JP3858907B2 - Manufacturing method of structural steel materials with excellent earthquake resistance - Google Patents

Manufacturing method of structural steel materials with excellent earthquake resistance Download PDF

Info

Publication number
JP3858907B2
JP3858907B2 JP2004094210A JP2004094210A JP3858907B2 JP 3858907 B2 JP3858907 B2 JP 3858907B2 JP 2004094210 A JP2004094210 A JP 2004094210A JP 2004094210 A JP2004094210 A JP 2004094210A JP 3858907 B2 JP3858907 B2 JP 3858907B2
Authority
JP
Japan
Prior art keywords
less
steel
deformation
rolling
steel materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004094210A
Other languages
Japanese (ja)
Other versions
JP2004232091A (en
Inventor
恒久 半田
高宏 久保
達巳 木村
章夫 大森
虔一 天野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004094210A priority Critical patent/JP3858907B2/en
Publication of JP2004232091A publication Critical patent/JP2004232091A/en
Application granted granted Critical
Publication of JP3858907B2 publication Critical patent/JP3858907B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、耐震性を要求される建築構造物、橋梁等構造物の強度部材に用いて好適な構造用鋼材に係り、とくに高変形速度においても高い破壊靱性を有する構造用鋼材に関する。本発明でいう、耐震性とは、大地震の震源に近くおけるような高変形速度の変形においても高い破壊靱性を有することをいう。また、本発明の鋼材とは、鋼板、形鋼を含むものとする。   The present invention relates to a structural steel material suitable for use in strength members of structures such as building structures and bridges that require earthquake resistance, and more particularly to a structural steel material having high fracture toughness even at a high deformation speed. The term “earthquake resistance” as used in the present invention refers to having high fracture toughness even in deformation at a high deformation speed such as being close to the epicenter of a large earthquake. Further, the steel material of the present invention includes a steel plate and a shape steel.

1981年の新耐震設計法の改正により、建築分野では、大地震時には鋼材の塑性変形を許容し、地震エネルギーを吸収して構造物の倒壊を防止するという設計概念が適用されている。新耐震設計法が適用される建築構造物の鋼材は、降伏後の変形能を表すパラメータである降伏比(YR)が低いことが要求されている。このような要求に対し、例えば、特許文献1、特許文献2には、低降伏比を有する建築用鋼材が提案されている。   With the revision of the new seismic design method in 1981, the architectural concept is applied to allow plastic deformation of steel materials in the event of a large earthquake, and to absorb the seismic energy to prevent the collapse of the structure. Steel materials for building structures to which the new seismic design method is applied are required to have a low yield ratio (YR), which is a parameter representing the deformability after yielding. In response to such a demand, for example, Patent Literature 1 and Patent Literature 2 propose steel materials for construction having a low yield ratio.

しかし、活断層タイプの地震で震源に非常に近い場合には、揺れの速度が非常に速く、建物に対し歪速度にして10-1〜10s-1の高速変形(振動)が加えられるといわれている。一般に、高速変形下では降伏比は高くなる傾向にあり、上記したような高速変形においては低降伏比が確保できなくなることが推察される。また、最近の直下型地震(1995年、阪神大震災) においては、震源地近くの鋼構造物が脆性破壊により損傷を受けている。震源地近くの鋼構造物のように、高速変形を受ける鋼構造物に使用する鋼材は、脆性破壊を防止し鋼構造物の損傷を防ぐために、高速変形下でも高い破壊靱性を有することが必要となる。 However, if very close to the epicenter in the active fault type of earthquake, very fast speed of shaking, high-speed deformation of the strain rate for building 10 -1 ~10s -1 (vibration) is said to be added ing. In general, the yield ratio tends to increase under high-speed deformation, and it is assumed that a low yield ratio cannot be ensured during high-speed deformation as described above. In the recent direct earthquake (1995 Hanshin Earthquake), the steel structure near the epicenter was damaged by brittle fracture. Steel materials used for steel structures subject to high-speed deformation, such as steel structures near the epicenter, must have high fracture toughness even under high-speed deformation in order to prevent brittle fracture and damage to steel structures It becomes.

しかし、一般に限界CTOD等の破壊靱性値は、変形速度の増加に伴い低下することが知られており、高変形速度において欠陥の存在を前提とした場合、従来の建築構造用鋼では脆性破壊の発生自体を完全に抑制することは非常に困難となる。そこで、脆性破壊の発生を許容したうえで、その亀裂の伝播を阻止する性能を有する鋼材が、特許文献3に提案されている。特許文献3に記載された鋼材は、鋼材を構成する外表面のうち少なくとも2つの外表面に関して表層から全厚みの10〜33%の範囲内の平均フェライト粒径が3μm 以下の超細粒組織であることを特徴とする鋼材である。   However, it is generally known that fracture toughness values such as critical CTOD decrease as the deformation rate increases. It becomes very difficult to completely suppress the occurrence itself. Therefore, Patent Document 3 proposes a steel material having the performance of preventing the propagation of cracks while allowing the occurrence of brittle fracture. The steel material described in Patent Document 3 has an ultrafine grain structure in which the average ferrite grain size in the range of 10 to 33% of the total thickness from the surface layer is 3 μm or less with respect to at least two of the outer surfaces constituting the steel material. It is a steel material characterized by being.

また、従来から、鋼材にNi、Mo等の高価な合金元素を添加し焼入焼戻等の熱処理を施してシャルピー衝撃特性や破壊靱性を向上させ、脆性破壊の発生を防止することは従来から実施されているが、鋼材自体の価格が高くなり経済的に不利となる。   In addition, it has traditionally been possible to improve the Charpy impact properties and fracture toughness by adding expensive alloying elements such as Ni and Mo to steel materials and heat treatment such as quenching and tempering to prevent the occurrence of brittle fracture. Although it has been implemented, the price of the steel material itself is high, which is economically disadvantageous.

また、特許文献4には、高価な合金元素を添加することなく、V、Nを含有させてオーステナイト中にVNを核としてフェライトを析出させ、微細パーライト組織とすることによりシャルピー衝撃特性を向上させた耐震性に優れた極厚H形鋼が開示されている。
特開平6-271934号公報 特開平7-207407号公報 特開平9-176782号公報 特開平9-125140号公報
Patent Document 4 discloses that Charpy impact characteristics are improved by adding V and N to precipitate a ferrite with VN as a nucleus in austenite without adding an expensive alloy element, thereby forming a fine pearlite structure. An extremely thick H-section steel excellent in earthquake resistance is disclosed.
JP-A-6-2171934 Japanese Unexamined Patent Publication No. 7-207407 Japanese Laid-Open Patent Publication No. 9-176782 JP-A-9-125140

しかしながら、特許文献3に記載された技術では、鋼構造物内に多くの脆性亀裂が残存することになり、その後の建築鋼構造物の安全性に問題を残すことになる。さらに、建築鋼構造物では、鋼材に耐火被覆が施されており、発生した脆性亀裂を発見し、補修するために耐火被覆を剥がす必要があり、経済的に不利となる。また、特許文献4に記載された技術では、耐震性を考慮して、極厚H形鋼の靱性向上を図っているが、高速変形下での動的破壊靱性については全く考慮されていない。   However, in the technique described in Patent Document 3, many brittle cracks remain in the steel structure, which causes a problem in the safety of the subsequent building steel structure. Furthermore, in a construction steel structure, a fireproof coating is applied to the steel material, and it is necessary to remove the fireproof coating in order to find and repair a brittle crack that has occurred, which is economically disadvantageous. The technique described in Patent Document 4 attempts to improve the toughness of the ultra-thick H-section steel in consideration of earthquake resistance, but does not consider the dynamic fracture toughness under high-speed deformation at all.

本発明は、上記した従来技術の問題を有利に解決し、高価な合金元素を多量に添加することなく、高速変形下で優れた破壊靱性を有する耐地震特性に優れる構造用鋼材、好ましくは鋼板の製造方法を提供することを目的とする。   The present invention advantageously solves the above-mentioned problems of the prior art, and does not add a large amount of expensive alloy elements, and has excellent fracture toughness under high-speed deformation, excellent structural steel material, preferably steel plate It aims at providing the manufacturing method of.

本発明者らは、上記課題を達成するため、鋭意実験、研究を行った。   In order to achieve the above-mentioned problems, the present inventors conducted extensive experiments and research.

その結果、
(1)VおよびNを含有させ、圧延中およびその後の冷却中にVNを析出させると、析出したVNを核としてフェライトが析出し、微細なフェライト+パーライト組織となること、さらに、
(2)フェライト粒内に、適正量のVNを、適正な大きさと適正な密度で析出・分散させることにより、亀裂先端での変形が均一化し、シャルピー衝撃試験吸収エネルギーが同一であっても高速変形時に高い破壊靱性値を有すること、
(3)Ar3変態点以下の温度でフェライト粒内に析出するVN析出物量が多いほど、高速変形時に高い破壊靱性を示すこと、
を見い出した。なお、本発明でいうAr3変態点(℃)は、次式で計算される値を用いるものとする。
as a result,
(1) When V and N are contained and VN is precipitated during rolling and subsequent cooling, ferrite precipitates with the precipitated VN as a nucleus, resulting in a fine ferrite + pearlite structure.
(2) By depositing and dispersing an appropriate amount of VN in the ferrite grains with the appropriate size and density, the deformation at the crack tip is made uniform and high speed even if the Charpy impact test absorbed energy is the same. Having a high fracture toughness value during deformation,
(3) The higher the amount of VN precipitates precipitated in ferrite grains at temperatures below the Ar 3 transformation point, the higher the fracture toughness during high-speed deformation,
I found out. In the present invention, the Ar 3 transformation point (° C.) used is a value calculated by the following equation.

Ar3(℃)=910 +273 C+25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb
(ここに、C、Si、Mn、Ni、Cr、Mo、Cu、Nbは各元素の含有量(重量%)で、含まれない元素の場合には、0として計算する。)
また、さらに、本発明者らは、
(4)上記した組織を有する鋼板の多層盛溶接継手の熱影響部は、母材と同様に高速変形時に高い破壊靱性値を示すこと、
を見い出した。
Ar 3 (° C.) = 910 +273 C + 25Si−74Mn−56Ni−16Cr−9Mo −5Cu −1620Nb
(Here, C, Si, Mn, Ni, Cr, Mo, Cu, and Nb are the contents (% by weight) of each element, and are calculated as 0 in the case of an element that is not included.)
Furthermore, the inventors have
(4) The heat-affected zone of the multi-layer welded joint of steel sheets having the above-described structure exhibits a high fracture toughness value at the time of high-speed deformation, similar to the base material.
I found out.

本発明は、上記した知見に基づき、さらに検討を加え構成されたものである。   The present invention has been further configured based on the above findings.

すなわち、本発明は、重量%で、C:0.04〜0.18%、Si:0.60%以下、Mn:0.80〜1.80%、P:0.030 %以下、S:0.015 %以下、V:0.04〜0.15%、N:0.0050〜0.0150%を含み、さらに、Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ次(1)式
Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
(ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%))で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材(スラブ)を、1350℃以下に加熱したのち、圧延終了温度をAr3変態点以上とする熱間圧延を施し、その後0.09〜1℃/sの冷却速度で冷却することにより、鋼材の降伏比を80%以下、変形速度1〜1000mm/sの高速変形下での0℃における限界CTOD値を0.1mm 以上とすることを特徴とする耐地震特性に優れた構造用鋼材(但し、鉄筋用鋼材を除く)の製造方法、好ましくは構造用鋼板の製造方法であり、また、本発明は、重量%で、C:0.04〜0.18%、Si:0.60%以下、Mn:0.80〜1.80%、P:0.030 %以下、S:0.015 %以下、V:0.04〜0.15%、N:0.0050〜0.0150%を含み、さらに、Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ次(1)式
Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
(ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%))で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材を、1050℃〜1350℃に加熱したのち、圧延終了温度を950 ℃以上とする熱間圧延を施し、ついで3℃/s以上の冷却速度でAr3変態点で冷却し、その後0.09〜1℃/sの冷却速度で冷却してもよく、また、本発明は、重量%で、C:0.04〜0.18%、Si:0.60%以下、Mn:0.80〜1.80%、P:0.030 %以下、S:0.015 %以下、V:0.04〜0.15%、N:0.0050〜0.0150%を含み、さらに、Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ次(1)式
Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
(ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%))で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材を、1350℃以下に加熱し、圧延終了温度を950 ℃以上とする第1段の熱間圧延を施したのち、熱間圧延を一時中断し、Ar3変態点まで3℃/s以上の冷却速度で冷却し、ついで第2段の熱間圧延を施し所定の板厚としたのち0.09〜1℃/sの冷却速度で冷却してもよい。
That is, the present invention is, by weight, C: 0.04 to 0.18%, Si: 0.60% or less, Mn: 0.80 to 1.80%, P: 0.030% or less, S: 0.015% or less, V: 0.04 to 0.15%, N : 0.0050 to 0.0150%, and further containing one or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%, and the following formula (1)
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Ceq defined by (where C, Si, Mn, V, Ni, Cr, Mo: content of each element (% by weight)) is 0.34 to 0.48%, and the composition is composed of the balance Fe and inevitable impurities. The steel material (slab) is heated to 1350 ° C or lower, then hot rolled with the rolling end temperature equal to or higher than the Ar 3 transformation point, and then cooled at a cooling rate of 0.09 to 1 ° C / s. A structural steel material with excellent earthquake resistance characterized by having a yield ratio of 80% or less and a critical CTOD value at 0.1 ° C. at 0 ° C. under high-speed deformation at a deformation speed of 1-1000 mm / s (however, Steel material for reinforcing bars) , preferably a structural steel plate manufacturing method, and the present invention is by weight%, C: 0.04-0.18%, Si: 0.60% or less, Mn: 0.80-1.80% , P: 0.030% or less, S: 0.015% or less, V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, Al: 0.005 to 0.050%, and Ti: 0.005 contain one or two of 0.050%, and the following equation (1)
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Ceq defined by (where C, Si, Mn, V, Ni, Cr, Mo: content of each element (% by weight)) is 0.34 to 0.48%, and the composition is composed of the balance Fe and inevitable impurities. After the steel material was heated to 1050 ° C to 1350 ° C, it was hot-rolled to a rolling end temperature of 950 ° C or higher, then cooled at the Ar 3 transformation point at a cooling rate of 3 ° C / s or higher, and then 0.09 The present invention may be cooled at a cooling rate of ˜1 ° C./s , and the present invention is, by weight, C: 0.04 to 0.18%, Si: 0.60% or less, Mn: 0.80 to 1.80%, P: 0.030% or less. , S: 0.015% or less, V: 0.04 to 0.15%, N: 0.0050 to 0.0150%, and further including one or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%, And the following formula (1)
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Ceq defined by (where C, Si, Mn, V, Ni, Cr, Mo: content of each element (% by weight)) is 0.34 to 0.48%, and the composition is composed of the balance Fe and inevitable impurities. The steel material was heated to 1350 ° C or lower, and after the first stage of hot rolling with a rolling end temperature of 950 ° C or higher, the hot rolling was temporarily suspended and the temperature reached 3 ° C / s until the Ar 3 transformation point. It may be cooled at the cooling rate described above, then hot rolled in the second stage to obtain a predetermined thickness, and then cooled at a cooling rate of 0.09 to 1 ° C./s.

また、本発明では、上記組成に加えてさらに、重量%で、Cu:0.05〜0.60%、Ni:0.05〜0.60%、Cr:0.05〜0.50%、Mo:0.02〜0.20%のうちから選ばれた1種または2種以上を含有してもよく、および/またはさらに重量%で、Nb:0.003 〜0.030 %を含有してもよく、および/または、さらに重量%で、B:0.0002〜0.0020%、REM :0.0010〜0.0200%、Ca:0.0010〜0.010 %のうちから選ばれた1種または2種以上を含有してもよい。 Further, in the present invention, in addition to the above SL composition, in wt%, Cu: 0.05~0.60%, Ni : 0.05~0.60%, Cr: 0.05~0.50%, Mo: selected from among 0.02 to 0.20% 1 or 2 or more and / or may further contain Nb: 0.003 to 0.030% by weight, and / or B may be 0.0002 to 0.0020%. , REM: 0.0010 to 0.0200%, Ca: 0.0010 to 0.010%, or one or two or more selected from 0.0010 to 0.010% may be contained.

本発明によれば、高価な合金元素を多量に添加することなく、1〜1000mm/sの高速変形において母材および溶接熱影響の0℃における限界CTODが0.1mm 以上を有する鋼材が得られる。本発明の構造用鋼材は、高速変形を受けても破壊靱性の劣化が少なく、耐震性に優れた鋼材として利用でき産業上格段の効果を奏する。   According to the present invention, it is possible to obtain a steel material having a limit CTOD at 0 ° C. of 0.1 mm or more at 0 ° C. of the influence of the base metal and welding heat in high-speed deformation of 1 to 1000 mm / s without adding a large amount of expensive alloy elements. The structural steel material of the present invention can be used as a steel material having little deterioration in fracture toughness even when subjected to high-speed deformation, and having excellent earthquake resistance, and has a remarkable industrial effect.

本発明では、鋼中にV、Nを含有させ、圧延中および圧延後冷却中にオーステナイト組織中にVNを析出させ、VNを核としてフェライトを析出させることにより微細なフェライト+パーライト組織として、さらに変態後にもフェライト粒内にVNを析出させることによりフェライト粒内に一定量のVNを、適正な大きさと適正な密度で析出・分散させる。   In the present invention, V and N are contained in the steel, VN is precipitated in the austenite structure during rolling and cooling after rolling, and ferrite is precipitated using VN as a nucleus to obtain a fine ferrite + pearlite structure. Even after transformation, by depositing VN in the ferrite grains, a certain amount of VN is precipitated and dispersed in the ferrite grains with an appropriate size and an appropriate density.

まず、本発明における化学組成の限定理由を説明する。   First, the reasons for limiting the chemical composition in the present invention will be described.

V:0.04〜0.15%
Vは、鋼の強度を高める作用を有し、母材の強度および靱性を確保するうえで、本発明において不可欠の元素である。Vは、鋼中でVNとしてオーステナイト中に析出し、フェライトの析出核として作用し、結晶粒を微細化する。さらに、VNはフェライト中に析出し、亀裂先端の変形を均一化する。これにより、シャルピー衝撃特性に比べ高速変形時の破壊靱性をより向上させる効果を有する。このような効果は0.04%以上の含有で認められるが、0.15%を超える含有は、母材靱性および溶接性を劣化させる。このため、Vは0.04〜0.15%の範囲に限定した。なお、好ましい範囲は、0.05〜0.10%である。
V: 0.04-0.15%
V has an effect of increasing the strength of steel, and is an essential element in the present invention for securing the strength and toughness of the base material. V precipitates in the austenite as VN in the steel, acts as a precipitation nucleus of ferrite, and refines the crystal grains. Furthermore, VN precipitates in the ferrite and makes the crack tip deformation uniform. Thereby, it has the effect of improving the fracture toughness at the time of high-speed deformation compared with the Charpy impact property. Such an effect is recognized at a content of 0.04% or more, but a content exceeding 0.15% deteriorates the base metal toughness and weldability. For this reason, V was limited to the range of 0.04 to 0.15%. In addition, a preferable range is 0.05 to 0.10%.

N:0.0050〜0.0150%
Nは、Vと結合しVNを形成し、母材の強度、靱性および高速変形時の破壊靱性値を向上させる。そのためには、0.0050%以上の含有が必要であるが、0.0150%を超えて含有すると母材靱性および溶接性が大きく低下する。このため、Nは0.0050〜0.0150%の範囲に限定した。なお、好ましくは、0.0060〜0.0120%である。
N: 0.0050-0.0150%
N combines with V to form VN, and improves the strength and toughness of the base metal and the fracture toughness value at high speed deformation. For this purpose, a content of 0.0050% or more is necessary, but if it exceeds 0.0150%, the base material toughness and weldability are greatly reduced. For this reason, N was limited to the range of 0.0050 to 0.0150%. In addition, Preferably, it is 0.0060 to 0.0120%.

VN析出物:0.02〜0.07%
VN析出物は、オーステナイト中に析出しフェライト変態核として作用し、結晶粒を微細化するとともに、オーステナイトがフェライトに変態した後にフェライト中に析出して、亀裂先端の変形を均一化する。これにより、シャルピー衝撃特性に比べ高速変形時の破壊靱性をより向上させる効果を有する。これらの効果は、0.02%以上の析出が必要である。なお、上記したV、Nの範囲内では析出するVNは0.07%より多く析出しないため、0.07%を上限とした。
VN precipitates: 0.02 to 0.07%
VN precipitates precipitate in austenite and act as ferrite transformation nuclei, refine the crystal grains, and precipitate in ferrite after austenite is transformed into ferrite, making the crack tip deformation uniform. Thereby, it has the effect of improving the fracture toughness at the time of high-speed deformation compared with the Charpy impact property. These effects require 0.02% or more of precipitation. In addition, in the range of V and N described above, VN that precipitates does not precipitate more than 0.07%, so 0.07% was made the upper limit.

C:0.04〜0.18%
Cは、鋼の強度を増加させる元素であり、耐震性を考慮した構造用鋼材では、引張強さが 500 MPa以上であることが好ましく、このためにCを0.04%以上含有することが好ましい。しかし、0.18%を超えると溶接熱影響部の靱性を劣化させる。このため、Cは0.04〜0.18%の範囲とする。なお、好ましくは溶接性および強度確保の点から0.08〜0.16%である。
C: 0.04-0.18%
C is an element that increases the strength of steel. In structural steel materials that take earthquake resistance into consideration, the tensile strength is preferably 500 MPa or more, and for this reason, C is preferably contained by 0.04% or more. However, if it exceeds 0.18%, the toughness of the heat affected zone is deteriorated. Therefore, C is shall be the range of 0.04 to 0.18%. Incidentally, the good Mashiku is 0.08 to 0.16% from the viewpoint of weldability and strength secured.

Si:0.60%以下
Siは、鋼の強度上昇に有効な元素であるが、多量添加すると溶接熱影響部の靱性を劣化させる。このため、0.60%を上限とする。なお、Siは、0.20%未満では、強度上昇の効果が少ないため、好ましくは0.20〜0.60%の範囲である。
Si: 0.60% or less
Si is an effective element for increasing the strength of steel, but if added in a large amount, it deteriorates the toughness of the heat affected zone. For this reason, it shall be the upper limit of 0.60%. Incidentally, Si is is less than 0.20%, since there is little effect of increasing strength, the good Mashiku in the range of 0.20 to 0.60%.

Mn:0.80〜1.80%
Mnは、鋼の強度を増加させる有効な元素であり、強度確保の観点から0.80%以上含有するのが好ましい。しかし、1.80%を超えると、組織がベイナイト等の低温変態生成物を主体とする組織となり、母材靱性が劣化する。このため、Mnは0.80〜1.80%の範囲とする。
Mn: 0.80 to 1.80%
Mn is an effective element for increasing the strength of steel, and is preferably contained in an amount of 0.80% or more from the viewpoint of securing the strength. However, if it exceeds 1.80%, the structure becomes a structure mainly composed of low-temperature transformation products such as bainite, and the base material toughness deteriorates. For this reason, Mn is that be in the range of 0.80 to 1.80 percent.

P:0.030 %以下
Pは、母材、溶接熱影響部の靱性を劣化させ、また溶接割れ性を高めるため、できるだけ低減するのが好ましく、上限を0.030 %とする。なお、好ましくは0.010 %以下である。
P: 0.030% or less P is the base material, degrade the toughness of the weld heat affected zone and to increase the weld cracking resistance is preferably reduced as much as possible, you limit 0.030%. Incidentally, good Mashiku is 0.010% or less.

S:0.015 %以下
Sは、非金属介在物を形成し靱性、延性を劣化させるため、できるだけ低減するのが好ましく、上限を0.015 %以下とする。なお、好ましくは0.010 %以下である。
S: 0.015% or less S, in order to degrade formed toughness, ductility nonmetallic inclusions is preferably reduced as much as possible, it limits 0.015% or less. Incidentally, good Mashiku is 0.010% or less.

Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種
AlおよびTiは、いずれも脱酸剤として作用するため、AlおよびTiのうち1種または2種添加る。脱酸のためには、Al、Tiは、いずれも0.005 %以上の添加を必要とするが、0.050 %を超えると脱酸効果は飽和し非金属介在物が増加し鋼の清浄度が低下する。このため、Alは0.005 〜0.050 %、Tiは0.005 〜0.050 %の範囲とするのが好ましい。
One or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%
Al and Ti are both to act as a deoxidizer, it added one or two of Al and Ti. For deoxidation, addition of 0.005% or more is required for both Al and Ti. However, if it exceeds 0.050%, the deoxidation effect is saturated, nonmetallic inclusions increase, and the cleanliness of the steel decreases. . For this reason, Al is preferably in the range of 0.005 to 0.050%, and Ti is preferably in the range of 0.005 to 0.050%.

さらに、Tiは、高温まで安定な微細析出物を形成し、圧延加熱時のオーステナイト粒の粗大化を抑制する。それにより、圧延後のフェライト粒が微細化され、母材の強度・靱性が向上する。さらに、溶接加熱時にも、高温まで安定な微細Ti析出物がオーステナイト粒の粗大化を抑制し、溶接熱影響部の高靱化が達成される。このため、脱酸剤としてAlのみを添加した場合には、オーステナイト粒の粗大化抑制効果溶接熱影響部の高靱化効果を持たせる意味でTiを0.005 〜0.015 %の範囲で含有させることが好ましい。 Further, Ti forms fine precipitates that are stable up to a high temperature, and suppresses coarsening of austenite grains during rolling and heating. Thereby, the ferrite grain after rolling is refined | miniaturized and the intensity | strength and toughness of a base material improve. Furthermore, even during welding heating, fine Ti precipitates that are stable up to a high temperature suppress the coarsening of austenite grains, and toughening of the heat affected zone is achieved. For this reason, when only Al is added as a deoxidizer, Ti should be contained in the range of 0.005 to 0.015% in order to have the effect of suppressing the coarsening of austenite grains and the effect of increasing the toughness of the weld heat affected zone. Is preferred.

Cu:0.05〜0.60%、Ni:0.05〜0.60%、Cr:0.05〜0.50%、Mo:0.02〜0.20%のうちから選ばれた1種または2種以上
Cu、Ni、Cr、Moはいずれも強度を増加させる元素であり、本発明ではCu、Ni、Cr、Moのうちから選ばれた1 種または2 種以上を必要に応じ添加できる。しかし、Cu、Ni、Cr、Moは、それぞれ0.05%、0.05%、0.05%、0.02%未満では、上記した効果が認められない。一方、Cuは多量に添加すると熱間加工性を劣化させるため、多量添加の場合には等量のNiと同時に添加するのが望ましいが、Niを0.60%を超えて添加すると製造コストが高くなり経済的に不利となる。このため、Cu、Niの上限は0.60%とするのが好ましい。また、Cr、Moは、それぞれ0.50%、0.20%を超えると溶接性や靱性を劣化させるため、それぞれ0.50%、0.20%を上限とした。
One or more selected from Cu: 0.05 to 0.60%, Ni: 0.05 to 0.60%, Cr: 0.05 to 0.50%, Mo: 0.02 to 0.20%
Cu, Ni, Cr, and Mo are all elements that increase the strength. In the present invention, one or more selected from Cu, Ni, Cr, and Mo can be added as necessary. However, when Cu, Ni, Cr, and Mo are less than 0.05%, 0.05%, 0.05%, and 0.02%, respectively, the above effects are not recognized. On the other hand, when Cu is added in a large amount, hot workability deteriorates, so when adding a large amount, it is desirable to add it at the same time as Ni, but if Ni is added in excess of 0.60%, the manufacturing cost increases. Economic disadvantage. For this reason, it is preferable that the upper limit of Cu and Ni be 0.60%. Further, if Cr and Mo exceed 0.50% and 0.20%, respectively, the weldability and toughness deteriorate, so 0.50% and 0.20% were made upper limits, respectively.

Nb:0.003 〜0.030 %
Nbは、Ar3変態点を低下させ、VNのオーステナイト中での析出を促進させ、さらにNb化合物の析出とNb化合物による結晶粒の細粒化により強度と靱性をともに向上させる効果を有する。この効果を得るためには、Nbを0.003 %以上含有する必要がある。一方、0.030 %を超える含有は、溶接性および溶接熱影響部の靱性を劣化させる。このため、Nbは0.003 〜0.030 %の範囲とするのが好ましい。なお、好ましくは0.005 〜0.025 %である。
Nb: 0.003 to 0.030%
Nb has the effect of lowering the Ar 3 transformation point, promoting precipitation of VN in austenite, and improving both strength and toughness by precipitation of the Nb compound and refinement of crystal grains by the Nb compound. In order to acquire this effect, it is necessary to contain Nb 0.003% or more. On the other hand, the content exceeding 0.030% deteriorates the weldability and the toughness of the heat affected zone. For this reason, Nb is preferably in the range of 0.003 to 0.030%. In addition, Preferably it is 0.005-0.025%.

B:0.0002〜0.0020%、REM :0.0010〜0.0200%、Ca:0.0010〜0.010 %のうちから選ばれた1種または2種以上
B、REM 、Caは、いずれも圧延後のフェライト粒を微細にする作用を有しており、必要に応じB、REM 、Caのうちから選ばれた1種または2種以上を添加できる。
One or more selected from B: 0.0002 to 0.0020%, REM: 0.0010 to 0.0200%, Ca: 0.0010 to 0.010% B, REM, and Ca all make ferrite grains fine after rolling One or two or more selected from B, REM and Ca can be added as necessary.

Bは、圧延中にBNとして析出し、圧延後のフェライト結晶粒を微細化する。この結晶粒の微細化は、0.0002%以上の添加で認められるが、0.0020%を超える添加は靱性を劣化させる。このことから、Bは0.0002〜0.0020%の範囲に限定するのが好ましい。   B precipitates as BN during rolling and refines the ferrite crystal grains after rolling. This refinement of crystal grains is observed with addition of 0.0002% or more, but addition over 0.0020% deteriorates toughness. Therefore, B is preferably limited to a range of 0.0002 to 0.0020%.

REM 、Caは、高温で安定な析出物として鋼中に微細分散し、圧延時のオーステナイト粒の粗大化を抑制する。それにより、圧延後のフェライト粒を微細化する。さらに、溶接加熱時にも、オーステナイト粒の粗大化を抑制し、溶接熱影響部の組織を微細化する。このために、REM 、Caは0.0010%以上の添加を必要とするが、REM が0.0200%、Caが0.010 %を超えると鋼の清浄度が低下し、靱性が劣化する。このため、REM は0.0010〜0.0200%、Caは0.0010〜0.010 %の範囲に限定するのが望ましい。   REM and Ca are finely dispersed in the steel as stable precipitates at high temperatures, and suppress the coarsening of austenite grains during rolling. Thereby, the ferrite grains after rolling are refined. Furthermore, the coarsening of austenite grains is suppressed even during welding heating, and the structure of the weld heat affected zone is refined. For this reason, REM and Ca need to be added in an amount of 0.0010% or more. However, when REM exceeds 0.0200% and Ca exceeds 0.010%, the cleanliness of the steel decreases and the toughness deteriorates. For this reason, it is desirable that REM is limited to 0.0010 to 0.0200% and Ca is limited to 0.0010 to 0.010%.

Ceq:0.34〜0.48%
Ceqは次(1)式で定義する。
Ceq: 0.34-0.48%
Ceq is defined by the following equation (1).

Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
ここで、C、Si、Mn、V、Ni、Cr、Moは各元素の含有量(重量%)である。
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Here, C, Si, Mn, V, Ni, Cr, and Mo are the content (% by weight) of each element.

なお、各元素の含有量は、合金元素として添加される以外に不可避的に混入することにより鋼中に含有されるものをも含むものとする。   In addition, content of each element shall include what is contained in steel by inevitably mixing besides adding as an alloy element.

(1)式に記載された元素が含有されない場合には、その元素の含有量を0として計算するものとする。   When the element described in the formula (1) is not contained, the content of the element is calculated as 0.

