JP3861073B2 - Air shock absorber manufacturing equipment - Google Patents

Air shock absorber manufacturing equipment Download PDF

Info

Publication number
JP3861073B2
JP3861073B2 JP2003149233A JP2003149233A JP3861073B2 JP 3861073 B2 JP3861073 B2 JP 3861073B2 JP 2003149233 A JP2003149233 A JP 2003149233A JP 2003149233 A JP2003149233 A JP 2003149233A JP 3861073 B2 JP3861073 B2 JP 3861073B2
Authority
JP
Japan
Prior art keywords
air
cushioning material
molten resin
air cushioning
manufacturing apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003149233A
Other languages
Japanese (ja)
Other versions
JP2004338793A (en
Inventor
照夫 満田
光男 石田
昌宏 渋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinwa Corp
Original Assignee
Shinwa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinwa Corp filed Critical Shinwa Corp
Priority to JP2003149233A priority Critical patent/JP3861073B2/en
Priority to PCT/JP2003/007162 priority patent/WO2003106137A1/en
Priority to AU2003242198A priority patent/AU2003242198A1/en
Publication of JP2004338793A publication Critical patent/JP2004338793A/en
Application granted granted Critical
Publication of JP3861073B2 publication Critical patent/JP3861073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/02Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage
    • B65D81/05Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents
    • B65D81/09Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents specially adapted to protect contents from mechanical damage maintaining contents at spaced relation from package walls, or from other contents using flowable discrete elements of shock-absorbing material, e.g. pellets or popcorn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/02Small extruding apparatus, e.g. handheld, toy or laboratory extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/13Articles with a cross-section varying in the longitudinal direction, e.g. corrugated pipes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2022/00Hollow articles
    • B29L2022/005Hollow articles having dividing walls, e.g. additional elements placed between object parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/60Multitubular or multicompartmented articles, e.g. honeycomb

