JP3858302B2 - Steel plate for heat treatment with excellent oxide scale adhesion - Google Patents

Steel plate for heat treatment with excellent oxide scale adhesion Download PDF

Info

Publication number
JP3858302B2
JP3858302B2 JP09056296A JP9056296A JP3858302B2 JP 3858302 B2 JP3858302 B2 JP 3858302B2 JP 09056296 A JP09056296 A JP 09056296A JP 9056296 A JP9056296 A JP 9056296A JP 3858302 B2 JP3858302 B2 JP 3858302B2
Authority
JP
Japan
Prior art keywords
heat treatment
scale
weight
steel plate
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09056296A
Other languages
Japanese (ja)
Other versions
JPH09256106A (en
Inventor
浩次 面迫
昭史 平松
誠 秋月
利郎 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP09056296A priority Critical patent/JP3858302B2/en
Publication of JPH09256106A publication Critical patent/JPH09256106A/en
Application granted granted Critical
Publication of JP3858302B2 publication Critical patent/JP3858302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、酸洗鋼板を大気中又は非還元性雰囲気で加熱したときに生成する酸化スケールが焼入れ焼戻し等の熱処理中に下地鋼から剥離しない熱処理用鋼板に関する。
【0002】
【従来の技術】
丸鋸用基板,ギア,ワッシャー等に使用される鋼板は、熱処理特性は勿論、高い寸法精度や良好な表面肌が要求される。そのため、熱処理工程ではスケールに起因する疵の発生を極力防止する必要がある。
通常の熱処理では、熱延時に生成した黒皮スケールが除去された鋼板が使用され、非酸化性雰囲気中で処理されている。しかし、熱処理コストを低減するため、大気雰囲気中での加熱が多用されるようになってきた。大気雰囲気中で鋼板を加熱すると、鋼板表面に酸化スケールが発生する。酸化スケールは、後続する焼入れ時に下地鋼から剥離し、プレステンパー等の次工程で押込み疵を発生させる原因となる。押込み疵がある鋼板では、熱処理後の鋼板表面の研削代が嵩み、作業コストを上昇させる。スケール疵の程度が著しいものは、寸法精度の面から製品として使用できず、不適合になる場合がある。しかも、スケール剥離があると、飛散したスケールによって作業環境も悪化する。
【0003】
このようなことから、酸化スケールの剥離を防止するため、特開昭63−179056号公報,特開平2−34793号公報,特開平2−38522号公報,特開平2−185915号公報,特開平5−195055号公報等で酸化スケールの密着性を向上させる方法が種々紹介されている。これらは、熱延過程で急冷により熱延黒皮スケールを薄くし、巻取り温度の低下や非酸化性雰囲気中での冷却によってスケール組成を密着性の良好なFe34 にしたものである。何れも熱延鋼板状態でのスケール密着性を改善しているが、熱処理時に生成するスケールの密着性については触れられていない。また、表面に凹凸をつけたワークロールによって熱延鋼板のスケール密着性を向上させることが特公平2−182302号公報に紹介されている。更に、特開平2−104625号公報では、Si含有量を高くすることにより、熱処理時の加熱によるFe34 からFeOへの変態を抑制している。
【0004】
【発明が解決しようとする課題】
特開昭63−179056号公報,特開平2−34793号公報,特開平2−38522号公報,特開平2−185915号公報,特開平5−195055号公報等で紹介されている方法は、熱延黒皮ままで使用される製品に対しては有効である。このような製品としては、熱処理を施すことなく切削又は打抜き加工により製品とされる建築用材料,自動車用材料等がある。
しかし、これらの方法は、熱処理用鋼板には不向きである。熱処理用鋼板では、黒皮スケールままでは熱処理時の加熱により表面脱炭が生じることや、酸化スケールが厚くなることによって部分的な剥離が生じることから、押込み疵を発生させるためである。また、酸洗して使用する場合でも、熱延板自体のスケール密着性がよいことから逆に酸洗効率が低下し、スケール密着性のよいFe34 を除去するために熱処理時のスケール密着性が確保されない。
【0005】
特公平2−182302号公報の方法では、ワークロール表面に凹凸を付ける加工が必要とされるため、ロールの製造コストが高くなる。しかも、実際の操業では種々の鋼種を熱延するため、ロールの摩耗を考慮すると安定した製品を得ることが難しくなる。また、鋼種を限定した場合でも、ロール交換に要する時間がかかり、ロール原単位が上昇する。
特開平2−104625号公報のように、Si含有量を高くした熱処理用鋼板では、熱延鋼板の表面に黒皮が付着しているため、中〜高炭素鋼の場合にはスケール中の酸素による表面脱炭が生じ、焼入れ不足が発生し、必要な熱処理特性が得られないことがある。また、熱処理温度が950℃以上になると、Siによる変態抑制効果が希薄になり、生成スケールがFeOになって、スケールが剥離することもある。
本発明は、このような問題を解消すべく案出されたものであり、粒界酸化により地鉄界面に形成される凹部の深さ及び個数を制御することにより、大気雰囲気或いは酸化性雰囲気中における熱処理時に生成する酸化スケールの密着性を向上させ、焼入れ焼戻しの熱処理工程で酸化スケールが剥離することがない熱処理用鋼板を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の熱処理用鋼板は、その目的を達成するため、C:0.3〜1.2重量%,Si:0.1〜1.8重量%,Mn:0.3〜2.0重量%に加え、Cr:0.1〜2重量%,Ni:0.1〜2重量%を単独又は複合して含み、残部がFe及び不可避的不純物からなる組成をもち、鋼板表層部の粒界酸化部の酸洗により形成される開孔凹部の深さが3〜20μmであり、且つ前記酸洗により形成される開孔凹部の個数が1000μm線分長さ当り10〜200個であることを特徴とする。
なかでも、熱処理時の加熱により生成した酸化スケールの厚みに対する酸洗により形成される開孔凹部の深さの比を1以上にしたものが好ましい。
この熱処理用鋼板は、特に丸鋸用基板やギヤ,ワッシャー等の焼入れ焼戻し等の熱処理を大気雰囲気中の加熱で行う場合に最適な熱処理用鋼板である。
【0007】
【作用】
本発明者等は、熱延鋼板の表面に形成される酸化スケールの密着性に及ぼす要因を種々調査・研究した。その結果、粒界酸化よって地鉄界面に付与された凹凸の深さや個数がスケール密着性に大きな影響を及ぼしていることを見い出した。すなわち、粒界酸化に起因する凹部によってスケール密着性が改善されることは、凹部のスケールアンカー効果が奏せられると共に、スケール剥離の伝播が凹部によって抑制されることが原因であると推察される。これにより、大気雰囲気中での加熱によって生成される酸化スケールは、焼入れ焼戻し等の熱処理工程で地鉄から剥離することがなくなる。
このような観点から、本発明では、対象とする鋼板の合金成分や酸洗で形成される開孔凹部の深さ,個数等を規定している。
【0008】
C:0.3〜1.2重量%
熱処理製品の強度を確保するために、0.3重量%以上,望ましくは0.4重量%以上のCが必要である。しかし、1.2重量%を超える多量のCが含まれると、セメンタイトの析出を抑えるために熱処理時の加熱温度を下げることが必要とされる。この場合には、熱処理加熱時に酸化スケールの生成が抑えられ、本発明を用いる必要が生じない。通常、焼入れ焼戻し等の熱処理に使用される材料としては中〜高炭素鋼板が一般的であり、そのC含有量は0.4〜1.0重量%の範囲にある。このような中〜高炭素鋼板に対しては、本発明が顕著な効果を発揮する。
Si:0.1〜1.8重量%
Mnと共に粒界酸化層を得るのに適した合金元素であるが、1.8重量%を超えるSi含有量では表面肌が劣化する。他方、0.1重量%に満たないSi含有量は、粒界酸化層を形成させる作用が小さくなる。
Mn:0.3〜2.0重量%
Siと同様に粒界酸化層を得るのに適した合金元素である。0.3重量%未満のMn含有量では焼入れ不足が生じ、2重量%を超えるMn含有量では焼き割れが発生し易くなる。
【0009】
Cr:0.1〜2重量%
粒界酸化を促進させて地鉄界面に凹凸を生成することにより、スケール密着性を向上させる有効な合金元素である。地鉄界面の凹凸生成に及ぼすCrの影響は0.1重量%以上で得られ、熱処理時のスケール剥離防止効果が顕著になる。Crの添加効果は、1重量%を超えるとほぼ飽和する。また、2重量%を超える過剰のCrを添加しても、経済的でないばかりか、却って靭性の低下を招く。
Ni:0.1〜2重量%
Niは、熱間圧延中の二次酸化によって地鉄界面に濃化する傾向を示す。濃化部分は凸状に残り、地鉄界面がミクロ的に凹凸形状になる。その結果、スケールに対するアンカー効果が増大する。このようなNiの作用は、0.1重量%以上の含有量で顕著になる。しかし、2.0重量%を超えるNi含有量は、経済的に不利となるばかりでなく、靭性,延性を低下させる原因ともなる。
他の合金元素としては、必要に応じMo,V等を含有することも可能である。
【0010】
粒界酸化部の深さ:3〜20μm
酸洗鋼板の地鉄界面の粒界酸化部の深さ及び個数は、熱処理時のスケール剥離を防止する上で極めて重要なファクターである。粒界酸化部の深さは、粒界酸化部を酸洗したときに形成される開孔凹部の深さとして測定され、3μm未満では熱処理時にスケール剥離が発生し易くなる、粒界酸化部が深いほど、アンカー効果が大きくなり、スケール密着性が向上する。しかし、粒界酸化に伴って鋼板表層部の脱炭が進行し、Si,Mn等が粒界に濃化して酸化物を生成する。そのため、粒界酸化部の深さが20μmを超えるようになると、脱炭層がそれ以上に深く進行している場合が多い。そのため、表層での焼入れ不良の原因となり、実質的な熱処理特性が得られなくなる。また、過度に粒界酸化部を深くすると、製品の表面品質が損なわれることは勿論、表面研削が必要となり、製造コストを上昇させることになる。したがって、粒界酸化に起因する凹部の深さは、3〜20μmの範囲に設定する。更に、実質的に安定した熱処理スケールの密着性を得るためには、5〜15μmの範囲が好ましい。
【0011】
粒界酸化部の個数:1000μm線分長さ当り10〜200個
酸洗鋼板の地鉄界面の1000μm線分当りの個数で、粒界酸化に起因する凹部が10個未満では、十分なアンカー効果が得られず、熱処理スケールの剥離が生じ易くなる。凹部の個数が多くなると、スケール密着性を高めるアンカー効果が向上する。しかし、200個を超える個数では、事実上フェライト粒径が5μm以下になり、熱間圧延による製造が困難になる。したがって、凹部の個数は、1000μm線分長さ当り10〜200個,好ましくは30〜50個に調整される。
【0012】
酸化スケールの厚みに対する粒界酸化部の深さの比:1以上
熱処理時の加熱温度は、中〜高炭素鋼では熱処理品の靭性を得るために、通常800〜950℃に設定されている。このとき、加熱雰囲気中の酸素濃度にもよるが、スケール厚みは1〜10μmである。1〜2μmの薄いスケールでは、剥離応力が小さく、スケール剥離が生じ難い。しかし、大半の場合、スケール厚みは2μmを超えている。このような厚みのスケールに対して有効なアンカー効果を得るためには、スケール厚みに応じて粒界酸化部の深さを設定することが必要である。スケール厚みに対する粒界酸化部の深さの比が1未満では、熱処理スケールのアンカー効果が低下する傾向を示し、スケール剥離が発生する場合がある。そのため、望ましくは、粒界酸化部の深さ/スケール厚みの比を1以上とする。
【0013】
【実施例】
表1に示した組成をもつ鋼種A〜Dのスラブを熱間圧延し、板厚3.5mmの熱延板を製造した。この熱延板を酸洗して得た熱処理用鋼板を供試材とした。なお、熱延巻取り温度を700〜500℃とし、酸洗後に焼鈍雰囲気の露点を−10〜−50℃とすることによって、粒界酸化部の深さ及び個数を調整した。
【0014】

Figure 0003858302
【0015】
各熱処理用鋼板から幅25mm及び長さ200mmの試験片を切り出し、酸素濃度を種々変更した加熱雰囲気中で加熱温度880℃,保持時間10分で加熱した後、60℃の油槽に焼入れする熱処理を施した。熱処理によって生成したスケールは、酸素濃度に応じて3.5〜12μmの範囲で変化した。
焼入れされた試験片をテープ剥離試験に供し、スケール剥離性を調査した。調査結果を、鋼板地鉄界面の凹部深さ及び1000μm線分長さ当りの凹部個数との関連で表2に示す。
【0016】
Figure 0003858302
【0017】
表2にみられるように、試験番号9〜11の比較例では、地鉄界面に粒界酸化による凹部がほとんどなく、表面が平滑であるために、焼入れ時の熱収縮によってスケール剥離が発生した。
これに対し、粒界酸化による凹部の深さ及び個数が本発明で規定した範囲にある試験番号1〜8では、スケール密着性が改善されていることが判る。特に、試験番号2,3,5,7,8では、粒界酸化による凹部の深さ/スケール厚みの比が1以上になっており、更にアンカー効果が増大してスケール剥離が発生しなかったことが示されている。
【0018】
【発明の効果】
以上に説明したように、本発明においては、粒界酸化によって生じる凹部の深さ及び個数を調整することにより、スケール剥離の伝播が凹部で抑制され、またスケール密着性をアンカー効果によって改善している。そのため、大気雰囲気或いは非還元性雰囲気中で焼入れ焼戻し等の熱処理をしても、スケール剥離を生じることなく焼入れ焼戻し等の熱処理が可能となり、従来の問題であったスケール押込み疵の発生や寸法精度の不良等が解消される。その結果、熱処理品の表面品質が向上されると共に、製造コストの低減や作業環境の悪化防止も図られる。[0001]
[Industrial application fields]
TECHNICAL FIELD The present invention relates to a steel plate for heat treatment in which an oxide scale formed when a pickled steel plate is heated in the air or in a non-reducing atmosphere does not peel from a base steel during heat treatment such as quenching and tempering.
[0002]
[Prior art]
Steel sheets used for circular saw substrates, gears, washers, etc. are required to have high dimensional accuracy and good surface texture as well as heat treatment characteristics. Therefore, it is necessary to prevent the generation of wrinkles due to scale in the heat treatment process as much as possible.
In a normal heat treatment, a steel plate from which the black scale formed during hot rolling is removed is used and treated in a non-oxidizing atmosphere. However, in order to reduce the heat treatment cost, heating in an air atmosphere has been frequently used. When a steel plate is heated in an air atmosphere, an oxide scale is generated on the surface of the steel plate. The oxide scale peels off from the base steel during the subsequent quenching and causes indentation flaws in the next process such as press tempering. In a steel plate with indentation flaws, the grinding allowance on the surface of the steel plate after the heat treatment is increased, and the working cost is increased. A scale with a significant degree of scale wrinkles cannot be used as a product in terms of dimensional accuracy and may become incompatible. Moreover, if there is scale peeling, the working environment is also deteriorated by the scattered scale.
[0003]
For this reason, in order to prevent the exfoliation of the oxide scale, JP-A-63-179056, JP-A-2-34793, JP-A-2-38522, JP-A-2-185915, JP-A-2-185915 Various methods for improving the adhesion of oxide scale are introduced in Japanese Patent Application Laid-Open No. 5-195055. These are thinned hot-rolled black scales by rapid cooling in the hot-rolling process, and made the scale composition Fe 3 O 4 with good adhesion by lowering the coiling temperature or cooling in a non-oxidizing atmosphere. . Although all have improved the scale adhesiveness in a hot-rolled steel plate state, the adhesiveness of the scale produced | generated at the time of heat processing is not touched. Japanese Patent Publication No. 2-182302 discloses that the scale adhesion of a hot-rolled steel sheet is improved by a work roll having an uneven surface. Furthermore, in JP-A-2-104625, the Si content is increased to suppress the transformation from Fe 3 O 4 to FeO due to heating during heat treatment.
[0004]
[Problems to be solved by the invention]
The methods introduced in JP-A-63-179056, JP-A-2-34793, JP-A-2-38522, JP-A-2-185915, JP-A-5-195555, etc. It is effective for products that are used as they are. Such products include building materials, automotive materials, and the like that are made into products by cutting or punching without heat treatment.
However, these methods are not suitable for heat-treating steel plates. This is because the steel plate for heat treatment causes indentation flaws because surface decarburization occurs due to heating during heat treatment in the case of the black skin scale, and partial peeling occurs due to the thickened oxide scale. In addition, even when pickled, the hot rolled sheet itself has good scale adhesion, so the pickling efficiency is reduced, and the scale during heat treatment to remove Fe 3 O 4 with good scale adhesion. Adhesion is not secured.
[0005]
In the method of Japanese Examined Patent Publication No. 2-182302, a process for forming irregularities on the surface of the work roll is required, so that the manufacturing cost of the roll becomes high. Moreover, since various steel types are hot rolled in actual operation, it is difficult to obtain a stable product in consideration of roll wear. Further, even when the steel type is limited, it takes time to replace the roll, and the roll basic unit increases.
As disclosed in JP-A-2-104625, in a steel sheet for heat treatment having a high Si content, black skin adheres to the surface of the hot-rolled steel sheet, so in the case of medium to high carbon steel, oxygen in the scale May cause surface decarburization, resulting in insufficient quenching, and the necessary heat treatment characteristics may not be obtained. Moreover, when the heat treatment temperature is 950 ° C. or higher, the effect of suppressing transformation by Si becomes dilute, the generated scale becomes FeO, and the scale may peel off.
The present invention has been devised to solve such a problem, and by controlling the depth and number of recesses formed at the interface of the iron base by grain boundary oxidation, it can be performed in an air atmosphere or an oxidizing atmosphere. An object of the present invention is to provide a steel sheet for heat treatment in which the adhesion of oxide scale produced during heat treatment is improved and the oxide scale does not peel off in the heat treatment step of quenching and tempering.
[0006]
[Means for Solving the Problems]
In order to achieve the object, the heat-treatable steel sheet according to the present invention includes C: 0.3 to 1.2% by weight, Si: 0.1 to 1.8% by weight, and Mn: 0.3 to 2.0% by weight. In addition, Cr: 0.1 to 2% by weight, Ni: 0.1 to 2% by weight, alone or in combination, the balance is composed of Fe and inevitable impurities , the grain boundary oxidation of the steel sheet surface layer portion The depth of the open recesses formed by pickling the part is 3 to 20 μm, and the number of open recesses formed by the pickling is 10 to 200 per 1000 μm line length. And
Especially, what made the ratio of the depth of the open recessed part formed by pickling with respect to the thickness of the oxide scale produced | generated by the heating at the time of heat processing to 1 or more is preferable.
This steel plate for heat treatment is an optimum steel plate for heat treatment particularly when heat treatment such as quenching and tempering of a circular saw substrate, gears, washers and the like is performed by heating in an air atmosphere.
[0007]
[Action]
The present inventors have investigated and studied various factors affecting the adhesion of oxide scale formed on the surface of a hot-rolled steel sheet. As a result, it was found that the depth and number of irregularities imparted to the iron-iron interface by grain boundary oxidation had a great influence on the scale adhesion. In other words, the improvement in scale adhesion due to the recesses due to grain boundary oxidation is presumed to be due to the fact that the scale anchor effect of the recesses is exhibited and the propagation of scale peeling is suppressed by the recesses. . Thereby, the oxide scale produced | generated by the heating in air | atmosphere does not peel from a base iron in heat processing processes, such as hardening and tempering.
From such a viewpoint, in the present invention, the alloy component of the target steel sheet, the depth, the number, and the like of the hole recesses formed by pickling are specified.
[0008]
C: 0.3 to 1.2% by weight
In order to secure the strength of the heat-treated product, 0.3% by weight or more, desirably 0.4% by weight or more is required. However, if a large amount of C exceeding 1.2% by weight is contained, it is necessary to lower the heating temperature during the heat treatment in order to suppress the precipitation of cementite. In this case, the generation of oxide scale during heat treatment heating is suppressed, and it is not necessary to use the present invention. Usually, as a material used for heat treatment such as quenching and tempering, a medium to high carbon steel plate is common, and its C content is in the range of 0.4 to 1.0% by weight. The present invention exhibits a remarkable effect for such medium to high carbon steel sheets.
Si: 0.1 to 1.8% by weight
Although it is an alloy element suitable for obtaining a grain boundary oxide layer together with Mn, when the Si content exceeds 1.8% by weight, the surface skin deteriorates. On the other hand, when the Si content is less than 0.1% by weight, the effect of forming the grain boundary oxide layer is reduced.
Mn: 0.3 to 2.0% by weight
Like Si, it is an alloy element suitable for obtaining a grain boundary oxide layer. When the Mn content is less than 0.3% by weight, quenching is insufficient, and when the Mn content exceeds 2% by weight, quenching cracks are likely to occur.
[0009]
Cr: 0.1 to 2% by weight
It is an effective alloying element that improves the adhesion of the scale by promoting grain boundary oxidation and generating irregularities at the base metal interface. The effect of Cr on the formation of irregularities at the base iron interface is obtained at 0.1% by weight or more, and the effect of preventing scale peeling during heat treatment becomes significant. The addition effect of Cr is almost saturated when it exceeds 1% by weight. Moreover, adding an excess of Cr exceeding 2% by weight is not only economical but also causes a decrease in toughness.
Ni: 0.1 to 2% by weight
Ni shows a tendency to concentrate at the base iron interface due to secondary oxidation during hot rolling. The thickened portion remains convex, and the ground iron interface becomes micro uneven. As a result, the anchor effect on the scale increases. Such an action of Ni becomes remarkable at a content of 0.1% by weight or more. However, a Ni content exceeding 2.0% by weight is not only economically disadvantageous, but also causes a decrease in toughness and ductility.
As other alloy elements, Mo, V and the like can be contained as required.
[0010]
Grain boundary oxidation depth: 3 to 20 μm
The depth and the number of grain boundary oxidation parts at the base iron interface of the pickled steel sheet are extremely important factors for preventing scale peeling during heat treatment. The depth of the grain boundary oxidation part is measured as the depth of the open recess formed when the grain boundary oxidation part is pickled. If the grain boundary oxidation part is less than 3 μm, the scale boundary is easily peeled off during heat treatment. The deeper the anchor effect, the greater the scale adhesion. However, decarburization of the steel sheet surface layer portion proceeds with the grain boundary oxidation, and Si, Mn, etc. are concentrated at the grain boundaries to generate oxides. Therefore, when the depth of the grain boundary oxidation portion exceeds 20 μm, the decarburized layer often proceeds deeper than that. For this reason, quenching defects on the surface layer are caused, and substantial heat treatment characteristics cannot be obtained. Moreover, when the grain boundary oxidation part is excessively deepened, the surface quality of the product is deteriorated, and surface grinding is required, resulting in an increase in manufacturing cost. Therefore, the depth of the concave portion due to grain boundary oxidation is set in the range of 3 to 20 μm. Furthermore, in order to obtain substantially stable heat treatment scale adhesion, a range of 5 to 15 μm is preferable.
[0011]
Number of grain boundary oxidation parts: 10 to 200 per 1000 μm line segment length The number per 1000 μm line segment of the iron-iron interface of pickled steel sheet, and less than 10 recesses due to grain boundary oxidation, sufficient anchor effect Is not obtained, and the heat treatment scale is easily peeled off. When the number of the concave portions is increased, the anchor effect for improving the scale adhesion is improved. However, when the number exceeds 200, the ferrite grain size is practically 5 μm or less, which makes it difficult to manufacture by hot rolling. Accordingly, the number of recesses is adjusted to 10 to 200, preferably 30 to 50 per 1000 μm line segment length.
[0012]
Ratio of depth of grain boundary oxidized portion to oxide scale thickness: 1 or more The heating temperature during heat treatment is usually set to 800 to 950 ° C. in order to obtain the toughness of the heat treated product in medium to high carbon steel. At this time, although depending on the oxygen concentration in the heating atmosphere, the scale thickness is 1 to 10 μm. With a thin scale of 1 to 2 μm, the peeling stress is small, and scale peeling hardly occurs. However, in most cases, the scale thickness exceeds 2 μm. In order to obtain an effective anchor effect with respect to such a thickness scale, it is necessary to set the depth of the grain boundary oxidation portion according to the scale thickness. If the ratio of the depth of the grain boundary oxidation portion to the scale thickness is less than 1, the anchor effect of the heat treatment scale tends to be reduced, and scale peeling may occur. Therefore, desirably, the ratio of the depth / scale thickness of the grain boundary oxidized portion is set to 1 or more.
[0013]
【Example】
Slabs of steel types A to D having the compositions shown in Table 1 were hot-rolled to produce hot rolled sheets having a thickness of 3.5 mm. A steel sheet for heat treatment obtained by pickling the hot-rolled sheet was used as a test material. In addition, the depth and number of grain boundary oxidation parts were adjusted by setting the hot rolling coiling temperature to 700 to 500 ° C. and setting the dew point of the annealing atmosphere to −10 to −50 ° C. after pickling.
[0014]
Figure 0003858302
[0015]
A test piece having a width of 25 mm and a length of 200 mm was cut out from each steel plate for heat treatment, heated in a heating atmosphere with various changes in oxygen concentration at a heating temperature of 880 ° C. and a holding time of 10 minutes, and then quenched in an oil bath at 60 ° C. gave. The scale produced by the heat treatment changed in the range of 3.5 to 12 μm depending on the oxygen concentration.
The quenched specimen was subjected to a tape peeling test to investigate scale peelability. The results of the investigation are shown in Table 2 in relation to the depth of the recesses at the steel plate iron interface and the number of recesses per 1000 μm line segment length.
[0016]
Figure 0003858302
[0017]
As seen in Table 2, in the comparative examples of Test Nos. 9 to 11, scale peeling occurred due to thermal contraction at the time of quenching because there were almost no recesses due to grain boundary oxidation at the base iron interface and the surface was smooth. .
In contrast, in Test Nos. 1 to 8 in which the depth and number of the recesses due to grain boundary oxidation are in the range defined in the present invention, it can be seen that the scale adhesion is improved. In particular, in Test Nos. 2, 3, 5, 7, and 8, the ratio of the depth of the concave portion / scale thickness due to grain boundary oxidation was 1 or more, and the anchor effect was further increased, so that scale peeling did not occur. It has been shown.
[0018]
【The invention's effect】
As described above, in the present invention, by adjusting the depth and the number of recesses caused by grain boundary oxidation, propagation of scale peeling is suppressed by the recesses, and scale adhesion is improved by the anchor effect. Yes. Therefore, even if heat treatment such as quenching and tempering is performed in the air atmosphere or non-reducing atmosphere, it is possible to perform heat treatment such as quenching and tempering without causing scale peeling. The defect etc. are eliminated. As a result, the surface quality of the heat-treated product is improved, and the manufacturing cost is reduced and the working environment is prevented from deteriorating.

Claims (2)

C:0.3〜1.2重量%,Si:0.1〜1.8重量%,Mn:0.3〜2.0重量%に加え、Cr:0.1〜2重量%,Ni:0.1〜2重量%を単独又は複合して含み、残部がFe及び不可避的不純物からなる組成をもち、鋼板表層部の粒界酸化部の酸洗により形成される開孔凹部の深さが3〜20μmであり、且つ前記酸洗により形成される開孔凹部の個数が1000μm線分長さ当り10〜200個であることを特徴とする酸化スケール密着性に優れた熱処理用鋼板。C: 0.3 to 1.2% by weight, Si: 0.1 to 1.8% by weight, Mn: 0.3 to 2.0% by weight, Cr: 0.1 to 2% by weight, Ni: 0.1 to 2 wt% is contained alone or in combination, the balance is composed of Fe and inevitable impurities, and the depth of the open recess formed by pickling of the grain boundary oxidation portion of the steel plate surface layer portion is A steel plate for heat treatment excellent in oxide scale adhesion, characterized in that the number of hole recesses formed by pickling is 3 to 20 µm and the number of open recesses is 10 to 200 per 1000 µm line segment length. 熱処理時の加熱により生成した酸化スケールの厚みに対する酸洗により形成される開孔凹部の深さの比が1以上である請求項1記載の熱処理用鋼板。  The steel sheet for heat treatment according to claim 1, wherein the ratio of the depth of the hole recess formed by pickling to the thickness of the oxide scale generated by heating during the heat treatment is 1 or more.
JP09056296A 1996-03-19 1996-03-19 Steel plate for heat treatment with excellent oxide scale adhesion Expired - Lifetime JP3858302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09056296A JP3858302B2 (en) 1996-03-19 1996-03-19 Steel plate for heat treatment with excellent oxide scale adhesion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09056296A JP3858302B2 (en) 1996-03-19 1996-03-19 Steel plate for heat treatment with excellent oxide scale adhesion

Publications (2)

Publication Number Publication Date
JPH09256106A JPH09256106A (en) 1997-09-30
JP3858302B2 true JP3858302B2 (en) 2006-12-13

Family

ID=14001874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09056296A Expired - Lifetime JP3858302B2 (en) 1996-03-19 1996-03-19 Steel plate for heat treatment with excellent oxide scale adhesion

Country Status (1)

Country Link
JP (1) JP3858302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930696B2 (en) * 2001-04-23 2007-06-13 新日本製鐵株式会社 Unidirectional silicon steel sheet excellent in film adhesion of tension imparting insulating film and method for producing the same

Also Published As

Publication number Publication date
JPH09256106A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JP4782056B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JPH10130782A (en) Ultrahigh strength cold rolled steel sheet and its production
JP3604447B2 (en) Steel plate for heat treatment with high oxide scale adhesion
JP3858302B2 (en) Steel plate for heat treatment with excellent oxide scale adhesion
JP3839090B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JP2005133180A (en) Steel sheet for heat treatment, and its production method
JP3874124B2 (en) Steel plate for heat treatment with excellent oxide scale adhesion
JP4782057B2 (en) High-strength steel sheet with excellent scale adhesion during hot pressing and manufacturing method thereof
JP3839091B2 (en) Manufacturing method of steel plate for heat treatment with excellent scale peeling resistance
JP3819255B2 (en) Method for producing martensitic stainless steel strip with excellent punchability
JP3598981B2 (en) Ferritic stainless steel sheet and its manufacturing method
JP2000073192A (en) Production of ferritic stainless steel sheet
JP3371952B2 (en) Manufacturing method of soft high carbon steel sheet for processing that can omit pickling process
JPH09271806A (en) Thick plate with uniform scale having satisfactory adhesion and its manufacture
JP2876259B2 (en) Roll for scale breaker
JP6325869B2 (en) Manufacturing method of steel plate for heat treatment
JPH07173537A (en) Production of austenitic stainless hot rolled steel strip
JP3434079B2 (en) Wire for descaling
JP2925616B2 (en) Cold rolled steel sheet for processing with excellent punchability and its surface-treated steel sheet
JPH0755330B2 (en) Work roll for scale breaker
JPH0234793A (en) Production of high-strength hot-rolled steel sheet to be worked having excellent scale adhesion
JPH09310155A (en) Austenitic stainless steel excellent in surface characteristic after working
JP4332050B2 (en) Steel plate for enamel with extremely excellent enamel adhesion, its manufacturing method, and enamel product
JP2001098321A (en) Method of producing hot rolled steel strip
JPH028321A (en) Production of ultrathin martensitic stainless steel sheet for wafer slicer with low in-plane anisotropy in tensile strength

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040902

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041129

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20050106

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20050304

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060911

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110929

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120929

Year of fee payment: 6