Ceqが0.34%未満では、母材の強度、および溶接熱影響部軟化部の強度を確保することが困難となり、一方、0.48%を超えると溶接割れ感受性が高くなり、溶接熱影響部の靱性が低下する。このようなことからCeqは0.34〜0.48%の範囲とするのが望ましい。   If Ceq is less than 0.34%, it is difficult to ensure the strength of the base metal and the welded heat-affected zone softened part. On the other hand, if it exceeds 0.48%, the weld crack sensitivity is increased, and the toughness of the welded heat-affected zone is increased. descend. For this reason, Ceq is preferably in the range of 0.34 to 0.48%.

本発明の鋼材の組織について説明する。   The structure of the steel material of the present invention will be described.

本発明の鋼材は、フェライト+パーライト組織で、フェライトの結晶粒度がJIS G 0552で規定される結晶粒度番号で5番以上で、フェライト粒の面積率が50〜100 %であり、該フェライト粒内に粒子径5〜200nm のVN析出物が106 〜1010個/mm3 の範囲で析出分散した組織を有する。 The steel material of the present invention has a ferrite + pearlite structure, the crystal grain size of ferrite is 5 or more in the grain size number specified by JIS G 0552, and the ferrite grain area ratio is 50 to 100%. Have a structure in which VN precipitates having a particle diameter of 5 to 200 nm are precipitated and dispersed in the range of 10 6 to 10 10 particles / mm 3 .

フェライトの結晶粒度:JIS G 0552で規定される結晶粒度番号で5番以上
フェライトの結晶粒度がJIS G 0552で規定される結晶粒度で5番未満では、靱性の低下が著しいため、フェライトの結晶粒度は粒度番号で5番以上とした。
Ferrite grain size: No. 5 or more with the grain size number specified in JIS G 0552 If the grain size of ferrite is less than 5 with the grain size specified in JIS G 0552, the toughness is significantly reduced. The particle size number was 5 or more.

フェライトの面積率:50〜100 %
フェライトの面積率が50%未満では、母材の靱性が低下し、高速変形時に亀裂先端の変形が不均一となり、高速変形下での破壊靱性が劣化する。このため、フェライトの面積率は50%以上に限定した。
Ferrite area ratio: 50-100%
When the area ratio of ferrite is less than 50%, the toughness of the base material is lowered, the deformation of the crack tip becomes nonuniform during high-speed deformation, and the fracture toughness under high-speed deformation deteriorates. For this reason, the area ratio of ferrite was limited to 50% or more.

粒子径5〜200nm のVN析出物:106 〜1010個/mm3
フェライト粒内に析出する粒子径が200nm を超える粗大なVN析出物は、破壊の基点となりやすく靱性を劣化させるため、本発明では、フェライト粒内に析出するVN析出物の大きさを200nm 以下に限定した。フェライト中に析出した粒子径200nm 以下のVN析出物は、亀裂先端の変形を均一化する。一方、5nm未満の大きさの微細なVN析出物は、上記したVN析出物の変形均一化効果を有している可能性はあるが、電子顕微鏡による分析測定が困難となるため5nmをVN析出物の大きさの下限とした。5nm未満のVN析出物は存在していてもよいのは言うまでもない。さらに、粒子径5〜200nm の範囲のVN析出物の分散密度は、106 〜1010個/mm3 の範囲に限定する。粒子径5〜200nm のVN析出物の分散密度が106 個/mm3 未満では、変形均一化効果が少なく、一方、1010個/mm3 を超えると過度の析出物の存在により靱性が劣化する。なお、亀裂先端の変形的均一化を促進する観点から粒子径100 〜200nm の範囲のVN析出物の分散密度を105 個/mm3 以下とするのが好ましい。
VN precipitates with a particle size of 5 to 200 nm: 10 6 to 10 10 particles / mm 3
In the present invention, the size of the VN precipitates precipitated in the ferrite grains is set to 200 nm or less because coarse VN precipitates having a particle diameter exceeding 200 nm tend to be the starting point of fracture and deteriorate toughness. Limited. VN precipitates with a particle size of 200 nm or less precipitated in ferrite make the crack tip deformation uniform. On the other hand, fine VN precipitates with a size of less than 5 nm may have the effect of uniforming deformation of the above-mentioned VN precipitates, but it becomes difficult to analyze and measure with an electron microscope. The lower limit of the size of the object. It goes without saying that VN precipitates of less than 5 nm may be present. Furthermore, the dispersion density of VN precipitates having a particle diameter of 5 to 200 nm is limited to a range of 10 6 to 10 10 particles / mm 3 . If the dispersion density of VN precipitates with a particle size of 5 to 200 nm is less than 10 6 particles / mm 3 , the effect of uniforming deformation is small, whereas if it exceeds 10 10 particles / mm 3 , the toughness deteriorates due to the presence of excessive precipitates. To do. From the viewpoint of promoting the deformation and uniformization of the crack tip, the dispersion density of VN precipitates having a particle diameter in the range of 100 to 200 nm is preferably 10 5 particles / mm 3 or less.

上記した組成と組織とすることにより、鋼材は、降伏比80%以下、変形速度1〜1000mm/sの高速変形下での0℃における限界CTOD値が0.1mm 以上を有する耐地震特性に優れた構造用鋼材となる。降伏比が80%を超えると地震時の塑性変形能が低下し、構造物としての安全性が低下する。また、変形速度1〜1000mm/sの高速変形下での0℃における限界CTOD値が0.1mm 未満では、大地震時におけるような高速変形を受けた場合に脆性亀裂を発生させやすくなり、構造物の安全性が低下する。なお、本発明における限界CTOD値は、1TCT試験片または3点曲げ試験片を用いて、WES 1108-1995 規格またはASTM E 1290 、BS 7448 に準拠した破壊靱性試験にて測定した値を使用するものとする。   By using the composition and structure described above, the steel material has excellent earthquake resistance with a yield ratio of 80% or less and a critical CTOD value at 0 ° C. of 0.1 mm or more under high-speed deformation at a deformation rate of 1 to 1000 mm / s. It becomes structural steel. If the yield ratio exceeds 80%, the plastic deformability at the time of an earthquake will decrease and the safety as a structure will decrease. Moreover, if the critical CTOD value at 0 ° C under high-speed deformation at a deformation speed of 1-1000 mm / s is less than 0.1 mm, brittle cracks are likely to occur when subjected to high-speed deformation as in a large earthquake, and the structure The safety of is reduced. The critical CTOD value in the present invention uses a value measured in a fracture toughness test based on WES 1108-1995 standard or ASTM E 1290, BS 7448 using a 1TCT test piece or a three-point bending test piece. And

ついで、上記した鋼材の製造方法について説明する。   Next, a method for manufacturing the above steel material will be described.

上記した組成のうちいずれかの組成を有する鋼素材(スラブ)を通常公知の溶製、凝固方法により作製し、該鋼素材(スラブ)を所定の加熱温度に加熱したのち熱間圧延を施し所定寸法の鋼材(鋼板)とする。   A steel material (slab) having any one of the above-mentioned compositions is produced by a generally known melting and solidifying method, and the steel material (slab) is heated to a predetermined heating temperature and then hot-rolled to be predetermined. Dimensional steel (steel plate).

鋼素材(スラブ)の加熱温度は、1350℃以下とする。   The heating temperature of steel material (slab) shall be 1350 ℃ or less.

加熱温度が1350℃を超えると結晶粒が粗大化するうえ、加熱炉の損耗が著しくなるため、加熱温度は1350℃以下に限定する。なお、過熱温度の下限については特に限定されないが、後述するようにAr3 変態点以上の温度で圧延することが可能なように加熱する必要がある。 When the heating temperature exceeds 1350 ° C., the crystal grains become coarse and the wear of the heating furnace becomes significant, so the heating temperature is limited to 1350 ° C. or less. The lower limit of the superheating temperature is not particularly limited, but it is necessary to heat so that rolling can be performed at a temperature equal to or higher than the Ar 3 transformation point as will be described later.

上記加熱温度に加熱された鋼素材( スラブ) は、ついでAr3変態点以上の温度を圧延終了温度とする熱間圧延を施され、製品厚さの鋼素材( 鋼板) とされる。圧延終了温度がAr3変態点未満では、2相域圧延となるため靱性が劣化したり材質の異方性が強くなる。このため、熱間圧延の圧延終了温度はAr3変態点以上とするのが望ましい。 The steel material (slab) heated to the above heating temperature is then subjected to hot rolling with the temperature not lower than the Ar 3 transformation point being the rolling end temperature, and the steel material (steel plate) having a product thickness is obtained. If the rolling end temperature is less than the Ar 3 transformation point, the toughness is deteriorated and the material anisotropy is increased because of the two-phase rolling. For this reason, it is desirable that the rolling end temperature of the hot rolling is not less than the Ar 3 transformation point.

なお、粒子径100 〜200nm のVN析出物の密度を105 個/mm3 未満とするには、熱間圧延の圧延終了温度を950 ℃以上とし、圧延終了後3℃/s以上の冷却速度でAr3変態点まで冷却し、その後空冷、好ましくは0.09℃/s以上1℃/s以下の冷却速度で冷却、するのがよい。熱間圧延の終了温度が950 ℃未満では、亀裂先端の均一化にあまり効果のない粒子径の大きいVNが圧延中に多量に析出する。このため、熱間圧延の圧延終了温度は950 ℃以上とするのが好ましい。また、圧延終了後Ar3変態点までの冷却速度が3℃/s未満では、オーステナイト中に析出するVNが増加し、結果として亀裂先端の均一化があまり効果がない粒子径の大きなVNが増加するため、所望のVN析出物の分散が得られない。また、Ar3変態点以下の温度での冷却は、空冷でよいが、厚鋼板で空冷とすると、冷却速度が遅くなり、VN析出物の好適な分散が得られなくなる懸念がある場合には、1℃/s以下の冷却速度で冷却、するのがよい。 In order to reduce the density of VN precipitates with a particle size of 100 to 200 nm to less than 10 5 pieces / mm 3 , the rolling end temperature of hot rolling is set to 950 ° C. or higher, and the cooling rate is 3 ° C./s or higher after rolling. And then cooled to the Ar 3 transformation point, followed by air cooling, preferably at a cooling rate of 0.09 ° C./s to 1 ° C./s. If the end temperature of hot rolling is less than 950 ° C., a large amount of VN having a large particle size that is not very effective in making the crack tip uniform is precipitated during rolling. For this reason, it is preferable that the rolling end temperature of hot rolling be 950 ° C. or higher. In addition, when the cooling rate to the Ar 3 transformation point after rolling is less than 3 ° C / s, the VN precipitated in the austenite increases, and as a result, the VN with a large particle size that does not have much effect on the uniform crack tip increases. Therefore, the desired VN precipitate dispersion cannot be obtained. In addition, cooling at a temperature below the Ar 3 transformation point may be air cooling, but if air cooling is performed with a thick steel plate, the cooling rate becomes slow, and there is a concern that a suitable dispersion of VN precipitates cannot be obtained. It is better to cool at a cooling rate of 1 ° C./s or less.

また、圧延終了温度を950 ℃以上として、圧延終了後にAr3変態点まで3℃/s以上の冷却速度で冷却するとオーステナイト中のVNが少なめとなり、フェライト粒径が大きめとなる場合がある。このような場合は、圧延終了温度を950 ℃以上とする第1段の熱間圧延を施したのち、熱間圧延を一時中断し、Ar3変態点まで3℃/s以上の冷却速度で冷却し、ついで第2段の熱間圧延を施し所定の板厚としたのち空冷0.09℃/s以上1℃/s以下の冷却速度で冷却)してもよい。ここで、Ar3変態点以下の温度での第2段の熱間圧延は、2相域圧延となるため、加工歪が残留するような強圧下の加工とすると靱性が劣化したり、材質の異方性が強くなる。このため、2相域の圧延での圧下率は20%以下に留めるのが好ましい。また、第2段の熱間圧延終了後の冷却は、空冷でよいが、厚鋼板で空冷とすると、冷却速度が遅くなり、VN析出物の好適な分散が得られなくなる懸念がある場合には、0.09℃/s以上1℃/s以下の冷却速度で冷却するのがよい。 Further, when the rolling end temperature is set to 950 ° C. or higher and cooling is performed at a cooling rate of 3 ° C./s or higher to the Ar 3 transformation point after the rolling ends, VN in the austenite is decreased, and the ferrite grain size may be increased. In such a case, after performing the first stage of hot rolling at a rolling end temperature of 950 ° C or higher, the hot rolling is temporarily interrupted and cooled to the Ar 3 transformation point at a cooling rate of 3 ° C / s or higher. Then, after the second stage of hot rolling is performed to obtain a predetermined thickness, air cooling ( cooling at a cooling rate of 0.09 ° C./s to 1 ° C./s) may be performed. Here, the second stage of hot rolling at a temperature below the Ar 3 transformation point is a two-phase region rolling. Therefore, if the processing is performed under a high pressure such that processing strain remains, the toughness deteriorates or the material Anisotropy increases. For this reason, it is preferable that the rolling reduction in rolling in the two-phase region is 20% or less. The cooling after the end of the second stage of hot rolling may be air cooling. However, if air cooling is performed with a thick steel plate, the cooling rate becomes slow, and there is a concern that suitable dispersion of VN precipitates cannot be obtained. It is better to cool at a cooling rate of 0.09 ° C./s or more and 1 ° C./s or less.

(実施例1)
表1に示す組成の鋼を転炉で溶製し、連続鋳造法で240 〜310mm のスラブとした。これらスラブを表2に示す熱間圧延条件と、冷却条件で所定板厚の厚鋼板製品とした。これら厚鋼板について、組織観察、VN析出物の析出量および粒径分布、および引張特性、シャルピー衝撃特性、破壊靱性の機械的特性を調査した。
Example 1
Steel having the composition shown in Table 1 was melted in a converter, and slabs of 240 to 310 mm were formed by a continuous casting method. These slabs were made into thick steel plate products having a predetermined plate thickness under the hot rolling conditions shown in Table 2 and cooling conditions. These thick steel plates were examined for structure observation, precipitation amount and particle size distribution of VN precipitates, and mechanical properties such as tensile properties, Charpy impact properties, and fracture toughness.

組織観察は、光学顕微鏡および電子顕微鏡により行い、フェライトの面積率、結晶粒度を測定した。結晶粒度の測定は、JIS G 0552の規定に準拠して、フェライトの面積率は画像処理装置により行った。   The structure was observed with an optical microscope and an electron microscope, and the area ratio and crystal grain size of ferrite were measured. The crystal grain size was measured according to JIS G 0552, and the area ratio of ferrite was measured by an image processing apparatus.

引張試験は、板厚50mm未満の鋼板については1/2t部から、板厚50mm未満の鋼板については1/4t部から、圧延方向にJIS 4 号引張試験片を採取し、変形速度0.03mm/sの静的変形と、変形速度1〜1000mm/sの高速変形における強度および降伏比を求めた。   Tensile tests were conducted from 1/2 t part for steel sheets with a thickness of less than 50 mm, and 1/4 t part for steel sheets with a thickness of less than 50 mm. The strength and yield ratio in static deformation of s and high-speed deformation at a deformation speed of 1-1000 mm / s were obtained.

シャルピー衝撃試験は、板厚50mm未満の鋼板については1/2t部から、板厚50mm未満の鋼板については1/4t部から、圧延方向にJIS 4 号衝撃試験片を採取し、0℃における吸収エネルギーvE0 と破面遷移温度vTrsを求めた。 For Charpy impact test, JIS No. 4 impact test specimens were collected in the rolling direction from 1 / 2t part for steel sheets with a thickness of less than 50mm, and 1 / 4t part for steel sheets with a thickness of less than 50mm, and absorbed at 0 ° C. Energy vE 0 and fracture surface transition temperature vTrs were obtained.

破壊靱性試験は、板厚50mm未満の鋼板については1/2t部から、板厚50mm未満の鋼板については1/4t部から、圧延方向にWES 1108-1995 の規定に準拠した1TCTコンパクト破壊靱性試験片を採取し、WES 1108-1995 の規定に準拠して、変形速度0.03mm/sの静的変形と、変形速度1〜1000mm/sの高速変形における破壊靱性値(限界CTOD)を、試験温度0℃で求めた。   Fracture toughness test starts from 1 / 2t for steel plates with a thickness of less than 50mm, and 1 / 4t for steel plates with a thickness of less than 50mm, and is a 1TCT compact fracture toughness test in accordance with WES 1108-1995 regulations in the rolling direction. Samples were taken, and the fracture toughness value (limit CTOD) for static deformation at a deformation rate of 0.03 mm / s and high-speed deformation at a deformation rate of 1 to 1000 mm / s in accordance with the provisions of WES 1108-1995 was measured at the test temperature. It calculated | required at 0 degreeC.

これらの結果を表2および3に示す。   These results are shown in Tables 2 and 3.

Figure 0003858907
Figure 0003858907

Figure 0003858907
Figure 0003858907

Figure 0003858907
Figure 0003858907

Figure 0003858907
Figure 0003858907

本発明範囲の厚鋼板(本発明例)は、高速変形においても0℃における限界CTODが0.1mm 以上の優れた破壊靱性を有しており、高速変形における降伏比も80%以下となり、高速変形下でも高い変形能を有していることがわかる。一方、本発明の範囲を外れる比較例は、1〜1000mmの高速変形において0℃における限界CTODが0.1mm 以上を安定して有することはなく、変形速度が高くなると限界CTODが低下し、破壊靱性が劣化している。
(実施例2)
表2に示す鋼板No. 5、No.11 、No.15 、No.17 、No.19 、No.23 、No.25 を用い、入熱25kJ/cm のCO2 溶接により、開先形状をV型開先とする多層盛溶接継手を作製した。
Thick steel plates within the scope of the present invention (examples of the present invention) have excellent fracture toughness with a critical CTOD at 0 ° C of 0.1 mm or more even at high speed deformation, and the yield ratio at high speed deformation is 80% or less, and high speed deformation. It can be seen that it has high deformability even below. On the other hand, the comparative example out of the scope of the present invention does not stably have a critical CTOD of 0.1 mm or more at 0 ° C. in high-speed deformation of 1 to 1000 mm, and the critical CTOD decreases as the deformation speed increases, and fracture toughness Has deteriorated.
(Example 2)
Using steel plate No. 5, No. 11, No. 15, No. 17, No. 19, No. 23, No. 25 shown in Table 2, CO 2 welding with a heat input of 25 kJ / cm gives the groove shape. A multi-layer welded joint with a V-shaped groove was produced.

これら溶接継手について、シャルピー衝撃特性および破壊靱性を調査した。なお、ノッチ位置は、フュージョンライン(BOND) およびフュージョンラインから1mmの熱影響部(HAZ 1mm)とした。   For these welded joints, Charpy impact properties and fracture toughness were investigated. The notch position was the fusion line (BOND) and the heat affected zone (HAZ 1 mm) 1 mm from the fusion line.

シャルピー衝撃試験は、板厚50mm未満の鋼板については1/2t部から、板厚50mm以上の鋼板については1/4t部から、圧延方向にJIS 4 号衝撃試験片を採取し、0℃における吸収エネルギーvE0 と破面遷移温度vTrsを求めた。 For Charpy impact test, JIS No. 4 impact test specimens were collected in the rolling direction from 1 / 2t part for steel sheets with a thickness of less than 50mm and 1 / 4t part for steel sheets with a thickness of 50mm or more, and absorbed at 0 ° C. Energy vE 0 and fracture surface transition temperature vTrs were obtained.

破壊靱性試験は、板厚50mm未満の鋼板については1/2t部から、板厚50mm以上の鋼板については1/4t部から、圧延方向にWES 1108-1995 の規定に準拠した1TCTコンパクト破壊靱性試験片を採取し、WES 1108-1995 の規定に準拠して、変形速度0.03mm/sの静的変形と、変形速度1〜1000mm/sの高速変形における破壊靱性値(限界CTOD)を、試験温度0℃で求めた。   Fracture toughness test starts from 1 / 2t for steel sheets with a thickness of less than 50mm, and 1 / 4t for steel sheets with a thickness of 50mm or more. Samples were taken, and the fracture toughness value (limit CTOD) for static deformation at a deformation rate of 0.03 mm / s and high-speed deformation at a deformation rate of 1 to 1000 mm / s in accordance with the provisions of WES 1108-1995 was measured at the test temperature. It calculated | required at 0 degreeC.

それらの結果を表4に示す。   The results are shown in Table 4.

Figure 0003858907
Figure 0003858907

本発明例は、ノッチ位置がBONDおよびHAZ 1mmともに、静的変形および高速変形における限界CTODが0.1mm 以上の優れた破壊靱性を有している。このように、本発明の鋼板は溶接継手部も優れた高速変形下における破壊靱性を有している。一方、本発明の範囲を外れる比較例は、変形速度が高くなると限界CTOD0.1mm 未満と低下し、破壊靱性が劣化している。   The example of the present invention has excellent fracture toughness where the notch position is BOND and HAZ 1 mm, and the critical CTOD in static deformation and high-speed deformation is 0.1 mm or more. Thus, the steel plate of the present invention has fracture toughness under high-speed deformation with excellent welded joints. On the other hand, in the comparative example outside the scope of the present invention, when the deformation speed is increased, the limit CTOD is less than 0.1 mm and the fracture toughness is deteriorated.

Claims (6)

重量%で、
C:0.04〜0.18%、 Si:0.60%以下、
Mn:0.80〜1.80%、 P:0.030 %以下、
S:0.015 %以下、 V:0.04〜0.15%、
N:0.0050〜0.0150%を含み、さらに、
Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ下記(1)式で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材を、1350℃以下に加熱したのち、圧延終了温度をAr3変態点以上とする熱間圧延を施し、その後0.09℃/s以上1℃/s以下の冷却速度で冷却することを特徴とする耐地震特性に優れた構造用鋼材(但し、鉄筋用鋼材を除く)の製造方法。

Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%)
% By weight
C: 0.04 to 0.18%, Si: 0.60% or less,
Mn: 0.80 to 1.80%, P: 0.030% or less,
S: 0.015% or less, V: 0.04-0.15%,
N: 0.0050-0.0150% included,
It contains one or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%, and Ceq defined by the following formula (1) is 0.34 to 0.48%, and the balance Fe and inevitable impurities After heating the steel material having the composition consisting of 1 to 350 ° C or less, it is hot-rolled at a rolling end temperature of Ar 3 transformation point or higher, and then cooled at a cooling rate of 0.09 ° C / s or more and 1 ° C / s or less. A method for producing structural steel materials excellent in earthquake resistance (excluding steel materials for reinforcing bars) .
Record
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Here, C, Si, Mn, V, Ni, Cr, Mo: Content of each element (wt%)
重量%で、
C:0.04〜0.18%、 Si:0.60%以下、
Mn:0.80〜1.80%、 P:0.030 %以下、
S:0.015 %以下、 V:0.04〜0.15%、
N:0.0050〜0.0150%を含み、さらに、
Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ下記(1)式で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材を、1350℃以下に加熱したのち、圧延終了温度を950 ℃以上とする熱間圧延を施し、ついで3℃/s以上の冷却速度でAr3変態点まで冷却し、その後0.09℃/s以上1℃/s以下の冷却速度で冷却することを特徴とする耐地震特性に優れた構造用鋼材(但し、鉄筋用鋼材を除く)の製造方法。

Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%)
% By weight
C: 0.04 to 0.18%, Si: 0.60% or less,
Mn: 0.80 to 1.80%, P: 0.030% or less,
S: 0.015% or less, V: 0.04-0.15%,
N: 0.0050-0.0150% included,
It contains one or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%, and Ceq defined by the following formula (1) is 0.34 to 0.48%, and the balance Fe and inevitable impurities After heating a steel material having a composition of 1350 ° C. or less, it is hot-rolled at a rolling end temperature of 950 ° C. or more, then cooled to an Ar 3 transformation point at a cooling rate of 3 ° C./s or more. A method for producing structural steel materials (excluding steel materials for reinforcing bars) with excellent earthquake resistance, characterized by cooling at a cooling rate of 0.09 ° C / s to 1 ° C / s.
Record
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Here, C, Si, Mn, V, Ni, Cr, Mo: Content of each element (wt%)
重量%で、
C:0.04〜0.18%、 Si:0.60%以下、
Mn:0.80〜1.80%、 P:0.030 %以下、
S:0.015 %以下、 V:0.04〜0.15%、
N:0.0050〜0.0150%を含み、さらに、
Al:0.005 〜0.050 %およびTi:0.005 〜0.050 %のうちの1種または2種を含有し、かつ下記(1)式で定義されるCeqが0.34〜0.48%であり、残部Feおよび不可避的不純物からなる組成の鋼素材を、1350℃以下に加熱し、圧延終了温度を950 ℃以上とする第1段の熱間圧延を施したのち、熱間圧延を一時中断し、950 ℃からAr3変態点まで3℃/s以上の冷却速度で冷却し、ついで第2段の熱間圧延を施し所定の板厚としたのち0.09℃/s以上1℃/s以下の冷却速度で冷却することを特徴とする耐地震特性に優れた構造用鋼材(但し、鉄筋用鋼材を除く)の製造方法。

Ceq=C+Si/24 +Mn/6+V/14 +Ni/40 +Cr/5+Mo/4 ……(1)
ここで、C、Si、Mn、V、Ni、Cr、Mo:各元素の含有量(重量%)
% By weight
C: 0.04 to 0.18%, Si: 0.60% or less,
Mn: 0.80 to 1.80%, P: 0.030% or less,
S: 0.015% or less, V: 0.04-0.15%,
N: 0.0050-0.0150% included,
It contains one or two of Al: 0.005 to 0.050% and Ti: 0.005 to 0.050%, and Ceq defined by the following formula (1) is 0.34 to 0.48%, and the balance Fe and inevitable impurities The steel material with the composition is heated to 1350 ° C or lower, and after the first stage of hot rolling with a rolling end temperature of 950 ° C or higher, the hot rolling is temporarily suspended, and the Ar 3 transformation starts at 950 ° C. It is cooled to a point at a cooling rate of 3 ° C / s or higher, then hot rolled in the second stage to a predetermined thickness, and then cooled at a cooling rate of 0.09 ° C / s or higher and 1 ° C / s or lower. The manufacturing method of structural steel materials (excluding steel materials for reinforcing bars) with excellent earthquake resistance.
Record
Ceq = C + Si / 24 + Mn / 6 + V / 14 + Ni / 40 + Cr / 5 + Mo / 4 (1)
Here, C, Si, Mn, V, Ni, Cr, Mo: Content of each element (wt%)
前記組成が、さらに重量%で、
Cu:0.05〜0.60%、Ni:0.05〜0.60%、Cr:0.05〜0.50%、Mo:0.02〜0.20%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1ないし3のいずれかに記載の構造用鋼材の製造方法。
The composition is further weight percent,
Cu: 0.05~0.60%, Ni: 0.05~0.60 %, Cr: 0.05~0.50%, Mo: claim 1, characterized in that it contains one or more selected from among 0.02 to 0.20% The manufacturing method of the structural steel materials in any one of thru | or 3 .
前記組成が、さらに重量%で、
Nb:0.003 〜0.030 %を含有することを特徴とする請求項1ないし4のいずれかに記載の構造用鋼材の製造方法。
The composition is further weight percent,
Nb: 0.003 manufacturing method of structural steel according to any one of claims 1 to 4, characterized in that it contains 0.030%.
前記組成が、さらに重量%で、
B:0.0002〜0.0020%、REM :0.0010〜0.0200%、Ca:0.0010〜0.010 %のうちから選ばれた1種または2種以上を含有することを特徴とする請求項ないしのいずれかに記載の構造用鋼材の製造方法。
The composition is further weight percent,
B: 0.0002~0.0020%, REM: 0.0010~0.0200 %, Ca: claims 1, characterized in that it contains one or more selected from among 0.0010 to 0.010% according to any one of 5 Manufacturing method for structural steel.
JP2004094210A 2004-03-29 2004-03-29 Manufacturing method of structural steel materials with excellent earthquake resistance Expired - Fee Related JP3858907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004094210A JP3858907B2 (en) 2004-03-29 2004-03-29 Manufacturing method of structural steel materials with excellent earthquake resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004094210A JP3858907B2 (en) 2004-03-29 2004-03-29 Manufacturing method of structural steel materials with excellent earthquake resistance

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP07651598A Division JP3567726B2 (en) 1998-03-09 1998-03-09 Structural steel excellent in earthquake resistance and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JP2004232091A JP2004232091A (en) 2004-08-19
JP3858907B2 true JP3858907B2 (en) 2006-12-20

Family

ID=32959864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004094210A Expired - Fee Related JP3858907B2 (en) 2004-03-29 2004-03-29 Manufacturing method of structural steel materials with excellent earthquake resistance

Country Status (1)

Country Link
JP (1) JP3858907B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101205144B1 (en) 2010-06-28 2012-11-26 현대제철 주식회사 H-steel for building structure and method for producing the same
KR101917453B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent ultra low-temperature toughness and method for manufacturing same
KR101917454B1 (en) * 2016-12-22 2018-11-09 주식회사 포스코 Steel plate having excellent high-strength and high-toughness and method for manufacturing same
WO2019122949A1 (en) * 2017-12-18 2019-06-27 Arcelormittal Steel section having a thickness of at least 100mm and method of manufacturing the same
KR102418039B1 (en) * 2020-08-12 2022-07-07 현대제철 주식회사 Ultra high strength steel deformed bar and manufacturing method thereof
JP2022074057A (en) * 2020-10-29 2022-05-17 Jfeスチール株式会社 Projecting h-beam and method for producing the same
CN113913696B (en) * 2021-10-13 2022-11-25 新余钢铁股份有限公司 420MPa grade high-rise building steel plate and production method thereof

Also Published As

Publication number Publication date
JP2004232091A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP5079419B2 (en) Steel for welded structure with excellent toughness of weld heat affected zone, method for producing the same, and method for producing welded structure
US10023946B2 (en) Thick steel sheet having excellent CTOD properties in multilayer welded joints, and manufacturing method for thick steel sheet
JP6435122B2 (en) Thick steel plate for cold-pressed square steel pipe, cold-pressed square steel pipe, and welding method
JP5842314B2 (en) High heat input welding steel
WO2012060405A1 (en) High-strength steel sheet and method for producing same
JP5407478B2 (en) High-strength thick steel plate with excellent toughness of heat-affected zone of single layer large heat input welding and method for producing the same
JP7262288B2 (en) High-strength low-yield-ratio thick steel plate with excellent toughness of base metal and weld heat-affected zone and small acoustic anisotropy, and its manufacturing method
JP5365145B2 (en) Low yield ratio steel sheet for construction excellent in toughness of large heat input welds and method for producing the same
JP2007177325A (en) High tensile strength thick steel plate having low yield ratio and its production method
JP2011214053A (en) Low-yield-ratio thick steel plate for building structure superior in toughness at ultrahigh-heat-input weld zone, and method for manufacturing the same
JP5320274B2 (en) Thick steel plate with excellent toughness and strength uniformity in the heat affected zone
JP5151693B2 (en) Manufacturing method of high-strength steel
JP5435837B2 (en) Welded joint of high-tensile thick steel plate
JP2008231541A (en) High strength cold rolled steel sheet and manufacturing method thereof
JP3858907B2 (en) Manufacturing method of structural steel materials with excellent earthquake resistance
JP4279231B2 (en) High-strength steel material with excellent toughness in weld heat affected zone
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP6400517B2 (en) High strength steel material with excellent fatigue crack propagation resistance and method for producing the same
JP2013049894A (en) High toughness steel for heavy heat input welding and method for manufacturing the same
JP3214281B2 (en) Low-temperature building steel
JP3567726B2 (en) Structural steel excellent in earthquake resistance and method of manufacturing the same
JP6308148B2 (en) Ultra-high heat input welding heat-affected zone toughness excellent low-yield-ratio high-strength steel sheet for building structures and manufacturing method thereof
JP2020204091A (en) High strength steel sheet for high heat input welding
JP5434437B2 (en) High heat input welding steel
JP2002371338A (en) Steel superior in toughness at laser weld

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees