JP3862174B2 - Basic structure of the structure - Google Patents

Basic structure of the structure Download PDF

Info

Publication number
JP3862174B2
JP3862174B2 JP2003192531A JP2003192531A JP3862174B2 JP 3862174 B2 JP3862174 B2 JP 3862174B2 JP 2003192531 A JP2003192531 A JP 2003192531A JP 2003192531 A JP2003192531 A JP 2003192531A JP 3862174 B2 JP3862174 B2 JP 3862174B2
Authority
JP
Japan
Prior art keywords
ground
pile
foundation
sliding
horizontal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003192531A
Other languages
Japanese (ja)
Other versions
JP2005029956A (en
Inventor
光生 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2003192531A priority Critical patent/JP3862174B2/en
Publication of JP2005029956A publication Critical patent/JP2005029956A/en
Application granted granted Critical
Publication of JP3862174B2 publication Critical patent/JP3862174B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、建築構造物とそれを支持する基礎構造に関するものであり、両者の耐震安全性能を飛躍的に高めながら且つそれを極めて経済的に実現できる構造物の基礎構造を提供するものである。
【0002】
【従来の技術】
1995年の阪神淡路大震災では、建築構造物本体と基礎構造体に甚大な被害が発生した。
建築構造物の耐震安全性能を飛躍的に改善できる構造方法として、積層ゴム等のアイソレータとエネルギー吸収を担うダンパーで構成する免震構造が実用化されている。しかし、これまでの免震構造では免震装置の費用が必要であると同時に、基礎構造体が2重になるために躯体費の増加が大きく、建設費のかなりのコストアップが避けられなかった。
【0003】
一方、軟弱地盤においてはこれまで多くの既製杭や場所打ちコンクリート杭など各種の杭基礎が採用されてきたが、過去の被害地震において杭の損傷事例が多数報告されてきた。
【0004】
図1は従来の一般的な杭基礎を有する建築構造物の構成を示すもので、図1(1)は平面図で構造物輪郭と杭の位置関係を、図1(2)は断面図で構造物下部と杭基礎、地盤を含めた基礎部の全体構成をそれぞれ示している。構造物1の重量は4本の杭3で支持されており、杭頭部は構造物底面に剛結合(杭頭固定という)されている。構造物に発生した水平地震力(白抜き矢印)は各杭3に伝達され、全水平力を杭3で負担するのがこれまでの杭基礎の耐震設計思想である。
【0005】
杭頭固定であるこれまでの杭基礎では、杭に水平地震力が作用すると杭頭部に大きな曲げモーメントが発生する。その結果、これまでの杭基礎の地震被害も、杭3の損傷の多くが杭頭部に集中しており、近年、これら杭基礎の耐震安全性能を改善するために、杭頭ピン接合(特許文献1、特許文献2)や杭頭回転自由接合工法(特許文献3) などの杭頭部を拘束しない幾通りかの接合方法や接合装置が開発されてきている。
【0006】
また、構造物と杭基礎両者の耐震安全性能の改善、向上をめざす方法として、特許文献4、特許文献5、特許文献6等の提案がある。
【0007】
しかし、特許文献4は、Pδ効果(P:鉛直荷重、δ:水平変位)による大きな付加モーメントM=Pδが杭頭部に作用すること、特許文献5・6は、地震時の杭傾斜により杭頭上面のすべり接触条件が崩れること等、いずれも問題点を抱える提案であった。
【0008】
本発明者は、特許文献7において、特許文献4〜6の問題点を解決し、杭上面において確実に機能するすべり免震構造を提案している。これらの問題点とその解決方法については特許文献7に詳述されているので、ここでの再説明は省略する。
【特許文献1】
特開平10-227040号
【特許文献2】
特開2001-348885
【特許文献3】
特許第3159380号
【特許文献4】
特開昭59-134230号
【特許文献5】
特開平10-227039号
【特許文献6】
特開平1-304223号
【特許文献7】
特願2002-205893
【0009】
【発明が解決しようとする課題】
これまでの杭基礎の耐震設計は、1)地震時に構造物に発生した水平地震力は杭に伝達される、2)その水平力によって杭には大きな地震時応力が発生する、3)その応力に耐えられるように杭の耐力アップを図る、という考え方を採用している。これまでは、「構造物に発生した水平地震力は杭に伝達されるので、その地震力は杭で負担しなければならない」という考え方が当然とされてきたが、杭の耐震問題はそもそも「構造物(建物)の水平地震力が杭に作用すること」に根本原因がある。本発明は、この「地震力が杭に作用する」という基本的前提条件を否定し、杭による地震力の負担をできるだけ低減させる方法、即ち「杭体への地震力の伝達を小さくする方法」の実現を解決課題とする。
【0010】
更に、特許文献7において構造物に免震効果を与え且つそれを支持する杭基礎に作用する地震力も低減して構造物および杭基礎両者の耐震安全性能を改善する方法が実現されているが、本発明は、この特許文献7と同じ効果を、特許文献7よりも更に経済的に実現する方法をめざすものである。
【0011】
【課題を解決するための手段】
本発明は以上の点を解決するため次の構成を採用する。
〈構成1〉
構造物の重量を杭により支持し、上記構造物の底面に、下向きに突出して上記構造物からの水平力を地盤に伝達する、棒状もしくは壁板状の突起物を設けたことを特徴とする構造物の基礎構造。
【0012】
〈構成2〉
構成1に記載の構造物の基礎構造において、上記杭の頭部を、回転可能なピン接合部もしくは半剛接合部としたことを特徴とする構造物の基礎構造。
【0013】
〈構成3〉
構成1に記載の構造物の基礎構造において、上記杭の頭部に、上記杭の地震時傾斜を許容でき且つ水平方向に移動可能なすべり式杭頭接合装置もしくはすべり支承を配置したことを特徴とする構造物の基礎構造。
【0014】
〈構成4〉
構成1乃至構成3のいずれかに記載の構造物の基礎構造において、上記構造物の底面と地盤の間、あるいは上記構造物の底面と地盤との間および上記構造物の地中部側面と地盤との間の両者に隙間を設けており、上記構造物の底面から下向きに突出する突起物が地盤と接触していることを特徴とする構造物の基礎構造。
【0015】
〈構成5〉
構成4に記載の構造物の基礎構造において、上記突起物の側面と上記地盤との間に所定の隙間を設けたことを特徴とする構造物の基礎構造。
【0016】
〈構成6〉
杭基礎を有しない直接基礎により構造物重量を支える基礎構造において、上記直接基礎の基礎フーチングを構築しその上にすべり支承を配置して上記構造物重量を支え、上記構造物の底面に、下向きに突出する棒状もしくは壁板状の突起物を設け、上記構造物の底面とその下側地盤との間に所定の隙間を設けたことを特徴とする構造物の基礎構造。
【0017】
〈構成7〉
杭基礎と直接基礎の両者が併用される基礎構造において、構成1乃至構成5のいずれかの基礎構造と構成6の基礎構造を混合使用したことを特徴とする構造物の基礎構造。
【0018】
〈構成8〉
構成1乃至構成7のいずれかに記載の構造物の基礎構造において、上記構造物の底面の突起物の周囲地盤もしくは上記構造物の周囲地盤をセメント系固化材の混合処理又はその他の固化剤の注入等により地盤改良したことを特徴とする構造物の基礎構造。
【0019】
〈構成9〉
構成1乃至構成7のいずれかに記載の構造物の基礎構造において、上記構造物の底面の突起物の周囲地盤もしくは上記構造物の周囲地盤の上記構造物躯体の近傍に壁板状のコンクリート部材を埋め込んだことを特徴とする構造物の基礎構造。
【0020】
〈構成10〉
構成1乃至構成9のいずれかに記載の基礎構造において、上記突起物を上記構造物の最下層の地中梁に兼用していることを特徴とする構造物の基礎構造。
【0021】
〈構成11〉
構造物を支持する杭の頭部にすべり式杭頭接合装置もしくはすべり支承を配置し、上記すべり式杭頭接合装置もしくは上記すべり支承の上部に配置されるすべり板の周辺部に少なくとも3本以上のねじ孔をあけて、これにねじボルトを挿入し、その回転に伴う上下移動によりすべり板を水平に設置し、すべり板上部の基礎フーチングのコンクリートを打設することを特徴とする構造物の基礎構造の構築方法。
【0022】
〈構成12〉
構造物の底面から下向きに突出する突起物の底面の下に発泡樹脂材等のスポンジ状物質や柔らかい弾性材料等を挟むか、もしくは上記突起物の底面を地盤に接触させて、その上部の基礎床重量を支持させることにより、上記構造物の底面と地盤との間に隙間を確保することを特徴とする構造物の基礎構造の構築方法。
【0023】
〈概要〉
本発明は、基礎構造体(主として杭基礎)とその上部の構造物両者の耐震安全性能向上をめざすものであるが、先ず杭基礎の耐震安全性能を向上させる基本戦略として、構造物に発生した水平地震力ができるだけ杭に伝達されない方法を実現する。
【0024】
杭基礎は構造物の重量を支持することが本来の目的であり、地震時水平力を負担することは本来の目的ではないが、通常は杭頭が構造物基礎に直結(剛結合)されているため、地震力が伝達されてしまうのが実状である。その水平力は構造物底面に結合されている各要素の水平剛性に応じて分配されるのであり、構造物底面に結合されている要素の代表である杭の水平剛性は、杭自体の曲げ剛性と杭周囲の地盤の堅さ(弾性係数)によって決定される。
【0025】
そこで本発明は、杭の水平剛性と同等以上の水平剛性を有する別部材を構造物底面に配置する。即ち、構造物底面に下向きに突出する部材を設けるのである。この突出部材は構造物重量を支える必要はないので、地盤の支持層にまで達する必要がなく、深さは浅くてよい。この突出部材からの水平力を受けとる地盤の接触面はできるだけ大面積がよいので、構造物底面の突起物形状としては水平方向に長い壁板状がよい。幅の広い平板形状は、杭の細長い円柱形状よりも水平力に対する地盤の抵抗力が大きくなるので、効率的な水平力抵抗要素となる。
【0026】
また、この壁板状の突出部材は、構造物のX・Y水平両方向について、それぞれ底面の全長に渡って、しかも何列にも設けることができるので、地中への突出深さが浅くても、杭の水平剛性以上の水平剛性を確保することは容易である。但し、突起物先端レベルにおける水平面の地盤のせん断耐力が、突起物から地盤に伝達される水平力を上回るようにすることが大切である。
【0027】
この地中への突起物の形状は、壁板状の平板形状が最も効率的であるが、種々の制約によりその形状が困難である場合は、杭のような円柱状もしくは矩形断面の棒状突起物を複数本設けることで同様の効果を得ることができる。以上が、構成1に示した基本構成である。
【0028】
構造物底面に設けた水平力負担用突起物と構造物底面に結合されている杭との水平力の分担は、それぞれの水平剛性の割合によるので、杭の水平剛性を下げると杭に伝達される水平力が減少することになる。杭は杭頭部を構造物に剛結合(杭頭固定)するのが一般的であるが、近年実用化が進んでいる杭頭の固定度を低下させるピン接合もしくは半剛接合を採用することは杭の水平剛性を下げる効果があるので、本発明の水平力負担用突起物と併用することで、杭の負担水平力を低減させる効果が高まることになる。
【0029】
また、杭頭ピン接合を採用すると、杭頭の曲げ戻しモーメントが小さくなって地中梁の設計が容易になるという効果がある反面、杭の地中部モーメントが増加するという不利な面がある。本発明により杭の負担水平力を低減すれば、杭の地中部に発生するモーメントも小さくなるため、杭全長に渡って地震時応力が小さくなるという理想的な杭応力を実現することができる。これが、構成2に示す本発明である。
【0030】
構成3は、構成2を発展させ、杭に伝達される地震力を確実に制限し且つ構造物の安全性も確保できる方法である。即ち、杭頭部にすべり式の杭頭接合装置もしくはすべり免震支承を配置する。このとき、杭3の頭部のすべり機構は、地震時に杭が傾斜しても接触面のすべり機構が正常に保持されるように特許文献7に示す杭頭回転変位を吸収できる機構とする必要がある。杭頭部の上面にすべり面を直結する特許文献5・6等の方法は、杭の傾斜により接触面が正常に保持されないので採用すべきでない。
【0031】
特許文献7は、上部構造物を免震構造物として構成するために、杭頭部にすべり支承を配置した上で、構造物全体に復元力を与えるばね要素、例えば積層ゴムなどを配置している。本発明では、構造物底面に配置した突起物が下部地盤中に挿入されているので、その抵抗力により過度の水平ズレが防止され、またその変位時には突起物が地盤を圧縮しながら移動するため、復元力と同時にエネルギー消費を伴うダンパーとしても機能する。即ち、本発明の突起物は、復元力+ダンパー+変位制限用ストッパーとしての3機能を有している。以上により、本発明では特許文献7の復元力用部材(積層ゴムなど)を省略できるので、特許文献7よりも更に経済的に高性能の免震構造物を実現できる。また杭頭のすべり機構により摩擦力以上の水平力は杭に作用しないように水平地震力が制限されているので杭の耐震安全性能も同時に改善されている。以上が、構成3である。
【0032】
構成4は、構成3による免震効果を確実にするために、地盤から構造物への地震動の入力・伝達を遮断するものである。即ち、構造物への地震動入力は、地盤と接触している構造物底面および側面から伝達されると考えられるので、最も大きな面積を占める構造物の底面と地盤との間、および地中部に埋め込まれている構造物周囲側面と地盤との間に隙間を設けたものである。これにより、地盤との接触部分は、構造物重量を支える杭頭部のすべり支承と構造物底面に設けた突起物のみとなるので、構造物への地震入力の殆どが遮断されることになる。
【0033】
構成5は、地震入力の遮断効果を更に高めるために、構成4において地盤との接触部として残している構造物底面の突起物と地盤との接触をも避けるように構成したものである。突起物側面と地盤との間に若干の隙間を確保し、地盤と構造物間の相対変位がこの隙間以上に達すると、突起物が地盤に接触しその相対移動に抵抗するようになる。なお、地盤と接触している突起物底面からの地震動入力は比較的小さいと考えられるので、突起物底面は接触を許すことが可能である。なお、突起物底面と地盤との間にも隙間を確保することは、地震入力をより完全に遮断することになるので好ましいが、突起物の施工方法を考慮すると突起物底面と地盤との間に発泡樹脂材料などの低弾性材料を挟む方法が現実的である。その施工方法については、構成12に示している。
【0034】
以上は杭基礎を対象として、その耐震性能改善と構造物に免震効果を与える方法について説明してきたが、本発明の方法は杭を用いない直接基礎にも適用可能である。即ち、構成6は、先ず上部構造物の重量を地盤に伝える独立基礎あるいは連続(布)基礎の基礎フーチングを地盤上に構築し、その上にすべり免震支承を配置して構造物重量を支持させた上で、構造物底面とその下側地盤との間に隙間を確保して構造物底面に突起物を配置したものである。構造物の地中部側面と地盤との間に隙間を確保するかどうかは、側面の根入れ深さや工事の難易度等を考慮して得失を比較して決定すればよい。側面にも隙間を確保すれば、地震動入力の遮断効果は確実となるが、その一方で工事手間がかかり、また地表面における隙間部分の処理にも費用がかかるので、その長所短所を比較して決定するという意味である。例えば、重量の大きい大型構造物で根入れ深さが浅く、基礎底面に隙間を確保した場合には、周囲側面の浅い部分を軟らかい周辺土で埋め戻しても側面からの地震入力は小さいため免震効果は殆ど損なわれず、且つ構造物へのアクセス部などの地表面と構造物との取り合い部の収まり詳細が単純化されてメリットが大きいと判断できる。これは、杭基礎の場合にも同様の判断が成立する。
【0035】
以上により、本発明は杭基礎と直接基礎の両者に適用できることになった。その結果、一構造物に直接基礎と杭基礎の両者が使用される併用基礎に本発明を混合使用することにより、併用基礎の耐震安全性能を飛躍的に改善することが可能となる。即ち、併用基礎の最大の問題は、直接基礎部に対して杭基礎の水平剛性が低いために、斜面等に構造物を建設する場合、大きなねじれ問題を発生することである。本発明では、杭基礎に作用する地震力をすべり支承により制限した上で、更に底面突起物により水平地震力を地盤に直接伝達することが可能であるため、併用基礎に起因する上部構造物のねじれ問題を解決することができる。これが構成7である。
【0036】
構成8および構成9は、構造物から地盤に伝えた水平地震力に対して、表層地盤が軟弱のために底面突起物や構造物の周囲地盤のせん断強度が不足する場合の対策を示したものである。即ち、構成8は、セメント系固化材の混合撹拌処理や薬液注入などにより表層地盤改良を行って地盤のせん断耐力を向上させ、構造物から伝わる地震力に地盤が耐えられるようにしたものである。また構成9は、地盤内に壁板形状のコンクリート部材を埋め込むことにより、水平力に対する地盤の抵抗力を高めたものである。
【0037】
構成10は、構造物底面の突起物の現実的構成方法を示したものである。建築構造物では通常、構造物最下層には各柱を繋ぐ地中梁が必要である。この地中梁は従来、柱や基礎から伝達される最下層の柱脚部のモーメントや最下層における鉛直荷重(下向きの最下層の積載荷重や上向きの地盤反力や水圧など)を負担する構造部材として用いられている。この鉛直荷重用の地中梁と水平力抵抗部材である本発明の突起物とを同一部材として兼用させるものである。
【0038】
本発明の構造物底面の突起物を地中梁と兼用するためには、地中梁を地盤内に突出させその側面を土に直接接触させるように構成することが必要である。構造物の最下層には必ず地中梁が存在するが、地下水などが存在する場合、構造物底面には耐圧スラブを設けて底面をフラットに構成する場合が多いので地中梁側面は地盤に接していない場合が多い。中には地中梁が地盤と接触する構成となっている場合もあるが、これまでは地中梁の側面抵抗を考慮していないので、地中梁底面まで地盤を掘削して地中梁側面を土で埋め戻さなかったり、埋め戻しても締め固めが充分でないため、地盤の水平せん断強度が不足していると判断される。本発明を適用するためには、1)水平力が地中梁から地盤へ伝達できること、2)地中梁側面から伝達された地震時水平力に耐えられるだけの地盤強度を確保することが必要である。そのためには、3)原地盤の強度が充分なら地中梁周囲の地盤を掘削せずに残し、地中梁側面の掘削部をしっかりと埋め戻す、4)掘削した場合には埋め戻し土の転圧や固化材混合などを行い埋め戻し土の強度を確保する、等の方法を採用する必要がある。5)特に掘削底面と原地盤との境界面における水平力伝達・強度確保に留意することが大切である。
【0039】
また、地中梁を水平力抵抗要素として使用すると、地盤からの水平方向反力により鉛直荷重とは直交方向の曲げモーメントとせん断力が発生する。そのため、鉄筋コンクリート造の梁ではこれまでとは全く異なる弱軸(水平)方向の配筋および断面寸法が必要となるので、従来の地中梁とは全く異なる新しい構造部材として認識し設計することが必要である。
【0040】
構成11は、構造物重量をすべり式杭頭接合装置もしくはすべり支承で支える場合の上部躯体の構築方法を示したものである。すべり支承の施工では、すべり板を水平に設置することが最も重要で高精度が要求される作業となる。この施工精度としては水平面との傾斜角を1/500〜1/1000(rad)以下とすることが求められるが、この水平度を達成するためには、すべり板を一旦設置した後でその水平度を微調整できることが不可欠である。そこで本発明は、すべり板の4隅もしくは周辺部にねじきりボルトを取付、その回転によりすべり板レベルを上下に微調整可能としたものである。このねじきりボルトは、すべり板上部のコンクリート打設後に抜き取るか、すべり材からの距離が充分にある場合には、地盤から離れるだけ少しだけ抜き上げて、そのまま残すことも許される。
【0041】
構成12は、すべり支承設置後の上部コンクリート躯体の構築方法、施工方法を示したものであり、すべり支承以外では構造物底面に設けた突起物の底面のみ地盤との接触を許容し、杭(もしくは直接基礎フーチング)上部のすべり支承と突起物底面で上部構造体構築時の荷重を支持することにより、構造物全平面に渡って地盤と接触しない底面を構築することが容易となる。なお、突起物からの地震入力を低減するために突起物底面に発泡スチロールや発泡ウレタン等の発泡樹脂材やスポンジ状物質などの低弾性材料を介在させて突起物を構築することにより、地震動入力の遮断効果を更に確実にすることができる。
【0042】
【発明の実施の形態】
以下、本発明を、実施例を示す図面に基づいて説明する。
【0043】
図2は、構造物底面に本発明の水平力負担用突起物を有する構造物構成を示すもので、図2(1)平面図に示すように、構造物1の底面中央部に、十字型に突起部2を配置し、水平2方向に抵抗力を与えている。同図(2)は断面構成を示しており、構造物1の底面に、地盤10中に突出する水平力抵抗要素となる突起部2を有している。構造物1に発生した水平地震力の多くはこの突起物2より地盤10に伝達され、杭3の負担水平力が軽減される。底面突起物2の深さは、その先端レベルにおいて地盤のせん断耐力が突起物2の負担水平力を上回るように決定する。なお、図2の、符号10は軟弱層の地盤、11は硬質支持層の地盤をそれぞれ示している。
【0044】
構造物1に発生した水平地震力は、杭3と底面突起物2の水平剛性の割合に応じて分担されるので、杭3の負担水平力を低減するには相対的に杭3の水平剛性を低下させるとよい。杭頭固定の杭に対して杭頭ピン接合とした杭は水平剛性が低下する。図2の杭3の頭部は一般的な杭頭固定として剛結合されている例を示したが、図3は杭3の頭部をピン接合、もしくは半剛接合とする構成2の方法を例示したものである。杭頭ピン接合を実現する方法は、既に幾つかの杭頭接合装置が実用化されているので、それを利用すればよい。
【0045】
図4は、杭3の負担水平力を更に確実に制限する方法で、杭頭部に、杭頭すべり接合装置5もしくはすべり支承5を採用した構成3を例示したものである。この場合は、杭3にはすべり摩擦力以上の水平力が伝達されないので、残りの水平力は全て底面突起物2が負担することになる。
【0046】
この杭頭すべり支承5が正常に機能するためには、地震時に杭3が傾斜してもすべり材とすべり板の接触が正常(平行で全面接触状態)に維持されることが必要である。その機構は既に特許文献7で実現されているのでそれを採用すればよい。
図5は、その機構の一例を示したもので、図5(1)は平常時における状態の断面図、図5(2)は地震時における状態の断面図を示している。杭3が地震時に傾斜した場合にもすべり材52とすべり板51が平行に接触できるように、杭3の頭部とスベリ材52との間に回転機構部53が設けられているので、図5(2)に示すように地震時において杭3が傾斜しても、すべり材52はすべり板51と全面接触を維持しながら水平移動する(すべる)ことができる。
【0047】
図6乃至図8は、杭3の安全性向上に加えて、更に上部の建築構造物への地震入力の低減効果を高めるための工夫を示したものである。構造物1への地震入力、即ち地震動の伝達は、最も大きな平面を占める構造物1の底面を通して地盤の振動が伝達されると考えられる。従って、先ず構造物1の底面とその下の地盤との間に隙間を設けることが最も効果的である。
【0048】
図6は、杭頭部にピン接合4を採用し、構造物1の底面を地盤10から分離した例を示している。符号6は構造物1と地盤10との間の隙間(クリアランス)を示している。構造物1の底面が地盤10から分離された時、構造物1への地震動入力は、杭3の頭部、底面突起物2および構造物1周囲の地盤10との接触部の3部位に限定され、地震入力は格段に低下すると考えられる。また、構造物1に発生した水平地震力の多くは、底面突起物2と構造物1周囲の接触部で負担され、杭3の負担する地震力は相当に低下することが期待できる。
【0049】
図7は、図6の効果を更に高めたもので、杭頭部にはすべり支承5を採用することで杭3に作用する地震力に上限を設定し、構造物と地盤との接触部条件を図7(1)は図6と同条件、図7(2)は底面突起物2のみとしている。従って、構造物に伝達される地震動は極めて限られたものになり、また構造物に発生した水平地震力はその殆どが底面突起物2が負担することになる。従って、上部の構造物1には大きな免震効果が期待でき、且つ杭3に作用する地震力は極めて小さなものとなる。以上の図6は構成2と構成4の組み合わせ、図7が構成3と構成4の組み合わせを例示したものである。
【0050】
図8は、図7の地震動の遮断効果を更に高めたもので、構造物1の底面の突起物2からの地震動の伝達も遮断するために、突起物2の周囲にも地盤との間に隙間6を設ける構成5を例示したものである。図8(1)は突起物2の側面を地盤から分離し、突起物2の底面は地盤に接触させている。これは、現実の構築方法(施工方法)の容易さを考慮したものである。
【0051】
図8(2)は、更に突起物2の底面も地盤から分離する構成を示したものであるが、現実の施工方法としては、構成11示すように突起物2底面と地盤10との隙間6に発泡スチロールや発泡ウレタン等の発泡樹脂材や低弾性材料を介在させることにより、容易に施工することが可能となる。
【0052】
以上、杭基礎を主対象として本発明を適用した場合について説明してきたが、本発明は直接基礎にも適用可能である。図9は、その適用例を例示したもので、図9(1)は、直接基礎の独立基礎もしくは連続基礎の基礎フーチング30の上に、すべり型免震支承50を配置して構造物重量を支持し、構造物1の底面にストッパー用突起物2を設け、構造物1の底面および外周側面と地盤12との間に適切な隙間6を確保した例である。
【0053】
図9(2)は、図9(1)と同様の構成であるが、地盤との隙間を構造物1の底面のみとし、構造物1の周囲側面は地盤に接するように埋め戻した例を示している。構造物1側面が地盤12に接触しているため、若干の地震動が入力される可能性があるが、これにより構造物1と地盤12との間に隙間がなくなるため、構造物1周囲にエクスパンションジョイント等が不要になり、構造物1と地盤との取り合い関係が単純明快になるというメリットが大きい。
【0054】
図9(3)は、図9(2)の難点である周囲地盤からの地震動入力を遮断しつつ、構造物1周囲の地盤との取り合い関係を単純且つ容易にするメリットを確保したもので、構造物1周囲の隙間部分6に発泡スチロール、発泡ウレタン等の発泡樹脂材やスポンジ状物質等の低弾性材料を充填してクリアランス充填部61を設けたものである。この方法により、図9(1)の優れた性能と図9(2)の実用性の両者の長所を実現したものである。尚、この低弾性材料の充填部61は、必ずしも構造物の周囲全周に設ける必要はなく、構造物への出入り口部など必要且つ適切な部分に充填すればよい。
【0055】
図10は、直接基礎の場合に採用するすべり免震支承を例示したもので、図10(1)は、直接基礎フーチング30の上にすべり材52を設けて上向きすべり(すべり板51を上に配置)とした場合である。すべり材52と基礎との連結部は鋼材をすべり材に直結した「剛すべり」とした例である。図10(2)は、すべり材と構造物1との間に積層ゴム体54を挟んだ「弾性すべり支承」を下向きすべりとして採用した場合、図10(3)はそれを上向きすべりとして使った場合、図10(4)は特許文献7に提案されている異なる曲率を有する2球面の接触機構により、構造物1と地盤12との間に傾斜が生じた場合でもすべり面の接触が正常に維持されるようにしたものである。なお、図10(2)、(3)の弾性すべり支承では積層ゴム体の傾斜変形により地盤12と構造物1間の傾斜に追従できるようにしている。
【0056】
図11は、構造物底面に設ける水平力伝達用突起物2の平面配置要領を示したものである。図11(1)は水平力伝達用突起物2を、X・Yそれぞれの方向に有効なように平面中央に十字型に配置した例である。図11(2)は、水平力伝達用突起物2が平面形状が細長い場合の例で、長辺方向は外周壁面の下に、短辺方法は辺長が短いため外周壁面下と構造物1の平面内部にも配置している。突起物2の深さと辺長は、上部構造物の設計水平力の大きさと地盤(地質)の硬さ・強度に応じて必要な抵抗力を確保できるように設定すればよい。この時、地盤10側が水平にせん断破壊しないように地盤側の水平せん断耐力も充分に確保することが大切である。また、構成10の構造物最下層の地中梁と本発明の底面突起物2を兼用させた場合には、図11(2)に示す構成が更に合理的に実現できることになる。
【0057】
図12は、構造物底面に設ける水平力伝達用突起物2の形状を棒形状とした例である。図12(1)が平面図、図12(2)が断面図である。棒状突起物の部材断面形は円形突起物25でもよいし矩形突起物26でもよい。図12(1)にはその両者を示している。また、図12(2)には構造物1の周囲側面の隙間6に発泡樹脂等の弾性材料61を充填した例を示した。
【0058】
表層地盤が軟弱の場合、構造物底面の突起物や構造物の周囲側壁から地盤に伝達された水平力に対して地盤のせん断抵抗力が不足する場合がある。図13はその対策として構成8および構成9の方法を示したもので、図13(1)は底面突起物2の周囲および構造物1の周囲の表層地盤10を地盤改良し、地盤10のせん断強度を高める方法を示している。符号7は地盤改良範囲を示している。地盤改良にはセメント系固化材を混合撹拌する方法や固化剤等の薬液を地盤内に注入する方法等が採用できる。図13(2)は、地盤改良により地盤10のせん断強度を高めて構造物周囲のみで水平力を充分に負担できるようにし、構造物底面の突起物を省略し低コスト化を図った場合である。また図13(3)は、一般的地盤改良の替わりに地盤内にコンクリートの壁板状部材71を埋め込み、地盤改良と同様の効果を得る構成9の方法を示している。
【0059】
図14は、本発明を杭基礎と直接基礎の両者が同一構造物に使用される併用基礎に適用した構成7の例を示したものである。図14(1)は平面図、図14(2)は基礎・地盤部の断面構成図である。併用基礎が必要となるのは、通常、斜面などで支持層の深さが極端に異なる地盤の場合である。このような場合、1)直接基礎側の水平剛性は高く、軟らかい地盤の杭側の水平剛性が低いこと、2)杭基礎側の地震動が軟弱層のために増幅されること、の両者の理由が重なり、図7(1)の円弧矢印で示したように杭基礎側が大きく振られて、構造物全体のねじれ振動が問題となる。
【0060】
本発明では、杭基礎・直接基礎の両者にすべり支承を配置しているので、地震入力が異なっても地盤から構造物側へ伝達する入力地震動を同レベルに遮断できること、また構造物に発生した地震力に対しても杭基礎へ伝わる水平力をすべり摩擦力の一定値に制限し、構造物に発生した地震力の殆どを底面突起物で地盤に直接伝達することにより、併用基礎の耐震問題を解決できる。図14(1)および(2)では、杭側の底面突起物はねじれ振動を抑制する方向に、直接基礎側の底面突起物はその直交方向の水平地震力を負担するように配置している。また、図14(2)の硬質地盤中に突出させる底面突起物の周囲は、地質が硬質すぎる場合は突起物側面を軟らかい弾性地盤72に置き換え、地震動の伝達と水平抵抗力を適切なレベルに調整している。
【0061】
図15は、構成11の施工方法を示したものである。杭3の頭部および独立基礎フーチング上に滑り支承を配置して構造物重量を支持する場合、その施行上最も重要な点は、すべり支承上部のすべり板51を水平に設置する方法である。その水平精度は、通常水平面に対して傾斜角1/500〜1/1000(rad)以下の精度が要求されるが、これを達成するためには、すべり板51を一旦設置した後その傾斜角を微調整できる方法が不可欠となる。特に本発明の基礎方式ではすべり板51は上すべり方式ですべり面が下面となるのが通常であるため、すべり面での水平精度確認は不可能である。そこで本発明は、すべり板51の4隅もしくは周辺部にねじきり孔を設け、調整ボルト56を挿入してこれを回転させることにより、微妙な高さ調整を可能としたものである。すべり板51の全体の水平度はすべり板51の上側(裏面)で行うことになるので、すべり板裏面の製作精度にも充分配慮する必要がある。
【0062】
すべり板51中央部のすべり支承と周辺の調整ボルト56で水平に支持した状態でその上に構造物側のコンクリートを打設する。調整ボルト56はコンクリート打設後に抜き取ることができるようにボルト上部は箱抜きをしておく。調整ボルト56は抜き取ることを原則とするが、すべり板中央下にあるすべり支承本体から充分な離間距離が確保できる場合は、地震時に構造物と地盤間で相対的ズレが生じた場合の障害にならないだけ少し調整ボルト56を回転させて抜き上げ、調整ボルト56自体はその位置に残すことも許容される。それ以降は、すべり支承部と底面突起物底面を支持点として一般的方法で構造物を施工することが可能である。符号15は捨てコンクリート、55はすべり板51の定着用スタッドボルトをそれぞれ示している。
【0063】
【発明の効果】
以上のとおり、本発明の基礎構造を採用すると、杭基礎に作用する地震力を格段に小さくすることができると共に、すべり式杭頭接合装置との併用により極めて低コストで、構造物を高性能の免震構造とすることができる。本発明の効果とメリットを整理すると、以下のとおりである。
a)在来耐震構造建物の底面に本発明の突起物を付けるだけで、地震時に杭に作用する地震力を格段に小さくすることができる。
b)杭頭部をピン接合もしくは半剛接合として構造物の底面突起物を組み合わせることにより、杭に作用する地震力を更に低減することができる。
c)杭頭部にすべり式接合装置もしくはすべり免震支承を配置して構造物の底面突起物を組み合わせることにより、杭に作用する地震力を極めて小さな一定値に制限すると同時に、上部構造物に高い免震効果を与えることができる。
d)直接基礎の構造物にも、免震効果を与えることができる。
e)直接基礎と杭基礎の併用基礎におけるねじれ問題を解決できる。
f)本発明では、すべり式杭頭接合装置を採用するだけで、高い免震効果を実現できる。従来の免震構造物における復元装置(積層ゴムなど)を必要とせず、また2重基礎も構造物周囲のクリアランスも省略可能である。従って構造物周辺のエクスパンションジョイントも不要となり、これまで免震構造物に必要とされたコストアップ要因が殆ど排除できるため、極めて低コストで免震構造建物を実現することができる。
【図面の簡単な説明】
【図1】従来構造物における杭基礎の構成を示す図で、
(1)構造物輪郭と杭基礎の位置を示す平面図、
(2)構造物と杭基礎、地盤との関係を示す断面図。
【図2】本発明の構造物底面突起物を有する基礎構造構成を示す図で、
(1)構造物輪郭と杭、底面突起物の位置を示す平面図、
(2)構造物と杭、底面突起物と地盤との関係を示す断面図。
【図3】杭頭部をピン接合もしくは半剛接合とし、構造物に底面突起物を付けた本発明の断面構成を示す断面図。
【図4】杭頭部にすべり式接合装置もしくはすべり支承を配置し、構造物に底面突起物を付けた場合の本発明の断面図。
【図5】杭頭部に配置するすべり式接合装置もしくは杭頭すべり支承の断面構成を示す図で、
(1)平常時において杭が直立状態にある場合の断面図、
(2)地震時において杭が傾斜し、すべり移動が発生した状態の断面図。
【図6】杭頭部はピン接合もしくは半剛接合として構造物底面突起物を付け、構造物底面と地盤の間に隙間を設けた場合の断面図。
【図7】杭頭部にすべり式接合装置もしくはすべり支承を配置して構造物底面突起物を付けた断面構成を示す図で、
(1)構造物底面と地盤の間にのみ隙間を設けた場合の断面図、
(2)構造物底面と地盤との間および周囲側面と地盤の間の両者間に隙間を設けた場合の断面図。
【図8】図7において、地盤との接触物を更に減じる場合の構成を示す図で、
(1)杭頭部にすべり式接合装置もしくはすべり支承を配置して構造物底面突起物を付け、構造物底面突起物の底面のみが地盤と接触する場合の断面図、
(2)杭頭部にすべり式接合装置もしくはすべり支承を配置して構造物底面突起物を付け、杭頭すべり支承部以外の全ての部位で地盤との接触を避けた場合の断面図。
【図9】直接基礎の構造物に本発明を適用した場合の断面構成を示す図で、
(1)荷重を支持するすべり支承部以外は地盤との接触を完全排除した場合の断面図、
(2)構造物底面のみ地盤との接触を避けた場合の断面図、
(3)構造物周囲側面に発泡樹脂材等の軟らかい弾性材料を充填した場合の断面図。
【図10】直接基礎の構造物を支持するすべり支承の断面を示す図で、
(1)上すべり(すべり板を上に配置)として、すべり材を基礎に直結した剛すべり支承の断面図、
(2)下すべりとして、すべり材と積層ゴムを直列結合した弾性すべり支承の断面図、
(3)弾性すべり支承を採用し、上すべりとした場合の断面図、
(4)上すべりとし、異なる2曲率球面で地盤と構造物の相対的傾斜を吸収可能とした場合の断面図。
【図11】構造物の底面突起物の配置例を示す図で、
(1)構造物平面中央部に壁板状突起物を十字型に配置した例の説明図、
(2)細長い平面の構造物に壁板状突起物を配置した例の説明図。
【図12】構造物の底面に棒状突起物を配置した場合の構成を示す図で、
(1)構造物輪郭と杭および棒状突起物の位置関係を示す平面図、
(2)構造物、杭、棒状突起物および地盤の位置関係を示す断面図。
【図13】構造物の底面突起物の周囲および構造物周囲の表層地盤を地盤改良する場合の断面を示す図で、
(1)構造物底面突起物の周囲と構造物周囲の表層地盤を地盤改良する場合の断面図、
(2)構造物周囲の表層地盤を地盤改良して底面突起物を省略した場合の断面図、
(3)地盤改良の替わりに地盤内に壁板状コンクリ−ト塊を構築する方法の説明図。
【図14】直接基礎と杭基礎の併用基礎に本発明を適用して、ねじれ問題を解決する方法を示したもので、
(1)構造物平面と基礎とすべり支承の配置位置、底面突起物の配置要領を示した平面図
(2)構造物と底面突起物、地盤構成・基礎構成等を示す断面構成図
【図15】構造物の荷重を支持するすべり支承のすべり板の設置要領を説明する断面を示す図で、
(1)すべり板周囲にねじ切り孔を設け、これにねじボルト挿入してその回転により上下レベルを変化させ、すべり板の水平度を確保する方法の説明図、
(2)上部のコンクリートを打設し、上部躯体が安定した状態でボルト抜き取り方法の説明図。
【符号の説明】
1 :構造物、上部建物
10:地盤(軟弱層)
11:地盤(硬質支持層)
12:地盤(支持層)
15:捨てコンクリート
2 :構造物底面の水平力抵抗用突起物(壁板形状)
25:構造物底面の水平力抵抗用棒状突起物(円形断面)
26:構造物底面の水平力抵抗用棒状突起物(矩形断面)
3 :杭
30:直接基礎フーチング
4 :ピン接合もしくは半剛接合の杭頭部
5 :杭頭すべり接合装置もしくはすべり支承を採用した杭頭部
50:直接基礎用すべり支承
51:すべり板
52:すべり材
53:異なる曲率の球面による杭傾斜(回転)吸収部
54:積層ゴム体
55:すべり板の定着用スタッドボルト
56:すべり板の水平度調整用ボルト
6 :構造物と地盤との間の隙間(クリアランス)
61:発泡樹脂材等のクリアランス充填部
7 :地盤改良範囲
71:地盤改良代替コンクリート部材
72:硬質地盤を柔らかい弾性地盤に置換(改良)した部分
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a building structure and a foundation structure that supports the building structure, and provides a foundation structure of a structure capable of realizing it extremely economically while dramatically improving the seismic safety performance of both. .
[0002]
[Prior art]
In 1995, the Great Hanshin-Awaji Earthquake caused enormous damage to the main body and foundation structure.
As a structural method that can dramatically improve the seismic safety performance of a building structure, a seismic isolation structure composed of an isolator such as laminated rubber and a damper that absorbs energy has been put into practical use. However, the conventional seismic isolation structure requires the cost of the seismic isolation device, and at the same time, the foundation structure is doubled, so the cost of the building is large and the construction cost is inevitably increased. .
[0003]
On the other hand, many types of pile foundations such as pre-made piles and cast-in-place concrete piles have been used in soft ground, but many cases of pile damage have been reported in past earthquakes.
[0004]
Fig. 1 shows the structure of a conventional building structure having a common pile foundation. Fig. 1 (1) is a plan view showing the positional relationship between the structure outline and the pile, and Fig. 1 (2) is a sectional view. It shows the overall structure of the foundation including the lower part of the structure, the pile foundation, and the ground. The weight of the structure 1 is supported by four piles 3, and the pile head is rigidly connected to the bottom surface of the structure (referred to as pile head fixation). The horizontal seismic force generated in the structure (open arrow) is transmitted to each pile 3 and the total horizontal force is borne by the pile 3 in the conventional seismic design concept of the pile foundation.
[0005]
In conventional pile foundations with fixed pile heads, a large bending moment is generated at the pile head when a horizontal seismic force acts on the pile. As a result, most of the damage to the pile foundations has been concentrated on the pile heads in recent years. To improve the seismic safety performance of these pile foundations, Several joining methods and joining devices that do not constrain the pile head, such as Literature 1, Patent Literature 2) and Pile Head Rotation Free Joining Method (Patent Literature 3), have been developed.
[0006]
In addition, as methods for improving and improving the seismic safety performance of both the structure and the pile foundation, there are proposals of Patent Document 4, Patent Document 5, Patent Document 6, and the like.
[0007]
However, Patent Document 4 describes that a large additional moment M = Pδ due to the Pδ effect (P: vertical load, δ: horizontal displacement) acts on the pile head, and Patent Documents 5 and 6 describe piles due to pile inclination during an earthquake. All of these proposals had problems, such as the sliding contact conditions on the top of the head breaking.
[0008]
The present inventor has proposed a slip isolation structure that solves the problems of Patent Documents 4 to 6 and functions reliably on the upper surface of the pile in Patent Document 7. Since these problems and their solutions are described in detail in Patent Document 7, a re-explanation is omitted here.
[Patent Document 1]
JP-A-10-227040
[Patent Document 2]
JP2001-348885
[Patent Document 3]
Patent No. 3159380
[Patent Document 4]
JP 59-134230
[Patent Document 5]
JP 10-227039 A
[Patent Document 6]
JP-A-1-304223
[Patent Document 7]
Japanese Patent Application 2002-205893
[0009]
[Problems to be solved by the invention]
The conventional seismic design of pile foundations is as follows: 1) The horizontal seismic force generated in the structure during the earthquake is transmitted to the pile, 2) The horizontal force generates a large earthquake stress in the pile, and 3) the stress The idea is to increase the strength of the pile so that it can withstand. Until now, the idea that “the horizontal seismic force generated in the structure is transmitted to the pile, and that seismic force must be borne by the pile” has been taken for granted, but the seismic problem of the pile was originally “ The root cause is that the horizontal seismic force of the structure (building) acts on the pile. The present invention negates the basic precondition that “seismic force acts on the pile” and reduces the load of the seismic force by the pile as much as possible, that is, “a method of reducing the transmission of the seismic force to the pile body”. Is the solution issue.
[0010]
Furthermore, in Patent Document 7, a method for improving the seismic safety performance of both the structure and the pile foundation by reducing the seismic force acting on the pile foundation that gives the structure a seismic isolation effect and supports it is realized. The present invention aims at a method of realizing the same effect as Patent Document 7 more economically than Patent Document 7.
[0011]
[Means for Solving the Problems]
The present invention adopts the following configuration in order to solve the above points.
<Configuration 1>
The weight of the structure is supported by a pile, and a bar-like or wall-plate-like projection that protrudes downward and transmits a horizontal force from the structure to the ground is provided on the bottom surface of the structure. The basic structure of the structure.
[0012]
<Configuration 2>
The basic structure of the structure according to Configuration 1, wherein the head of the pile is a rotatable pin joint or semi-rigid joint.
[0013]
<Configuration 3>
In the basic structure of the structure described in Configuration 1, a sliding-type pile head joining device or a sliding bearing that can allow the inclination of the pile during an earthquake and can move in the horizontal direction is arranged on the head of the pile. The basic structure of the structure.
[0014]
<Configuration 4>
In the basic structure of the structure according to any one of Structures 1 to 3, between the bottom surface of the structure and the ground, or between the bottom surface of the structure and the ground, and the side surface in the middle of the structure and the ground A basic structure of a structure in which a gap is provided between the two and a protrusion protruding downward from the bottom surface of the structure is in contact with the ground.
[0015]
<Configuration 5>
The basic structure of the structure according to Configuration 4, wherein a predetermined gap is provided between a side surface of the protrusion and the ground.
[0016]
<Configuration 6>
In the foundation structure that supports the structure weight by the direct foundation without the pile foundation, the foundation footing of the direct foundation is constructed and the sliding support is placed on the foundation footing to support the structure weight, and the bottom of the structure A base structure of a structure, characterized in that a bar-like or wall-plate-like protrusion projecting is provided, and a predetermined gap is provided between the bottom surface of the structure and its lower ground.
[0017]
<Configuration 7>
In a foundation structure in which both a pile foundation and a direct foundation are used in combination, a foundation structure of a structure using any one of composition 1 to composition 5 and composition 6 foundation structure in combination.
[0018]
<Configuration 8>
In the basic structure of the structure according to any one of Structures 1 to 7, the surrounding ground of the protrusion on the bottom surface of the structure or the surrounding ground of the structure is mixed with a cement-based solidifying material or other solidifying agent. The basic structure of the structure, characterized by ground improvement by injection.
[0019]
<Configuration 9>
In the basic structure of the structure according to any one of Structures 1 to 7, a wall plate-like concrete member is provided in the vicinity of the ground on the protrusion on the bottom surface of the structure or in the vicinity of the structure frame on the ground around the structure. The basic structure of the structure characterized by embedding.
[0020]
<Configuration 10>
The foundation structure according to any one of Configurations 1 to 9, wherein the protrusion is also used as a bottom underground beam of the structure.
[0021]
<Configuration 11>
A sliding pile head joining device or sliding support is placed on the head of the pile that supports the structure, and at least three of the sliding plate arranged on the top of the sliding pile head joining device or the sliding support The structure is characterized in that the screw holes are inserted into the screw holes, screw bolts are inserted into the holes, the sliding plate is installed horizontally by the vertical movement accompanying the rotation, and the concrete of the foundation footing on the upper side of the sliding plate is placed. How to build the foundation structure.
[0022]
<Configuration 12>
Insert a sponge-like substance such as foamed resin material or soft elastic material under the bottom of the projection that protrudes downward from the bottom of the structure, or bring the bottom of the projection into contact with the ground, so that the foundation on the top A method for constructing a foundation structure of a structure, wherein a space is secured between the bottom surface of the structure and the ground by supporting the floor weight.
[0023]
<Overview>
The present invention aims to improve the seismic safety performance of both the foundation structure (mainly the pile foundation) and its upper structure, but first occurred in the structure as a basic strategy to improve the seismic safety performance of the pile foundation. Realize a method in which the horizontal seismic force is not transmitted to the pile as much as possible.
[0024]
The pile foundation is originally intended to support the weight of the structure, and bearing the horizontal force during an earthquake is not the original purpose, but usually the pile head is directly connected (rigidly connected) to the structure foundation. Therefore, the actual situation is that the seismic force is transmitted. The horizontal force is distributed according to the horizontal rigidity of each element connected to the bottom of the structure. The horizontal rigidity of the pile that is representative of the elements connected to the bottom of the structure is the bending rigidity of the pile itself. And the hardness of the ground around the pile (elastic coefficient).
[0025]
Therefore, according to the present invention, another member having a horizontal rigidity equal to or higher than the horizontal rigidity of the pile is disposed on the bottom surface of the structure. That is, a member protruding downward is provided on the bottom surface of the structure. Since this projecting member does not need to support the weight of the structure, it does not need to reach the support layer of the ground, and the depth may be shallow. Since the contact surface of the ground that receives the horizontal force from the projecting member should be as large as possible, the shape of the protrusion on the bottom surface of the structure is preferably a wall plate that is long in the horizontal direction. The wide flat plate shape is an effective horizontal force resistance element because the resistance force of the ground to the horizontal force is larger than the elongated cylindrical shape of the pile.
[0026]
In addition, the wall-plate-like projecting members can be provided in multiple rows over the entire length of the bottom surface in both the X and Y horizontal directions of the structure, so that the depth of projection into the ground is shallow. However, it is easy to ensure a horizontal rigidity higher than that of the pile. However, it is important that the shear strength of the ground in the horizontal plane at the tip of the protrusion exceeds the horizontal force transmitted from the protrusion to the ground.
[0027]
The shape of the protrusions into the ground is the most efficient wall plate-like flat plate shape, but if the shape is difficult due to various restrictions, it is a columnar protrusion like a pile or a rectangular cross section The same effect can be obtained by providing a plurality of objects. The above is the basic configuration shown in Configuration 1.
[0028]
Since the horizontal force sharing between the horizontal force bearing projections provided on the bottom of the structure and the piles connected to the bottom of the structure depends on the ratio of the horizontal rigidity of each structure, if the horizontal rigidity of the pile is lowered, it is transmitted to the pile. This reduces the horizontal force. In general, pile heads are rigidly connected to the structure of the pile head (pile head fixation), but pin joints or semi-rigid joints that reduce the degree of fixation of pile heads, which have been in practical use in recent years, should be adopted. Since there is an effect of reducing the horizontal rigidity of the pile, the effect of reducing the horizontal load force of the pile is enhanced by using it together with the horizontal force load projection of the present invention.
[0029]
Moreover, when the pile head pin joint is employed, the bending back moment of the pile head is reduced and the design of the underground beam is facilitated, but there is a disadvantage that the underground moment of the pile is increased. If the load horizontal force of a pile is reduced by this invention, since the moment which generate | occur | produces in the underground part of a pile will also become small, the ideal pile stress that the stress at the time of an earthquake will become small over a pile full length is realizable. This is the present invention shown in Configuration 2.
[0030]
Configuration 3 is a method in which Configuration 2 is developed to reliably limit the seismic force transmitted to the pile and to ensure the safety of the structure. That is, a sliding-type pile head joining device or a sliding seismic isolation bearing is arranged on the pile head. At this time, the sliding mechanism of the head of the pile 3 needs to be a mechanism capable of absorbing the pile head rotational displacement shown in Patent Document 7 so that the sliding mechanism of the contact surface is normally maintained even if the pile is inclined during an earthquake. There is. The methods of Patent Documents 5 and 6 that directly connect the sliding surface to the upper surface of the pile head should not be adopted because the contact surface is not normally held by the inclination of the pile.
[0031]
In Patent Document 7, in order to configure the upper structure as a seismic isolation structure, a spring element that gives a restoring force to the entire structure, such as a laminated rubber, is arranged after a sliding bearing is arranged on the pile head. Yes. In the present invention, since the protrusion disposed on the bottom surface of the structure is inserted into the lower ground, excessive horizontal displacement is prevented by the resistance force, and the protrusion moves while compressing the ground at the time of displacement. It also functions as a damper with energy consumption as well as resilience. That is, the projection of the present invention has three functions as a restoring force + damper + displacement limiting stopper. As described above, in the present invention, the restoring force member (laminated rubber or the like) of Patent Document 7 can be omitted, so that a high-performance seismic isolation structure can be realized more economically than Patent Document 7. Moreover, since the horizontal seismic force is limited by the sliding mechanism of the pile head so that the horizontal force exceeding the frictional force does not act on the pile, the seismic safety performance of the pile is improved at the same time. The above is the configuration 3.
[0032]
In Configuration 4, in order to ensure the seismic isolation effect of Configuration 3, the input / transmission of ground motion from the ground to the structure is blocked. That is, since the seismic motion input to the structure is considered to be transmitted from the bottom and side of the structure in contact with the ground, it is embedded between the bottom and ground of the structure that occupies the largest area, and in the ground. A gap is provided between the surrounding surface of the structure and the ground. As a result, the contact portion with the ground is only the sliding support of the pile head that supports the weight of the structure and the protrusion provided on the bottom surface of the structure, so that most of the earthquake input to the structure is blocked. .
[0033]
The configuration 5 is configured to avoid contact between the protrusions on the bottom surface of the structure and the ground that are left as contact portions with the ground in the configuration 4 in order to further enhance the effect of blocking the earthquake input. When a slight gap is secured between the side surface of the projection and the ground, and the relative displacement between the ground and the structure reaches this gap or more, the projection comes into contact with the ground and resists the relative movement. In addition, since it is thought that the ground motion input from the bottom face of the protrusion which is in contact with the ground is relatively small, it is possible to allow the bottom face of the protrusion to contact. Note that it is preferable to secure a gap between the bottom surface of the projection and the ground because it will block the seismic input more completely, but considering the construction method of the projection, the space between the bottom surface of the projection and the ground is preferable. It is practical to sandwich a low-elasticity material such as a foamed resin material between the two. The construction method is shown in Configuration 12.
[0034]
Although the above has demonstrated the method of giving the seismic isolation effect to a structure and the seismic performance improvement for the pile foundation, the method of this invention is applicable also to the direct foundation which does not use a pile. That is, in the configuration 6, first, a foundation footing of an independent foundation or a continuous (cloth) foundation that transmits the weight of the upper structure to the ground is constructed on the ground, and a slip-isolated bearing is arranged on the foundation to support the weight of the structure. In addition, a protrusion is disposed on the bottom surface of the structure with a gap secured between the bottom surface of the structure and the lower ground. Whether or not to secure a gap between the underground side surface of the structure and the ground may be determined by comparing the advantages and disadvantages in consideration of the depth of the side surface installation and the difficulty of construction. If a gap is also secured on the side surface, the seismic motion input blocking effect will be ensured, but on the other hand, it will take time and effort for construction, and it will also be costly to process the gap on the ground surface, so its advantages and disadvantages are compared. It means to decide. For example, if a large structure is heavy and the depth of penetration is shallow and a gap is secured on the bottom of the foundation, even if the shallow part of the surrounding side is backfilled with soft surrounding soil, the seismic input from the side is small, so it is The seismic effect is hardly impaired, and it can be judged that the merit is large because the details of the fitting part between the ground surface and the structure such as the access part to the structure are simplified. This is also true for pile foundations.
[0035]
Thus, the present invention can be applied to both pile foundations and direct foundations. As a result, it is possible to dramatically improve the seismic safety performance of the combined foundation by using the present invention in combination with the combined foundation in which both the foundation and the pile foundation are used in one structure. That is, the biggest problem of the combined foundation is that the horizontal rigidity of the pile foundation is low with respect to the direct foundation part, so that a large torsion problem occurs when constructing a structure on a slope or the like. In the present invention, the seismic force acting on the pile foundation is limited by the sliding bearing, and further, the horizontal seismic force can be directly transmitted to the ground by the bottom projection, so that the superstructure caused by the combined foundation Twist problem can be solved. This is configuration 7.
[0036]
Configurations 8 and 9 show countermeasures against the horizontal seismic force transmitted from the structure to the ground when the surface layer ground is soft and the shear strength of the ground protrusions and the surrounding ground of the structure is insufficient It is. That is, in the configuration 8, the surface ground is improved by mixing and stirring the cement-based solidifying material or injecting a chemical solution to improve the shear strength of the ground so that the ground can withstand the seismic force transmitted from the structure. . In the ninth aspect, a ground plate-like concrete member is embedded in the ground to increase the resistance of the ground to a horizontal force.
[0037]
Configuration 10 shows a practical configuration method of the protrusion on the bottom surface of the structure. In a building structure, an underground beam connecting the columns is usually required at the lowest layer of the structure. Conventionally, this underground beam bears the moment of the lowermost column base transmitted from the column and foundation and the vertical load in the lowermost layer (downward loading load of the lowermost layer, upward ground reaction force, water pressure, etc.) It is used as a member. The underground beam for vertical load and the projection of the present invention which is a horizontal force resistance member are used as the same member.
[0038]
In order to use the protrusion on the bottom surface of the structure of the present invention also as the underground beam, it is necessary to configure the underground beam to protrude into the ground and to directly contact the side surface with the soil. Underground beams always exist in the lowest layer of the structure, but when there is groundwater, the bottom surface of the structure is often provided with a pressure-resistant slab and the bottom surface is often flat. There are many cases that do not touch. In some cases, the underground beam is in contact with the ground, but until now, the lateral resistance of the underground beam has not been considered, so the underground beam is excavated to the bottom of the underground beam. It is judged that the horizontal shear strength of the ground is insufficient because the side is not backfilled with soil or the backside is not compacted sufficiently. In order to apply the present invention, it is necessary to 1) ensure that a horizontal force can be transmitted from the underground beam to the ground, and 2) ensure a ground strength sufficient to withstand the horizontal force during an earthquake transmitted from the side surface of the underground beam. It is. To that end, 3) If the strength of the original ground is sufficient, leave the ground around the underground beam without excavating it, and refill the excavated part of the side of the underground beam firmly. 4) If excavated, It is necessary to adopt a method of ensuring the strength of the backfill soil by rolling or mixing the solidifying material. 5) It is important to pay attention to horizontal force transmission and securing strength especially at the boundary between the excavation bottom and the original ground.
[0039]
In addition, when underground beams are used as horizontal force resistance elements, bending moments and shearing forces in the direction perpendicular to the vertical load are generated by the horizontal reaction force from the ground. For this reason, reinforced concrete beams require completely different weak-axis (horizontal) bar arrangement and cross-sectional dimensions, which can be recognized and designed as completely different structural members from conventional underground beams. is necessary.
[0040]
The structure 11 shows the construction method of the upper frame when the structure weight is supported by the sliding pile head joining device or the sliding bearing. In the construction of a sliding bearing, it is most important to install the sliding plate horizontally, which is a work requiring high accuracy. As the construction accuracy, it is required that the inclination angle with respect to the horizontal plane is 1/500 to 1/1000 (rad) or less. In order to achieve this level of horizontality, after the slip plate is once installed, It is essential to be able to fine tune the degree. In view of this, the present invention attaches threaded bolts to the four corners or the peripheral portion of the sliding plate, and allows the sliding plate level to be finely adjusted up and down by its rotation. This threaded bolt can be extracted after placing the concrete on the upper part of the sliding plate, or, if there is a sufficient distance from the sliding material, it can be pulled out as much as possible from the ground and left as it is.
[0041]
Configuration 12 shows the construction method and construction method of the upper concrete frame after the installation of the sliding bearing. Except the sliding bearing, only the bottom surface of the protrusion provided on the bottom surface of the structure is allowed to contact the ground, and the pile ( (Or direct foundation footing) By supporting the load at the time of constructing the upper structure with the upper slide support and the bottom surface of the protrusion, it is easy to construct the bottom surface that does not contact the ground over the entire structure. In addition, in order to reduce the seismic input from the projections, by constructing the projections by interposing a low-elastic material such as foamed resin material such as styrene foam and urethane foam or sponge material on the bottom of the projections, The blocking effect can be further ensured.
[0042]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described with reference to the drawings illustrating embodiments.
[0043]
FIG. 2 shows a structure structure having a horizontal force bearing projection of the present invention on the bottom surface of the structure. As shown in the plan view of FIG. The projecting portion 2 is disposed on the surface to provide resistance in two horizontal directions. FIG. 2B shows a cross-sectional configuration, and a protrusion 2 serving as a horizontal force resistance element protruding into the ground 10 is provided on the bottom surface of the structure 1. Most of the horizontal seismic force generated in the structure 1 is transmitted from the projection 2 to the ground 10, and the horizontal force applied to the pile 3 is reduced. The depth of the bottom projection 2 is determined so that the shear strength of the ground exceeds the burden horizontal force of the projection 2 at the tip level. In FIG. 2, reference numeral 10 denotes a soft ground and 11 denotes a hard support ground.
[0044]
Since the horizontal seismic force generated in the structure 1 is shared according to the ratio of the horizontal stiffness between the pile 3 and the bottom projection 2, the horizontal stiffness of the pile 3 is relatively reduced to reduce the horizontal force applied to the pile 3. Should be reduced. The pile with pin head connection to the pile head fixed pile has lower horizontal stiffness. 2 shows an example in which the head of the pile 3 is rigidly connected as a general pile head fixing, but FIG. 3 shows a method of the configuration 2 in which the head of the pile 3 is pin-joined or semi-rigidly joined. This is just an example. As a method for realizing pile head pin joining, several pile head joining devices have already been put into practical use, and therefore, it may be used.
[0045]
FIG. 4 illustrates a configuration 3 in which a pile head sliding joining device 5 or a sliding support 5 is adopted as a pile head in a method of more reliably limiting the horizontal load force of the pile 3. In this case, since the horizontal force more than the sliding friction force is not transmitted to the pile 3, the bottom projection 2 bears all the remaining horizontal force.
[0046]
In order for this pile head sliding bearing 5 to function normally, it is necessary that contact between the sliding material and the sliding plate is maintained in a normal state (parallel and full contact state) even if the pile 3 is inclined during an earthquake. Since the mechanism has already been realized in Patent Document 7, it may be adopted.
FIG. 5 shows an example of the mechanism. FIG. 5 (1) shows a sectional view in a normal state, and FIG. 5 (2) shows a sectional view in an earthquake state. Since the rotating mechanism 53 is provided between the head of the pile 3 and the sliding member 52 so that the sliding member 52 and the sliding plate 51 can contact in parallel even when the pile 3 is inclined at the time of the earthquake, As shown in 5 (2), even if the pile 3 is inclined during an earthquake, the sliding member 52 can move horizontally (slide) while maintaining full contact with the sliding plate 51.
[0047]
6 to 8 show a device for improving the effect of reducing the earthquake input to the upper building structure in addition to improving the safety of the pile 3. It is considered that the vibration of the ground is transmitted through the bottom surface of the structure 1 occupying the largest plane when the earthquake input to the structure 1, that is, the transmission of the ground motion. Therefore, first, it is most effective to provide a gap between the bottom surface of the structure 1 and the ground below it.
[0048]
FIG. 6 shows an example in which the pin joint 4 is adopted for the pile head and the bottom surface of the structure 1 is separated from the ground 10. Reference numeral 6 indicates a gap (clearance) between the structure 1 and the ground 10. When the bottom surface of the structure 1 is separated from the ground 10, the seismic motion input to the structure 1 is limited to the three parts of the head 3 of the pile 3, the bottom projection 2, and the contact portion with the ground 10 around the structure 1. Therefore, it is thought that the earthquake input will drop dramatically. Further, most of the horizontal seismic force generated in the structure 1 is borne by the contact portion around the bottom projection 2 and the structure 1, and it can be expected that the seismic force borne by the pile 3 is considerably reduced.
[0049]
FIG. 7 is a further improvement of the effect of FIG. 6. By adopting a sliding bearing 5 at the head of the pile, an upper limit is set for the seismic force acting on the pile 3, and the contact part condition between the structure and the ground 7 (1) shows the same conditions as FIG. 6, and FIG. 7 (2) shows only the bottom projection 2. Therefore, the ground motion transmitted to the structure is extremely limited, and most of the horizontal seismic force generated in the structure is borne by the bottom projection 2. Therefore, a large seismic isolation effect can be expected from the upper structure 1 and the seismic force acting on the pile 3 is extremely small. FIG. 6 illustrates the combination of Configuration 2 and Configuration 4, and FIG. 7 illustrates the combination of Configuration 3 and Configuration 4.
[0050]
8 further enhances the seismic motion blocking effect of FIG. 7, and in order to block the transmission of seismic motion from the projection 2 on the bottom surface of the structure 1, The structure 5 which provides the clearance gap 6 is illustrated. In FIG. 8A, the side surface of the protrusion 2 is separated from the ground, and the bottom surface of the protrusion 2 is in contact with the ground. This considers the ease of the actual construction method (construction method).
[0051]
FIG. 8 (2) shows a configuration in which the bottom surface of the projection 2 is also separated from the ground. However, as an actual construction method, the gap 6 between the bottom surface of the projection 2 and the ground 10 as shown in Configuration 11 is shown. It is possible to easily perform construction by interposing a foamed resin material such as foamed polystyrene or foamed urethane or a low elastic material.
[0052]
As mentioned above, although the case where this invention was applied mainly to a pile foundation was demonstrated, this invention is applicable also to a foundation directly. FIG. 9 exemplifies the application example, and FIG. 9 (1) shows the weight of the structure by placing a sliding-type seismic isolation bearing 50 on a foundation footing 30 of a direct foundation or a continuous foundation. This is an example in which a stopper protrusion 2 is provided on the bottom surface of the structure 1 and an appropriate gap 6 is secured between the bottom surface and outer peripheral side surface of the structure 1 and the ground 12.
[0053]
FIG. 9 (2) has the same configuration as FIG. 9 (1), but the back surface is backfilled so that the gap with the ground is only the bottom surface of the structure 1 and the peripheral side surface of the structure 1 is in contact with the ground. Show. Since the side surface of the structure 1 is in contact with the ground 12, there is a possibility that a slight seismic motion may be input, but since there is no gap between the structure 1 and the ground 12, the expansion around the structure 1 There is a great merit that a joint or the like becomes unnecessary, and the relationship between the structure 1 and the ground becomes simple and clear.
[0054]
FIG. 9 (3) secures the merit of simplifying and facilitating the relationship with the ground around the structure 1 while blocking the ground motion input from the surrounding ground, which is the difficulty of FIG. 9 (2). A clearance filling portion 61 is provided by filling the gap portion 6 around the structure 1 with a low-elasticity material such as a foamed resin material such as styrene foam or urethane foam or a sponge-like substance. By this method, the advantages of both the excellent performance of FIG. 9 (1) and the practicality of FIG. 9 (2) are realized. Note that the low elastic material filling portion 61 is not necessarily provided around the entire periphery of the structure, and may be filled in a necessary and appropriate portion such as an entrance / exit to the structure.
[0055]
FIG. 10 shows an example of a base-isolation bearing that is used in the case of a direct foundation. FIG. 10 (1) shows that the sliding member 52 is provided directly on the foundation footing 30 and the sliding plate 51 is placed upward. Arrangement). The connecting portion between the sliding material 52 and the foundation is an example of a “rigid sliding” in which a steel material is directly connected to the sliding material. 10 (2), when “elastic sliding bearing” in which the laminated rubber body 54 is sandwiched between the sliding material and the structure 1 is adopted as a downward sliding, FIG. 10 (3) used it as an upward sliding. In the case of FIG. 10 (4), the contact of the sliding surface is normal even when an inclination occurs between the structure 1 and the ground 12 by the contact mechanism of two spherical surfaces having different curvatures proposed in Patent Document 7. It is intended to be maintained. 10 (2) and 10 (3), it is possible to follow the inclination between the ground 12 and the structure 1 by the inclination deformation of the laminated rubber body.
[0056]
FIG. 11 shows a plane arrangement procedure of the horizontal force transmitting protrusions 2 provided on the bottom surface of the structure. FIG. 11 (1) shows an example in which the horizontal force transmission protrusions 2 are arranged in a cross shape in the center of the plane so as to be effective in the X and Y directions. FIG. 11 (2) shows an example in which the horizontal force transmission projection 2 has an elongated planar shape. The long side direction is below the outer peripheral wall surface, and the short side method has a short side length. It is also arranged inside the plane. What is necessary is just to set the depth and side length of the protrusion 2 so that required resistance can be ensured according to the magnitude | size of the design horizontal force of an upper structure, and the hardness and intensity | strength of a ground (geology). At this time, it is important to sufficiently secure the horizontal shear strength on the ground side so that the ground 10 side does not shear horizontally. Further, when the underground beam in the lowest layer of the structure 10 in the configuration 10 is used in combination with the bottom projection 2 of the present invention, the configuration shown in FIG. 11 (2) can be realized more rationally.
[0057]
FIG. 12 shows an example in which the shape of the horizontal force transmission protrusion 2 provided on the bottom surface of the structure is a bar shape. FIG. 12A is a plan view and FIG. 12B is a cross-sectional view. The member cross-sectional shape of the rod-shaped protrusion may be a circular protrusion 25 or a rectangular protrusion 26. FIG. 12 (1) shows both of them. FIG. 12 (2) shows an example in which the gap 6 on the peripheral side surface of the structure 1 is filled with an elastic material 61 such as foamed resin.
[0058]
When the surface ground is soft, the ground shear resistance may be insufficient with respect to the horizontal force transmitted from the protrusion on the bottom surface of the structure or the side wall surrounding the structure to the ground. FIG. 13 shows the methods of configurations 8 and 9 as countermeasures. FIG. 13 (1) shows that the surface ground 10 around the bottom projection 2 and the structure 1 is improved, and the ground 10 is sheared. It shows how to increase the strength. Reference numeral 7 indicates a ground improvement range. For the ground improvement, a method of mixing and stirring the cement-based solidifying material, a method of injecting a chemical solution such as a solidifying agent into the ground, and the like can be adopted. FIG. 13 (2) shows a case where the ground is improved to increase the shear strength of the ground 10 so that the horizontal force can be fully borne only around the structure, and the protrusion on the bottom surface of the structure is omitted to reduce the cost. is there. FIG. 13 (3) shows a method of the configuration 9 in which a concrete wall plate-like member 71 is embedded in the ground instead of the general ground improvement to obtain the same effect as the ground improvement.
[0059]
FIG. 14 shows an example of configuration 7 in which the present invention is applied to a combined foundation in which both a pile foundation and a direct foundation are used in the same structure. FIG. 14 (1) is a plan view, and FIG. 14 (2) is a cross-sectional configuration diagram of the foundation / ground part. The combination foundation is usually required when the ground has extremely different depths of the support layer on a slope or the like. In such a case, 1) the horizontal rigidity directly on the foundation side is high, the horizontal rigidity on the pile side of the soft ground is low, and 2) the seismic motion on the pile foundation side is amplified due to the soft layer. The pile foundation side is greatly shaken as shown by the circular arc arrow in FIG. 7 (1), and the torsional vibration of the entire structure becomes a problem.
[0060]
In the present invention, since the sliding bearings are arranged on both the pile foundation and the direct foundation, the input ground motion transmitted from the ground to the structure side can be cut off at the same level even if the earthquake input is different, and the structure has occurred. Limiting the horizontal force transmitted to the pile foundation to a certain value of the sliding friction force against the seismic force, and transmitting most of the seismic force generated in the structure directly to the ground with the bottom projections, the seismic problem of the combined foundation Can be solved. 14 (1) and (2), the pile-side bottom projections are arranged in a direction to suppress torsional vibration, and the foundation-side bottom projections are arranged so as to bear the horizontal seismic force in the orthogonal direction. . 14 (2), if the geology is too hard, the side of the protrusion is replaced with a soft elastic ground 72, and the transmission of seismic motion and horizontal resistance force are set to appropriate levels. It is adjusted.
[0061]
FIG. 15 shows a construction method of Configuration 11. When a sliding bearing is arranged on the head of the pile 3 and the independent foundation footing to support the weight of the structure, the most important point in the implementation is a method of horizontally installing the sliding plate 51 at the upper part of the sliding bearing. The horizontal accuracy is usually required to have an inclination angle of 1/500 to 1/1000 (rad) or less with respect to the horizontal plane. In order to achieve this, the inclination angle is set after the slip plate 51 is once installed. A method that can fine-tune the image becomes indispensable. In particular, in the basic system of the present invention, since the sliding plate 51 is an upper sliding system and the sliding surface is usually the lower surface, it is impossible to check the horizontal accuracy on the sliding surface. Therefore, the present invention makes it possible to finely adjust the height by providing screw holes at the four corners or the peripheral portion of the sliding plate 51, inserting the adjusting bolt 56 and rotating it. Since the entire level of the sliding plate 51 is performed on the upper side (back surface) of the sliding plate 51, it is necessary to sufficiently consider the manufacturing accuracy of the rear surface of the sliding plate.
[0062]
The concrete on the structure side is placed thereon in a state where it is horizontally supported by the sliding support at the center of the sliding plate 51 and the adjusting bolt 56 around the periphery. The adjustment bolt 56 is boxed so that the bolt can be removed after the concrete is placed. As a general rule, the adjustment bolt 56 should be removed. However, if a sufficient separation distance can be secured from the sliding support body at the bottom center of the sliding plate, it may be an obstacle to the relative displacement between the structure and the ground during an earthquake. It is also possible to rotate the adjustment bolt 56 as little as possible and pull it out and leave the adjustment bolt 56 in its position. After that, it is possible to construct the structure by a general method using the sliding bearing part and the bottom surface of the bottom projection as supporting points. Reference numeral 15 denotes abandoned concrete, and 55 denotes a fixing stud bolt for the sliding plate 51.
[0063]
【The invention's effect】
As described above, when the foundation structure of the present invention is adopted, the seismic force acting on the pile foundation can be remarkably reduced, and the structure can be made highly efficient at a very low cost by combined use with a sliding pile head joining device. Seismic isolation structure. The effects and merits of the present invention are summarized as follows.
a) The seismic force acting on the pile at the time of an earthquake can be greatly reduced by simply attaching the projection of the present invention to the bottom of a conventional earthquake-resistant structure building.
b) The seismic force acting on the pile can be further reduced by combining the bottom protrusion of the structure with the pile head as a pin joint or semi-rigid joint.
c) By placing a sliding joint device or sliding isolation bearing on the pile head and combining the bottom projections of the structure, the seismic force acting on the pile is limited to a very small constant value, and at the same time, High seismic isolation effect can be given.
d) A seismic isolation effect can be given to the directly foundation structure.
e) The torsion problem in the combined foundation of the direct foundation and the pile foundation can be solved.
f) In this invention, a high seismic isolation effect is realizable only by employ | adopting a sliding type pile head joining apparatus. A restoration device (such as laminated rubber) in a conventional seismic isolation structure is not required, and the double foundation and the clearance around the structure can be omitted. Therefore, an expansion joint around the structure is not necessary, and the cost-up factor required for the base isolation structure can be almost eliminated, so that the base isolation structure can be realized at a very low cost.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a pile foundation in a conventional structure;
(1) Plan view showing the structure outline and the position of the pile foundation,
(2) Sectional drawing which shows the relationship between a structure, a pile foundation, and the ground.
FIG. 2 is a diagram showing a basic structure configuration having a structure bottom projection of the present invention;
(1) Plan view showing the position of the structure outline, pile, and bottom projection,
(2) Sectional drawing which shows the relationship between a structure and a pile, a bottom face protrusion, and the ground.
FIG. 3 is a cross-sectional view showing a cross-sectional configuration of the present invention in which a pile head is made into a pin joint or a semi-rigid joint and a bottom projection is attached to the structure.
FIG. 4 is a cross-sectional view of the present invention when a sliding joint device or a sliding bearing is arranged on a pile head and a bottom projection is attached to the structure.
FIG. 5 is a diagram showing a cross-sectional configuration of a sliding joint device or a pile head sliding bearing arranged on a pile head;
(1) Sectional view when the pile is upright in normal times
(2) A cross-sectional view of a state in which a pile is inclined and a slip movement occurs during an earthquake.
FIG. 6 is a cross-sectional view when the pile head is provided with a structure bottom projection as a pin joint or semi-rigid joint, and a gap is provided between the structure bottom and the ground.
FIG. 7 is a diagram showing a cross-sectional configuration in which a sliding joint device or a sliding bearing is arranged on a pile head and a structure bottom projection is attached;
(1) Sectional view when a gap is provided only between the bottom of the structure and the ground,
(2) Sectional drawing at the time of providing a clearance gap between both between a structure bottom face and the ground and between a surrounding side surface and the ground.
FIG. 8 is a diagram showing a configuration in a case where the contact with the ground is further reduced in FIG.
(1) A cross-sectional view when a sliding joint device or a sliding bearing is placed on the pile head and a structure bottom projection is attached, and only the bottom of the structure bottom projection is in contact with the ground.
(2) A cross-sectional view in which a sliding joint device or a sliding bearing is arranged on the pile head, a structure bottom projection is attached, and contact with the ground is avoided at all parts other than the pile head sliding bearing.
FIG. 9 is a diagram showing a cross-sectional configuration when the present invention is applied to a direct foundation structure;
(1) Cross-sectional view when contact with the ground is completely excluded except for the sliding bearing that supports the load,
(2) Sectional view when only the bottom of the structure avoids contact with the ground,
(3) A cross-sectional view when a soft elastic material such as a foamed resin material is filled in the side surface around the structure.
FIG. 10 is a diagram showing a cross section of a sliding bearing that directly supports a foundation structure;
(1) A cross-sectional view of a rigid sliding bearing that is directly connected to the foundation as a sliding slip (sliding plate placed on top),
(2) A cross-sectional view of an elastic slide bearing in which a slip material and laminated rubber are connected in series as a bottom slip,
(3) A cross-sectional view of the case where an elastic sliding bearing is adopted and the upper sliding is performed.
(4) A cross-sectional view in the case where the upper side slips and the relative inclination of the ground and the structure can be absorbed by different two curvature spheres.
FIG. 11 is a view showing an example of the arrangement of bottom protrusions of a structure;
(1) An explanatory diagram of an example in which wall-plate-like projections are arranged in a cross shape at the center of the structure plane,
(2) Explanatory drawing of the example which has arrange | positioned the wall-plate-like projection to the structure of an elongate plane.
FIG. 12 is a diagram showing a configuration when a rod-shaped protrusion is arranged on the bottom surface of the structure;
(1) A plan view showing the positional relationship between the structure outline and the piles and rod-like projections,
(2) Sectional drawing which shows the positional relationship of a structure, a pile, a rod-shaped protrusion, and the ground.
FIG. 13 is a diagram showing a cross section in the case of improving the ground around the bottom projection of the structure and the surface layer ground around the structure;
(1) Sectional view when improving the ground around the structure bottom projection and the surface ground around the structure,
(2) Cross-sectional view when the surface ground around the structure is improved and the bottom projection is omitted.
(3) Explanatory drawing of the method of building a wall-plate-like concrete lump in the ground instead of ground improvement.
FIG. 14 shows a method for solving the torsion problem by applying the present invention to a combined foundation of a direct foundation and a pile foundation,
(1) Plan view showing the layout of the structure, the foundation and the sliding bearing, and the layout of the bottom projection
(2) Cross-sectional configuration diagram showing structure, bottom projection, ground configuration / foundation configuration, etc.
FIG. 15 is a view showing a cross section for explaining the installation procedure of a slide plate of a slide support that supports the load of a structure;
(1) An explanatory diagram of a method of providing a threaded hole around the sliding plate, inserting a screw bolt into this, changing the vertical level by rotation thereof, and ensuring the level of the sliding plate,
(2) Explanatory drawing of the bolt extraction method in the state where the upper concrete was cast and the upper frame was stable.
[Explanation of symbols]
1: Structure, upper building
10: Ground (soft layer)
11: Ground (hard support layer)
12: Ground (support layer)
15: Abandoned concrete
2: Projection for horizontal force resistance on the bottom of the structure (wall plate shape)
25: Rod-like protrusion for horizontal force resistance on the bottom of the structure (circular cross section)
26: Horizontal force resistance rod-shaped protrusion on the bottom of the structure (rectangular section)
3: Pile
30: Direct foundation footing
4: Pile head of pin joint or semi-rigid joint
5: Pile head using a pile head sliding joint device or sliding bearing
50: Direct foundation sliding support
51: Sliding plate
52: Sliding material
53: Pile inclination (rotation) absorber by spherical surfaces with different curvatures
54: Laminated rubber body
55: Stud bolt for fixing the sliding plate
56: Bolt for adjusting the level of the sliding plate
6: Clearance between the structure and the ground
61: Clearance filling part such as foamed resin material
7: Ground improvement range
71: Ground improvement alternative concrete member
72: A portion obtained by replacing (improving) hard ground with soft elastic ground

Claims (3)

構造物の重量を杭により支持し、  Support the weight of the structure with piles,
前記杭の頭部に、杭頭部の地震時傾斜を許容でき且つ水平方向に移動可能なすべり式杭頭接合装置もしくはすべり支承を配置しており、  In the head of the pile, a sliding-type pile head joining device or a sliding support that allows the inclination of the pile head during an earthquake and is movable in the horizontal direction is arranged,
且つ積層ゴム等の復元ばねを配置しておらず、  And there is no restoring spring such as laminated rubber,
前記構造物の底面に、下向きに突出して地盤と接触し前記構造物からの水平力を地盤に伝達する、鉛直荷重を支持しない棒状もしくは壁板状の突起物を設け、  Provided on the bottom surface of the structure is a rod-like or wall-plate-like projection that does not support a vertical load, projecting downward and contacting the ground to transmit the horizontal force from the structure to the ground,
前記構造物の底面と地盤の間、あるいは前記構造物の底面と地盤との間および前記構造物の地中部側面と地盤との間の両者に隙間を設けており、  A gap is provided between the bottom surface of the structure and the ground, or between the bottom surface of the structure and the ground and between the ground side surface of the structure and the ground,
前記突起物の側面と前記地盤との間に所定の隙間を設けたことを特徴とする構造物の基礎構造。  A basic structure of a structure, wherein a predetermined gap is provided between a side surface of the protrusion and the ground.
杭基礎と直接基礎の両者が併用される構造物の基礎構造において、  In the foundation structure of structures where both pile foundation and direct foundation are used together,
請求項1記載の杭基礎の基礎構造と、  The foundation structure of the pile foundation according to claim 1,
直接基礎の基礎フーチングを構築し、その上にすべり支承を配置して前記構造物の重量を支え、前記構造物の底面に、下向きに突出する棒状もしくは壁板状の突起物を設け、前記構造物の底面とその下側地盤との間に所定の隙間を設けた直接基礎の基礎構造と、  Build a foundation footing directly on the foundation, place a sliding support on it to support the weight of the structure, and provide a bar-like or wall-plate-like projection protruding downward on the bottom of the structure, A foundation structure of a direct foundation with a predetermined gap between the bottom surface of the object and its lower ground;
を混合使用したことを特徴とする構造物の基礎構造。The basic structure of a structure characterized by using a mixture of
請求項1又は請求項2に記載の構造物の基礎構造において、  In the basic structure of the structure according to claim 1 or 2,
前記突起物の底面の下に発泡樹脂材等のスポンジ状物質や柔らかい弾性材料等を挟むか、  A sponge-like substance such as a foamed resin material or a soft elastic material is sandwiched under the bottom of the protrusion,
もしくは前記突起物の底面を地盤に接触させて、  Or let the bottom of the projection touch the ground,
その上部の基礎床重量を支持させることにより、前記構造物の底面と地盤との間に隙間を確保して構築したことを特徴とする構造物の基礎構造。  A foundation structure of a structure, which is constructed by supporting a weight of a foundation floor at an upper portion so as to secure a gap between the bottom surface of the structure and the ground.
JP2003192531A 2003-07-07 2003-07-07 Basic structure of the structure Expired - Lifetime JP3862174B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003192531A JP3862174B2 (en) 2003-07-07 2003-07-07 Basic structure of the structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192531A JP3862174B2 (en) 2003-07-07 2003-07-07 Basic structure of the structure

Publications (2)

Publication Number Publication Date
JP2005029956A JP2005029956A (en) 2005-02-03
JP3862174B2 true JP3862174B2 (en) 2006-12-27

Family

ID=34204289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192531A Expired - Lifetime JP3862174B2 (en) 2003-07-07 2003-07-07 Basic structure of the structure

Country Status (1)

Country Link
JP (1) JP3862174B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005307594A (en) * 2004-04-22 2005-11-04 Shimizu Corp Basic structure of construction
JP2011053039A (en) * 2009-09-01 2011-03-17 Hitachi-Ge Nuclear Energy Ltd Nuclear reactor building foundation structure of nuclear power plant
JP6047166B2 (en) * 2012-10-04 2016-12-21 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングBayer Intellectual Property GmbH Agrochemical formulation and method for producing the same
WO2020027329A1 (en) 2018-08-03 2020-02-06 北興化学工業株式会社 Water surface-floating agrochemical preparation
JP7478047B2 (en) 2020-07-06 2024-05-02 株式会社竹中工務店 Foundations for buildings on slopes

Also Published As

Publication number Publication date
JP2005029956A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
TW591167B (en) Seismic isolation bearing
JP3623168B2 (en) Pile foundation structure
JP3855198B2 (en) Seismic reinforcement structure for pile foundation structures
JP3862174B2 (en) Basic structure of the structure
EP0894900B1 (en) Structure of pile foundation
JP3741428B2 (en) Support foundation structure of structure
JP5620886B2 (en) Pile foundation structure
JP4934769B1 (en) Seismic isolation device with rotation control spring mechanism and method of controlling rotation amount of seismic isolation device
JP2002129584A (en) Foundation structure
JP2000120079A (en) Base isolation structure of pile
JP3741975B2 (en) Joint structure of support pile and footing
JP4111262B2 (en) Connection structure between foundation pile and superstructure, pile head joint, connection method between foundation pile and superstructure
JP2004339894A (en) Aseismic reinforcement structure of pile foundation structure
Merlos et al. Fluctuant bearing capacity of shallow foundations during earthquakes
JP5864686B1 (en) Pile foundation
JP3165063B2 (en) Seismic foundation structure
JP3690495B2 (en) Building construction method and building
JP3575733B2 (en) Seismic isolation structure of pile
JP2001020558A (en) Base isolation structure of building
JP3451934B2 (en) Seismic underground structure of structure
JP2008280818A (en) Base isolation structure of building and building adopting the same
JP4137127B2 (en) Seismic isolation structure
JP3189885B2 (en) Seismic pile structure and seismic pile construction method
JP4621389B2 (en) Building basic structure
JP3102548B2 (en) Seismic isolation structure of pile

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060529

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060919

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Ref document number: 3862174

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111006

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121006

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131006

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term