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Buffer Packaging (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Molding Of Porous Articles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、各種の製品や部品を梱包して輸送する際に、梱包箱内で製品や部品が移動したり、衝撃で破損または変形したりすることを防止するために、梱包箱と製品や部品との間に詰込むエア緩衝材の製造装置およびそれによって製造されるエア緩衝材に関するものである。
【0002】
【従来の技術】
各種の製品や部品を梱包して輸送する際に、梱包箱内で製品や部品が移動したり、衝撃で破損または変形したりすることを防止するために、梱包箱と製品や部品との間に緩衝材を配置することは周知である。この緩衝材としては、従来、発泡スチロール成形体、多数の粒状または線状の発泡スチロール体、多数の気房を有するシート材(特許文献1)、あるいはシュレッダにより切断した多数のテープ状紙片(特許文献2)などが採用されている。
【0003】
【特許文献1】
特開2002−370299号公報
【特許文献2】
特開平8−282601号公報
【0004】
【発明が解決しようとする課題】
ところが、上記の発泡スチロール成形体は、移動防止および破損・変形防止の観点からは優れているが、個々の製品や部品の形状に合わせて発泡スチロール成形体を製造しなければならない。このため、その製造費用が嵩み、安価な製品や部品あるいは少量の製品や部品の緩衝材としては適さないのみならず、開梱後の発泡スチロール成形体の処分が面倒であるという欠点がある。
【0005】
また、多数の粒状または線状の発泡スチロール体は、どのような形状の製品や部品にも対応できるので、便利であるという利点を有する反面、梱包時および/または開梱時に、個々の粒状または線状の発泡スチロール体が周辺にこぼれ易い。このため、その処置が必要になるという欠点がある。
【0006】
さらに、多数の気房を有するシート材は、製品や部品の形状によらずシート材で包んで使用できるという利点がある反面、製品や部品をシート材で包んだ後に粘着テープでシート材を接着して開かないようにしなければならず繁雑である。しかも、多数の気房を有するシート材は、梱包箱と製品や部品との隙間をキッチリと埋めることが困難で、製品や部品の確実な移動防止および破損・変形防止のためには、さらに粒状または線状の発泡スチロール体などで、梱包箱と製品や部品との隙間を埋めなければならず、面倒であるという欠点がある。
【0007】
さらにまた、テープ状紙片は、どのような形状の製品や部品にも対応できるので、便利である利点を有する反面、いつでも多量に入手できない場合があり、また、上記の各緩衝材に比較して緩衝機能が劣り、しかも、梱包時および/または開梱時に、テープ状紙片が周辺に散らばり易いため、その処置が必要になるという欠点がある。
【0008】
なお、多数の粒状または線状の発泡スチロール体やテープ状紙片をビニール袋に収容して緩衝材とすることも行なわれているが、多数の粒状または線状の発泡スチロール体やテープ状紙片をビニール袋に収容する作業が面倒であるのみならず、製品や部品の大きさや形状、あるいはその梱包箱内の配置位置の隙間の大きさによって、そのビニール袋の大きさを変更しなければならず、面倒であるという欠点がある。
【0009】
そこで、本発明は、上記従来の各種緩衝材の問題点を解決できる、エア緩衝材製造装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
本発明のエア緩衝材製造装置は、樹脂融解押出装置と、樹脂融解押出装置から融解樹脂が吐出される閉ループ状の融解樹脂吐出口と、融解樹脂吐出口の閉ループ状部分の内側に配設した圧縮空気供給手段と、圧縮空気供給手段から圧縮空気を供給しつつ、閉ループ状の融解樹脂吐出口から融解樹脂を吐出して、筒状に成形した融解樹脂筒状体を押圧して融着封止する押圧部材とを備え、前記融解樹脂吐出口が、さらに複数の閉ループ状部分に区分されており、各閉ループ状部分の内側にそれぞれ圧縮空気供給手段を設けたことを特徴とする、気房を有するエア緩衝材を形成するものである。
【0011】
また、エア緩衝材製造装置は、周方向に間欠的に配設した複数の閉ループ状の融解樹脂吐出口と、各融解樹脂吐出口の中央部にそれぞれ設けた圧縮空気供給手段と、各融解樹脂吐出口から吐出された融解樹脂筒状体を押圧して融着封止する押圧部材とを有する構成としてもよい。
【0012】
また、エア緩衝材製造装置は、周方向に間欠的に配設した複数の閉ループ状の融解樹脂吐出口に囲まれた中央部に、圧縮空気供給手段を備えていてもよい。
【0013】
ここで、上記の「閉ループ状」なる用語は、幾何的な環状のみならず、線状の一端と他端とが閉じられて閉ループを形成していてもよく、融解樹脂吐出口が閉ループに沿って融解樹脂を吐出することを意味する。従って、その形状には、限定がなく、円形状の他、三角形状、四角形状などの多角形状、扇形状、楕円形状など任意の形状のもの、また異形状のものを含むことを意味する。
【0014】
また、「融解樹脂筒状体」なる用語は、前記「閉ループ状」の融解樹脂吐出口
の形状によって、円筒状体、三角筒状体、四角筒状体などの多角筒状体、扇形筒状体、楕円筒状体などの任意の断面形状でよい。
【0015】
圧縮空気供給手段は、単に圧縮空気を供給するエア吹出口を有するものでも良いが、例えば、圧縮空気を吹き出すエア吹出口と、過剰な空気を排出するエア排出口を設けたものでもよい。また、圧縮空気供給手段は、過剰な空気を適宜に排出する機能を備えたエア吹出口(エア吹出/排出口)でもよい。このようにエア吹出口と共にエア排出口を設けること、又は、過剰な空気を適宜に排出する機能を備えたエア吹出口を設けることにより、例えば、押圧部材により、融解樹脂筒状体を押圧して融着封止するときに、エア緩衝材の気房に空気が過剰に供給されるのを防止することができ、また、気房に封入する空気の量を調整することが容易になり、エア緩衝材の気房の破損を防止することができる。
【0016】
圧縮空気を吹出すエア吹出口と過剰な空気を排気するエア排気口とを別々に設ける場合には、例えば、それぞれに接続された開閉弁などによって、エアの吹出しと排気とを切換えるようにするとよい。また、過剰な空気を適宜に排出する機能を備えたエア吹出口(エア吹出/排出口)は、例えば、エアの吹出しと排気とを、単一の開口を用いてポート切換弁などによって切換えるようにするとよい。
【0017】
押圧部材の近傍位置には、融解樹脂吐出口から吐出された融解樹脂筒状体を冷却する冷却部を設けるとよい。また、押圧部材またはその近傍位置に、押圧部材によって押圧された樹脂をカットするカット部材を設けるとよい。また、エア緩衝材形成機に、形成されたエア緩衝材の表面に粘着性を付与する粘着性付与手段を設けるとよい。
【0018】
上記の「冷却部」は、押圧部材の融解樹脂吐出口側またはそれと反対側、あるいは押圧部材の融解樹脂吐出口側およびそれと反対側の両方に設けてもよい。「冷却部」は、例えば、冷却部材でピンチして冷却する機械的な冷却手段や、冷風を供給して冷却する非接触型の冷却手段でもよい。また「カット部材」は、例えば、押圧部材と一体に形成して、樹脂の押圧と同時にカットするようにしたものでもよいし、押圧部材と別体で形成して、樹脂を押圧した後にカットするようにしたものでもよい。また、「粘着性付与手段」は、例えば、エア緩衝材の表面に粘着材を塗布または吹付けて粘着層を形成するものでもよいし、また、エア緩衝材の樹脂表面を溶解して粘着性を付与する場合のように、エア緩衝材形成樹脂の溶剤を吹付けるものでもよい。
【0019】
エア緩衝材は、複数の気房が周方向に隣接して形成してもよい。また、エア緩衝材は、中央に空洞部を有し、空洞部の周囲に、周方向に隣接した複数の気房を有していてもよい。また、エア緩衝材は、中央に製品収容空間を有し、前記製品収容空間の周囲に、それぞれ独立した複数の気房を備えており、かつ、前記複数の気房の両端が束ねられて一体的に融着されているものでもよい。また、エア緩衝材は復数個縦続的に連結させてもよい。また、エア緩衝材は、表面に粘着性を備えているものでもよい。
【0020】
ここで、個々の気房は、それぞれの形状や大きさが異なっていてもよいが、それぞれの形状や大きさが同じであることが望ましい。また縦続的な連結数は、製品や部品の大きさ、あるいは、梱包箱と製品や部品との隙間の大きさなどによって、任意に設定すればよい。
【0021】
また、「表面に粘着性を備えているもの」は、前述のように、その表面に粘着材を塗布または噴霧して粘着層を形成することによって粘着性を付与した場合は勿論、その表面に樹脂の溶剤を噴霧してエア緩衝材を構成する樹脂表面を薄く溶解させることによって粘着性を付与した場合などを含むものである。
【0022】
【発明の実施の形態】
以下、本発明のエア緩衝材の製造装置およびその製造装置によって製造されるエア緩衝材の実施形態について、図面を参照して説明する。
【0023】
図1は本発明のエア緩衝材の製造装置によって製造されるエア緩衝材の各種実施形態を示すもので、(A)は個別型のエア緩衝材10を示し、断面形状が扇形の隣接する4個の気房11a,11b,11c,11dを有し、かつ、それぞれの気房11a,11b,11c,11dが両端部12a,12bで封止されている。なお、図1(A)で、左右は正面図を示し、中央は断面図を示す。図1(B)は多数のエア緩衝材20a,20b,20c,20d,…が、それぞれ断面形状が扇形の隣接する4個の気房21a,21b,21c,21d{図示省略、図1(A)参照}を有し、それぞれの気房21a,21b,21c,21dが両端部22a,22b,22c,…で封止されており、かつ、これらの封止部(22b,22c,…)で、多数のエア緩衝材20a,20b,20c,20d,…が縦続的に連結されている連結型のエア緩衝材20を示す。
【0024】
図1(C)は断面形状が扇形の隣接する4個の気房31a,31b,31c,31dを有し、それぞれの気房31a,31b,31c,31dが両端部32a,32bで封止されており、かつ、その表面33に粘着性が付与されている個別型のエア緩衝材30を示している。
【0025】
図1(D)は断面形状が扇形の隣接する4個の気房41a,41b,41c,41d{図示省略、図1(A)参照}を有し、それぞれの気房41a,41b,41c,41dが両端部42a,42b,42c,…で封止されており、かつ、それぞれの表面43a,43b,43c,43d,…に粘着性が付与されている多数のエア緩衝材40a,40b,40c,40d,…が、封止部(42b,42c,…)によって縦続的に連結されている連結型のエア緩衝材40を示している。
【0026】
なお、図1(C)および図1(D)では、それぞれ個別型のエア緩衝材30の表面33または連結型のエア緩衝材40の各エア緩衝材40a,40b,40c,…の表面43a,43b,43c,…に粘着性が付与されていることを視覚的に示すために、表面に細かい点々を付している。
【0027】
図2は本発明の実施形態のエア緩衝材製造装置50を示し、51はホッパ52から供給されたチップ状の樹脂(レジンカレット)を内蔵したヒータによって融解すると共に、融解した樹脂をエア,油圧またはスパイラル機構などによって押出す樹脂融解押出装置である。53は融解した樹脂が冷却固化しないように移送するヒータ付きのホース、54は気房形成用の圧縮エアを送り出す圧縮エア用ホースである。
【0028】
55はピストル形状をしたエア緩衝材形成機で、前記樹脂融解押出装置51からヒータ付きのホース53によって融解樹脂が送り込まれると共に、圧縮エア用ホース54によって圧縮エアが送り込まれる。これらの融解樹脂や圧縮エアは、引金状の操作爪56を引いたり離したりする操作によって、随時、エア緩衝材形成機55への供給がオン、オフされる。
【0029】
前記エア緩衝材形成機55は、溶解樹脂を吐出する少なくとも1個の閉ループを形成する融解樹脂吐出部材57と、この溶解樹脂吐出部材57のそれぞれの閉ループ状に開口している樹脂吐出口58と、この閉ループ状の樹脂吐出口58によって囲まれる位置に形成されたエア吹出口兼エア排気口であるエア吹出/排気口59を有する。図示例の融解樹脂吐出部材57には、図3に示すように、環状の樹脂吐出口58aと十字形状の樹脂吐出口58bとによって、一部を共通とする4個の扇形の閉ループ部分に区分されている。そして、各閉ループで囲まれる位置に、それぞれエア吹出/排気口59a,59b,59c,59dが設けられている。
【0030】
前記融解樹脂吐出部材57の前方位置には、融解樹脂吐出部材57の樹脂吐出口58a,58bから吐出された断面形状が扇形の4個の隣接した融解樹脂筒状体を冷却する冷却部60と、冷却部60によって冷却された樹脂筒状体を押圧封止する押圧部材61が設けられている。
【0031】
図示例の冷却部60は、押圧部材61の前後位置に、それぞれ1対の冷却部材によってピンチして冷却するように構成された、接触型の前冷却部60aおよび後冷却部60bによって構成されている。
【0032】
なお、このような冷却部材による接触型の冷却部60に代えて、冷却風を吹付ける非接触型の冷却部を採用してもよい。このような非接触型の冷却部の方が、冷却部材の形状や移動機構などの煩雑な設計や組付けが不要となり便利である。
【0033】
押圧部材61は、樹脂筒状体を押圧封止(ヒートシール)する部材である。図4(A)(B)に例示する押圧部材61a、61bは、1対の押圧板によって樹脂筒状体を挟んで押圧封止するものである。
【0034】
図4(A)に示す押圧部材61aのように、押圧面62aに、例えば、断面形状が三角形状の凸部(カット部材)62bを有しているものは、樹脂吐出口58a,58bから吐出された筒状の樹脂を押圧して封止すると共に、この封止部分を凸部62bによってカットすることができるので、図1(A)に示すような、多数の個別型のエア緩衝材10を製造するのに適している。
【0035】
また、図4(B)に示すように、平坦な押圧面62cを有する押圧部材61bは、樹脂吐出口58a,58bから吐出された樹脂筒状体を押圧して封止して、図1(B)に示すような、多数のエア緩衝材20a,20b,20c,…が縦続的に連結状態になった連結型のエア緩衝材20を製造するのに適している。なお、図4(A)(B)に例示する押圧部材61a、61bは、それぞれ押圧動作を適切に制御することによって、個別型のエア緩衝材10を製造したり、連結型のエア緩衝材20を製造したりすることができる。
【0036】
また、押圧部材61cは、図4(C)に示すように、カメラの絞り機構と同様に複数の開閉部材63によって構成することができる。この場合は、これらの開閉部材63の閉止動作によって、樹脂筒状体がその内周面63aによって全外周方向から押圧されて、その中心軸線部分が封止される。したがって、この開閉部材63の開閉動作によって樹脂筒状体を全外周方向から押圧封止して、多数のエア緩衝材が恰もソーセージのように縦続的に連結状になった連結型のエア緩衝材を製造することができる。また、開閉部材63の回動動作によって、押圧封止と同時にこの封止部分を凸部によってカットして、多数の個別型のエア緩衝材を製造することもできる。
【0037】
次に、上記のエア緩衝材製造装置50の動作について説明する。まず、樹脂融解押出装置51にホッパ52からチップ状の樹脂(レジンカレット)を供給し内蔵ヒータによって融解して、押出機構によってヒータ付きホース53に送り出すと共に、圧縮エアを圧縮エア用のホース54によって送り出す。エア緩衝材形成機55の操作爪56を引くと、溶解樹脂吐出部材57の樹脂吐出口58a,58bから溶解樹脂が吐出され、断面形状が扇形の4個の隣接した樹脂筒状体1が連続的に形成される。
【0038】
そして、その樹脂筒状体1の先端部を冷却部60aおよび60bで冷却すると共に、押圧部材61で押圧すると、図5(A)に示すように、先端部1aが押圧封止された4個の扇形筒状体が隣接した有底樹脂筒状体1が形成され、樹脂吐出口58a,58bから融解樹脂が連続的に吐出されることによって、この有底樹脂筒状体1が連続的に形成されていく。
【0039】
そこで、図5(A)に示すように、この有底樹脂筒状体1の各扇形筒状体内に、エア吹出/排気口59a,59b,59c,59dから圧縮エア2(図示実線矢印参照)を吹出す。すると、有底樹脂筒状体内1の各扇形筒部内に圧縮エア2が供給されて、有底樹脂筒状体1の各扇形筒部が膨らむ。このとき、エア緩衝材形成機55の先端の筒状部64が、有底樹脂筒状体1の外径寸法を規制する。図示例の筒状部64は、エア緩衝材を直径方向にも膨らませて直径寸法を大きくする場合を示し、エア緩衝材形成機55の先端における筒状部64の内径寸法を、融解樹脂吐出部材57の近傍部分における筒状部の内径寸法よりも大きくした場合を示している。
【0040】
適当な直径寸法および長さ寸法の有底樹脂筒状体1が形成されると、図5(B)に示すように、冷却部60a,60bによって、有底樹脂筒状体1の一部が冷却されると共に、押圧部材61によってその冷却部分が押圧されて封止される。このとき、エア吹出/排気口59a,59b,59c,59dから有底樹脂筒状体1の各扇形筒部内の一部のエア3(図示鎖線矢印参照)が排気されることによって、押圧部材61による有底樹脂筒状体1の押圧動作によって、有底樹脂筒状体1内の各扇形筒部の内圧が過大になることが防止できる。
【0041】
このような動作によって、断面形状が扇形の隣接する4個の気房11a,11b,11c,11dを有し、かつ、それぞれの気房11a,11b,11c,11dの両端部12a,12bが封止されたエア緩衝材10が得られる。
【0042】
ここで、押圧部材が、図4(A)に示すように、その押圧面62aに凸部62bを有する押圧部材61aである場合は、押圧面62aによる押圧封止と同時に、凸部62bによって押圧封止部分をカットして、図1(A)に示すような、断面扇形の隣接する4個の気房11a,11b,11c,11dを有し、その両端部12a,12bが封止された個別型のエア緩衝材10を順次製造するのに好適である。
【0043】
また、図4(B)に示すように、平坦な押圧面62cに形成した押圧部材61bである場合は、図1(B)に示すような、断面形状が扇形の隣接する4個の気房21a,21b,21c,21dを有し、その両端部22a,22b,22c,…が押圧面62aによって押圧封止され、かつ、その封止部によって多数のエア緩衝材20a,20b,20c,20d,…が縦続的に連結された連結型のエア緩衝材20を製造するのに好適である。
【0044】
このように、隣接する4個の気房11a,11b,11c,11dまたは21a,21b,21c,21dを有する、図1(A)の個別型のエア緩衝材10または図1(B)の連結型のエア緩衝材20は、単一の気房を有するエア緩衝材に比較して、各気房を区画する断面形状が十字形の部分が梁の役目をして、エア緩衝材10,20の機械的強度が増大するため破壊し難くなるのみならず、仮に、一部の気房11,21が破壊しても、残余の気房11,21によって緩衝機能が維持されるので、単一の気房を有するエア緩衝材のように全く緩衝機能が失われてしまうといったことが生じないという利点がある。
【0045】
また、図1(B)の連結型のエア緩衝材20は、図1(A)の個別型のエア緩衝材10に比較して、輸送中の振動などによって、エア緩衝材20の嵩が減少し難く、しかも、梱包時および/または開梱時にエア緩衝材が周辺に散らばることがないという利点がある。
【0046】
上記実施形態は、エア緩衝材の表面が粘着性を有さない場合について説明したが、エア緩衝材の表面に粘着性を付与するようにしてもよい。
【0047】
図6は本発明の異なる実施形態のエア緩衝材製造装置70の斜視図である。図6において、図2と同一部分または対応部分には同一参照符号を付したので、その説明を省略する。このエア緩衝材製造装置70は、樹脂融解押出装置51から圧縮エア4を送り出す第2の圧縮エア用ホース71を設けると共に、この圧縮エア用ホース71の先端は、前記エア緩衝材形成機55における筒状部64の出口近傍位置に取付けられている、エア緩衝材の表面に粘着性を付与する粘着性付与手段72に接続されている。また、この粘着性付与手段72には、粘着性付与液体供給用のホース73が接続されており、筒状部64の外周面には粘着性付与液体を筒状部64の全周方向に供給する環状の粘着性付与液体供給部74が設けられ、また筒状部64の内周面には粘着性付与液体をエア緩衝材(10,20)の表面に噴霧する多数の粘着性付与液体噴霧口75が形成されている。
【0048】
この粘着性付与手段72は、エア緩衝材の表面に粘着剤を吹付けて粘着層を形成することによって粘着性を付与する場合は、ホース73は粘着剤供給用とし、エア緩衝材の樹脂表面を溶解する溶剤を吹付けることによって粘着性を付与する場合は、ホース73は溶剤供給用とする。前者のエア緩衝材の表面に粘着剤を吹付けるものの方が、後者のエア緩衝材の樹脂表面を溶解する溶剤を吹付けるものに比較して、処理後の放置時間によって、エア緩衝材を構成する樹脂膜の厚さが変化しないので望ましい。
【0049】
このエア緩衝材製造装置70によれば、粘着性付与手段72をオフ状態にすることによって、図2のエア緩衝材製造装置50と同様に、個別型のエア緩衝材10または連結型のエア緩衝材20を製造することができる。また、粘着性付与手段72をオン状態にして、粘着性付与液体噴霧口75から粘着性付与液体(粘着剤または樹脂溶剤)をエア緩衝材の表面33または43に噴霧することによって、図1(C)に示すように、その表面33に粘着性を付与した個別型のエア緩衝材30、または、図1(D)に示すように、その表面43a,43b,43c,…に粘着性を付与した多数のエア緩衝材40a,40b,40c,40d,…が縦続的に連結された連結型のエア緩衝材40を製造することができる。
【0050】
なお、融解樹脂吐出部材57のサイズ(ダイスサイズ)は、圧縮エアの吹込みによって形成する気房11,21,31,41の直径寸法および長さ寸法の両方を膨らませる形態の場合には小さく、また、気房11,21,31,41の長さ寸法のみを膨らませる態様の場合は大きくする。あるいは、融解樹脂吐出部材57のサイズ(ダイスサイズ)を一定にして、圧縮エアの吹込みによって形成する気房11,21,31,41の直径寸法および長さ寸法の両方を膨らませる場合には、筒状部64の内径寸法を大きく、また、気房11,21,31,41の長さ寸法のみを膨らませる場合は、筒状部64の内径寸法を小さくする。また、気房11,21,31,41の長さ寸法は、押圧部材60による押圧封止のタイミング調整によって任意に設定できる。
【0051】
図7(A)(B)(C)は、図6のエア緩衝材製造装置70によって、梱包箱
6とこの梱包箱6内に収容した製品や部品4との隙間にエア緩衝材30を注入する態様を、工程順に示したものである。
【0052】
すなわち、まず、図7(A)に示すように、梱包すべき製品や部品4を用意する。次に、図7(B)に示すように、製品や部品4をビニール袋5内に収納して、この製品や部品4よりも若干大きい梱包箱6内に収容する。ここで、ビニール袋5は、その表面33または43に粘着性を付与したエア緩衝材30または40が、製品や部品4にくっ付くことを防止する仕切用のものである。次に、図7(C)に示すように、エア緩衝材形成機55を移動しながら、梱包箱6と製品や部品4(正確には、ビニール袋5)との隙間を目掛けて、エア緩衝材形成機55から表面33に粘着性が付与された多数の個別型のエア緩衝材30を注入していく。
【0053】
注入されたエア緩衝材30が冷え固まると、個々のエア緩衝材30が、その表面33に付与された粘着性によって相互にくっ付いて、恰も発泡スチロール成形体のような成形体状のエア緩衝材になる。したがって、梱包箱6内に収容された製品や部品4は、この成形体状のエア緩衝材によって、梱包箱6内での移動が防止されると共に、衝撃によって製品や部品4が破壊または変形することが防止される。
【0054】
この成形体状のエア緩衝材は、従来の粒状または線状の発泡スチロールのように、輸送中の振動で詰まって嵩が減少することが無いので、確実に製品や部品4の破壊や変形を防止することができる。
【0055】
また、この成形体状のエア緩衝材は、従来の発泡スチロール成形体のように、個々の製品や部品4の形状に応じて予め成形型で成形する必要がなく、個々の製品や部品の形状に合わせてエア緩衝材30を注入していくことによって、発泡スチロール成形体と同様の製品や部品4の破損および変形防止が可能になるし、気房31によって内部が空洞であるため、材料使用量も少ないので、製造費を低減することができる。
【0056】
さらに、粒子状または線状の発泡スチロールに比較して、梱包時および/または開梱時に、個々のエア緩衝材30が周辺に散らばることが無く、清掃などの手間が省ける。
【0057】
さらにまた、用済み後は、発泡スチロール成形体のように、個々の粒子が完全にくっ付いたものとは異なり、気房31を破壊することによって、その体積が激減するため、用済み後の処理費用を低減することができる。
【0058】
なお、上記図7に示す実施形態は、図1(C)に示すような、その表面33に粘着性を
付与した個別型のエア緩衝材30を用いる場合について説明したが、図1(D)に示すような、多数のエア緩衝材40a,40b,40c,…が、両端部42b,42c,…で縦続的に連結されており、かつ、その表面43a,43b,43c,…に粘着性が付与された連結型のエア緩衝材40を用いてもよい。
【0059】
さらに、上記実施形態では、その表面33または43に粘着性を付与したエア緩衝材30または40を用いる場合について説明したが、図1(A)および図1(B)に示すような、その表面に粘着性を付与していない個別型または連結型のエア緩衝材10,20を用いることもできる。この場合は、前述のような、エア緩衝材30または40a,40b,40c,…同士の粘着性を利用した一体化を期待することはできないが、粒状または線状の発泡スチロールを用いる場合に比較して、ピストル型のエア緩衝材形成機55で、梱包箱内にエア緩衝材10,20を注入することができるので、梱包時にエア緩衝材10,20が周辺に散らばることがなく、特に、連結型のエア緩衝材20にあっては、開梱時においても、エア緩衝材10,20が周辺に散らばることがない。
【0060】
また、上記実施形態では、4個の気房11,21,31,41が隣接しているエア緩衝材10,20,30,40について説明したが、気房の数は4個以外の2個または3個、あるいはそれ以上であってもよい。その表面に粘着性を付与する場合にあっては、単一の気房を有するエア緩衝材でもよい。
【0061】
次に、エア緩衝材の変形例を説明する。
【0062】
エア緩衝材10は、図1(A)に示すように、扇形の気房11a〜11dを隣接させて形成したものを例示したが、このエア緩衝材10は、製造段階で、過剰に空気が供給されると、外径方向に膨張するため、各気房11a〜11dを隔てる内壁13が外側に延びて薄くなり易い。特に、内壁13が交差する交差壁部11eは薄くなり易い。このため、外側から押圧されて変形するような場合や、気房11a〜11dに過剰に封入された空気が、さらに温度変化や気圧の変化により膨張するような場合には、エア緩衝材10の内部の中央に形成された縦断面十字状の交差壁部11eに大きな引張変形が生じて破れ易い。
【0063】
斯かる不具合を解消するため、エア緩衝材形成機55の内部に装着する融解樹脂吐出部材57’を、図8に示すように、樹脂吐出口58の中央部58c(十字形状の樹脂吐出口58bの中央部)の幅を外径側に比べて広くして、内径側に吐出する樹脂の量を多くして、エア緩衝材10を形成するとよい。このエア緩衝材10は、エア緩衝材10の内部の中央に形成された縦断面十字状の交差壁部11eに、より多くの樹脂が吐出されるので、製造段階で融解樹脂が外形方向に延ばされた場合でも、内壁13が交差する交差壁部11eに十分な肉厚を確保することができ、エア緩衝材10の耐久性、強度が向上する。
【0064】
また、より好ましくは、図9に示すように、エア緩衝材形成機55の内部に装着する融解樹脂吐出部材80は、周方向に間欠的に配設した複数(例えば、4つ)の閉ループ状の融解樹脂吐出口81a〜81dと、各融解樹脂吐出口81a〜81dのそれぞれの中央部に設けたエア吹出口82a〜82dを備えた形状にすると良い。この融解樹脂吐出部材80を用いると、図10(A)(B)に示すように、エア緩衝材形成機55の内周縁部において吐出された融解樹脂が筒状に成長した融解樹脂筒状体91a〜91dは、内部に供給される圧縮空気によって外径方向に膨らんでいき相互に周方向に融着する。このとき、中央には、周囲を融解樹脂筒状体91a〜91dに囲まれた空洞部92を形成することができる。この場合、製造時に、融解樹脂筒状体91a〜91dに過剰に空気が供給された場合でも、各融解樹脂筒状体91a〜91dを隔てる内壁93が薄くなり過ぎることはない。融解樹脂筒状体91a〜91dおよび空洞部92は、上述したエア緩衝材10と同様、所定の長さに成長したときに、押圧部材61によって押圧されて封止されて、図11に示すように、それぞれエア緩衝材90の気房94a〜94d、95になる。
【0065】
このようにして成形した、エア緩衝材90は、各気房94a〜94d、95を隔てる内壁93が薄くなりすぎておらず、また、中央が空洞になっているので、各気房94a〜94d、95を隔てる樹脂に掛かる引張荷重の集中を軽減することができるので、外側から押圧されて変形するような場合や気房94a〜94d、95に過剰に空気が封入されてエア緩衝材90が膨張する場合でも、エア緩衝材90が破損し難くなる。
【0066】
この場合、図12に示すように、融解樹脂吐出部材80の中央にも、エア吹出口82eを設け、中央に形成される空洞部92(95)にも圧縮空気を供給するようにしてもよい。このように中央の空洞部92に圧縮空気を供給することにより、融解樹脂筒状体91a〜91dの中央部の冷却を行なうことができ、また、融解樹脂筒状体91a〜91d、空洞部92及びエア緩衝材90の形状を安定させることができる。
【0067】
以上、中央に空洞部を有するエア緩衝材を説明したが、上記において、圧縮空気を供給する圧縮空気供給手段は、例えば、圧縮空気を吹き出すエア吹出口と、過剰な空気を排出するエア排出口を設けてもよいし、また、過剰な空気を適宜に排出する機能を備えたエア吹出口(エア吹出/排出口)を設けてもよい。過剰な空気を適宜に排出する機能を設けることにより、例えば、押圧部材により、融解樹脂筒状体を押圧して融着封止するときに、エア緩衝材の気房に空気が過剰に供給されるのを防止することができ、また、気房に封入する空気の量を調整することが容易になり、エア緩衝材の気房の破損を防止することができる。
【0068】
また、斯かるエア緩衝材に用いる樹脂には、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン系樹脂など、熱可塑性を備えた樹脂を用いることができる。また、再生樹脂や、紙くず、木くず、乾燥した草の粉を樹脂に混ぜたものを用いることもできる。
【0069】
また、本発明に係るエア緩衝材製造装置によれば、融解樹脂吐出口の形状、配置、融解樹脂の押出速度、圧縮空気の供給速度、押圧部材による封止のタイミングなどを変更することにより、作成されるエア緩衝材の形状及び形態を変更することができる。
【0070】
例えば、同じ融解樹脂吐出部材80(図9参照)を用いた場合でも、融解樹脂の押出速度及び圧縮空気の供給速度を早くすれば、融解樹脂吐出口81a〜81dから吐出された気房91a〜91dが膨らむときに、周方向に隣接する気房91a〜91dに融着する前に冷却されるようになり、周方向に隣接する気房91a〜91dが互いに融着しない状態で成長させることができる。そして、上述したエア緩衝材10と同様、所定の長さに成長したときに、押圧部材61で基端を押圧封止すると、図13に示すように、複数(図示例では4つ)の独立した気房101a〜101dの両端を束ねたエア緩衝材100を作成することができる。
【0071】
このエア緩衝材100は、図13に示すように、複数(図示例では4つ)の気房101a〜101dが互いに融着していない状態で独立しており、気房101a〜101dの両端が束ねられた状態で一体的に融着している。このエア緩衝材100は、上述した他の実施形態のものと同様、梱包箱の中に製品の周囲に入れられて、緩衝材として用いることができる。また、このエア緩衝材100は、他の使用形態として、図14に示すように、気房101a〜101dに周囲を囲まれた中央の空間が製品収容空間Sとなり、気房101a〜101dの隙間から製品収容空間Sに製品102を入れて用いることもできる。この使用形態によれば、一つのエア緩衝材100で、製品102を収容し、製品102を衝撃から保護することができる。斯かる中央に製品収容空間Sを備えたエア緩衝材100についても、融解樹脂吐出口の形状、配置、融解樹脂の押出速度、圧縮空気の供給速度、押圧部材による封止のタイミングなどを変更することにより、収容する製品に応じたものを作成することができる。
【0072】
次に、エア緩衝材製造装置の変形例を説明する。
【0073】
上述した実施形態では、作業者が手に持って吐出方向を定めることができ、必要量エア緩衝材を必要な所に吐出させることができるピストルタイプのエア緩衝材製造装置(図2、図6参照)を例示したが、以下に、据え置きタイプのエア緩衝材製造装置を示す。
【0074】
据え置きタイプのエア緩衝材製造装置110は、図15(A)(B)に示すように、樹脂チップを融解させて融解樹脂を押し出す樹脂融解押出装置111と、樹脂融解押出装置111に装着された融解樹脂吐出部材としてのダイス112と、ダイス112から吐出される融解樹脂に空気を供給して気房を形成する圧縮空気供給機構113と、吐出された気房を密封するヒートシール機構114を備えている。
【0075】
樹脂融解押出装置111は、樹脂チップが投入されあるホッパ115と、ホッパ115から投入された樹脂チップを融解させる融解炉116と、融解炉116内部の融解樹脂を押し出すスクリュー駆動電動機117を備えている。
【0076】
図示例の融解炉116は、筒状の融解炉本体の外周にコイルを巻きつけた発熱部118を備えている。スクリュー駆動電動機117は、融解炉116の内部に挿入されたスクリュー(図示省略)と、モータ119と、モータ119の駆動軸に取り付けられ、モータ119の回転駆動力をスクリューに伝達する減速機120を備えている。この樹脂融解押出装置111によれば、ホッパ115に投入された樹脂チップは、融解炉116内で融解されるとともに、スクリュー駆動電動機117のスクリューにより融解炉116の基端部から先端側へ送られる。そして、融解炉116内で融解した融解樹脂が融解炉116の先端から押し出されるようになっている。
【0077】
融解炉116の先端に装着されたダイス112は、図16(A)(B)に示すように、円形の端面121を有しており、このダイス112の端面121には、複数(図示例では4つ)の融解樹脂吐出口122が間欠的に設けられている。また、各融解樹脂吐出口122の中央部には、圧縮空気を吐出する圧縮空気吹出口123が設けられている。
【0078】
圧縮空気供給機構113は、例えば、コンプレッサ124と、コンプレッサ124からダイス112の各圧縮空気吹出口123に圧縮空気を供給する圧縮空気供給配管125とを備えており、ダイス112の各圧縮空気吹出口123に適時に圧縮空気を供給することができるようになっている。
【0079】
ヒートシール機構114は、ダイス112の下方(融解樹脂の吐出方向の前方)に設けられており、ダイス112から吐出した融解樹脂を両側から挟むシール部材126、127(押圧封止部材)をピストン部の先端に取り付けた一対のエアシリンダ128、129で構成されている。なお、図示は省略するが、エアシリンダ128、129の下方には、エアシリンダ128、129でヒートシールされたエア緩衝袋を引き出す送り機構を設けると良い。この送り機構は、例えば、一対のローラでエア緩衝袋を挟んで引き出すものにすれば良く、好ましくは成形したエア緩衝袋を壊さないように、ローラの外周にクッション材を巻回すると良い。
【0080】
このエア緩衝材製造装置110の樹脂融解押出装置111は、ホッパ115に投入された樹脂チップを融解炉116で融解し、融解した樹脂をスクリュー駆動電動機117で押し出す。樹脂融解押出装置111で押し出された融解樹脂は、ダイス112の融解樹脂吐出口122から吐出される。そして、成形工程に入る前の準備段階において、融解樹脂を所定量吐出して、ヒートシール機構114により、融解樹脂の先端をヒートシールする。
【0081】
本成形工程では、圧縮空気供給機構113によりダイス112の圧縮空気吹出口123から圧縮空気を吹き出しながら、樹脂融解押出装置111により融解樹脂をダイス112の融解樹脂吐出口122から押し出す。このとき、圧縮空気吹出口123から融解樹脂吐出口122の中央部に圧縮空気を供給して、図17に示すように、融解樹脂吐出口122から吐出される融解樹脂を吐出方向に膨らませて気房130を形成する。
【0082】
次に、エア緩衝材製造装置は、融解樹脂吐出口122から融解樹脂を吐出させながら、融解樹脂の気房に圧縮空気吹出口123から圧縮空気を供給し続け、各融解樹脂吐出口122から吐出した気房130を吐出方向に伸長させるとともに、太く成長させる。そして、融解樹脂吐出口122から吐出した気房130が所定の長さになったときに、ヒートシール機構114により気房130の基端部をヒートシールする。
【0083】
このエア緩衝材製造装置110は、ダイス112を変更したり、ダイス112に設けられた融解樹脂吐出口122を選択的に封口したり、融解樹脂の押出速度を変更したり、圧縮空気の供給速度を変更したり、押圧部材による封止のタイミングを変更したりすることにより、作成するエア緩衝材の形状及び形態を変更することができる。
【0084】
また、ヒートシール機構114については、融解樹脂を両側から挟むシール部材(押圧封止部材)をピストン部の先端に取り付けた一対のエアシリンダ31、32を備えたものを例示した。この場合、一方のシール部材に例えばシリコンゴムなどの柔らかい素材を用いて、他方のシール部材に押し付けたときに、一方のシール部材が他方のシール部材に当接して変形し、融解樹脂を確実に隙間なくシールすることができるようにするとよい。また、一対のシール部材は、一方のシール部材を凸型とし、他方のシール部材を一方のシール部材が嵌まり込む凹型として、2箇所でシールする構造にするとよい。また、シール部材の中央にカット刃を設けて、シールすると同時にミシン目を入れたり、シールすると同時にエア緩衝袋を一つずつカットしたりしてもよい。なお、ヒートシール機構に一対のエアシリンダ128、129を用いる場合には、エア緩衝袋を引き抜くローラ(図示省略)を取り付けることが好ましい。
【0085】
また、ヒートシール機構114は、一対のエアシリンダ128、129に代えて、図9(A)(B)に示すように、融解樹脂を両側から挟むように設けた一対のピンチローラ131、132を用いても良い。図示例のピンチローラ131、132は、ローラの周囲に複数(4つ)の押圧部材133を等間隔に備えており、それぞれモータ134からベルト135を介して駆動力を得て等速で回転駆動し、その回転速度に応じて所定のタイミングで押圧部材133で融解樹脂を挟んで融解樹脂をヒートシールするようになっている。
【0086】
斯かるピンチローラ131、132によるヒートシール機構114によれば、ピンチローラ131、132で融解樹脂を引き抜きながら融解樹脂をヒートシールすることができるので、エア緩衝袋を連続成形するのに適している。また、斯かるピンチローラ131、132によるヒートシール機構114によれば、ピンチローラ131、132で融解樹脂を引き抜きながら連続成形が行なえるので、別途エア緩衝袋を引き抜くローラを取り付ける必要がない。
【0087】
なお、ヒートシール機構は、融解樹脂を所定のタイミングでヒートシールできる機構であれば良く、上記の実施形態に限定されない。
【0088】
以上、エア緩衝材製造装置の変形例を説明したが、本発明のエア緩衝材製造装置は、上記の実施形態に限定されるものではない。
【0089】
【発明の効果】
以上説明したように、エア緩衝材製造装置によれば、エア緩衝材を製造しながら、製造したエア緩衝材を梱包箱と製品や部品との隙間に向かって注入することができる。
【0090】
また、閉ループ状の融解樹脂吐出口と、この閉ループ状の融解樹脂吐出口に囲まれた位置に設けたエア吹出口およびエア排気口あるいはエア吹出/排気口と、前記融解樹脂吐出口から吐出された融解樹脂筒状体を押圧して融着封止する押圧部材とを有するエア緩衝材成形機を有するエア緩衝材製造装置によれば、気房の押圧封止時にエア排気口あるいはエア吹出/排気口から排気しながら押圧封止することができるため、気房の内圧が過大になることなくエア緩衝材を製造することができる。
【0091】
また、押圧部材またはその近傍位置に、押圧部材によって押圧封止された部分をカットするカット部材を設けたエア緩衝材成形機を有するエア緩衝材製造装置によれば、個別型のエア緩衝材を順次製造することができる。
【0092】
さらに、融解樹脂吐出口が複数の閉ループ状部分に区分されており、各閉ループ状部分の内側にそれぞれエア吹出/排気口を設けたエア緩衝材成形機を有するエア緩衝材製造装置によれば、樹脂筒状体の封止時に余剰のエアをエア吹出/排気口から排気しながら押圧封止することができ、複数の気房を有するエア緩衝材を、気房の内圧が過大になることなく製造することができる。
【0093】
さらに、前記押圧部材の近傍位置に、形成されたエア緩衝材の表面に粘着性を付与する粘着性付与手段を設けたエア緩衝材製造装置によれば、形成したエア緩衝材の表面に粘着性を付与することができ、エア緩衝材相互をその粘着性によってくっ付けることができる。
【0094】
エア緩衝材は、樹脂によって少なくとも1個の気房が形成され、かつ、その表面が粘着性を有することを特徴とするものであるから、梱包箱内に収容された製品や部品と梱包箱との隙間に注入すると、その表面の粘着性によって、エア緩衝材相互が付着して、恰も発泡スチロール成形体のような成形体状のエア緩衝材とすることができ、梱包箱内での製品や部品の移動を防止できると共に、輸送中の振動でエア緩衝材の嵩が減少することが無いので、確実に製品や部品の破壊や変形を防止することができる。また、用済み後のエア緩衝材は、気房を破壊することによって、その体積を激減することができるので、処理が簡単である。
【0095】
また、樹脂によって複数の気房が隣接して形成されているエア緩衝材によれば、エア緩衝材の機械的強度が大きくなり破壊し難くなるのみならず、仮に一部の気房が破壊しても、残余の気房によって緩衝機能が維持されるので、単一の気房を有するエア緩衝材に比較して、気房の破壊によって完全に緩衝機能が失われることがない。
【0096】
さらに、復数個が縦続的に連結されている連結型のエア緩衝材によれば、個々のエア緩衝材が散らばることがないので、梱包時および/または開梱時に、エア緩衝材が周辺に散らばることがない。
【0097】
また、中央に空洞を有するエア緩衝材は、外側から押圧されて変形するような場合や気房に過剰に空気が封入されてエア緩衝材が膨張する場合でも、各気房を隔てる内壁が薄くなり過ぎず、また中央が空洞になっているので、各気房を隔てる樹脂に掛かる引張荷重の集中を軽減することができるので、エア緩衝材が破損し難くなる。また、斯かるエア緩衝材を製造する場合に、周方向に間欠的に配設した複数の閉ループ状の融解樹脂吐出口に囲まれた中央部に、圧縮空気供給手段を設けることにより、中央の空洞部に圧縮空気を供給することができ、これにより、融解樹脂筒状体の中央部の冷却を行なうことができ、また、融解樹脂筒状体、空洞部及びエア緩衝材の形状を安定させることができる。
【0098】
また、中央に製品収容空間を有し、製品収容空間の周囲に、それぞれ独立した複数の気房を備えており、かつ、前記複数の気房の両端が束ねられて一体的に融着されているエア緩衝材によれば、単にエア緩衝材として用いるだけでなく、気房の隙間から中央の製品収容空間に製品を入れて用いることができ、一つのエア緩衝材で、製品の収容と保護が行なえる。
【図面の簡単な説明】
【図1】 各種の実施形態に係るエア緩衝材を示し、
(A)は4個の気房を有する個別型のエア緩衝材の正面図および断面図、
(B)は4個の気房を有する多数のエア緩衝材が連結された連結型のエア緩衝材の正面図、
(C)は4個の気房を有し、かつ、その表面に粘着性が付与された個別型のエア緩衝材の正面図および断面図、
(D)は4個の気房を有し、かつ、その表面に粘着性が付与された多数のエア緩衝材が連結された連結型のエア緩衝材の正面図である。
【図2】 本発明のエア緩衝材製造装置の一部を断面で示した概略斜視図である。
【図3】 本発明のエア緩衝材製造装置における融解樹脂吐出部材の拡大端面図である。
【図4】 (A)は本発明のエア緩衝材製造装置における押圧部材の一例の拡大断面図、 (B)は本発明のエア緩衝材製造装置における異なる押圧部材の拡大断面図、 (C)は本発明のエア緩衝材製造装置におけるさらに異なる押圧部材の押圧封止時の拡大正面図である。
【図5】 (A)は本発明のエア緩衝材製造装置においてエア吹込工程について説明する要部断面図、
(B)は本発明のエア緩衝材製造装置においてエア排気工程について説明する要部断面図である。
【図6】 本発明のエア緩衝材製造装置の異なる実施形態の斜視図である。
【図7】 図6のエア緩衝材製造装置によって梱包箱に収容した製品や部品と梱包箱との隙間にエア緩衝材を注入する梱包工程について説明するもので、
(A)は製品や部品の斜視図、
(B)はビニール袋に収容した製品や部品を梱包箱に収容する工程の斜視図、 (C)は梱包箱に収容された製品や部品と梱包箱との隙間にエア緩衝材を注入する工程の斜視図である。
【図8】 (A)は変形例に係るエア緩衝材製造装置の一部を断面で示した概略斜視図、 (B)は変形例に係るエア緩衝材製造装置における融解樹脂吐出部材の拡大端面図である。
【図9】 変形例に係るエア緩衝材製造装置における融解樹脂吐出部材の拡大端面図である。
【図10】 (A)は中央に空洞を有するエア緩衝材の製造過程を示す正面図、
(B)はその平面図である。
【図11】 中央に空洞を有するエア緩衝材を示す正面図および断面図である。
【図12】 中央に空洞を有するエア緩衝材を製造するのに用いる融解樹脂吐出部材の変形例を示す拡大端面図である。
【図13】 中央に製品収容空間を有するエア緩衝材を示す平面図である。
【図14】 図13に示すエア緩衝材に製品を収容した状態を示す斜視図である。
【図15】 (A)エア緩衝材製造装置の変形例を示す正面図であり、(b)はその側面図
である。
【図16】 (A)は本発明の一実施形態に係るエア緩衝袋製造装置に用いられたダイスの正面図であり、(B)はその底面図である。
【図17】 図15に示すエア緩衝袋製造装置のダイスから融解樹脂が吐出された状態を示すダイスの正面図である。
【図18】 (a)はヒートシール機構の変形例を示すエア緩衝袋製造装置の正面図であり、(b)は(a)のエア緩衝袋製造装置の側面図である。
【符号の説明】
1 有底樹脂筒状体
2 圧縮エア
3 排気エア
4 製品や部品
5 ビニール袋
6 梱包箱
10,30 個別型のエア緩衝材
11,21,31,41 気房
12,22,32,42 端部(封止部)
13 内壁
20,40 連結型のエア緩衝材
33,43 エア緩衝材の表面
50,70 エア緩衝材製造装置
51 樹脂融解押出装置
53 融解樹脂送り用のヒータ付きホース
54 圧縮エア送り用のホース
55 エア緩衝材形成機
57 融解樹脂吐出部材
58 融解樹脂吐出口
59 エア吹出/排気口
60 冷却部
61 押圧部材
63 開閉部材
64 筒状部
71 圧縮エア送り用の第2のホース
72 粘着性付与手段
73 粘着剤または溶剤供給用ホース
75 粘着性付与液体噴霧口
80 融解樹脂吐出部材
81a〜81d 融解樹脂吐出口
82a〜82d エア吹出口
91a〜91d 融解樹脂筒状体
92 空洞部
93 内壁
94a〜94d、95 気房
[0001]
BACKGROUND OF THE INVENTION
In order to prevent the products and parts from moving in the packing box and being damaged or deformed by impact when packing and transporting various products and parts, the present invention The present invention relates to an apparatus for producing an air cushioning material to be packed between parts and an air cushioning material produced thereby.
[0002]
[Prior art]
When packing and transporting various products and parts, in order to prevent the products and parts from moving in the packing box and being damaged or deformed by impact, It is well known to dispose the cushioning material in the case. Conventionally, as this buffer material, a foamed polystyrene molded body, a large number of granular or linear foamed polystyrene bodies, a sheet material having a large number of air (Patent Document 1), or a large number of tape-shaped paper pieces cut by a shredder (Patent Document 2) ) Etc. are adopted.
[0003]
[Patent Document 1]
JP 2002-370299 A
[Patent Document 2]
JP-A-8-282601
[0004]
[Problems to be solved by the invention]
However, although the above-mentioned foamed polystyrene molded article is excellent from the viewpoint of preventing movement and preventing damage and deformation, the foamed polystyrene molded article must be manufactured in accordance with the shape of individual products and parts. For this reason, the manufacturing cost increases, and it is not only suitable as a cushioning material for inexpensive products and parts or a small amount of products and parts, but also has the disadvantage that disposal of the expanded polystyrene molded product after unpacking is troublesome.
[0005]
In addition, a large number of granular or linear expanded polystyrene bodies can be used for products and parts of any shape, so that it has the advantage of being convenient, but individual granular or linear at the time of packing and / or unpacking. The styrene foam is easy to spill around. For this reason, there exists a fault that the treatment becomes necessary.
[0006]
In addition, sheet materials with many air bubbles have the advantage that they can be used by wrapping them in sheet material regardless of the shape of the product or part. On the other hand, after wrapping the product or part in sheet material, the sheet material is bonded with adhesive tape. It must be prevented from opening and it is complicated. In addition, it is difficult to fill the gap between the packing box and the product or part with a sheet material having a large number of air bubbles. In order to prevent the product or part from moving reliably and to prevent damage and deformation, it is more granular. Alternatively, the gap between the packaging box and the product or part must be filled with a linear foamed polystyrene body, which is a troublesome problem.
[0007]
Furthermore, the tape-shaped paper piece can be used for products and parts of any shape, so it has the advantage of being convenient, but it may not be available in large quantities at any time, and compared to the above cushioning materials. The buffer function is inferior, and the tape-shaped paper pieces are easily scattered around at the time of packing and / or unpacking.
[0008]
In addition, many granular or linear foamed polystyrene bodies and tape-shaped paper pieces are accommodated in plastic bags and used as cushioning materials, but many granular or linear foamed polystyrene bodies and tape-shaped paper pieces are used in plastic bags. In addition to being troublesome, the size of the plastic bag must be changed depending on the size and shape of the products and parts, or the size of the gaps in the packing box. There is a drawback of being.
[0009]
Accordingly, an object of the present invention is to provide an air cushioning material manufacturing apparatus that can solve the problems of the various conventional cushioning materials.
[0010]
[Means for Solving the Problems]
The air cushioning material manufacturing apparatus of the present invention is disposed inside a resin melt extrusion device, a closed loop molten resin discharge port from which the molten resin is discharged from the resin melt extrusion device, and a closed loop portion of the molten resin discharge port. While supplying compressed air from the compressed air supply means and the compressed air supply means, the molten resin is discharged from the molten resin discharge port in a closed loop shape, and the molten resin cylindrical body formed into a cylindrical shape is pressed and sealed. A pressing member that stops, The molten resin discharge port is further divided into a plurality of closed loop-shaped portions, and provided with compressed air supply means inside each closed loop-shaped portion, An air cushioning material having an air chamber is formed.
[0011]
In addition, the air cushioning material manufacturing apparatus includes a plurality of closed-loop molten resin discharge ports disposed intermittently in the circumferential direction, compressed air supply means provided in the center of each molten resin discharge port, and each molten resin It is good also as a structure which has a press member which presses the fusion | melting resin cylindrical body discharged from the discharge outlet, and is fusion-sealed.
[0012]
In addition, the air cushioning material manufacturing apparatus may include a compressed air supply means in a central portion surrounded by a plurality of closed loop molten resin discharge ports arranged intermittently in the circumferential direction.
[0013]
Here, the term “closed loop shape” is not limited to a geometrical ring shape, and one end and the other end of a line may be closed to form a closed loop, and the molten resin discharge port extends along the closed loop. This means that the molten resin is discharged. Therefore, the shape is not limited, and it is meant to include a circular shape, a polygonal shape such as a triangular shape and a quadrangular shape, an arbitrary shape such as a fan shape and an elliptical shape, and a different shape.
[0014]
In addition, the term “molten resin cylindrical body” is used for the “closed loop” molten resin discharge port.
Depending on the shape, any cross-sectional shape such as a polygonal cylindrical body such as a cylindrical body, a triangular cylindrical body, or a rectangular cylindrical body, a sector cylindrical body, or an elliptical cylindrical body may be used.
[0015]
The compressed air supply means may simply have an air outlet for supplying compressed air, but may be provided with an air outlet for blowing out compressed air and an air outlet for discharging excess air, for example. The compressed air supply means may be an air outlet (air outlet / exhaust) having a function of appropriately discharging excess air. Thus, by providing an air outlet together with an air outlet, or by providing an air outlet having a function of appropriately discharging excess air, for example, the molten resin cylindrical body is pressed by a pressing member. When fusing and sealing, it is possible to prevent excessive supply of air to the air cushioning air chamber, and it becomes easy to adjust the amount of air enclosed in the air chamber, It is possible to prevent the air cushion material from being damaged.
[0016]
When air outlets for blowing out compressed air and air outlets for exhausting excess air are provided separately, for example, switching between air blowing and exhausting by means of an open / close valve connected to each, for example, Good. In addition, an air outlet (air outlet / exhaust outlet) having a function of appropriately discharging excess air can switch, for example, air blowing and exhausting by a port switching valve or the like using a single opening. It is good to.
[0017]
A cooling unit for cooling the molten resin tubular body discharged from the molten resin discharge port may be provided in the vicinity of the pressing member. Moreover, it is good to provide the cut member which cuts the resin pressed by the press member in the press member or its vicinity position. Moreover, it is good to provide the adhesive provision means which provides adhesiveness to the surface of the formed air buffer material in an air buffer material formation machine.
[0018]
The “cooling part” may be provided on the molten resin discharge port side of the pressing member or on the opposite side thereof, or on both the molten resin discharge port side of the pressing member and the opposite side thereof. The “cooling unit” may be, for example, a mechanical cooling unit that is pinched and cooled by a cooling member, or a non-contact type cooling unit that is cooled by supplying cold air. In addition, the “cut member” may be formed integrally with the pressing member and cut simultaneously with the pressing of the resin, or may be formed separately from the pressing member and cut after pressing the resin. It may be what you do. In addition, the “tackiness imparting means” may be, for example, an adhesive layer formed by applying or spraying an adhesive material on the surface of the air buffer material, or by dissolving the resin surface of the air buffer material. It is also possible to spray a solvent of the air cushioning material forming resin, as in the case of applying the above.
[0019]
The air cushioning material may be formed by a plurality of air bubbles adjacent to each other in the circumferential direction. The air cushioning material may have a hollow portion at the center, and a plurality of air chambers adjacent in the circumferential direction around the hollow portion. The air cushioning material has a product housing space in the center, and has a plurality of independent air chambers around the product housing space, and both ends of the air chambers are bundled together. It may be fused. Further, a plurality of air cushioning materials may be connected in cascade. Further, the air cushioning material may have an adhesive property on the surface.
[0020]
Here, each air chamber may have a different shape and size, but it is desirable that each shape and size be the same. The cascaded number of connections may be arbitrarily set depending on the size of the product or part or the size of the gap between the packing box and the product or part.
[0021]
In addition, as described above, “having adhesiveness on the surface” means that the adhesive surface is coated or sprayed on the surface to form an adhesive layer, and of course the adhesiveness is applied to the surface. This includes the case where tackiness is imparted by spraying a resin solvent and thinly dissolving the resin surface constituting the air buffer material.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of an air cushioning material manufacturing apparatus and an air cushioning material manufactured by the manufacturing apparatus of the present invention will be described with reference to the drawings.
[0023]
FIG. 1 shows various embodiments of an air cushioning material manufactured by an apparatus for manufacturing an air cushioning material according to the present invention. FIG. The air chambers 11a, 11b, 11c, and 11d are provided, and the air chambers 11a, 11b, 11c, and 11d are sealed at both ends 12a and 12b. In FIG. 1A, the left and right are front views, and the center is a cross-sectional view. 1 (B) shows a large number of air cushions 20a, 20b, 20c, 20d,..., Each of four adjacent air chambers 21a, 21b, 21c, 21d {not shown, FIG. ) Reference}, and each airway 21a, 21b, 21c, 21d is sealed with both end portions 22a, 22b, 22c,... And these sealed portions (22b, 22c,...) , A plurality of air cushioning materials 20a, 20b, 20c, 20d,...
[0024]
FIG. 1C has four adjacent air chambers 31a, 31b, 31c, 31d having a fan-shaped cross section, and each air chamber 31a, 31b, 31c, 31d is sealed at both ends 32a, 32b. In addition, an individual type air cushioning material 30 having a surface 33 with adhesiveness is shown.
[0025]
FIG. 1 (D) has four adjacent air chambers 41a, 41b, 41c, 41d {not shown, see FIG. 1 (A)} having a fan-shaped cross section, and each air chamber 41a, 41b, 41c, 41d is sealed with both end portions 42a, 42b, 42c,... And a large number of air cushioning materials 40a, 40b, 40c are provided with adhesiveness on the respective surfaces 43a, 43b, 43c, 43d,. , 40d,... Indicate the connection type air cushioning material 40 that is connected in cascade by the sealing portions (42b, 42c,...).
[0026]
In FIG. 1C and FIG. 1D, the surface 33a of the individual air cushioning material 30 or the surface 43a of each air cushioning material 40a, 40b, 40c,. In order to visually show that the adhesiveness is imparted to 43b, 43c,..., Fine dots are given to the surface.
[0027]
FIG. 2 shows an air cushioning material manufacturing apparatus 50 according to an embodiment of the present invention, in which 51 is melted by a heater containing a chip-like resin (resin cullet) supplied from a hopper 52 and the melted resin is compressed by air or hydraulic pressure. Alternatively, it is a resin melting extrusion device that extrudes by a spiral mechanism or the like. 53 is a hose with a heater that transfers molten resin so as not to be cooled and solidified, and 54 is a compressed air hose that sends out compressed air for forming aeration.
[0028]
55 is an air cushioning material forming machine having a pistol shape, and molten resin is fed from the resin melting and extruding apparatus 51 by a hose 53 with a heater, and compressed air is fed by a compressed air hose 54. Supply of these molten resin and compressed air to the air cushioning material forming machine 55 is turned on and off at any time by pulling and releasing the trigger-like operation claws 56.
[0029]
The air cushioning material forming machine 55 includes a molten resin discharge member 57 that forms at least one closed loop for discharging the molten resin, and a resin discharge port 58 that is open in a closed loop shape of each of the molten resin discharge members 57. The air outlet / exhaust port 59 is an air outlet / air outlet formed at a position surrounded by the closed-loop resin discharge port 58. As shown in FIG. 3, the molten resin discharge member 57 in the illustrated example is divided into four fan-shaped closed loop portions that are partially shared by an annular resin discharge port 58a and a cross-shaped resin discharge port 58b. Has been. Air blow / exhaust ports 59a, 59b, 59c, and 59d are provided at positions surrounded by the respective closed loops.
[0030]
At the front position of the molten resin discharge member 57, a cooling unit 60 that cools four adjacent molten resin cylindrical bodies having a fan-shaped cross section discharged from the resin discharge ports 58a and 58b of the molten resin discharge member 57; A pressing member 61 for pressing and sealing the resin cylindrical body cooled by the cooling unit 60 is provided.
[0031]
The cooling unit 60 in the illustrated example is configured by a contact type pre-cooling unit 60a and a post-cooling unit 60b, which are configured to be pinched and cooled by a pair of cooling members at the front and rear positions of the pressing member 61, respectively. Yes.
[0032]
Instead of the contact-type cooling unit 60 using such a cooling member, a non-contact type cooling unit that blows cooling air may be employed. Such a non-contact type cooling unit is more convenient because it does not require complicated design and assembly such as the shape of the cooling member and the moving mechanism.
[0033]
The pressing member 61 is a member that press-seals (heat-seals) the resin cylindrical body. The pressing members 61a and 61b illustrated in FIGS. 4A and 4B are pressure-sealed with a pair of pressing plates sandwiching a resin cylindrical body.
[0034]
As shown in FIG. 4A, when the pressing surface 62a has, for example, a convex portion (cut member) 62b having a triangular cross-sectional shape, discharge from the resin discharge ports 58a and 58b. Since the sealed cylindrical resin can be pressed and sealed, and the sealed portion can be cut by the convex portion 62b, a large number of individual air cushioning materials 10 as shown in FIG. Suitable for manufacturing.
[0035]
Further, as shown in FIG. 4B, the pressing member 61b having a flat pressing surface 62c presses and seals the resin tubular bodies discharged from the resin discharge ports 58a and 58b, and FIG. As shown in B), it is suitable for manufacturing a coupled air cushioning material 20 in which a large number of air cushioning materials 20a, 20b, 20c,. Note that the pressing members 61 a and 61 b illustrated in FIGS. 4A and 4B can individually control the pressing operation to manufacture the individual air cushioning material 10 or the coupled air cushioning material 20. Can be manufactured.
[0036]
Further, as shown in FIG. 4C, the pressing member 61c can be constituted by a plurality of opening / closing members 63 as in the case of the diaphragm mechanism of the camera. In this case, by the closing operation of these opening and closing members 63, the resin cylindrical body is pressed from the entire outer peripheral direction by the inner peripheral surface 63a, and the central axis portion is sealed. Therefore, the open / close operation of the opening / closing member 63 presses and seals the resin cylindrical body from the entire outer peripheral direction, and a large number of air cushioning materials are connected in cascade like a sausage. Can be manufactured. In addition, by rotating the opening / closing member 63, simultaneously with the press sealing, the sealing portion can be cut by the convex portion to manufacture a large number of individual air cushioning materials.
[0037]
Next, operation | movement of said air shock absorbing material manufacturing apparatus 50 is demonstrated. First, chip-shaped resin (resin cullet) is supplied from a hopper 52 to a resin melting and extruding device 51, melted by a built-in heater, sent to a hose 53 with a heater by an extrusion mechanism, and compressed air is sent by a hose 54 for compressed air. Send it out. When the operation claw 56 of the air cushioning material forming machine 55 is pulled, the molten resin is discharged from the resin discharge ports 58a and 58b of the molten resin discharge member 57, and four adjacent resin cylinders 1 having a fan-shaped cross section are continuously formed. Formed.
[0038]
And when the front-end | tip part of the resin cylindrical body 1 is cooled with the cooling parts 60a and 60b and it presses with the press member 61, as shown to FIG. 5 (A), as shown to FIG. The bottomed resin cylindrical body 1 is formed adjacent to the fan-shaped cylindrical body, and the molten resin is continuously discharged from the resin discharge ports 58a and 58b. Will be formed.
[0039]
Therefore, as shown in FIG. 5 (A), compressed air 2 (see the solid line arrow in the figure) is supplied from the air blowing / exhaust ports 59a, 59b, 59c, 59d into each fan-shaped cylindrical body of the bottomed resin cylindrical body 1. Blow out. Then, compressed air 2 is supplied into each sector tube portion of the bottomed resin cylindrical body 1, and each sector tube portion of the bottomed resin cylinder 1 is expanded. At this time, the cylindrical portion 64 at the tip of the air cushioning material forming machine 55 regulates the outer diameter of the bottomed resin cylindrical body 1. The cylindrical part 64 in the illustrated example shows a case where the air cushioning material is expanded in the diameter direction to increase the diameter dimension, and the inner diameter dimension of the cylindrical part 64 at the tip of the air cushioning material forming machine 55 is set as the molten resin discharge member. The case where it is made larger than the internal diameter dimension of the cylindrical part in the vicinity part of 57 is shown.
[0040]
When the bottomed resin cylindrical body 1 having an appropriate diameter and length is formed, a part of the bottomed resin cylindrical body 1 is formed by the cooling units 60a and 60b as shown in FIG. 5B. While being cooled, the cooling portion is pressed and sealed by the pressing member 61. At this time, a part of the air 3 (see the chain line arrow in the figure) in each fan-shaped cylindrical portion of the bottomed resin cylindrical body 1 is exhausted from the air outlet / exhaust ports 59a, 59b, 59c, 59d, whereby the pressing member 61 is exhausted. Due to the pressing operation of the bottomed resin cylindrical body 1 by the above, it is possible to prevent the internal pressure of each sector-shaped cylindrical portion in the bottomed resin cylindrical body 1 from becoming excessive.
[0041]
By such an operation, there are four adjacent air chambers 11a, 11b, 11c, 11d having a fan-shaped cross section, and both ends 12a, 12b of each air chamber 11a, 11b, 11c, 11d are sealed. The stopped air cushioning material 10 is obtained.
[0042]
Here, as shown in FIG. 4A, when the pressing member is a pressing member 61a having a convex part 62b on the pressing surface 62a, the pressing part 62b is pressed by the convex part 62b at the same time as the pressing sealing by the pressing surface 62a. The sealing portion is cut to have four adjacent air chambers 11a, 11b, 11c, and 11d having a sectoral cross section as shown in FIG. 1A, and both end portions 12a and 12b are sealed. It is suitable for sequentially manufacturing the individual air cushioning materials 10.
[0043]
Further, as shown in FIG. 4B, when the pressing member 61b is formed on the flat pressing surface 62c, four adjacent air chambers having a fan-shaped cross section as shown in FIG. 1B. 21a, 21b, 21c, 21d, and both end portions 22a, 22b, 22c,... Are pressed and sealed by the pressing surface 62a, and a number of air cushioning materials 20a, 20b, 20c, 20d are provided by the sealing portions. ,... Are suitable for manufacturing a connection type air cushioning material 20 in which they are connected in cascade.
[0044]
In this way, the individual air cushioning material 10 of FIG. 1 (A) having four adjacent air chambers 11a, 11b, 11c, 11d or 21a, 21b, 21c, 21d or the connection of FIG. 1 (B). Compared to an air cushioning material having a single air bubble, the air cushioning material 20 of the type has a cross-shaped portion that partitions each aeration acting as a beam, and the air cushioning materials 10 and 20 Since the mechanical strength of the air chambers 11 and 21 is increased, the buffer function is maintained by the remaining air cells 11 and 21 even if some of the air cells 11 and 21 are destroyed. There is an advantage that the buffer function is not lost at all, unlike the air cushioning material having the air chamber.
[0045]
In addition, the connection type air cushioning material 20 in FIG. 1 (B) has a reduced bulk of the air cushioning material 20 due to vibration during transportation, etc., compared to the individual type air cushioning material 10 in FIG. 1 (A). In addition, there is an advantage that the air cushioning material is not scattered around when packing and / or unpacking.
[0046]
Although the said embodiment demonstrated the case where the surface of an air shock absorbing material did not have adhesiveness, you may make it provide adhesiveness to the surface of an air shock absorbing material.
[0047]
FIG. 6 is a perspective view of an air cushioning material manufacturing apparatus 70 according to another embodiment of the present invention. In FIG. 6, the same reference numerals are given to the same or corresponding parts as in FIG. The air cushioning material manufacturing apparatus 70 is provided with a second compressed air hose 71 for sending the compressed air 4 from the resin melting and extruding apparatus 51, and the tip of the compressed air hose 71 is connected to the air cushioning material forming machine 55. It is connected to a tackiness imparting means 72 that imparts tackiness to the surface of the air cushioning material, which is attached in the vicinity of the outlet of the cylindrical portion 64. The tackifier 72 is connected to a hose 73 for supplying a tackifier liquid, and the tackifier liquid is supplied to the outer peripheral surface of the cylindrical portion 64 in the entire circumferential direction of the cylindrical portion 64. An annular tackifying liquid supply section 74 is provided, and a plurality of tackifying liquid sprays spraying the tackifying liquid onto the surface of the air buffer material (10, 20) on the inner peripheral surface of the cylindrical section 64. A mouth 75 is formed.
[0048]
In the case where the tackiness imparting means 72 imparts tackiness by spraying an adhesive on the surface of the air buffer material to form an adhesive layer, the hose 73 is used for supplying an adhesive, and the resin surface of the air buffer material. The hose 73 is used for supplying a solvent when the adhesiveness is imparted by spraying a solvent that dissolves. Compared to the former air cushioning material that sprays adhesive on the surface of the air cushioning material, the air cushioning material is configured by the standing time after processing compared to the latter that sprays the solvent that dissolves the resin surface of the air cushioning material. This is desirable because the thickness of the resin film does not change.
[0049]
According to the air cushioning material manufacturing apparatus 70, the individual air cushioning material 10 or the connected type air cushioning is performed by turning off the tackifier 72 as in the case of the air cushioning material manufacturing apparatus 50 of FIG. The material 20 can be manufactured. Further, the tackifier 72 is turned on, and the tackifier liquid (adhesive or resin solvent) is sprayed onto the surface 33 or 43 of the air cushioning material from the tackifier liquid spray port 75, thereby FIG. As shown in FIG. 1C, the individual air cushioning material 30 with the surface 33 having adhesiveness, or the surface 43a, 43b, 43c,... As shown in FIG. The connected air cushioning material 40 in which a large number of the air cushioning materials 40a, 40b, 40c, 40d,.
[0050]
In addition, the size (die size) of the molten resin discharge member 57 is small in the case where both the diameter dimension and the length dimension of the air chambers 11, 21, 31, 41 formed by blowing compressed air are inflated. Also, in the case where only the length dimensions of the air chambers 11, 21, 31, 41 are inflated, the size is increased. Alternatively, when the size (die size) of the molten resin discharge member 57 is made constant and both the diameter dimension and the length dimension of the air chambers 11, 21, 31, and 41 formed by blowing compressed air are inflated. When the inner diameter dimension of the tubular portion 64 is increased and only the length dimensions of the air chambers 11, 21, 31, 41 are inflated, the inner diameter dimension of the tubular portion 64 is decreased. Further, the length dimensions of the air chambers 11, 21, 31, 41 can be arbitrarily set by adjusting the timing of press sealing by the pressing member 60.
[0051]
FIGS. 7A, 7B and 7C show the packaging box by the air cushioning material manufacturing apparatus 70 of FIG.
The mode which inject | pours the air buffer material 30 into the clearance gap between the product accommodated in 6 and this packing box 6, and the components 4 is shown in order of a process.
[0052]
That is, first, as shown in FIG. 7A, products and parts 4 to be packed are prepared. Next, as shown in FIG. 7B, the product or part 4 is stored in a plastic bag 5 and stored in a packing box 6 that is slightly larger than the product or part 4. Here, the plastic bag 5 is for partitioning to prevent the air cushioning material 30 or 40 imparted with adhesiveness to the surface 33 or 43 from sticking to the product or the part 4. Next, as shown in FIG. 7C, while moving the air cushioning material forming machine 55, aiming at the gap between the packaging box 6 and the product or part 4 (more precisely, the plastic bag 5), the air A large number of individual-type air cushioning materials 30 with adhesiveness applied to the surface 33 are poured from the cushioning material forming machine 55.
[0053]
When the injected air cushioning material 30 cools and hardens, the individual air cushioning materials 30 adhere to each other due to the adhesiveness applied to the surface 33 thereof, and the air cushioning material in the form of a molded body such as a foamed polystyrene foam body. become. Accordingly, the product or component 4 accommodated in the packaging box 6 is prevented from moving in the packaging box 6 by the molded air cushioning material, and the product or component 4 is destroyed or deformed by an impact. It is prevented.
[0054]
This molded air cushioning material is unlikely to become clogged and reduced in volume due to vibration during transportation unlike conventional granular or linear foamed polystyrene, so it is possible to reliably prevent destruction and deformation of products and parts 4 can do.
[0055]
In addition, the air cushioning material in the form of a molded body does not need to be molded with a mold in advance according to the shape of each product or part 4 as in the case of a conventional polystyrene foam molded body. By injecting the air cushioning material 30 together, it becomes possible to prevent breakage and deformation of products and parts 4 similar to the foamed polystyrene molded body, and because the interior is hollow by the air chamber 31, the amount of material used is also Since there are few, a manufacturing cost can be reduced.
[0056]
Furthermore, as compared with the particulate or linear foamed polystyrene, the individual air cushioning materials 30 are not scattered around at the time of packing and / or unpacking, and the trouble of cleaning and the like can be saved.
[0057]
Furthermore, after the use, unlike the case where the individual particles are completely attached like a foamed polystyrene molded product, the volume is drastically reduced by destroying the air bubbles 31, so that the treatment after the use is completed. Cost can be reduced.
[0058]
In the embodiment shown in FIG. 7, the surface 33 has adhesiveness as shown in FIG.
Although the case where the provided individual type air cushioning material 30 is used has been described, a large number of air cushioning materials 40a, 40b, 40c,... Are cascaded at both ends 42b, 42c,. Alternatively, a connection type air cushioning material 40 that is connected to each other and whose surface 43a, 43b, 43c,.
[0059]
Furthermore, in the said embodiment, although the case where the air shock absorbing material 30 or 40 which provided the adhesiveness to the surface 33 or 43 was used was demonstrated, the surface as shown to FIG. 1 (A) and FIG. 1 (B) It is also possible to use individual type or connected type air cushioning materials 10 and 20 that are not given adhesiveness. In this case, the air buffer 30 or 40a, 40b, 40c,... Cannot be expected to be integrated by using the adhesiveness between them, but compared to the case where granular or linear polystyrene foam is used. In addition, since the air cushioning materials 10 and 20 can be injected into the packaging box by the pistol type air cushioning material forming machine 55, the air cushioning materials 10 and 20 are not scattered around the packaging, and in particular, the connection In the air cushioning material 20 of the mold, the air cushioning materials 10 and 20 are not scattered around even when unpacking.
[0060]
In the above embodiment, the air cushioning material 10, 20, 30, 40 in which the four air chambers 11, 21, 31, 41 are adjacent to each other has been described. However, the number of air chambers is two other than four. Or three or more. In the case of imparting adhesiveness to the surface, an air cushioning material having a single air chamber may be used.
[0061]
Next, a modified example of the air cushioning material will be described.
[0062]
As shown in FIG. 1 (A), the air cushioning material 10 is an example in which fan-shaped air chambers 11a to 11d are formed adjacent to each other. However, the air cushioning material 10 has excessive air at the manufacturing stage. When supplied, it expands in the outer diameter direction, and therefore the inner wall 13 separating the air chambers 11a to 11d tends to extend outward and become thinner. In particular, the intersecting wall portion 11e where the inner walls 13 intersect is likely to be thin. For this reason, in the case of being deformed by being pressed from the outside, or in the case where the air excessively enclosed in the air chambers 11a to 11d expands further due to temperature change or pressure change, the air cushioning material 10 A large tensile deformation occurs in the cross wall portion 11e having a cross-shaped longitudinal section formed in the center of the inside, and is easily broken.
[0063]
In order to solve such a problem, as shown in FIG. 8, the molten resin discharge member 57 ′ mounted inside the air cushioning material forming machine 55 is connected to the central portion 58c (cross-shaped resin discharge port 58b of the resin discharge port 58). It is preferable to form the air cushioning material 10 by increasing the width of the central portion) compared to the outer diameter side and increasing the amount of resin discharged to the inner diameter side. In the air cushioning material 10, more resin is discharged to the intersecting wall portion 11 e having a cruciform cross section formed in the center of the inside of the air cushioning material 10, so that the molten resin extends in the outer direction in the manufacturing stage. Even in the case where the inner wall 13 intersects, a sufficient thickness can be ensured in the intersecting wall portion 11e, and the durability and strength of the air cushioning material 10 are improved.
[0064]
More preferably, as shown in FIG. 9, the molten resin discharge member 80 mounted inside the air cushioning material forming machine 55 has a plurality of (for example, four) closed loops disposed intermittently in the circumferential direction. The molten resin discharge ports 81a to 81d and the air outlets 82a to 82d provided at the center of each of the molten resin discharge ports 81a to 81d may be used. When this molten resin discharge member 80 is used, as shown in FIGS. 10A and 10B, a molten resin cylindrical body in which the molten resin discharged at the inner peripheral edge of the air cushioning material forming machine 55 has grown into a cylindrical shape. 91a to 91d are expanded in the outer diameter direction by the compressed air supplied to the inside, and are fused in the circumferential direction. At this time, a hollow portion 92 surrounded by the molten resin cylindrical bodies 91a to 91d can be formed at the center. In this case, even when excessive air is supplied to the molten resin cylindrical bodies 91a to 91d at the time of manufacture, the inner wall 93 separating the molten resin cylindrical bodies 91a to 91d does not become too thin. The molten resin cylindrical bodies 91a to 91d and the hollow portion 92 are pressed and sealed by the pressing member 61 when grown to a predetermined length, like the air cushioning material 10 described above, as shown in FIG. In addition, the air cushions 90 a to 94 d and 95 of the air cushioning material 90 are obtained.
[0065]
In the air cushioning material 90 formed in this way, the inner walls 93 separating the air chambers 94a to 94d and 95 are not too thin, and the center is hollow, so that the air chambers 94a to 94d. , 95 can reduce the concentration of the tensile load applied to the resin, so that when the air is pressed from the outside and deformed, or the air cushions 94a to 94d and 95 are excessively filled with air, Even in the case of expansion, the air cushioning material 90 is hardly damaged.
[0066]
In this case, as shown in FIG. 12, an air outlet 82e may be provided also in the center of the molten resin discharge member 80, and compressed air may be supplied also to the cavity 92 (95) formed in the center. . By supplying compressed air to the central cavity 92 in this manner, the central portions of the molten resin cylindrical bodies 91a to 91d can be cooled, and the molten resin cylindrical bodies 91a to 91d and the hollow section 92 can be cooled. In addition, the shape of the air cushioning material 90 can be stabilized.
[0067]
As described above, the air cushioning material having the hollow portion at the center has been described. In the above, the compressed air supply means for supplying compressed air includes, for example, an air outlet for blowing compressed air and an air outlet for discharging excess air. In addition, an air outlet (air outlet / exhaust port) having a function of appropriately discharging excess air may be provided. By providing a function of appropriately discharging excess air, for example, when the molten resin cylindrical body is pressed and sealed by a pressing member, excess air is supplied to the air cushioning chamber. In addition, it becomes easy to adjust the amount of air enclosed in the air chamber, and damage to the air buffer material can be prevented.
[0068]
Moreover, resin provided with thermoplasticity, such as polyolefin resin, such as polyethylene and a polypropylene, can be used for resin used for such an air buffer material, for example. Further, recycled resin, paper waste, wood waste, or a mixture of dried grass powder can be used.
[0069]
Further, according to the air cushioning material manufacturing apparatus according to the present invention, by changing the shape and arrangement of the molten resin discharge port, the extrusion speed of the molten resin, the supply speed of the compressed air, the timing of sealing by the pressing member, etc. The shape and form of the air cushioning material produced can be changed.
[0070]
For example, even when the same molten resin discharge member 80 (see FIG. 9) is used, if the extrusion speed of the molten resin and the supply speed of the compressed air are increased, the air chambers 91a to 91a discharged from the molten resin discharge ports 81a to 81d are used. When 91d swells, it is cooled before it is fused to airways 91a to 91d that are adjacent in the circumferential direction, and the airways 91a to 91d that are adjacent to each other in the circumferential direction are allowed to grow without being fused together. it can. As in the case of the air cushioning material 10 described above, when the base end is pressed and sealed with the pressing member 61 when it grows to a predetermined length, a plurality of (four in the illustrated example) independent as shown in FIG. The air cushioning material 100 in which both ends of the air chambers 101a to 101d are bundled can be created.
[0071]
As shown in FIG. 13, the air cushioning material 100 is independent in a state where a plurality (four in the illustrated example) of air bubbles 101a to 101d are not fused to each other, and both ends of the air bubbles 101a to 101d are They are fused together in a bundled state. The air cushioning material 100 can be used as a cushioning material by being placed around the product in a packaging box, as in the other embodiments described above. As another usage pattern, as shown in FIG. 14, the air cushioning material 100 has a central space surrounded by the air bubbles 101a to 101d as a product accommodating space S, and a gap between the air bubbles 101a to 101d. The product 102 can also be used in the product storage space S. According to this form of use, the single air cushioning material 100 can accommodate the product 102 and protect the product 102 from impact. Also for the air cushioning material 100 having the product storage space S in the center, the shape and arrangement of the molten resin discharge port, the extrusion speed of the molten resin, the supply speed of the compressed air, the timing of sealing by the pressing member, and the like are changed. Thus, it is possible to create a product according to the product to be accommodated.
[0072]
Next, a modified example of the air cushioning material manufacturing apparatus will be described.
[0073]
In the above-described embodiment, a pistol type air cushioning material manufacturing apparatus (FIGS. 2 and 6) that can be held by an operator to determine the ejection direction and can eject a necessary amount of air cushioning material to a necessary place. In the following, a stationary type air cushioning material manufacturing apparatus will be shown.
[0074]
As shown in FIGS. 15A and 15B, the stationary type air cushioning material manufacturing apparatus 110 is mounted on a resin melting extrusion apparatus 111 that melts a resin chip and extrudes a molten resin, and a resin melting extrusion apparatus 111. A die 112 as a molten resin discharge member, a compressed air supply mechanism 113 for forming air by supplying air to the molten resin discharged from the die 112, and a heat seal mechanism 114 for sealing the discharged air ing.
[0075]
The resin melting and extruding apparatus 111 includes a hopper 115 into which resin chips are charged, a melting furnace 116 for melting the resin chips charged from the hopper 115, and a screw drive motor 117 that pushes out the molten resin inside the melting furnace 116. .
[0076]
The melting furnace 116 in the illustrated example includes a heating part 118 in which a coil is wound around the outer periphery of a cylindrical melting furnace body. The screw drive motor 117 includes a screw (not shown) inserted into the melting furnace 116, a motor 119, and a reduction gear 120 that is attached to the drive shaft of the motor 119 and transmits the rotational driving force of the motor 119 to the screw. I have. According to this resin melting and extruding apparatus 111, the resin chip charged into the hopper 115 is melted in the melting furnace 116 and sent from the base end portion of the melting furnace 116 to the front end side by the screw of the screw drive motor 117. . The molten resin melted in the melting furnace 116 is pushed out from the tip of the melting furnace 116.
[0077]
As shown in FIGS. 16A and 16B, the die 112 attached to the tip of the melting furnace 116 has a circular end surface 121. Four) molten resin discharge ports 122 are provided intermittently. A compressed air outlet 123 for discharging compressed air is provided at the center of each molten resin outlet 122.
[0078]
The compressed air supply mechanism 113 includes, for example, a compressor 124 and a compressed air supply pipe 125 that supplies compressed air from the compressor 124 to each compressed air outlet 123 of the die 112, and each compressed air outlet of the die 112. The compressed air can be supplied to 123 in a timely manner.
[0079]
The heat seal mechanism 114 is provided below the die 112 (in front of the molten resin discharge direction), and seal members 126 and 127 (pressure sealing members) sandwiching the molten resin discharged from the die 112 from both sides are piston portions. It is comprised by a pair of air cylinders 128 and 129 attached to the front-end | tip. Although illustration is omitted, a feed mechanism for pulling out the air buffer bag heat-sealed by the air cylinders 128 and 129 may be provided below the air cylinders 128 and 129. For example, the feeding mechanism may be a mechanism that pulls out the air buffer bag with a pair of rollers, and preferably a cushion material is wound around the outer periphery of the roller so as not to break the molded air buffer bag.
[0080]
The resin melting and extruding apparatus 111 of the air cushioning material manufacturing apparatus 110 melts the resin chip put into the hopper 115 in the melting furnace 116 and pushes out the melted resin with the screw drive electric motor 117. The molten resin extruded by the resin melting and extruding device 111 is discharged from the molten resin discharge port 122 of the die 112. In a preparatory stage before entering the molding process, a predetermined amount of molten resin is discharged, and the front end of the molten resin is heat sealed by the heat seal mechanism 114.
[0081]
In this molding process, the molten resin is pushed out from the molten resin discharge port 122 of the die 112 by the resin melting extrusion device 111 while the compressed air is blown out from the compressed air outlet 123 of the die 112 by the compressed air supply mechanism 113. At this time, compressed air is supplied from the compressed air outlet 123 to the center of the molten resin discharge port 122, and the molten resin discharged from the molten resin discharge port 122 is expanded in the discharge direction as shown in FIG. A tuft 130 is formed.
[0082]
Next, the air cushioning material manufacturing apparatus continues to supply compressed air from the compressed air outlet 123 to the molten resin air, while discharging the molten resin from the molten resin outlet 122, and discharges from each molten resin outlet 122. The air chamber 130 is elongated in the discharge direction and grown thick. Then, when the air 130 discharged from the molten resin discharge port 122 has a predetermined length, the base end portion of the air 130 is heat-sealed by the heat seal mechanism 114.
[0083]
The air cushioning material manufacturing apparatus 110 changes the die 112, selectively seals the molten resin discharge port 122 provided in the die 112, changes the extrusion speed of the molten resin, and supplies compressed air. The shape and form of the air cushioning material to be created can be changed by changing the above or by changing the timing of sealing by the pressing member.
[0084]
In addition, the heat seal mechanism 114 is illustrated as having a pair of air cylinders 31 and 32 in which a sealing member (pressing sealing member) sandwiching the molten resin from both sides is attached to the tip of the piston portion. In this case, when a soft material such as silicon rubber is used for one seal member and pressed against the other seal member, the one seal member abuts against the other seal member and deforms to ensure the molten resin It is good to be able to seal without a gap. In addition, the pair of seal members may have a structure in which one seal member is a convex shape and the other seal member is a concave shape into which one seal member is fitted to be sealed at two locations. Further, a cut blade may be provided in the center of the seal member so that perforation is made at the same time as sealing, or the air buffer bags may be cut one by one at the same time as sealing. In addition, when using a pair of air cylinder 128,129 for a heat seal mechanism, it is preferable to attach the roller (illustration omitted) which pulls out an air buffer bag.
[0085]
The heat seal mechanism 114 includes a pair of pinch rollers 131 and 132 provided to sandwich the molten resin from both sides, as shown in FIGS. 9A and 9B, instead of the pair of air cylinders 128 and 129. It may be used. The pinch rollers 131 and 132 in the illustrated example are provided with a plurality (four) of pressing members 133 around the rollers at equal intervals, and each of them is driven at a constant speed by obtaining a driving force from a motor 134 via a belt 135. Then, the molten resin is heat-sealed with the pressing member 133 sandwiching the molten resin at a predetermined timing according to the rotation speed.
[0086]
According to the heat sealing mechanism 114 using the pinch rollers 131 and 132, the molten resin can be heat sealed while the molten resin is pulled out by the pinch rollers 131 and 132. Therefore, it is suitable for continuously forming the air buffer bag. . In addition, according to the heat seal mechanism 114 using the pinch rollers 131 and 132, continuous molding can be performed while the molten resin is pulled out by the pinch rollers 131 and 132, so there is no need to attach a roller for pulling out the air buffer bag separately.
[0087]
Note that the heat sealing mechanism is not limited to the above embodiment as long as it is a mechanism capable of heat sealing the molten resin at a predetermined timing.
[0088]
As mentioned above, although the modification of the air shock absorbing material manufacturing apparatus was demonstrated, the air shock absorbing material manufacturing apparatus of this invention is not limited to said embodiment.
[0089]
【The invention's effect】
As described above, according to the air cushioning material manufacturing apparatus, the manufactured air cushioning material can be injected toward the gap between the packaging box and the product or component while manufacturing the air cushioning material.
[0090]
In addition, a molten resin discharge port in a closed loop shape, an air outlet and an air exhaust port or an air outlet / exhaust port provided at a position surrounded by the closed loop molten resin discharge port, and the molten resin discharge port are discharged. According to the air cushioning material manufacturing apparatus having the air cushioning material molding machine having the pressing member that presses and melts and seals the molten resin cylindrical body, the air exhaust port or the air blowing / Since pressure sealing can be performed while exhausting from the exhaust port, the air cushioning material can be manufactured without excessive air pressure.
[0091]
In addition, according to the air cushioning material manufacturing apparatus having the air cushioning material molding machine provided with the cutting member that cuts the portion pressed and sealed by the pressing member at the pressing member or in the vicinity thereof, the individual type air cushioning material is It can be manufactured sequentially.
[0092]
Furthermore, according to the air cushioning material manufacturing apparatus having an air cushioning material molding machine in which the molten resin discharge port is divided into a plurality of closed loop-shaped portions, and each air blowing / exhaust port is provided inside each closed loop-shaped portion, Excess air can be pressed and sealed while exhausting from the air outlet / exhaust port when sealing the resin cylindrical body, and an air cushioning material having a plurality of air chambers can be used without excessive air pressure. Can be manufactured.
[0093]
Furthermore, according to the air cushioning material manufacturing apparatus provided with the tackiness imparting means for imparting tackiness to the surface of the formed air cushioning material in the vicinity of the pressing member, the surface of the formed air cushioning material is tacky. The air cushioning material can be attached to each other by its adhesiveness.
[0094]
Since the air cushioning material is characterized in that at least one air chamber is formed of resin and the surface thereof has adhesiveness, the product and parts contained in the packaging box, and the packaging box When the product is injected into the gap, the air cushioning material adheres to the surface due to the adhesiveness of the surface and can be used as a molded air cushioning material such as a foamed polystyrene molded product. , And the volume of the air cushioning material does not decrease due to vibration during transportation, so that destruction and deformation of products and parts can be reliably prevented. Moreover, since the volume of the used air cushioning material can be drastically reduced by destroying the air chamber, the processing is simple.
[0095]
In addition, according to the air cushioning material in which a plurality of air bubbles are formed adjacent to each other by resin, not only the mechanical strength of the air cushioning material is increased and the air cushioning material is difficult to be destroyed, but also some of the airways are temporarily destroyed. However, since the buffer function is maintained by the remaining air, the buffer function is not completely lost due to destruction of the air as compared with an air buffer material having a single air.
[0096]
Furthermore, according to the connection type air cushioning material in which the reciprocal number is connected in cascade, the individual air cushioning material is not scattered, so that the air cushioning material is placed around when packing and / or unpacking. There is no scatter.
[0097]
In addition, the air cushioning material having a cavity in the center has a thin inner wall that separates each airstream even when the air cushioning material is deformed by being pressed from the outside or when the air cushioning material expands due to excessive air filling. Since the center is hollow, the concentration of the tensile load applied to the resin separating the air chambers can be reduced, so that the air cushioning material is not easily damaged. Further, when manufacturing such an air cushioning material, by providing a compressed air supply means in the central portion surrounded by a plurality of closed loop molten resin discharge ports arranged intermittently in the circumferential direction, Compressed air can be supplied to the hollow portion, whereby the central portion of the molten resin cylindrical body can be cooled, and the shapes of the molten resin cylindrical body, the hollow portion, and the air cushioning material are stabilized. be able to.
[0098]
In addition, a product housing space is provided in the center, and a plurality of independent air chambers are provided around the product housing space, and both ends of the air chambers are bundled and fused together. According to the existing air cushioning material, it is not only used as an air cushioning material, but also can be used by putting the product into the central product housing space from the air gap. Can be done.
[Brief description of the drawings]
FIG. 1 shows air cushioning materials according to various embodiments;
(A) is a front view and a sectional view of an individual type air cushioning material having four air chambers,
(B) is a front view of a connected air cushioning material in which a large number of air cushioning materials having four air chambers are coupled;
(C) is a front view and a cross-sectional view of an individual type air cushioning material having four air chambers and having adhesiveness on the surface thereof,
(D) is a front view of a connection type air cushioning material having four air chambers and having a large number of air cushioning materials with adhesiveness attached to the surface thereof.
FIG. 2 is a schematic perspective view showing a part of the air cushioning material manufacturing apparatus of the present invention in cross section.
FIG. 3 is an enlarged end view of a molten resin discharge member in the air cushioning material manufacturing apparatus of the present invention.
4A is an enlarged sectional view of an example of a pressing member in the air cushioning material manufacturing apparatus of the present invention, FIG. 4B is an enlarged sectional view of different pressing members in the air cushioning material manufacturing apparatus of the present invention, and FIG. These are the enlarged front views at the time of the pressure sealing of the further different pressing member in the air shock absorbing material manufacturing apparatus of this invention.
FIG. 5A is a cross-sectional view of a main part for explaining an air blowing process in the air cushioning material manufacturing apparatus of the present invention;
(B) is principal part sectional drawing explaining an air exhaustion process in the air shock absorbing material manufacturing apparatus of this invention.
FIG. 6 is a perspective view of a different embodiment of the air cushioning material manufacturing apparatus of the present invention.
FIG. 7 illustrates a packing process in which an air cushioning material is injected into a gap between a product or part housed in a packaging box and the packaging box by the air cushioning material manufacturing apparatus of FIG.
(A) is a perspective view of products and parts,
(B) is a perspective view of the process of accommodating the product or part accommodated in the plastic bag in the packaging box, (C) is the process of injecting the air cushioning material into the gap between the product or part accommodated in the packaging box and the packaging box. FIG.
8A is a schematic perspective view showing a part of an air cushioning material manufacturing apparatus according to a modified example in section, and FIG. 8B is an enlarged end surface of a molten resin discharge member in the air cushioning material manufacturing apparatus according to the modified example. FIG.
FIG. 9 is an enlarged end view of a molten resin discharge member in an air cushioning material manufacturing apparatus according to a modified example.
FIG. 10A is a front view showing a manufacturing process of an air cushioning material having a cavity in the center;
(B) is a plan view thereof.
FIG. 11 is a front view and a cross-sectional view showing an air cushioning material having a cavity in the center.
FIG. 12 is an enlarged end view showing a modified example of a molten resin discharge member used for manufacturing an air cushioning material having a cavity in the center.
FIG. 13 is a plan view showing an air cushioning material having a product accommodation space in the center.
14 is a perspective view showing a state in which a product is accommodated in the air cushioning material shown in FIG.
FIG. 15A is a front view showing a modification of the air cushioning material manufacturing apparatus, and FIG. 15B is a side view thereof.
It is.
FIG. 16A is a front view of a die used in an air cushion bag manufacturing apparatus according to an embodiment of the present invention, and FIG. 16B is a bottom view thereof.
FIG. 17 is a front view of the die showing a state in which molten resin is discharged from the die of the air buffer bag manufacturing apparatus shown in FIG. 15;
18A is a front view of an air buffer bag manufacturing apparatus showing a modification of the heat seal mechanism, and FIG. 18B is a side view of the air buffer bag manufacturing apparatus of FIG.
[Explanation of symbols]
1 Bottomed plastic cylinder
2 Compressed air
3 Exhaust air
4 Products and parts
5 Plastic bags
6 Packing box
10,30 Individual air cushioning material
11, 21, 31, 41
12, 22, 32, 42 End (sealing part)
13 inner wall
20, 40 Linked air cushioning material
33, 43 Air cushioning surface
50,70 Air cushioning material manufacturing equipment
51 resin melt extrusion equipment
53 Hose with heater for feeding molten resin
54 Hose for feeding compressed air
55 Air cushioning material forming machine
57 Molten resin discharge member
58 Molten resin outlet
59 Air outlet / exhaust port
60 Cooling unit
61 Pressing member
63 Opening / closing member
64 cylindrical part
71 Second hose for sending compressed air
72 Tackiness imparting means
73 Adhesive or solvent supply hose
75 Tackifying liquid spray port
80 Molten resin discharge member
81a-81d Molten resin outlet
82a-82d Air outlet
91a-91d Molten resin cylindrical body
92 Cavity
93 inner wall
94a-94d, 95 air

Claims (8)

樹脂融解押出装置と、
前記樹脂融解押出装置から融解樹脂が吐出される閉ループ状の融解樹脂吐出口と、
前記融解樹脂吐出口の閉ループ状部分の内側に配設した圧縮空気供給手段と、
前記圧縮空気供給手段から圧縮空気を供給しつつ、閉ループ状の融解樹脂吐出口から融解樹脂を吐出して、筒状に成形した融解樹脂筒状体を押圧して融着封止する押圧部材とを備え、
前記融解樹脂吐出口が、さらに複数の閉ループ状部分に区分されており、各閉ループ状部分の内側にそれぞれ圧縮空気供給手段を設けたことを特徴とする、
気房を有するエア緩衝材を形成するエア緩衝材製造装置。
A resin melting extrusion device;
A closed loop molten resin discharge port from which the molten resin is discharged from the resin melting extruder;
Compressed air supply means disposed inside the closed loop portion of the molten resin discharge port,
A pressing member that discharges molten resin from a closed-loop molten resin discharge port while pressing compressed air from the compressed air supply means, and presses the molten resin cylindrical body that is formed into a cylindrical shape to be fused and sealed; With
The molten resin discharge port is further divided into a plurality of closed loop-shaped portions, and provided with compressed air supply means inside each closed loop-shaped portion,
An air cushioning material manufacturing apparatus for forming an air cushioning material having an air chamber.
周方向に間欠的に配設した複数の閉ループ状の融解樹脂吐出口と、
前記各融解樹脂吐出口の中央部にそれぞれ設けた圧縮空気供給手段と、
前記各融解樹脂吐出口から吐出された融解樹脂筒状体を押圧して融着封止する押圧部材とを有することを特徴とする請求項1に記載のエア緩衝材製造装置。
A plurality of closed-loop molten resin outlets intermittently disposed in the circumferential direction;
Compressed air supply means provided at the center of each molten resin discharge port,
2. The air cushioning material manufacturing apparatus according to claim 1, further comprising a pressing member that presses and melts and seals the molten resin cylindrical body discharged from each of the molten resin discharge ports.
前記周方向に間欠的に配設した複数の閉ループ状の融解樹脂吐出口に囲まれた中央部に、圧縮空気供給手段を備えていることを特徴とする請求項に記載のエア緩衝材製造装置。 3. The air cushioning material manufacturing method according to claim 2 , further comprising a compressed air supply unit at a central portion surrounded by a plurality of closed loop molten resin discharge ports disposed intermittently in the circumferential direction. apparatus. 前記圧縮空気供給手段が、圧縮空気を吹き出すエア吹出口と、過剰な空気を排出するエア排出口を備えていることを特徴とする請求項1からの何れかに記載のエア緩衝材製造装置。The air cushioning material manufacturing apparatus according to any one of claims 1 to 3 , wherein the compressed air supply means includes an air outlet for blowing out compressed air and an air outlet for discharging excess air. . 前記圧縮空気供給手段が、過剰な空気を適宜に排出する機能を備えたエア吹出/排出口を備えていることを特徴とする請求項1からの何れかに記載のエア緩衝材製造装置。The air cushioning material manufacturing apparatus according to any one of claims 1 to 3 , wherein the compressed air supply means includes an air blowing / exhaust port having a function of appropriately discharging excess air. 前記押圧部材の近傍位置に、融解樹脂吐出口から吐出された融解樹脂筒状体を冷却する冷却部を有することを特徴とする請求項1からの何れかに記載のエア緩衝材製造装置。The air cushioning material manufacturing apparatus according to any one of claims 1 to 5 , further comprising a cooling unit that cools the molten resin cylindrical body discharged from the molten resin discharge port at a position near the pressing member. 前記押圧部材またはその近傍位置に、押圧部材によって押圧された樹脂をカットするカット部材を設けたことを特徴とする請求項1からの何れかに記載のエア緩衝材製造装置。The air cushioning material manufacturing apparatus according to any one of claims 1 to 6 , wherein a cutting member that cuts the resin pressed by the pressing member is provided at the pressing member or a position near the pressing member. 前記エア緩衝材の表面に粘着性を付与する粘着性付与手段を設けたことを特徴とする請求項1からの何れかに記載のエア緩衝材製造装置。The air cushioning material manufacturing apparatus according to any one of claims 1 to 7 , further comprising a tackiness imparting unit that imparts tackiness to a surface of the air cushioning material.
JP2003149233A 2002-06-11 2003-05-27 Air shock absorber manufacturing equipment Expired - Fee Related JP3861073B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003149233A JP3861073B2 (en) 2002-06-11 2003-05-27 Air shock absorber manufacturing equipment
PCT/JP2003/007162 WO2003106137A1 (en) 2002-06-11 2003-06-05 Apparatus for producing air-cushioninh material and the material
AU2003242198A AU2003242198A1 (en) 2002-06-11 2003-06-05 Apparatus for producing air-cushioninh material and the material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002170290 2002-06-11
JP2003072177 2003-03-17
JP2003149233A JP3861073B2 (en) 2002-06-11 2003-05-27 Air shock absorber manufacturing equipment

Publications (2)

Publication Number Publication Date
JP2004338793A JP2004338793A (en) 2004-12-02
JP3861073B2 true JP3861073B2 (en) 2006-12-20

Family

ID=29740544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003149233A Expired - Fee Related JP3861073B2 (en) 2002-06-11 2003-05-27 Air shock absorber manufacturing equipment

Country Status (3)

Country Link
JP (1) JP3861073B2 (en)
AU (1) AU2003242198A1 (en)
WO (1) WO2003106137A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2408961A (en) * 2003-12-12 2005-06-15 Univ Cambridge Tech Apparatus and method
JP5826337B1 (en) * 2014-07-24 2015-12-02 ソフトバンク株式会社 Buffer material, packing set and packing method
JP5826342B1 (en) * 2014-08-22 2015-12-02 ソフトバンク株式会社 Packing apparatus and packing method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08324643A (en) * 1995-05-31 1996-12-10 Hitachi Ltd Packaging material, packaging method for material to be packaged, and handling method for packaging material
JPH09267866A (en) * 1996-03-29 1997-10-14 Hitachi Electron Service Co Ltd Cushion material and package provided with the cushion material
JP2000053166A (en) * 1998-08-10 2000-02-22 Jsp Corp Bundle of thermoplastic-resin foam
JP2001139004A (en) * 1999-11-16 2001-05-22 Oriental Motor Co Ltd Cushioning material manufacturing device
JP2001240138A (en) * 2000-02-25 2001-09-04 Toshikatsu Ouchi Package and manufacturing method therefor
JP2002255247A (en) * 2001-02-23 2002-09-11 Asahi Kasei Corp Cushioning pad

Also Published As

Publication number Publication date
WO2003106137A1 (en) 2003-12-24
JP2004338793A (en) 2004-12-02
AU2003242198A1 (en) 2003-12-31

Similar Documents

Publication Publication Date Title
US6883295B1 (en) Process and plant for manufacturing double-pouch containers
EP0887026B1 (en) Packed in-pack filled product on stick and method for its preparation
US4478386A (en) Bag for use in the shaping of liquid food products of stimulants, and a method and an apparatus for use in the production of the bag
US5392592A (en) Hot-melt pressure sensitive adhesive packaging, preform, and method
KR101812523B1 (en) Receptacle manufacturing
US7021505B2 (en) Dual use decorating device
CN100396575C (en) Hermetically sealed container with unitary drop-dispenser
CA2195579C (en) Paper composite for making packages for liquid or granular products
JP3861073B2 (en) Air shock absorber manufacturing equipment
BG64671B1 (en) Method for producing a container having a pressure compensation opening, and container produced according to said method
AU736641B2 (en) An extruded/blow moulded bottle, as well as a method and material for producing the bottle
CA2277004C (en) Process for producing a cover skin for the instrument panel of a motor vehicle
US20060005732A1 (en) Blow-molded paintball and method of manufacture thereof
JP4188137B2 (en) Air buffer bag manufacturing method and air buffer bag manufacturing apparatus
JP4678664B2 (en) Small capacity container with twist-off port
JP2003136588A (en) Manufacturing method for sealed hollow vessel
JP2009113275A (en) Manufacturing apparatus and manufacturing method of resin molding
JP2004001838A (en) Multi-chamber container element
JP2004001837A (en) Multi-chamber container element
KR20130037748A (en) Method of manufacturing synthetic resine bag
JP2000158519A (en) Method for molding parison of hollow molding machine
FI93434B (en) Method for the manufacture of a packaging and for packaging of products
MXPA98004681A (en) Product in bar filling, empaquet
JPH08197636A (en) Production of tube to be filled with content
JPH106357A (en) Production of resin molded product having hollow part

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060720

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060925

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130929

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees