as a raw material to an activated carbon treatment, and then purifying by distillation at 100 ° C. or lower .
JP17047894A 1994-06-30 1994-06-30 Purification method of lactate ester Expired - Fee Related JP3862290B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17047894A JP3862290B2 (en) 1994-06-30 1994-06-30 Purification method of lactate ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17047894A JP3862290B2 (en) 1994-06-30 1994-06-30 Purification method of lactate ester

Publications (2)

Publication Number Publication Date
JPH0812621A JPH0812621A (en) 1996-01-16
JP3862290B2 true JP3862290B2 (en) 2006-12-27

Family

ID=15905700

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17047894A Expired - Fee Related JP3862290B2 (en) 1994-06-30 1994-06-30 Purification method of lactate ester

Country Status (1)

Country Link
JP (1) JP3862290B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5000814B2 (en) * 2001-06-05 2012-08-15 東邦化学工業株式会社 Method for removing impurities in ethyl lactate
US8048919B2 (en) 2004-06-28 2011-11-01 Archer Daniels Midland Company Use of ethyl lactate as an excipient for pharmaceutical compositions
CN101981131B (en) * 2008-03-28 2014-01-01 太阳控股株式会社 Curable resin composition, cured article thereof, and printed circuit board
CA2817926A1 (en) 2010-11-15 2012-05-24 Archer Daniels Midland Company Compositions and uses thereof in converting contaminants
WO2018051716A1 (en) * 2016-09-15 2018-03-22 富士フイルム株式会社 Organic solvent refining method and organic solvent refining apparatus

Also Published As

Publication number Publication date
JPH0812621A (en) 1996-01-16

Similar Documents

Publication Publication Date Title
EP0196173B1 (en) Removal of iodide compounds from non-aqueous organic media
TW422830B (en) Improved purification and recovery of acetonitrile
DE3232236A1 (en) SOLID ADSORBENT FOR CARBON MONOXIDE AND METHOD FOR SEPARATING IT FROM A GAS MIXTURE
JP2005517623A5 (en)
JP3862290B2 (en) Purification method of lactate ester
EP0641314B1 (en) Method for purification of acetonitrile
FR2732024A1 (en) PROCESS FOR THE PURIFICATION OF CHEMICALLY MODIFIED CYCLODEXTRINS TO REMOVE IMPURITIES
EP0484153B1 (en) Improved method for the purification of acetaminophen
US4532318A (en) Process for removing trace amounts of hydrazine
US5155266A (en) Purification of acetic acid with ozone in the presence of an oxidation catalyst
US5326918A (en) Purification of 1,1-dichloro-1-fluoroethane
WO2022141229A1 (en) Sucralose preparation method, crude product solution, and sucralose
US6906209B2 (en) Purification of propylene oxide
CN107383127B (en) Comprehensive water-saving process for producing stevioside
JPH0725814A (en) Production of highly pure acetic acid
GB1561395A (en) -lactam antibiotic
JP5000814B2 (en) Method for removing impurities in ethyl lactate
JP2823431B2 (en) Epichlorohydrin decolorization method
US5371279A (en) Acetic acid removal from liquid ether acetates
EP0061057B1 (en) Process for the production of formaldehyde
CN114249480B (en) Method for treating production wastewater of 6, 8-dichloro ethyl caprylate
JP2005097160A (en) Method for producing highly pure terephthalic acid
US3033849A (en) Manufacture of vitamin b12
CA2413901C (en) An acid washed adsorbent carbon used in a method for the purification of acetaminophen
DE2721298C3 (en) Process for cleaning wastewater containing phosphate

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050525

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091006

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees