JP3861418B2 - Diesel engine control device - Google Patents

Diesel engine control device Download PDF

Info

Publication number
JP3861418B2
JP3861418B2 JP33163697A JP33163697A JP3861418B2 JP 3861418 B2 JP3861418 B2 JP 3861418B2 JP 33163697 A JP33163697 A JP 33163697A JP 33163697 A JP33163697 A JP 33163697A JP 3861418 B2 JP3861418 B2 JP 3861418B2
Authority
JP
Japan
Prior art keywords
sub
injection
fuel
injection amount
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33163697A
Other languages
Japanese (ja)
Other versions
JPH11166440A (en
Inventor
哲也 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP33163697A priority Critical patent/JP3861418B2/en
Publication of JPH11166440A publication Critical patent/JPH11166440A/en
Application granted granted Critical
Publication of JP3861418B2 publication Critical patent/JP3861418B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は排気中に含まれるNOxを浄化する触媒の転換効率を良好に維持するためのディーゼルエンジンの制御装置に関する。
【0002】
【従来の技術】
ディーゼルエンジンから排出されるNOxを浄化するために、排気系にNOx還元触媒を設置することが知られているが、触媒でNOxを還元するには、還元剤として適量のHCが必要となる。一般にディーゼルエンジンの排気中に含まれるHC濃度は、NOxを還元するには少なく、このため、特開平8−270433号公報にもあるように、燃焼室に対する燃料の主噴射とは別に排気行程で燃料を供給し、この燃料により不足分のHCを補っている。
【0003】
これは蓄圧式の燃料噴射装置を用い、排気行程で気筒内に燃料を噴射するもので、蓄圧式の燃料噴射装置では常時高圧の燃料が蓄圧されているため、複数回の燃料噴射が自由に行える。
【0004】
ただし、この副噴射により供給される燃料量は、NOx濃度に対してHC濃度が所定値となるように供給される必要があるが、副噴射量が多すぎれば、HCがそのまま大気に放出される放出量が増加し、燃費の悪化も問題となる。
【0005】
そこで、上記従来例では副噴射する燃料量をエンジンの回転数、負荷に応じて予めマップに設定しておき、運転状態を検出しながら設定噴射量を維持するように制御している。
【0006】
【発明が解決しようとする課題】
しかしながら、NOx還元触媒が必要とするHC量を燃料噴射量に換算すると、フルスロットルでの全開噴射量の1/20〜1/500程度の範囲であり、このような微小な燃料を精度よく正確に噴射することは、いくら蓄圧式の燃料噴射装置といえども非常に困難である。
【0007】
一般には燃料噴射インジェクタの気筒間のバラツキがあったり、燃料噴射時期制御用の電磁弁の作動サイクル毎のバラツキなどがあり、噴射期間が短時間になればなるほどこれら誤差の影響が大きくなるためである。
【0008】
これらの理由から、NOx触媒で確実にNOxを還元処理できる最小必要量のHCを、副噴射の噴射量のみによって精度よく制御することは実質的に不可能に近く、結局副噴射量の過多によりHCの増加や燃費が悪化したり、あるいは副噴射量の過小によりNOx還元が不完全となるなどの問題を生じていた。
【0009】
本発明は、このような問題を解決するために提案されたもので、燃料の副噴射を吸気行程または圧縮行程初期に行い、一部を未燃のまま排出させることにより、NOxの発生状態に応じた適切な量のHCの供給を可能とするものである。
【0010】
【課題を解決するための手段】
第1の発明は、排気通路に設けたNOx浄化用の触媒と、蓄圧燃料を燃焼室内に噴射する燃料噴射インジェクタと、燃料を圧縮上死点付近において行なう主噴射とは別に副噴射させる噴射制御装置と備えたディーゼルエンジンの制御装置において、エンジンの運転状態を検出する手段と、前記燃料の副噴射を吸気行程もしくは圧縮行程初期に行わせる副噴射時期設定手段と、燃料の副噴射量を運転状態に応じて増減する副噴射量補正手段とを備え、前記副噴射量補正手段が副噴射量を冷却水温が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正することを特徴する。また、第2の発明は、排気通路に設けたNOx浄化用の触媒と、蓄圧燃料を燃焼室内に噴射する燃料噴射インジェクタと、燃料を圧縮上死点付近において行なう主噴射とは別に副噴射させる噴射制御装置とを備えたディーゼルエンジンの制御装置において、エンジンの運転状態を検出する手段と、前記燃料の副噴射を吸気行程もしくは圧縮行程初期に行わせる副噴射時期設定手段と、燃料の副噴射量を運転状態に応じて増減する副噴射量補正手段と、前記触媒の活性化状態を判定する手段と、触媒が非活性の状態では上記副噴射を中止する手段とを備え、前記副噴射量補正手段が副噴射量を冷却水温が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正することを特徴とする。
【0011】
第3の発明は、前記副噴射時期設定手段は、排気上死点から圧縮上死点前略40°の範囲で副噴射を行わせるように構成される。
【0012】
第4の発明は、前記副噴射量補正手段が、副噴射量をエンジン負荷が高いときほど増加させるように構成される。
【0014】
第5の発明は、前記副噴射量補正手段が、さらに副噴射量を過給圧が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正するように構成される。
【0015】
第6の発明は、前記副噴射量補正手段が、さらに副噴射量を排気還流率が小さいときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正するように構成される。
【0016】
第7の発明は、前記副噴射量補正手段が、さらに副噴射量を吸入ガス温度が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正するように構成される。
【0017】
第8の発明は、前記副噴射量補正手段が、さらに副噴射量を筒内最高圧が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正するように構成される。
【0019】
第9の発明は、前記触媒の活性判定手段が、運転状態から触媒の活性状態を推定するか、または触媒の温度を直接または間接的に測定して活性状態を判定するように構成される。
【0020】
【発明の作用・効果】
第1の発明または第2の発明において、吸気行程もしくは圧縮行程初期に副噴射される燃料は、気筒内で希薄な混合気、例えば可燃限界よりも薄い混合気となり、一部は気筒内壁面に付着する。これらはその濃度が非常に薄いため、その後の燃焼過程でも十分に燃焼できず、また壁面付近のクエンチにより、一部は未燃のまま排出される。副噴射量については、目標値に精度よく制御可能な最小の範囲内に設定しておき、不要な燃料については燃焼行程において燃焼させる。
【0021】
ところで副噴射燃料の未燃排出率は、運転状態を代表するパラメータ、例えば冷却水温、過給圧、排気還流率、吸入ガス温度、筒内最高圧などに応じて未燃排出率が変動する。副噴射量が微小な範囲では、未燃HCの排出量は副噴射量に対応し、副噴射量が多くなるほど、未燃排出量は多くなる。
【0022】
そこでこのような運転状態として冷却水温に応じて副噴射量を補正することにより、常にNOxの還元が最良となる必要最小限のHCを供給することが可能となる。このため、HC過多による外部への放出量の増大や、過小によるNOx還元効率の悪化を防ぐことができる。また副噴射燃料は触媒が必要とする未燃分を除き、気筒内で燃焼するため、エンジン熱効率に寄与し、燃費の悪化も最小限に抑えることができる。
【0023】
第4の発明では、副噴射の噴射量はエンジン負荷が大きく、NOxの発生量が多いときほど増量される。これにより副噴射燃料の未燃排出率を高めて、触媒でのNOxの反応に必要なHC量を確保できる。
【0024】
また、第5から第8の発明では、それぞれ副噴射燃料の未燃排出率の変化を補正することで、常に適正量のHCを供給することが可能となる。
【0025】
つまり、冷却水温が高まり、副噴射された燃料の未燃排出率が下がるときには、噴射量を増量して必要量のHCを確保するのと同じようにして、過給圧が上昇して未燃排出率が低下するとき、排気還流率が低くて未燃排出率が低下するとき、吸入ガス温度が上昇して未燃排出率が低下するとき、筒内最高圧が上昇して未燃排出率が低下するときには、それぞれ副噴射量を増量して必要量のHCを正確に供給することを可能とする。
【0026】
これに対して、第2の発明では、触媒が活性化していない状態では、副噴射制御を中止するので、触媒でのNOxが還元が不十分のときに、無駄に副噴射することにより生じる燃費の悪化やHCの外部への放出を回避できる。
【0027】
第9の発明では、触媒の非活性の状態を、エンジン運転状態や触媒温度に基づいて正確に判定することができる。
【0028】
【発明の実施の形態】
以下、この発明の実施の形態を図面に基づいて説明する。
【0029】
図1は燃料供給系統の構成を示すもので、燃料供給ポンプ1はエンジン回転に同期して回転駆動されるカム2により往復運動するプランジャ3を備え、プランジャ3の往復運動に伴い、燃料は吸入通路4から吸入され、逆止弁5、吐出通路6を経由して蓄圧室7に高圧状態で蓄えられる。
【0030】
吸入通路4にはプランジャ3の有効ストローク制御弁8が設けられ、プランジャ3の圧縮行程で有効ストローク制御弁8が閉弁したときから燃料の圧送が開始され、これに応じてポンプ吐出量が決まる。なお、蓄圧室7には燃料圧力を検出する圧力センサ9が設けられる。
【0031】
蓄圧室7の高圧燃料は供給通路10を経て燃料噴射インジェクタ11のノズル室12と、吸入オリフィス18を経てノズルピストン13の上部の圧力室14に導かれる。
【0032】
通常はノズルピストン13はスプリング19と共に針弁16を押し下げ、閉弁させているが、圧力室14をドレン側と接続する電磁弁15が開弁すると、放出オリフィス17を介して圧力室14の圧力が低下し、このためノズル室12に作用する燃料圧力で針弁16が上方にリフトし、燃料が噴射される。電磁弁15が閉弁すると、圧力室14に吸入オリフィス18を介して高圧燃料が充填され、針弁12の受圧面積よりもその受圧面積を大きく設定したノズルピストン13により、針弁16が押し下げられて着座し、燃料の噴射が停止する。
【0033】
したがって、電磁弁15への通電時期、期間を制御することより、燃料の噴射時期、噴射期間を自由に制御することができる。
【0034】
蓄圧室7の燃料圧力を調整するためにコントロールユニット22が備えられ、圧力センサ9により検出された圧力に応じてコントロールユニット22からの信号により有効ストローク制御弁8の開閉時期が制御され、燃料供給ポンプ1の吐出量を変化させる。
【0035】
有効ストローク制御弁8は、燃料吸入時、つまりプランジャ3が下降しているときは開き、燃料を吐出する上昇時(圧縮行程)に必要なストロークだけ閉じることにより、燃料の吐出量を制御する。蓄圧室7の燃料圧力が目標値よりも下がれば、有効ストローク量を大きくすることで圧力は回復し、逆に高いときは、有効ストローク量を小さくすることで、圧力を低下させられる。
【0036】
コントロールユニット22には、エンジン気筒判別のためのセンサ19、エンジン回転数、クランク角度を検出するためのセンサ20、アクセル開度を検出するセンサ21などからの信号が入力し、これらアクセル開度とエンジン回転数に基づいて目標蓄圧室圧力、目標燃料噴射量、目標噴射時期を検索し、これら目標とする燃料噴射量、噴射時期となるように、電磁弁15の開閉時期を決定すると共に、蓄圧室7の燃料圧力が目標圧力となるように有効ストローク制御弁8の開閉時期を制御する。
【0037】
図2は全体的な構成を示すもので、前記蓄圧室(コモンレール)7の高圧燃料は、ディーゼルエンジン30の各気筒に設けた燃料噴射インジェクタ11により気筒内に噴射される。吸気マニホールド31に接続する吸気通路35には、排気通路34から分岐した排気還流通路36が接続し、その途中に介在した排気還流制御弁37により排気還流量が制御される。また、排気エネルギを利用して吸気を加圧するターボチャージャ38が設けられ、排気通路34のターボチャージャ38の下流には排気中のNOxを還元浄化する触媒39が設置される。
【0038】
そして前記コントロールユニット22は、この触媒39においてNOxを還元するのに必要なHC量を得るために、前記燃料噴射インジェクタ11に、圧縮上死点近傍で行なわれる燃料の主噴射のとは別に、吸気行程もしくは圧縮行程の初期に燃料の副噴射を行わせる。この副噴射により極めて薄い混合気が形成され、この内の一部は未燃のまま排出される。そしてこのとき排気中に含まれるHC濃度が、触媒39でのNOxの還元にとって必要最小限の量となるようにするため、運転状態に応じて副噴射量を調整している。
【0039】
副噴射に要求される噴射量は主噴射に比較すると微量であり、かつ運転状態によって変動する。したがって、排気行程などに噴射した燃料の全量をそのまま触媒に供給する場合、燃料噴射インジェクタ11からの噴射量を常に精度よくこの微小要求流量に制御することは極めて困難である。
【0040】
そこで、燃料噴射インジェクタ11からの噴射量を、気筒毎、サイクル毎のバラツキが少なく、精度よく目標値に制御可能な、できる限り小さな噴射量範囲に設定しておき、この副噴射を吸気行程もしくは圧縮行程の初期に行うことにより、不要な一部の燃料については燃焼させ、NOxを還元するのに必要量のHCが得られるように、燃料の未燃率を適正に制御するのである。
【0041】
このため、コントロールユニット22は前記した運転状態を代表する検出信号の他に、エンジン冷却水温や筒内圧の検出信号が入力し、さらには吸気温度センサ32からの吸入ガス温度、過給圧センサ33が検出した過給圧、排気還流制御弁(EGRバルブ)37のバルブリフトに対応しての排気還流量などの検出信号が入力し、コントロールユニット22は、これらに基づいてNOxの発生状態を把握し、このNOxを還元処理するのに必要量の未燃HCが排気中に含まれるように副噴射の噴射量を制御する。
【0042】
次にコントロールユニット22で実行されるこの制御の内容について、図3のフローチャートを参照しながら、さらに詳しく説明する。
【0043】
ステップS1ではエンジン回転数Ne、アクセル開度Acc、過給圧Pb、筒内最大圧Pe、EGRバルブリフトLegr、冷却水温Tw、吸入ガス温度Taなどを読み込む。ステップS2では、エンジン回転数Neとアクセル開度Accに基づいて、コントロールユニット内に記憶されているマップにより、目標燃料噴射量(主噴射量)Qsと噴射時期ITsを検索する。ステップS3でエンジン回転数Ne、燃料噴射量Qs、エンジン冷却水温Twから目標とするEGRバルブリフトLegrsを予め設定されたマップを検索して求める。
【0044】
次にステップS4で、吸気行程もしくは圧縮行程初期において、主噴射とは別に行なう副噴射の目標副噴射量Qpsと噴射時期ITpsを、そのときのエンジン回転数Neに基づいてマッブから検索する。
【0045】
なお、副噴射時期ITpsについては、吸気行程もしくは圧縮行程初期、具体的には排気上死点から圧縮上死点前略40°の範囲で設定される。
【0046】
そして、ステップS5において、この目標副噴射量Qpsを、燃料噴射量Qs、冷却水温Tw、過給圧Pb、筒内最大圧Pe、吸入ガス温度Ta、目標と実際のEGRバルブリフト差Legr−Legrs(EGR率)などに基づいてそれぞれ補正する。
【0047】
これら補正特性については、図4から図9に示すが、発生するNOxとの関係や副噴射燃料の燃焼条件に基づいて設定される。
【0048】
本発明では、吸気行程もしくは圧縮行程の初期で行われる副噴射の基本噴射量Qpsについては、気筒毎、サイクル毎のバラツキが少なく、微小な噴射量であっても精度よく目標値に制御できる範囲内に設定しておき、不要な一部についてはその後の燃焼行程で燃焼させる。
【0049】
副噴射された燃料は、可燃限界を越えた薄い混合気を形成し、また一部は気筒内壁に付着する。これらは燃焼行程で一部が燃焼しても、残りは未燃のまま排出される。この未燃のまま排出される量は、そのときの運転条件により相違し、燃焼条件が良好なときは相対的に減少する。そこで、運転状態に応じて異なるNOxの発生量、あるいはそのときの副噴射燃料の未燃率の条件に応じて、副噴射量を調整することにより、触媒にとって最小必要限のHC量を供給する。
【0050】
この補正のため、まずエンジン負荷に関しては、図4にもあるとおり、NOx発生量が増える燃料噴射量Qsの大きいときほど副噴射量を大きくし、触媒39での反応に必要なHCの排出量を増大させる。
【0051】
これに対して図5では、冷却水温が上昇するほど副噴射量を大きくするように補正している。これは、冷却水温が低くいときほど、噴射燃料が気筒内壁に付着し、未燃のまま排出される割合が高く、逆に冷却水温が高まるにしたがって排出量が減少するためで、必要量を確保するため冷却水温が高まるのに応じて増量するのである。
【0052】
過給圧については、図6のように、過給圧の増加に応じて副噴射量を増量している。過給圧が高くなるほど気筒内温度が上昇し、燃焼効率が良くなり、副噴射燃料の未燃率が低くなる。そのため、過給圧が高くなるのしたがって副噴射量を増やし、未燃HCの排出量を確保している。
【0053】
図7はEGR状態に応じての補正特性であり、目標EGR率よりも実際のEGR率が低いとき、つまりLegr−Legrsが小さいときほど、副噴射量を増量している。実際のEGR率が低ければ、それだけ気筒内の作動ガス中の酸素濃度が高く、燃料の未燃率が低くなり、またNOxの発生量自体も増加するので、HCの排出量をこれに対応して増加させるため、実際のEGR率が目標値よりも低下するほど副噴射量を増加させている。
【0054】
さらに図8の吸入ガス温度については、シリンダ内への吸入ガス温度が高くなるほど増量するように補正する。吸入ガス温度が高くなるほど筒内温度が上昇し、これに伴って未燃率が低下するので、副噴射量を吸入ガス温度が高くなるほど増加させるのである。
【0055】
図9には、筒内最大圧との関係での補正特性を示す。筒内最大圧が高まるほど、燃焼は良好に行なわれ、NOxの発生量が増えると共に、気筒内ガス温度も高くなる。したがって、筒内最大圧が高くなるほど副噴射時量を増量させることより、HCの必要排出量を確保する。
【0056】
このようにして、副噴射量の補正値を求めたら、図3のステップS6において、燃料の主噴射、副噴射、さらにはEGRバルブリフトの制御を行なう。
【0057】
次に全体的な作用について説明する。
【0058】
エンジンの運転条件によって発生するNOxは変化し、一般的にはエンジン負荷が大きくなるほどNOx発生量は増大する。したがってこのNOxを還元する触媒39で必要となるHC量は、NOx発生量に応じて変化する。
【0059】
エンジン吸気行程もしくは圧縮行程初期において、燃料噴射インジェクタ11から微小な燃料が副噴射されると、この燃料は気筒内で極めて薄い混合気を形成し、一部はそのまま気筒内壁面に付着し、これらはその後に行われる主噴射による燃焼行程で一部が燃焼しても、多くは未燃のまま排出される。
【0060】
この副噴射に要求される燃料量は極めて少なく、気筒毎、サイクル毎のバラツキを考慮すると、要求流量に正確に制御することは極めて困難となる。
【0061】
そこで、この発明では、副噴射の燃料量としては、燃料噴射インジェクタ11により目標値に制御可能なできるだけ小さい噴射量範囲に設定しておき、不要な分については、燃焼行程で燃焼させることにより、排出されるHC量を調整している。副噴射燃料は一部が気筒内で燃焼し、残りが未燃HCとしてそのまま排出される。
【0062】
この場合、運転条件より気筒内のガス温度が変化し、これに応じてNOxの発生量と、副噴射された燃料についての未燃排出率が変動する。そこで、基本的にはエンジンの運転状態に応じて、つまりNOxの発生量が多くなるほど、副噴射量を増加し、必要量の未燃HCを確保する。
【0063】
また、副噴射燃料が未燃のまま排出される比率は燃焼条件により変化するため、冷却水温、過給圧、EGR状態、吸入ガス温度、気筒内最高圧などとの関係に基づいて、筒内ガス温度が相対的に上昇するときほど、副噴射量を増量補正しており、これにより常に運転条件に対応した適正な副噴射を行うことができ、触媒39に供給するHC量を、常にNOxの還元反応にとって過不足のない最適量にすることができる。
【0064】
したがって、基本的な副噴射量としては、燃料噴射インジェク11により精度よく目標値に一致させられる範囲内の値としておき、不要分については燃焼させるので、排気行程などで副噴射し、この副噴射した燃料のほぼ全量がそのまま触媒に流入する場合のように、副噴射量が過多となれば、HCの外部への放出量が増え、燃費も悪化し、また過小のときはNOxの還元が不十分となるような問題を確実に回避できる。また、吸気行程もしくは圧縮行程初期で副噴射される燃料の余剰分については、気筒内で燃焼するため、エンジン出力にとって有効なエネルギとなり、燃費悪化も最小限に抑えることができる。
【0065】
なお、上記した副噴射量の補正はすべてを行うことが条件ではなく、必要に応じて一つまたは幾つかを選択できることは、言うまでもない。
【0066】
次に図10に示す他の実施形態を説明する。
【0067】
この実施の形態は、触媒39が活性化するまでの間は、上記した副噴射の制御を中止し、無駄な燃費やHCの排出を抑制するものである。
【0068】
このため、図10において、ステップS1ではエンジン回転数Ne、目標燃料噴射量(主噴射)Qsを読み込み、ステップS2でこれら回転数Neと噴射量Qsに基づいて、図11に示すような触媒の活性領域(副噴射可能領域)のマップを検索する。
【0069】
ステップS3では触媒が活性状態にあるかどうか判断し、活性状態のときにはステップS4に進んで副噴射を許可する。これに対して、触媒が不活性のときには、ステップS5に進んで副噴射を不許可とする。
【0070】
したがって、副噴射が許可されたときには、前記した図3に示すような副噴射制御が実行されるが、許可が否定されたときには、副噴射は行わない。
【0071】
これは、エンジン回転数、負荷が小さく、触媒39が反応に必要な温度まで十分に高まらない状態、つまり触媒39が不活性の状態では、燃料の副噴射を行っても、NOx還元反応が行われないだけでなく、未燃HCがそのまま外部に放出され、燃費も悪化するので、このような状態での副噴射制御を中止するようにしたのである。
【0072】
なお、触媒39の活性状態を判断するのに、触媒近傍の温度を直接または間接的に測定したり、エンジン運転状態の履歴から判断する方法でもよい。
【0073】
また、前記した副噴射時期の補正のための各種のパラメータの検知手段については、例えばEGR率については、エンジン回転数と負荷に応じて、そのときの吸入空気量を測定しながら推定するなど、上記以外の方法であってもよいことは勿論である。
【図面の簡単な説明】
【図1】本発明の実施の形態の燃料供給系統を示す構成図。
【図2】同じく全体構成を示す概略構成図。
【図3】制御動作のフローチャート。
【図4】燃料噴射量についての副噴射量の補正特性を示す特性図。
【図5】冷却水温についての副噴射量の補正特性を示す特性図。
【図6】過給圧についての副噴射量の補正特性を示す特性図。
【図7】EGR率についての副噴射量の補正特性を示す特性図。
【図8】吸入ガス温度についての副噴射量の補正特性を示す特性図。
【図9】筒内圧についての副噴射量の補正特性を示す特性図。
【図10】他の実施形態の制御動作のフローチャート。
【図11】副噴射領域を示す説明図。
【符号の説明】
1 燃料噴射ポンプ
7 燃料蓄圧室
11 燃料噴射インジェクタ
15 電磁弁
20 回転数センサ
21 アクセル開度センサ
22 コントロールユニット
37 排気還流制御弁
39 NOx還元触媒
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a diesel engine for maintaining good conversion efficiency of a catalyst for purifying NOx contained in exhaust gas.
[0002]
[Prior art]
In order to purify NOx discharged from the diesel engine, it is known to install a NOx reduction catalyst in the exhaust system. However, in order to reduce NOx by the catalyst, an appropriate amount of HC is required as a reducing agent. In general, the concentration of HC contained in the exhaust of a diesel engine is small to reduce NOx. Therefore, as disclosed in JP-A-8-270433, the exhaust stroke is separate from the main injection of fuel into the combustion chamber. Fuel is supplied and the shortage of HC is compensated by this fuel.
[0003]
This uses an accumulator fuel injection device and injects fuel into the cylinder during the exhaust stroke. Since the accumulator fuel injection device always accumulates high-pressure fuel, multiple fuel injections are free. Yes.
[0004]
However, the amount of fuel supplied by this sub-injection needs to be supplied so that the HC concentration becomes a predetermined value with respect to the NOx concentration, but if the sub-injection amount is too large, HC is released into the atmosphere as it is. The amount of release increases and fuel consumption deteriorates.
[0005]
Therefore, in the above-described conventional example, the amount of fuel to be sub-injected is set in advance in a map according to the engine speed and load, and control is performed so as to maintain the set injection amount while detecting the operating state.
[0006]
[Problems to be solved by the invention]
However, when the amount of HC required by the NOx reduction catalyst is converted into the fuel injection amount, it is in the range of about 1/20 to 1/500 of the fully open injection amount at full throttle, and such a minute fuel is accurately and accurately It is very difficult to inject the fuel into the fuel injection device, even if it is a pressure accumulation type fuel injection device.
[0007]
In general, there are variations between cylinders of the fuel injection injector, variations in the operation cycle of the solenoid valve for controlling the fuel injection timing, and the influence of these errors increases as the injection period becomes shorter. is there.
[0008]
For these reasons, it is virtually impossible to accurately control the minimum required amount of HC that can reliably reduce NOx with the NOx catalyst only by the injection amount of the sub-injection. There have been problems such as an increase in HC and fuel consumption, or incomplete NOx reduction due to an excessive sub-injection amount.
[0009]
The present invention has been proposed to solve such a problem, and the sub-injection of fuel is performed in the initial stage of the intake stroke or the compression stroke, and a part of the fuel is discharged without being burned, so that NOx is generated. Accordingly, an appropriate amount of HC can be supplied.
[0010]
[Means for Solving the Problems]
The first aspect of the present invention is an injection control in which sub-injection is performed separately from the NOx purification catalyst provided in the exhaust passage, the fuel injection injector that injects the accumulated pressure fuel into the combustion chamber, and the main injection that is performed near the compression top dead center. A control device for a diesel engine equipped with a device, a means for detecting the operating state of the engine, a sub-injection timing setting means for performing the fuel sub-injection in the initial stage of the intake stroke or the compression stroke, and a fuel sub-injection amount A sub-injection amount correcting means that increases / decreases in accordance with the state, and the sub-injection amount correcting means increases the sub-injection amount as the cooling water temperature is higher, and the unburned HC emission rate decreases with increasing in-cylinder temperature. It is characterized by correcting . Further, the second aspect of the present invention performs sub-injection separately from the NOx purification catalyst provided in the exhaust passage, the fuel injection injector that injects the accumulated fuel into the combustion chamber, and the main injection that is performed near the compression top dead center. In a control device for a diesel engine comprising an injection control device, means for detecting an operating state of the engine, sub-injection timing setting means for performing sub-injection of the fuel at an initial stage of an intake stroke or a compression stroke, and sub-injection of fuel A sub-injection amount correcting means for increasing / decreasing the amount according to the operating state; means for determining an activation state of the catalyst; and means for stopping the sub-injection when the catalyst is in an inactive state. The correction means increases the sub-injection amount as the cooling water temperature is higher, and corrects a decrease in the unburned HC emission rate accompanying an increase in the in-cylinder temperature.
[0011]
According to a third aspect of the present invention, the sub injection timing setting means is configured to perform sub injection within a range of about 40 ° from the exhaust top dead center to the compression top dead center.
[0012]
According to a fourth aspect of the invention, the sub injection amount correcting means is configured to increase the sub injection amount as the engine load is higher.
[0014]
According to a fifth aspect of the present invention, the sub-injection amount correcting means further increases the sub-injection amount as the supercharging pressure is higher, and corrects a decrease in the unburned HC discharge rate accompanying an increase in in- cylinder temperature. Is done.
[0015]
According to a sixth aspect of the present invention, the sub-injection amount correcting means further increases the sub-injection amount as the exhaust gas recirculation rate is smaller, and corrects a decrease in the unburned HC discharge rate accompanying an increase in the in- cylinder temperature. Is done.
[0016]
According to a seventh aspect of the present invention, the sub injection amount correction means further increases the sub injection amount as the intake gas temperature is higher, and corrects a decrease in the unburned HC discharge rate accompanying an increase in the in- cylinder temperature. Is done.
[0017]
In an eighth aspect of the invention, the sub-injection amount correcting means further increases the sub-injection amount as the in-cylinder maximum pressure is higher, and corrects a decrease in the unburned HC discharge rate accompanying an increase in the in- cylinder temperature. Composed.
[0019]
A ninth aspect of the invention is configured such that the catalyst activity determining means estimates the catalyst active state from the operating state, or directly or indirectly measures the catalyst temperature to determine the active state.
[0020]
[Operation and effect of the invention]
In the first invention or the second invention, the fuel that is sub-injected in the initial stage of the intake stroke or the compression stroke becomes a lean air-fuel mixture in the cylinder, for example, an air-fuel mixture that is thinner than the flammable limit, and part of the fuel is on the inner wall surface Adhere to. Since the concentration of these substances is very low, they cannot be burned sufficiently even in the subsequent combustion process, and some of them are discharged unburned by quenching near the wall surface. The sub-injection amount is set within a minimum range that can be accurately controlled to the target value, and unnecessary fuel is burned in the combustion stroke.
[0021]
By the way, the unburned discharge rate of the sub-injected fuel varies depending on parameters representative of the operation state, such as cooling water temperature, supercharging pressure, exhaust gas recirculation rate, intake gas temperature, in-cylinder maximum pressure, and the like. When the sub-injection amount is in a very small range, the unburned HC emission amount corresponds to the sub-injection amount, and as the sub-injection amount increases, the unburned emission amount increases.
[0022]
Thus, by correcting the sub-injection amount according to the cooling water temperature as such an operating state, it is possible to supply the minimum necessary amount of HC that always reduces NOx optimally. For this reason, it is possible to prevent an increase in the amount of release to the outside due to excessive HC and deterioration of NOx reduction efficiency due to an excessive amount. Further, since the sub-injected fuel is burned in the cylinder except for the unburned portion required by the catalyst, it contributes to the engine thermal efficiency, and the deterioration of the fuel consumption can be suppressed to the minimum.
[0023]
In the fourth aspect of the invention, the amount of sub-injection increases as the engine load increases and the amount of NOx generated increases. Thereby, the unburned discharge rate of the sub-injected fuel can be increased, and the amount of HC necessary for the NOx reaction at the catalyst can be secured.
[0024]
In the fifth to eighth inventions, it is possible to always supply an appropriate amount of HC by correcting the change in the unburned discharge rate of the sub-injected fuel.
[0025]
In other words, increasing the cooling water temperature, when the non-燃排fraction of secondary injected fuel drops are in the same way as to ensure the HC of the required amount and increasing the injection quantity, unburned boost pressure rises When the exhaust rate decreases, when the exhaust gas recirculation rate is low and the unburned exhaust rate decreases, when the intake gas temperature rises and the unburned exhaust rate decreases, the in-cylinder maximum pressure increases and the unburned exhaust rate When the fuel pressure decreases, the sub-injection amount can be increased to accurately supply the required amount of HC.
[0026]
On the other hand, in the second invention, the sub-injection control is stopped in a state where the catalyst is not activated. Therefore, when NOx in the catalyst is insufficiently reduced, fuel consumption caused by useless sub-injection. Deterioration of HC and release of HC to the outside can be avoided.
[0027]
In the ninth aspect, the inactive state of the catalyst can be accurately determined based on the engine operating state and the catalyst temperature.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0029]
FIG. 1 shows a configuration of a fuel supply system. A fuel supply pump 1 includes a plunger 3 that reciprocates by a cam 2 that is rotationally driven in synchronization with engine rotation. As the plunger 3 reciprocates, fuel is sucked. It is sucked from the passage 4 and stored in the pressure accumulating chamber 7 through the check valve 5 and the discharge passage 6 in a high pressure state.
[0030]
The suction passage 4 is provided with an effective stroke control valve 8 for the plunger 3, and fuel pumping starts when the effective stroke control valve 8 is closed during the compression stroke of the plunger 3, and the pump discharge amount is determined accordingly. . The pressure accumulating chamber 7 is provided with a pressure sensor 9 for detecting the fuel pressure.
[0031]
The high-pressure fuel in the pressure accumulating chamber 7 is guided through the supply passage 10 to the nozzle chamber 12 of the fuel injector 11 and the pressure chamber 14 above the nozzle piston 13 through the suction orifice 18.
[0032]
Normally, the nozzle piston 13 pushes down the needle valve 16 together with the spring 19 to close the valve. However, when the electromagnetic valve 15 that connects the pressure chamber 14 to the drain side opens, the pressure in the pressure chamber 14 passes through the discharge orifice 17. Therefore, the needle valve 16 is lifted upward by the fuel pressure acting on the nozzle chamber 12, and fuel is injected. When the solenoid valve 15 is closed, the pressure chamber 14 is filled with high-pressure fuel through the suction orifice 18, and the needle valve 16 is pushed down by the nozzle piston 13 whose pressure receiving area is set larger than the pressure receiving area of the needle valve 12. Then, the fuel injection stops.
[0033]
Therefore, by controlling the energization timing and period of the electromagnetic valve 15, the fuel injection timing and injection period can be freely controlled.
[0034]
A control unit 22 is provided to adjust the fuel pressure in the pressure accumulating chamber 7, and the opening / closing timing of the effective stroke control valve 8 is controlled by a signal from the control unit 22 in accordance with the pressure detected by the pressure sensor 9 to supply fuel. The discharge amount of the pump 1 is changed.
[0035]
The effective stroke control valve 8 opens when the fuel is inhaled, that is, when the plunger 3 is lowered, and closes only the stroke required for the ascending (compression stroke) for discharging the fuel, thereby controlling the fuel discharge amount. When the fuel pressure in the pressure accumulating chamber 7 is lower than the target value, the pressure is recovered by increasing the effective stroke amount. Conversely, when the fuel pressure is high, the pressure can be decreased by decreasing the effective stroke amount.
[0036]
The control unit 22 receives signals from a sensor 19 for determining the engine cylinder, a sensor 20 for detecting the engine speed and the crank angle, a sensor 21 for detecting the accelerator opening, and the like. The target pressure accumulation chamber pressure, the target fuel injection amount, and the target injection timing are searched based on the engine speed, and the opening / closing timing of the solenoid valve 15 is determined so as to be the target fuel injection amount and injection timing, and the pressure accumulation The opening / closing timing of the effective stroke control valve 8 is controlled so that the fuel pressure in the chamber 7 becomes the target pressure.
[0037]
FIG. 2 shows the overall configuration. The high-pressure fuel in the pressure accumulating chamber (common rail) 7 is injected into the cylinder by a fuel injection injector 11 provided in each cylinder of the diesel engine 30. An exhaust gas recirculation passage 36 branched from the exhaust passage 34 is connected to the intake air passage 35 connected to the intake manifold 31, and the exhaust gas recirculation amount is controlled by an exhaust gas recirculation control valve 37 interposed in the middle. Further, a turbocharger 38 that pressurizes intake air using exhaust energy is provided, and a catalyst 39 that reduces and purifies NOx in the exhaust is installed downstream of the turbocharger 38 in the exhaust passage 34.
[0038]
In addition to the main fuel injection performed near the compression top dead center, the control unit 22 provides the fuel injection injector 11 with an HC amount necessary for reducing NOx in the catalyst 39. Sub-injection of fuel is performed at the beginning of the intake stroke or compression stroke. By this sub-injection, an extremely thin air-fuel mixture is formed, and a part of this is discharged unburned. At this time, the sub-injection amount is adjusted in accordance with the operating state so that the concentration of HC contained in the exhaust gas becomes the minimum amount necessary for NOx reduction by the catalyst 39.
[0039]
The injection amount required for the sub-injection is very small compared to the main injection and varies depending on the operating state. Therefore, when the entire amount of fuel injected in the exhaust stroke or the like is supplied to the catalyst as it is, it is extremely difficult to always control the injection amount from the fuel injection injector 11 to this minute required flow rate with high accuracy.
[0040]
Therefore, the injection amount from the fuel injection injector 11 is set to the smallest possible injection amount range that can be controlled to the target value with little variation for each cylinder and cycle, and this sub-injection is set to the intake stroke or By carrying out at the beginning of the compression stroke, the fuel unburnt rate is appropriately controlled so that a part of the unnecessary fuel is burned and the amount of HC required to reduce NOx is obtained.
[0041]
For this reason, the control unit 22 receives a detection signal of the engine cooling water temperature and the in-cylinder pressure in addition to the detection signal representative of the above-described operation state, and further, the intake gas temperature from the intake air temperature sensor 32 and the supercharging pressure sensor 33. Detection signals such as the supercharging pressure detected by the engine and the exhaust gas recirculation amount corresponding to the valve lift of the exhaust gas recirculation control valve (EGR valve) 37 are input, and the control unit 22 grasps the generation state of NOx based on these signals. Then, the injection amount of the sub-injection is controlled so that the amount of unburned HC necessary to reduce this NOx is included in the exhaust gas.
[0042]
Next, the contents of this control executed by the control unit 22 will be described in more detail with reference to the flowchart of FIG.
[0043]
In step S1, the engine speed Ne, the accelerator opening Acc, the supercharging pressure Pb, the in-cylinder maximum pressure Pe, the EGR valve lift Legr, the cooling water temperature Tw, the intake gas temperature Ta, and the like are read. In step S2, the target fuel injection amount (main injection amount) Qs and the injection timing ITs are retrieved from a map stored in the control unit based on the engine speed Ne and the accelerator opening Acc. In step S3, a target EGR valve lift Legrs is obtained by searching a predetermined map from the engine speed Ne, the fuel injection amount Qs, and the engine coolant temperature Tw.
[0044]
Next, in step S4, at the initial stage of the intake stroke or the compression stroke, a target sub-injection amount Qps and injection timing ITps of sub-injection performed separately from main injection are searched from the map based on the engine speed Ne at that time.
[0045]
The sub-injection timing ITps is set at the initial stage of the intake stroke or the compression stroke, specifically in the range of approximately 40 ° from the exhaust top dead center to the compression top dead center.
[0046]
In step S5, the target sub-injection amount Qps is changed to the fuel injection amount Qs, the cooling water temperature Tw, the supercharging pressure Pb, the in-cylinder maximum pressure Pe, the intake gas temperature Ta, the target and actual EGR valve lift difference Legr-Legrs. Corrections are made based on (EGR rate) and the like.
[0047]
These correction characteristics are shown in FIGS. 4 to 9 and are set based on the relationship with the generated NOx and the combustion conditions of the sub-injected fuel.
[0048]
In the present invention, the basic injection amount Qps of the sub-injection that is performed at the initial stage of the intake stroke or the compression stroke has little variation for each cylinder and cycle, and can be accurately controlled to the target value even with a small injection amount. The unnecessary part is burned in the subsequent combustion stroke.
[0049]
The sub-injected fuel forms a thin air-fuel mixture that exceeds the flammability limit, and part of the fuel adheres to the cylinder inner wall. Even if a part of these burns during the combustion stroke, the rest is discharged unburned. The amount that is discharged unburned differs depending on the operating conditions at that time, and relatively decreases when the combustion conditions are good. Therefore, the minimum required amount of HC for the catalyst is supplied by adjusting the sub-injection amount according to the amount of NOx generated depending on the operating state or the condition of the unburned fuel ratio at that time. .
[0050]
For this correction, regarding the engine load, as shown in FIG. 4, the sub-injection amount is increased as the fuel injection amount Qs in which the NOx generation amount increases is increased, and the HC emission amount necessary for the reaction at the catalyst 39 is increased. Increase.
[0051]
On the other hand, in FIG. 5, it correct | amends so that subinjection amount may be enlarged, so that cooling water temperature rises. This is because the lower the cooling water temperature, the more the injected fuel adheres to the inner wall of the cylinder and the unburned fuel is discharged at a higher rate. On the contrary, the discharge amount decreases as the cooling water temperature increases. In order to ensure, the amount increases as the cooling water temperature increases.
[0052]
As for the supercharging pressure, as shown in FIG. 6, the sub-injection amount is increased in accordance with the increase of the supercharging pressure. The higher the boost pressure, the higher the in-cylinder temperature, the better the combustion efficiency, and the lower the unburned fuel ratio of the sub-injected fuel. For this reason, the supercharging pressure increases, so the sub-injection amount is increased, and the discharge amount of unburned HC is ensured.
[0053]
FIG. 7 shows the correction characteristics according to the EGR state, and the sub-injection amount is increased as the actual EGR rate is lower than the target EGR rate, that is, as Legr-Legrs is smaller. The lower the actual EGR rate, the higher the oxygen concentration in the working gas in the cylinder, the lower the fuel unburnt rate, and the higher the amount of NOx generated. Therefore, the sub-injection amount is increased as the actual EGR rate falls below the target value.
[0054]
Further, the intake gas temperature in FIG. 8 is corrected so as to increase as the intake gas temperature into the cylinder increases. As the intake gas temperature increases, the in-cylinder temperature increases, and the unburned rate decreases accordingly. Therefore, the sub-injection amount is increased as the intake gas temperature increases.
[0055]
FIG. 9 shows correction characteristics in relation to the in-cylinder maximum pressure. As the in-cylinder maximum pressure increases, combustion is performed more favorably, the amount of NOx generated increases, and the in-cylinder gas temperature also increases. Therefore, the required discharge amount of HC is ensured by increasing the sub injection amount as the in-cylinder maximum pressure increases.
[0056]
When the correction value of the sub-injection amount is obtained in this way, the fuel main injection, sub-injection, and further the EGR valve lift are controlled in step S6 of FIG.
[0057]
Next, the overall operation will be described.
[0058]
The NOx generated varies depending on the engine operating conditions. Generally, the amount of NOx generated increases as the engine load increases. Therefore, the amount of HC required for the catalyst 39 for reducing this NOx varies depending on the amount of NOx generated.
[0059]
When a small amount of fuel is sub-injected from the fuel injection injector 11 in the initial stage of the engine intake stroke or compression stroke, this fuel forms an extremely thin air-fuel mixture in the cylinder, and part of it adheres directly to the inner wall surface of the cylinder. Even if a part of the fuel is burned in the combustion stroke by the main injection performed thereafter, most of the fuel is discharged unburned.
[0060]
The amount of fuel required for this sub-injection is extremely small, and it is extremely difficult to accurately control the required flow rate in consideration of variations among cylinders and cycles.
[0061]
Therefore, in the present invention, the fuel amount of the sub-injection is set to the smallest possible injection amount range that can be controlled to the target value by the fuel injector 11, and unnecessary portions are burned in the combustion stroke, The amount of discharged HC is adjusted. A part of the sub-injected fuel burns in the cylinder, and the rest is discharged as it is as unburned HC.
[0062]
In this case, the gas temperature in the cylinder changes depending on the operating conditions, and the amount of NOx generated and the unburned emission rate of the sub-injected fuel fluctuate accordingly. Therefore, basically, the sub-injection amount is increased in accordance with the operating state of the engine, that is, as the amount of NOx generated increases, and a necessary amount of unburned HC is ensured.
[0063]
In addition, since the ratio of the sub-injected fuel that is discharged unburned varies depending on the combustion conditions, the in-cylinder is determined based on the relationship between the coolant temperature, the supercharging pressure, the EGR state, the intake gas temperature, the maximum cylinder pressure, and the like. As the gas temperature rises relatively, the sub-injection amount is corrected so as to increase, so that proper sub-injection corresponding to the operating conditions can always be performed, and the amount of HC supplied to the catalyst 39 is always reduced to NOx. It is possible to make the optimum amount without excess or deficiency for the reduction reaction.
[0064]
Accordingly, the basic sub-injection amount is set to a value within the range that can be accurately matched with the target value by the fuel injection injector 11, and the unnecessary portion is burned. If the sub-injection amount is excessive, as in the case where almost the entire amount of fuel flows into the catalyst as it is, the amount of HC released to the outside will increase, the fuel consumption will deteriorate, and if it is too small, NOx will not be reduced. Problems that would be sufficient can be avoided reliably. Further, the surplus fuel sub-injected in the initial stage of the intake stroke or the compression stroke is burned in the cylinder, so that it becomes energy effective for engine output, and deterioration of fuel consumption can be suppressed to a minimum.
[0065]
Needless to say, the correction of the sub-injection amount is not necessarily performed, and one or several of them can be selected as necessary.
[0066]
Next, another embodiment shown in FIG. 10 will be described.
[0067]
In this embodiment, until the catalyst 39 is activated, the above-described sub-injection control is stopped, and wasteful fuel consumption and HC emission are suppressed.
[0068]
For this reason, in FIG. 10, in step S1, the engine speed Ne and the target fuel injection amount (main injection) Qs are read, and in step S2, based on these speed Ne and injection amount Qs, the catalyst as shown in FIG. A map of the active area (sub-injectable area) is searched.
[0069]
In step S3, it is determined whether or not the catalyst is in an active state. If the catalyst is in the active state, the process proceeds to step S4 and sub injection is permitted. On the other hand, when the catalyst is inactive, the process proceeds to step S5 and the sub-injection is not permitted.
[0070]
Therefore, when the sub-injection is permitted, the sub-injection control as shown in FIG. 3 is executed, but when the permission is denied, the sub-injection is not performed.
[0071]
This is because when the engine speed and load are small and the catalyst 39 is not sufficiently raised to the temperature required for the reaction, that is, when the catalyst 39 is inactive, the NOx reduction reaction is performed even if the fuel is sub-injected. Not only that, but the unburned HC is released to the outside as it is, and the fuel consumption is also deteriorated. Therefore, the sub-injection control in such a state is stopped.
[0072]
In order to determine the active state of the catalyst 39, a method in which the temperature in the vicinity of the catalyst is directly or indirectly measured or determined from the history of the engine operating state may be used.
[0073]
Further, regarding the various parameter detection means for correcting the sub-injection timing, for example, the EGR rate is estimated while measuring the intake air amount at that time according to the engine speed and load, etc. Of course, other methods may be used.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing a fuel supply system according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram showing the overall configuration.
FIG. 3 is a flowchart of a control operation.
FIG. 4 is a characteristic diagram showing a correction characteristic of a sub injection amount with respect to a fuel injection amount.
FIG. 5 is a characteristic diagram showing a correction characteristic of a sub injection amount with respect to a cooling water temperature.
FIG. 6 is a characteristic diagram showing a correction characteristic of a sub-injection amount with respect to a supercharging pressure.
FIG. 7 is a characteristic diagram showing a correction characteristic of a sub-injection amount with respect to an EGR rate.
FIG. 8 is a characteristic diagram showing a correction characteristic of a sub-injection amount with respect to an intake gas temperature.
FIG. 9 is a characteristic diagram showing a correction characteristic of a sub-injection amount for in-cylinder pressure.
FIG. 10 is a flowchart of a control operation according to another embodiment.
FIG. 11 is an explanatory view showing a sub injection region.
[Explanation of symbols]
1 Fuel Injection Pump 7 Fuel Accumulation Chamber 11 Fuel Injection Injector 15 Solenoid Valve 20 Revolution Sensor 21 Acceleration Opening Sensor 22 Control Unit 37 Exhaust Recirculation Control Valve 39 NOx Reduction Catalyst

Claims (9)

排気通路に設けたNOx浄化用の触媒と、蓄圧燃料を燃焼室内に噴射する燃料噴射インジェクタと、燃料を圧縮上死点付近において行なう主噴射とは別に副噴射させる噴射制御装置と備えたディーゼルエンジンの制御装置において、エンジンの運転状態を検出する手段と、前記燃料の副噴射を吸気行程もしくは圧縮行程初期に行わせる副噴射時期設定手段と、燃料の副噴射量を運転状態に応じて増減する副噴射量補正手段とを備え、前記副噴射量補正手段が副噴射量を冷却水温が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正することを特徴するディーゼルエンジンの制御装置。A diesel engine provided with a NOx purification catalyst provided in the exhaust passage, a fuel injection injector that injects pressure-accumulated fuel into the combustion chamber, and an injection control device that performs sub-injection separately from the main injection that is performed near the compression top dead center In the control apparatus, the means for detecting the operating state of the engine, the sub-injection timing setting means for performing the sub-injection of the fuel at the beginning of the intake stroke or the compression stroke, and the sub-injection amount of the fuel are increased or decreased according to the operating state. A sub-injection amount correcting means, wherein the sub-injection amount correcting means increases the sub-injection amount as the cooling water temperature is higher, and corrects a decrease in the discharge rate of unburned HC accompanying an increase in in-cylinder temperature. Diesel engine control device. 排気通路に設けたNOx浄化用の触媒と、蓄圧燃料を燃焼室内に噴射する燃料噴射インジェクタと、燃料を圧縮上死点付近において行なう主噴射とは別に副噴射させる噴射制御装置とを備えたディーゼルエンジンの制御装置において、エンジンの運転状態を検出する手段と、前記燃料の副噴射を吸気行程もしくは圧縮行程初期に行わせる副噴射時期設定手段と、燃料の副噴射量を運転状態に応じて増減する副噴射量補正手段と、前記触媒の活性化状態を判定する手段と、触媒が非活性の状態では上記副噴射を中止する手段とを備え、前記副噴射量補正手段が副噴射量を冷却水温が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出率の低下を補正することを特徴とするディーゼルエンジンの制御装置。Diesel equipped with a NOx purification catalyst provided in the exhaust passage, a fuel injection injector that injects pressure-accumulated fuel into the combustion chamber, and an injection control device that performs sub-injection separately from the main injection that is performed near the compression top dead center In the engine control device, a means for detecting an operating state of the engine, a sub-injection timing setting means for performing the sub-injection of the fuel in the initial stage of the intake stroke or the compression stroke, and a sub-injection amount of the fuel according to the operating state Sub-injection amount correcting means for determining the activation state of the catalyst, and means for canceling the sub-injection when the catalyst is inactive. The sub-injection amount correcting means cools the sub-injection amount. A control device for a diesel engine, which is increased as the water temperature is higher, and corrects a decrease in the discharge rate of unburned HC accompanying an increase in in-cylinder temperature . 前記副噴射時期設定手段は、排気上死点から圧縮上死点前略40°の範囲で副噴射を行わせる請求項1または2に記載のディーゼルエンジンの制御装置。 3. The diesel engine control device according to claim 1, wherein the sub-injection timing setting means performs sub-injection within a range of approximately 40 ° before exhaust top dead center from exhaust top dead center. 4. 前記副噴射量補正手段が、副噴射量をエンジン負荷が高いときほど増加させる請求項1または2に記載のディーゼルエンジンの制御装置。The diesel engine control device according to claim 1 or 2, wherein the sub-injection amount correcting means increases the sub-injection amount as the engine load is higher. 前記副噴射量補正手段が、さらに副噴射量を過給圧が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出量の低下を補正する請求項1〜4のいずれか一つに記載のディーゼルエンジンの制御装置。The auxiliary injection amount correcting means further increases the auxiliary injection amount as the supercharging pressure is higher , and corrects a decrease in the amount of unburned HC discharged as the in-cylinder temperature increases . The control apparatus of the diesel engine as described in one. 前記副噴射量補正手段が、さらに副噴射量を排気還流率が小さいときほど増加させ、筒内温度の上昇に伴う未燃HCの排出量の低下を補正する請求項1〜5のいずれか一つに記載のディーゼルエンジンの制御装置。6. The sub-injection amount correcting means further increases the sub-injection amount as the exhaust gas recirculation rate is smaller , and corrects a decrease in the amount of unburned HC discharged as the in-cylinder temperature increases. The control device of the diesel engine as described in 1. 前記副噴射量補正手段が、さらに副噴射量を吸入ガス温度が高いときほど増加させ
、筒内温度の上昇に伴う未燃HCの排出量の低下を補正する請求項1〜6のいずれか一つに記載のディーゼルエンジンの制御装置。
The auxiliary injection amount correction means further increases the auxiliary injection amount as the intake gas temperature is higher.
The control device for a diesel engine according to any one of claims 1 to 6, which corrects a decrease in the amount of unburned HC discharged as the in-cylinder temperature rises .
前記副噴射量補正手段が、さらに副噴射量を筒内最高圧が高いときほど増加させ、筒内温度の上昇に伴う未燃HCの排出量の低下を補正する請求項1〜7のいずれか一つに記載のディーゼルエンジンの制御装置。8. The sub-injection amount correcting means further increases the sub-injection amount as the in-cylinder maximum pressure is higher , and corrects a decrease in the amount of unburned HC discharged as the in-cylinder temperature rises . The control apparatus of the diesel engine as described in one. 前記触媒の活性判定手段が、運転状態から触媒の活性状態を推定するか、または触媒の温度を直接または間接的に測定して活性状態を判定する請求項2に記載のディーゼルエンジンの制御装置。The control apparatus for a diesel engine according to claim 2 , wherein the catalyst activity determining means estimates the catalyst active state from the operating state, or directly or indirectly measures the catalyst temperature to determine the active state.
JP33163697A 1997-12-02 1997-12-02 Diesel engine control device Expired - Fee Related JP3861418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33163697A JP3861418B2 (en) 1997-12-02 1997-12-02 Diesel engine control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33163697A JP3861418B2 (en) 1997-12-02 1997-12-02 Diesel engine control device

Publications (2)

Publication Number Publication Date
JPH11166440A JPH11166440A (en) 1999-06-22
JP3861418B2 true JP3861418B2 (en) 2006-12-20

Family

ID=18245882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33163697A Expired - Fee Related JP3861418B2 (en) 1997-12-02 1997-12-02 Diesel engine control device

Country Status (1)

Country Link
JP (1) JP3861418B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5739799B2 (en) * 2011-12-27 2015-06-24 本田技研工業株式会社 Control device for compression ignition internal combustion engine

Also Published As

Publication number Publication date
JPH11166440A (en) 1999-06-22

Similar Documents

Publication Publication Date Title
CN100580240C (en) Control apparatus for internal combustion engine
US7841316B2 (en) Controller for direct injection engine
JP5167928B2 (en) Combustion control device
US6354269B1 (en) Method and system for controlling engine
CN1989330B (en) Control apparatus for internal combustion engine
JP5392418B2 (en) Ignition delay period estimation device and ignition timing control device for internal combustion engine
US7254473B2 (en) Compression ignition engine control apparatus ensuring desired output of torque
EP0990788A2 (en) Exhaust gas purifying system for diesel engine
US9291110B2 (en) Control device for internal combustion engine
US6422004B1 (en) System for controlling engine
JP5691914B2 (en) Control device for exhaust gas recirculation system
JPH11343912A (en) Pilot injection controller for internal combustion engine
JP2014020211A (en) Fuel injection control device of direct-injection gasoline engine
JP5177326B2 (en) Fuel injection control device for internal combustion engine
JP5257519B2 (en) Control device for internal combustion engine
JP2012092748A (en) Apparatus for estimating generation amount of nox in internal combustion engine, and control apparatus
JP3861418B2 (en) Diesel engine control device
JP5257520B2 (en) Control device for internal combustion engine
JP3838299B2 (en) Diesel engine control device
JP3835238B2 (en) Diesel engine control device
JP4403641B2 (en) Fuel injection system for diesel engine
JP5170317B2 (en) Fuel injection control device for internal combustion engine
JPWO2012032627A1 (en) Control device for internal combustion engine
EP1176300A2 (en) System, method and computer program for controlling fuel injection in a diesel engine
JP4407442B2 (en) Fuel pressure control device for in-cylinder injection engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101006

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees