JP3858127B2 - Method for producing cold rolled steel sheet for enamel with excellent claw resistance - Google Patents

Method for producing cold rolled steel sheet for enamel with excellent claw resistance Download PDF

Info

Publication number
JP3858127B2
JP3858127B2 JP32982196A JP32982196A JP3858127B2 JP 3858127 B2 JP3858127 B2 JP 3858127B2 JP 32982196 A JP32982196 A JP 32982196A JP 32982196 A JP32982196 A JP 32982196A JP 3858127 B2 JP3858127 B2 JP 3858127B2
Authority
JP
Japan
Prior art keywords
enamel
steel sheet
resistance
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32982196A
Other languages
Japanese (ja)
Other versions
JPH10168522A (en
Inventor
康浩 松木
正 井上
弘 澤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP32982196A priority Critical patent/JP3858127B2/en
Publication of JPH10168522A publication Critical patent/JPH10168522A/en
Application granted granted Critical
Publication of JP3858127B2 publication Critical patent/JP3858127B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、耐爪とび性に優れたほうろう用冷延鋼板の製造方法に関する。
【0002】
【従来の技術】
ほうろう製品は、台所用品、建材、流し台等の用途に幅広く利用されている。これらの製品の素材となるほうろう用鋼板は、ほうろう性が優れている必要がある。ほうろう性の中で爪とび欠陥は、ほうろう焼成後、鋼中に固溶した水素がほうろう層と鋼板の界面に集まり、ほうろう層を半月状にはじきとばす欠陥である。該欠陥は、ほうろう焼成後、数週間から数ケ月経ってから発生することもあり、処置に多額の費用を要することから該欠陥の発生しない鋼板が強く求められている。
【0003】
一方、ほうろうは、ステンレス、アルミ、フッ素樹脂、人造大理石などの競合材料との競争にさらされ、その市場は減少傾向にある。このような状況の下、酸洗の廃液の処理が困難でコストがかかることから、ほうろうメーカーでは、前処理を簡略化しようとする動きがある。前処理の簡略化は、従来より耐爪とび性などのほうろう特性を劣化させる要因となっているため、従来よりも優れた耐爪とび性が求められる。
【0004】
同様な理由から、ほうろう用鋼板にはコストダウンが望まれている。コスト低減のためには、高価な合金元素を必要としないこと、および安価な製造方法で製造可能な鋼板が望ましい。この観点から、Ti添加鋼のように高価なTiを添加せず、高酸素鋼のように極低炭素まで脱炭する必要のない安価な鋼を用いた鋼板が望ましい。
【0005】
このような鋼板としてB添加鋼を用いた鋼板がある。特公昭57-38666号公報には、Alの窒化物を形成し、鋼中Bをsol.Bにして、耐爪とび性を改善することが開示されている。しかし、AlNよりBNの方が耐爪とび性の改善効果が大きく、sol.Bは熱延、焼鈍、またはほうろう焼成時に鋼板表面に酸化物として濃化しやすく、耐爪とび性の不均一を招く。また、BはAlより拡散速度が速いため通常のスラブ冷却速度ではBNが析出しやすく、Bを固溶させるためには加熱時間を長くとらなければならず、非能率である。
【0006】
また、特公昭60-53087号公報には、B添加鋼を低温加熱して耐爪とび性を向上させることが開示されているが、単に低温加熱だけでは、加熱の際に固溶したB、Nが熱延中に微細に析出し、耐爪とび性の改善効果が小さい。
【0007】
【発明が解決しようとする課題】
前述のように、従来以上に耐爪とび性などのほうろう性が良好で安価なほうろう用鋼板が望まれている。しかし、前記した鋼板は耐爪とび性などのほうろう性が満足すべき水準になく、また安価な製造法とはいえない。
【0008】
本発明は、このような事情を考慮してなされたものであり、本発明は耐爪とび性などのほうろう性が良好で安価なほうろう用鋼板の製造方法を提供しようとするものである。
【0009】
【課題を解決するための手段】
鋳造後のスラブでは、MnS、BNが粗大に析出している。通常のスラブ加熱では、該析出物は大部分固溶するが、1200℃以下という低温で加熱することにより、固溶を抑えMnS、BNを粗大なまま残す。固溶したMnとSは粗圧延以降に析出し、固溶したBとNは通常、MnSを核として仕上げ圧延から巻取にかけて微細に析出する。しかし、微細なBNの耐爪とび性に対する改善効果は小さい。
【0010】
本発明では、1200℃以下のスラブの低温加熱と、粗圧延後の鋼片( 以下、粗バーという) を一旦950 ℃以下に冷却後、850 〜1050℃の間に20℃以上の加熱をすることを組み合わせることにより、粗大なBNの析出が可能になり、耐爪とび性の改善効果を大きくできる。
【0011】
粗バー加熱によりBNが粗大に析出するメカニズムについての詳細は不明であるが、以下のように考えられる。すなわち、粗バーを一旦950 ℃以下に冷却することにより、MnSを完全に微細に析出させる。その後、850 〜1050℃の間に20℃以上の加熱を行うことにより、MnSを核としてBNを急速に析出させることができる。これは、一旦950 ℃以下に冷却することにより析出した微細MnSが核となることにより、BNの析出が促進され、従来より高温短時間でBNが析出できるようになったためである。このようにして析出したBNは、従来、仕上げ圧延から巻取段階で析出していたものに比べて大きい。
【0012】
冷間圧延後、前記で析出したBN周辺に生成するボイドが大きくなり、またほうろう焼成後、BN周辺に発生する転位の量が多くなるので、耐爪とび性の改善効果が大きい。
【0013】
このように、スラブの低温加熱と粗バー加熱を組み合わせることにより、粗大なBNを析出させることが可能となり、耐爪とび性を大きく改善できるのである。
【0014】
また、Cは、熱延後、炭化物を形成し、冷間圧延後、該炭化物の周囲にボイドが生成する。このボイドは、水素トラップサイトとなり、耐爪とび性の改善効果があるため、C量を制御する。
【0015】
また、密着性が良好なほど耐爪とび性は良好である。そのため、必要に応じてCu、P、S量を制御することにより、密着性、耐爪とび性の向上を図る。
【0016】
本発明は、前記した知見に基づくものであり、その要旨は以下のとおりである。
【0017】
(1)重量% で、C≦0.1%、Si: 0.01 0.03% Mn:0.05〜0.40% 、P: 0.003 0.028% S:0.005 〜0.05% 、Cu: 0.012 0.046 %、 sol. Al: 0.022 0.071% B:0.001 〜0.02% 、N:0.001 〜0.02% を含有し、残部Feおよび不可避的不純物からなる成分組成の鋼を鋳造し、1200℃以下で加熱し、粗圧延後、750 〜950 ℃まで空冷し、次いで850 〜1050℃の間に20℃以上の加熱を行い、仕上圧延後、巻取り、冷間圧延することを特徴とする耐爪とび性に優れたほうろう用冷延鋼板の製造方法( 第1 発明) 。
【0018】
(2)重量% で、C≦0.1%、Si: 0.01 0.03% Mn:0.05〜0.40% 、P:0.003 〜0.025%、S:0.005 〜0.05% 、Cu:0.015 〜0.04% 、sol. Al: 0.022 0.071% B:0.001 〜0.02% 、N:0.001 〜0.02% を含有し、残部Feおよび不可避的不純物からなる成分組成の鋼を鋳造し、1200℃以下で加熱し、粗圧延後、750 〜950 ℃まで空冷し、次いで850 〜1050℃の間に20℃以上の加熱を行い、仕上圧延後、600 ℃以上で巻取り、冷間圧延率60% 以上で冷間圧延後、再結晶焼鈍することを特徴とする密着性と耐爪とび性に優れたほうろう用冷延鋼板の製造方法 ( 第2 発明) 。
【0019】
(3)再結晶焼鈍が連続焼鈍であることを特徴とする前記(2)記載のほうろう用冷延鋼板の製造方法( 第3 発明) 。
【0020】
(作用)
以下に、本発明の鋼成分組成、製造条件を上記のように限定した理由について作用とともに述べる。
【0021】
C:Cは、熱延後、炭化物を形成し、冷間圧延後、該炭化物の周囲にボイドが生成する。このボイドは、水素トラップサイトとなり、耐爪とび性の向上に効果がある。一方、C量が増えることにより熱間変形抵抗が増加し、熱延時に圧延が困難になる。これは、本発明のようにBを添加している場合に顕著であり、そのため、上限を0.1%に限定した。また、耐爪とび性の観点から好ましくは0.01% 以上添加する。
【0022】
Mn:Mnは、鋼中のSと結合してMnSとなり、水素のトラップサイトとして働くこと、また、MnSはBNの析出サイトとなることにより、耐爪とび性の向上に寄与する。Mn量が、0.05% 未満ではその効果がなく、0.40% 超えでは鋼板表面に濃化するMn量が多くなり、低酸洗減量値または無酸洗でほうろう掛け( 以下、無酸洗ほうろう) の場合、密着性、耐爪とび性の低下の要因となる。そのため、0.05〜0.40% の範囲に限定した。
【0023】
S:Sは、鋼中のMnと結合してMnSとなり、水素のトラップサイトとして働くこと、また、MnSはBNの析出サイトとなることにより、耐爪とび性の向上に寄与する。また、Sは酸洗後スマットとして鋼板表面に濃化する。スマットは、ほうろう層と鋼板の界面のあれを大きくするのに必要であるが、スマットが多すぎるとほうろう釉薬中のNi、Coなどの密着性促進元素が鋼板上に板状に析出し、かえって密着性が低下する。また、無酸洗ほうろうの場合もSは、ほうろう釉薬中のNi、Coなどの密着性促進元素の鋼板上への析出状態に影響を与える。これらの観点から、S量は0.005 〜0.05% の範囲に限定した。ただし、0.010%〜0.020%の範囲がより好ましい。
【0024】
B:Bは、鋼中のNと結合して、鋼板の耐爪とび性の向上に寄与する。これは、冷間圧延によりBN周囲にマイクロボイドが生成すること、およびほうろう焼成後、熱膨張係数の違いからBN周辺に転位が発生することによる。この効果はBNが粗大に析出している方が大きく、固溶Bでは前記の効果が得られない。B添加量が0.001%未満ではその効果が不十分で、一方0.02% 超えでは鋼の熱間加工性が劣化し、圧延しにくいため、B量は0.001 〜0.02% の範囲に限定した。ただし、B量の好ましい範囲は0.002 〜0.008%である。
【0025】
N:Nは、鋼中のBと結合して、鋼板の耐爪とび性の向上に寄与する。この効果のためには0.001%以上の添加が必要である。しかし、多すぎるとスラブわれが起こりやすくなり、鋼板の表面欠陥につながるので、0.02% 以下とする。ただし、N量の好ましい範囲は0.003 〜0.008%である。
【0026】
爪とびは、鋼中の水素がほうろう層と鋼板の界面に集まり、ほうろう層をはじきとばす現象なので、界面面積が多いほど単位面積あたりの水素量が少なくなる。このため、ほうろう焼成後、界面があれているほうが、密着性、耐爪とび性が良好である。界面のあれは、鋼中のP、S、Cu量に大きく依存する。そのため、前記したSに加えて、さらにP、Cuの成分範囲を調整することがより好ましい。
【0027】
P:Pは、酸洗減量値を大きくし、また、酸洗後スマットとして鋼板表面に濃化する。スマットは、ほうろう層と鋼板の界面のあれを大きくするのに必要であるが、スマットが多すぎるとほうろう釉薬中のNi、Coなどの密着性促進元素が鋼板上に板状に析出し、かえって密着性が低下する。また、無酸洗ほうろうの場合もPは、ほうろう釉薬中のNi、Coなどの密着性促進元素の鋼板上への析出状態に影響を与える。これらの観点から、Pの含有量を0.003 〜0.025%に限定した。ただし、極めて良好な密着性、爪とび性を確保するためには、0.010 〜0.020%とするのが好ましい。
【0028】
Cu:Cuも酸洗後スマットとして鋼板表面に濃化し、ほうろう焼成後のほうろう層と鋼板の界面のあれを促進する。しかし、Cuはほうろう前処理時の酸洗速度を小さくする元素であり、0.04% を超えて添加すると酸洗減量値が小さくなりすぎて、通常のほうろう条件では酸洗後鋼板表面に濃化するスマット量が少なくなりすぎ、ほうろう焼成後、ほうろう層と鋼板の界面のあれが得にくい。また、無酸洗ほうろうの場合もCuは、ほうろう釉薬中のNi、Coなどの密着性促進元素の鋼板上への析出状態に影響を与える。これらの観点から、Cu量は0.015 〜0.04% の範囲に限定した。ただし、極めて良好な密着性、耐爪とび性を得るためには、0.025 〜0.035%の範囲がより好ましい。
【0029】
次に、製造条件を前記のように限定した理由について述べる。
前述の鋼成分範囲内に成分調整したスラブを製造する。スラブ製造に関しては、鋼塊法ではリム層とコア部との間に粗大介在物が存在しやすくなり、ほうろう加工後、ふくれ欠陥が発生しやすくなる。よって、連続鋳造法で製造するのが好ましい。B添加鋼は鋳造後、スラブわれが生じやすく、鋼板の表面きず発生による歩留まりの低下、コスト上昇を招きやすいため、必要に応じて、鋼片を2 〜5mm 程度表層研削する。
【0030】
スラブ加熱は、BN、MnSの固溶を抑えるため、加熱温度を1200℃以下とする。加熱温度が低すぎると熱延負荷が大きくなりすぎるため、好ましくは1000℃以上とする。なお、スラブを加熱することなく圧延する直送圧延法は、粗大なBNが析出しないため良くない。しかし、一旦粗大なBNを析出させた後であれば、室温までスラブを冷却することなく低温加熱を行ってもよい。
【0031】
加熱したスラブを粗圧延後、粗バーを一旦950 ℃以下に冷却させることにより、MnSを完全に微細に析出させる。その温度が低すぎるとBNがMnSを核として微細に析出してしまうことから、750 ℃以上とする。
【0032】
その後、850 〜1050℃の間に20℃以上の粗バー加熱(ΔT )を行うことにより、MnSを核として粗大なBNを析出させる。BNの析出のためには850 ℃以上で20℃以上の加熱が必要であるが、粗バー加熱温度が高すぎると、析出したMnSが再び固溶し始めることから1050℃以下が良い。加熱方法については、MnSの固溶を避けるため短時間に急速加熱が望ましく、誘導加熱、電気抵抗加熱が好ましい。また、コイルボックスの使用は、コイル中央部の急速、均一加熱が困難であるため、好ましくない。
【0033】
仕上げ圧延はAr3 変態点以上900 ℃以下の範囲が好ましい。Ar3 変態点以上900 ℃以下での仕上げ圧延により熱延板のフェライト粒が微細化し、鋼の加工性が向上するためである。
【0034】
仕上げ圧延後、カーバイドを粗大に析出させ耐爪とび性を向上させる観点から、600 ℃以上で巻き取るのが望ましい。また、巻取温度が高くなりすぎると、鋼板表面の酸化鉄層(スケール)が厚くなりすぎ、酸洗工程でスケールが落ちにくいため、700 ℃以下で巻取るのが好ましい。
【0035】
熱延後の鋼帯は常法で製造してもかまわないが、好ましい製造方法を以下に示す。
【0036】
熱間圧延を終了した鋼帯は酸洗後、冷間圧延されるが、BN周辺にボイドを生成させること、およびカーバイドを破砕し、周辺にボイドを生成し耐爪とび性を向上させる観点から冷間圧延率は60% 以上とするのが好ましい。
【0037】
冷間圧延後、パネル材などほとんど加工性の要求されない用途には冷間圧延ままで適応可能であるが、加工性の要求される用途には冷間圧延後鋼帯を焼鈍する。
【0038】
焼鈍方法は、連続焼鈍法で焼鈍するのが好ましい。なぜなら、連続焼鈍法では耐爪とび性の向上に寄与するBNの減少を防止できるが、箱焼鈍法では焼鈍時間が長いため、BNがAlNと固溶Bとなりやすくなる。固溶Bは酸化物として鋼板表面に濃化しやすく、BNの分解は焼鈍時間が長いほど起こりやすい。このように、長時間焼鈍により耐爪とび性の向上に寄与するBN量が減少するからである。同様な理由で、脱炭焼鈍も耐爪とび性の向上に寄与するBN量が減少するため好ましくない。
【0039】
連続焼鈍の場合、焼鈍温度は加工性の観点から700 ℃以上がよく、焼鈍温度が高すぎると水素トラップサイトとなる炭化物、BN周辺のボイドが消滅するので850 ℃以下が好ましい。
【0040】
焼鈍後、必要に応じて急冷、過時効処理を行う。焼鈍後の冷却は耐時効性の観点から速い方が好ましく、550 〜650 ℃まで空冷した後、水焼入れ、ロールクエンチ、気水冷却、またはガスジェット冷却により冷却速度が50℃/s以上で急冷するのが好ましい。
【0041】
急冷後の過時効処理は、耐時効性の観点から350 ℃以上で100 秒以上行うのが好ましく、過時効初期は350 〜450 ℃、後期は300 〜400 ℃というように初期の温度が高い方がより好ましい。また、ガスジェット冷却の場合、過時効に先立ち、一旦過時効温度よりも50℃以上低い温度まで低下させた後、過時効を行うと固溶炭素の析出が促進され、耐時効性の面でより効果的である。
【0042】
焼鈍後の鋼帯はそのまま製品とすることができるが、必要に応じて伸長率:2.0%以下の調質圧延を施しても良い。
【0043】
なお、このようにして製造した焼鈍板は、従来材に比べてBN、MnSが大きいため、加工性が良好である。
【0044】
【発明の実施の形態】
以下に、本発明を実施例によって詳述する。
【0045】
【実施例】
(実施例1)
表1 に示す成分組成と残部が鉄および不可避不純物からなる成分組成の鋼を連続鋳造法によりスラブとした。このスラブを表2 に示す熱延条件で2.8mm 厚まで熱間圧延を行った。得られた熱延鋼帯を酸洗した後、0.8mm まで冷間圧延した(圧延率=71%)。冷間圧延後、鋼板を表3 、表4 に示す方法で焼鈍し、1.0%の調質圧延を施してほうろう用冷延鋼板とした。
【0046】
【表1】

Figure 0003858127
【0047】
【表2】
Figure 0003858127
【0048】
【表3】
Figure 0003858127
【0049】
【表4】
Figure 0003858127
【0050】
焼鈍条件は、連続焼鈍の場合、780 ℃で40秒間焼鈍した。箱焼鈍は、700 ℃で7 時間、脱炭焼鈍はオープンコイル焼鈍で700 ℃で5 時間、雰囲気がH2 :20% 、残部N2 、露点18℃で行った。
【0051】
前記で得た鋼板よりJIS5号試験片を圧延方向から採取し、引張試験を行った。また、圧延方向、圧延方向と45度方向、圧延直角方向からJIS5号試験片を採取し、ランクフォード値(平均r 値)を下式から測定した。
【0052】
平均r 値= (圧延方向のr 値+2×圧延方向と45度方向のr 値+ 圧延直角方向のr 値)/4
さらに、以下の条件でほうろう特性を調査した。ただし、耐爪とび性については、水素透過時間の測定により、耐爪とび性の指標とした。また、密着性試験では、良好な密着性が得にくい硫酸酸洗時間が短い条件で、試験を行った。
【0053】
水素透過時間は、試験片を陰極にし、電気分解により水素を発生させ、水素が鋼板を通過するるまでの時間を下記の方法で各3回測定し、その平均を算出した。なお、水素透過時間が長いほど耐爪とび性が良好である。
【0054】
水素透過時間の測定:
電解液:1g/lのAs2O3 を含む5%H2SO4 水溶液
液温:25℃
電流密度:5A/m2
透過した水素の検出:ガスセンサー
【0055】
密着性試験:
前処理:脱脂→硫酸酸洗(15%H2SO4、70℃×5min)
施釉:日本フエロー製H 釉薬、目標―両面に各100 μm
焼成:850 ℃×2min
密着性評価:PEI 法。大きさ100 ×100mm の試験材について、各5 枚ずつ試験を行い、結果を平均した。
【0056】
これらの結果を表3 にあわせて示す。
表3 、表4 より、本発明法により製造した鋼板(鋼1 〜8 の熱延条件A 、B ) の水素透過時間は長く、耐爪とび性は良好である。また、本発明の第2 発明を満たす条件で製造した鋼板(鋼板1 〜5 )は密着性が良好で、その分耐爪とび性も良好である。
【0057】
(実施例2 )
表1 の鋼1 に示す成分組成の鋼を連続鋳造法によりスラブとした。このスラブを1100℃に加熱し、図1 に示す条件で粗バー加熱を行い、仕上温度870 ℃、巻取温度650 ℃で2.8mm 厚まで熱間圧延を行った。得られた熱延鋼帯を酸洗した後、0.8mm まで冷間圧延した(圧延率=71%)。冷間圧延後、鋼板を780 ℃で40秒間連続焼鈍し、1.0%の調質圧延を施してほうろう用冷延鋼板とし、水素透過時間を測定した。
【0058】
水素透過時間は、試験片を陰極にし、電気分解により水素を発生させ、水素が鋼板を通過するまでの時間を下記の方法で3 回測定し、その平均値を算出した。なお、水素透過時間が300 秒以上を○、300 秒未満を×とした。
【0059】
水素透過時間の測定:
電解液:1g/lのAs2O3 を含む5%H2SO4 水溶液
液温:25℃
電流密度:5A/m2
透過した水素の検出:ガスセンサー
調査結果を図1 に示す。図1 より、本発明範囲内では水素透過時間が長く、耐爪とび性の向上が認められる。
【0060】
【発明の効果】
以上詳述したように、本発明によれば、耐爪とび性に優れた鋼板を安価に容易に得ることができるので、その工業的な価値は高い。
【図面の簡単な説明】
【図1】粗バー加熱条件と水素透過時間の関係を示す図。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a cold rolled steel sheet for enamel having excellent claw resistance.
[0002]
[Prior art]
Enamel products are widely used for kitchen utensils, building materials, sinks and the like. The enamel steel plate used as the material for these products must have excellent enamelability. In the enamel, the nail skip defect is a defect in which hydrogen dissolved in the steel gathers at the interface between the enamel layer and the steel sheet after the enamel firing, and the enamel layer is repelled in a half-moon shape. The defect may occur after several weeks to several months after enamel firing, and a large amount of cost is required for the treatment. Therefore, a steel sheet free from the defect is strongly demanded.
[0003]
On the other hand, enamel is exposed to competition with competing materials such as stainless steel, aluminum, fluororesin, and artificial marble, and its market is declining. Under such circumstances, the enamel maker is moving to simplify the pretreatment because it is difficult and expensive to treat the pickling waste liquid. The simplification of the pretreatment has been a factor that deteriorates the enamel characteristics such as the nail skipping resistance, so that the nail jump resistance superior to the conventional one is required.
[0004]
For the same reason, cost reduction is desired for enameled steel sheets. In order to reduce the cost, it is desirable to use a steel plate that does not require an expensive alloy element and that can be manufactured by an inexpensive manufacturing method. From this viewpoint, a steel plate using inexpensive steel that does not need to be decarburized to extremely low carbon like high-oxygen steel without adding expensive Ti like Ti-added steel is desirable.
[0005]
There exists a steel plate using B addition steel as such a steel plate. In Japanese Patent Publication No. 57-38666, a nitride of Al is formed and B in steel is sol. B is disclosed to improve the nail skip resistance. However, BN has a greater effect of improving nail resistance than AlN. B tends to concentrate as an oxide on the surface of the steel sheet during hot rolling, annealing, or enamel firing, resulting in non-uniform nail resistance. Further, since B has a higher diffusion rate than Al, BN tends to precipitate at a normal slab cooling rate, and in order to dissolve B, the heating time must be long, which is inefficient.
[0006]
Japanese Patent Publication No. 60-53087 discloses that the B-added steel is heated at a low temperature to improve the resistance to claw jumping. However, only by low temperature heating, N precipitates finely during hot rolling, and the effect of improving nail resistance is small.
[0007]
[Problems to be solved by the invention]
As described above, a steel plate for enamel that has better and cheaper enamelability such as anti-claw resistance than before is desired. However, the steel sheet described above does not have satisfactory levels of enamelability such as anti-claw resistance and is not an inexpensive manufacturing method.
[0008]
The present invention has been made in view of such circumstances, and the present invention intends to provide a method for producing a steel plate for enamel that has good enamelability such as anti-claw resistance and is inexpensive.
[0009]
[Means for Solving the Problems]
In the slab after casting, MnS and BN are coarsely precipitated. In ordinary slab heating, most of the precipitate dissolves, but heating at a low temperature of 1200 ° C. or less suppresses solid solution and leaves MnS and BN coarse. Solid solution Mn and S are precipitated after rough rolling, and solid solution B and N are usually finely precipitated from finish rolling to winding with MnS as a core. However, the effect of improving fine nail BN on nail resistance is small.
[0010]
In the present invention, the slab of 1200 ° C. or lower is heated at a low temperature, and the steel slab after rough rolling (hereinafter referred to as “rough bar”) is once cooled to 950 ° C. or lower, and then heated at 20 ° C. or higher between 850-1050 ° C. By combining these, coarse BN can be deposited, and the effect of improving the nail skip resistance can be increased.
[0011]
The details of the mechanism of coarse precipitation of BN by coarse bar heating are not clear, but are considered as follows. That is, once the coarse bar is cooled to 950 ° C. or lower, MnS is precipitated completely finely. Thereafter, heating at 20 ° C. or higher is performed between 850 and 1050 ° C., whereby BN can be rapidly precipitated with MnS as a nucleus. This is because the fine MnS precipitated once cooled to 950 ° C. or less becomes nuclei, so that the precipitation of BN is promoted and BN can be precipitated in a shorter time at a higher temperature than before. The BN thus precipitated is larger than that conventionally deposited at the winding stage from finish rolling.
[0012]
After cold rolling, the voids generated around the precipitated BN increase, and the amount of dislocations generated around the BN after enamel firing increases, so that the effect of improving the nail skip resistance is great.
[0013]
Thus, by combining the low temperature heating of the slab and the coarse bar heating, it becomes possible to precipitate coarse BN, and the nail skip resistance can be greatly improved.
[0014]
C forms carbides after hot rolling, and voids are generated around the carbides after cold rolling. This void serves as a hydrogen trap site and has an effect of improving the resistance to claw jumping, so the amount of C is controlled.
[0015]
Further, the better the adhesion, the better the nail resistance. Therefore, by controlling the amounts of Cu, P, and S as necessary, the adhesion and the nail skip resistance are improved.
[0016]
The present invention is based on the findings described above, and the gist thereof is as follows.
[0017]
(1)% by weight, C ≦ 0.1%, Si: 0.01 to 0.03% , Mn: 0.05 to 0.40%, P: 0.003 to 0.028% , S: 0.005 to 0.05%, Cu: 0.012 to 0.046 %, sol. Al : 0.022 to 0.071% , B: 0.001 to 0.02%, N: 0.001 to 0.02% , steel of the component composition consisting of the balance Fe and inevitable impurities , cast at 1200 ° C or less, after rough rolling, Air-cooled to 750 to 950 ° C, then heated to 20 ° C or higher between 850 and 1050 ° C, and after finish rolling, wound and cold-rolled. A method for producing a rolled steel sheet (first invention).
[0018]
(2)% by weight, C ≦ 0.1%, Si: 0.01 to 0.03% , Mn: 0.05 to 0.40%, P: 0.003 to 0.025%, S: 0.005 to 0.05%, Cu: 0.015 to 0.04%, sol. Al : 0.022 to 0.071% , B: 0.001 to 0.02%, N: 0.001 to 0.02% , steel of the component composition consisting of the balance Fe and inevitable impurities , cast at 1200 ° C or less, after rough rolling, Air-cool to 750-950 ° C, then heat at 20 ° C or higher between 850-1050 ° C, finish-roll, wind at 600 ° C or higher, cold-roll at cold rolling rate of 60% or higher, recrystallize A method for producing a cold rolled steel sheet for enamel having excellent adhesion and claw resistance, characterized by annealing (second invention).
[0019]
(3) The method for producing a cold rolled steel sheet for enamel according to (2), wherein the recrystallization annealing is continuous annealing (third invention).
[0020]
(Function)
The reason why the steel component composition and production conditions of the present invention are limited as described above will be described together with the action.
[0021]
C: C forms carbides after hot rolling, and voids are generated around the carbides after cold rolling. This void becomes a hydrogen trap site and is effective in improving the resistance to claw jumping. On the other hand, when the amount of C increases, hot deformation resistance increases, and rolling becomes difficult during hot rolling. This is remarkable when B is added as in the present invention, and therefore the upper limit is limited to 0.1%. Further, from the viewpoint of resistance to nail flaking, 0.01% or more is preferably added.
[0022]
Mn: Mn combines with S in the steel to become MnS, which acts as a hydrogen trap site, and MnS contributes to the improvement of the nail skip resistance by becoming a BN precipitation site. If the amount of Mn is less than 0.05%, the effect is not obtained. In this case, it becomes a factor of lowering the adhesion and nail resistance. Therefore, it was limited to the range of 0.05 to 0.40%.
[0023]
S: S combines with Mn in the steel to become MnS, which acts as a hydrogen trap site, and MnS contributes to the improvement of the nail skip resistance by becoming a BN precipitation site. Further, S is concentrated on the steel sheet surface as a smut after pickling. Smut is necessary to enlarge the interface between the enamel layer and the steel sheet. However, if there is too much smut, adhesion promoting elements such as Ni and Co in the enamel glaze precipitate on the steel sheet in the form of a plate. Adhesion decreases. In addition, in the case of non-acid-washed enamel, S also affects the precipitation state on the steel sheet of adhesion promoting elements such as Ni and Co in enamel glaze. From these viewpoints, the S content is limited to a range of 0.005 to 0.05%. However, a range of 0.010% to 0.020% is more preferable.
[0024]
B: B couple | bonds with N in steel and contributes to the improvement of the nail | claw resistance of a steel plate. This is because microvoids are generated around BN by cold rolling, and dislocation occurs around BN due to the difference in thermal expansion coefficient after enamel firing. This effect is larger when BN is coarsely precipitated, and the above effect cannot be obtained with solute B. If the amount of B added is less than 0.001%, the effect is insufficient. On the other hand, if it exceeds 0.02%, the hot workability of the steel deteriorates and rolling is difficult, so the amount of B is limited to a range of 0.001 to 0.02%. However, the preferable range of the B amount is 0.002 to 0.008%.
[0025]
N: N combines with B in the steel and contributes to the improvement of the claw resistance of the steel plate. For this effect, 0.001% or more must be added. However, if the amount is too large, slab cracking is likely to occur, leading to surface defects in the steel sheet. However, the preferable range of the N amount is 0.003 to 0.008%.
[0026]
Nail skipping is a phenomenon in which hydrogen in steel gathers at the interface between the enamel layer and the steel sheet and repels the enamel layer. Therefore, the larger the interface area, the smaller the amount of hydrogen per unit area. For this reason, the adhesion and the nail skip resistance are better when the interface is left after baking the enamel. That interface greatly depends on the amount of P, S and Cu in the steel. Therefore, in addition to the above-described S, it is more preferable to further adjust the component ranges of P and Cu.
[0027]
P: P increases the pickling weight loss value, and also concentrates on the steel sheet surface as a smut after pickling. Smut is necessary to enlarge the interface between the enamel layer and the steel sheet. However, if there is too much smut, adhesion promoting elements such as Ni and Co in the enamel glaze precipitate on the steel sheet in the form of a plate. Adhesion decreases. Also, in the case of non-acid-washed enamel, P affects the precipitation state on the steel plate of adhesion promoting elements such as Ni and Co in enamel glaze. From these viewpoints, the P content is limited to 0.003 to 0.025%. However, it is preferably 0.010 to 0.020% in order to ensure extremely good adhesion and nail skipping.
[0028]
Cu: Cu also concentrates on the steel sheet surface as a smut after pickling, and promotes the interface between the enamel layer and the steel sheet after enamel firing. However, Cu is an element that reduces the pickling rate during enamel pretreatment, and if added over 0.04%, the pickling loss value becomes too small, and under normal enamel conditions, it concentrates on the steel sheet surface after pickling. The amount of smut becomes too small, and it is difficult to obtain an interface between the enamel layer and the steel sheet after enamel firing. Also, in the case of non-acid-washed enamel, Cu affects the precipitation state on the steel sheet of adhesion promoting elements such as Ni and Co in enamel glaze. From these viewpoints, the amount of Cu is limited to a range of 0.015 to 0.04%. However, in order to obtain extremely good adhesion and nail resistance, a range of 0.025 to 0.035% is more preferable.
[0029]
Next, the reason why the manufacturing conditions are limited as described above will be described.
A slab whose components are adjusted within the aforementioned steel component range is manufactured. Regarding slab manufacturing, in the steel ingot method, coarse inclusions are likely to exist between the rim layer and the core portion, and blister defects are likely to occur after enamel processing. Therefore, it is preferable to manufacture by a continuous casting method. Since B-added steel is prone to slab cracking after casting and tends to cause a decrease in yield and cost due to the occurrence of surface flaws on the steel sheet, the steel slab is ground by about 2 to 5 mm as necessary.
[0030]
In the slab heating, the heating temperature is set to 1200 ° C. or lower in order to suppress solid solution of BN and MnS. If the heating temperature is too low, the hot rolling load becomes too large. The direct feed rolling method in which the slab is rolled without heating is not good because coarse BN does not precipitate. However, once coarse BN is precipitated, low temperature heating may be performed without cooling the slab to room temperature.
[0031]
After roughly rolling the heated slab, the coarse bar is once cooled to 950 ° C. or lower to precipitate MnS completely finely. If the temperature is too low, BN precipitates finely with MnS as a nucleus, so the temperature is set to 750 ° C. or higher.
[0032]
After that, coarse bar heating (ΔT) of 20 ° C. or higher is performed between 850 ° C. and 1050 ° C. to precipitate coarse BN with MnS as a nucleus. For precipitation of BN, heating at 850 ° C. or higher and 20 ° C. or higher is necessary. However, if the coarse bar heating temperature is too high, the precipitated MnS starts to dissolve again, and is preferably 1050 ° C. or lower. As for the heating method, rapid heating is desirable in a short time to avoid solid solution of MnS, and induction heating and electric resistance heating are preferable. In addition, the use of a coil box is not preferable because rapid and uniform heating of the coil central portion is difficult.
[0033]
The finish rolling is preferably in the range of Ar 3 transformation point to 900 ° C. This is because the finish rolling at Ar 3 transformation point or more and 900 ° C. or less refines the ferrite grains of the hot-rolled sheet and improves the workability of the steel.
[0034]
After finish rolling, it is desirable to wind up at 600 ° C. or higher from the viewpoint of coarsely depositing carbide and improving the resistance to claw jumping. If the coiling temperature is too high, the iron oxide layer (scale) on the surface of the steel sheet becomes too thick and the scale is difficult to drop in the pickling process.
[0035]
Although the steel strip after hot rolling may be manufactured by a conventional method, a preferable manufacturing method is shown below.
[0036]
The steel strip that has been hot-rolled is cold-rolled after pickling, but from the viewpoint of generating voids around the BN and crushing the carbide, generating voids around the BN and improving nail skip resistance The cold rolling rate is preferably 60% or more.
[0037]
After cold rolling, it can be applied as it is in cold rolling for applications such as panel materials that require little workability, but the steel strip is annealed after cold rolling for applications that require workability.
[0038]
As for the annealing method, it is preferable to anneal by a continuous annealing method. This is because the continuous annealing method can prevent a decrease in BN that contributes to the improvement of the nail resistance, but since the annealing time is long in the box annealing method, BN tends to be a solid solution B with AlN. The solute B is likely to be concentrated on the steel sheet surface as an oxide, and the decomposition of BN tends to occur as the annealing time becomes longer. Thus, the amount of BN that contributes to the improvement of the resistance to claw jumping is reduced by annealing for a long time. For the same reason, decarburization annealing is not preferable because the amount of BN that contributes to the improvement of the resistance to claw jumping decreases.
[0039]
In the case of continuous annealing, the annealing temperature is preferably 700 ° C. or higher from the viewpoint of workability, and if the annealing temperature is too high, carbides forming hydrogen trap sites and voids around BN disappear, and therefore, the annealing temperature is preferably 850 ° C. or lower.
[0040]
After annealing, perform rapid cooling and overaging as necessary. Cooling after annealing is preferably faster from the viewpoint of aging resistance. After air cooling to 550 to 650 ° C, rapid cooling is performed at a cooling rate of 50 ° C / s or more by water quenching, roll quenching, air-water cooling, or gas jet cooling. It is preferable to do this.
[0041]
The overaging treatment after rapid cooling is preferably performed at 350 ° C or higher for 100 seconds or longer from the viewpoint of aging resistance. The initial temperature is higher, such as 350 to 450 ° C in the early stage and 300 to 400 ° C in the latter stage. Is more preferable. In addition, in the case of gas jet cooling, prior to overaging, once it is lowered to a temperature lower than the overaging temperature by 50 ° C or more, then overaging promotes the precipitation of solute carbon, and in terms of aging resistance. More effective.
[0042]
Although the steel strip after annealing can be used as a product as it is, temper rolling with an elongation of 2.0% or less may be performed as necessary.
[0043]
In addition, since the annealed board manufactured in this way has large BN and MnS compared with the conventional material, workability is favorable.
[0044]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail by way of examples.
[0045]
【Example】
Example 1
Steels having the component composition shown in Table 1 and the balance consisting of iron and inevitable impurities were used as slabs by continuous casting. This slab was hot-rolled to a thickness of 2.8 mm under the hot rolling conditions shown in Table 2. The obtained hot-rolled steel strip was pickled and cold-rolled to 0.8 mm (rolling rate = 71%). After cold rolling, the steel sheet was annealed by the methods shown in Tables 3 and 4 and subjected to 1.0% temper rolling to obtain a cold rolled steel sheet for enamel.
[0046]
[Table 1]
Figure 0003858127
[0047]
[Table 2]
Figure 0003858127
[0048]
[Table 3]
Figure 0003858127
[0049]
[Table 4]
Figure 0003858127
[0050]
As for the annealing conditions, in the case of continuous annealing, annealing was performed at 780 ° C. for 40 seconds. Box annealing was performed at 700 ° C. for 7 hours, decarburization annealing was performed by open coil annealing at 700 ° C. for 5 hours, the atmosphere was H 2 : 20%, the balance was N 2 , and the dew point was 18 ° C.
[0051]
A JIS No. 5 test piece was taken from the rolling direction from the steel plate obtained above and subjected to a tensile test. In addition, JIS No. 5 test pieces were taken from the rolling direction, the rolling direction and 45 ° direction, and the direction perpendicular to the rolling direction, and the Rankford value (average r value) was measured from the following equation.
[0052]
Average r value = (r value in the rolling direction + 2 x r value in the rolling direction and 45 degree direction + r value in the direction perpendicular to the rolling) / 4
Furthermore, enamel characteristics were investigated under the following conditions. However, nail skip resistance was used as an index of nail skip resistance by measuring the hydrogen permeation time. Further, in the adhesion test, the test was performed under a condition where the sulfuric acid pickling time in which good adhesion is difficult to be obtained is short.
[0053]
The hydrogen permeation time was determined by measuring the time required for hydrogen to pass through the steel sheet using the test piece as a cathode, passing through the steel sheet three times, and calculating the average. In addition, the longer the hydrogen permeation time, the better the resistance to claw resistance.
[0054]
Measurement of hydrogen permeation time:
Electrolyte: 5% H 2 SO 4 aqueous solution containing 1 g / l As 2 O 3 Liquid temperature: 25 ° C
Current density: 5A / m 2
Permeated hydrogen detection: gas sensor
Adhesion test:
Pretreatment: Degreasing → sulfuric acid pickling (15% H 2 SO 4 , 70 ° C x 5 min)
Glazing: Nippon Fellows H glaze, target-100 μm on each side
Firing: 850 ° C x 2min
Adhesion evaluation: PEI method. Five specimens of each of 100 × 100 mm specimens were tested and the results averaged.
[0056]
These results are also shown in Table 3.
From Tables 3 and 4, the steel plates manufactured by the method of the present invention (hot rolling conditions A and B of steels 1 to 8) have a long hydrogen permeation time and good claw resistance. Further, the steel plates (steel plates 1 to 5) produced under the conditions satisfying the second invention of the present invention have good adhesion, and accordingly, the resistance to claw resistance is also good.
[0057]
(Example 2)
Steel with the composition shown in Steel 1 in Table 1 was made into a slab by continuous casting. This slab was heated to 1100 ° C. and subjected to rough bar heating under the conditions shown in FIG. 1, and hot rolled to a thickness of 2.8 mm at a finishing temperature of 870 ° C. and a winding temperature of 650 ° C. The obtained hot-rolled steel strip was pickled and cold-rolled to 0.8 mm (rolling rate = 71%). After cold rolling, the steel sheet was continuously annealed at 780 ° C. for 40 seconds, subjected to temper rolling at 1.0% to obtain a cold rolled steel sheet for enamel, and the hydrogen permeation time was measured.
[0058]
The hydrogen permeation time was calculated as an average value by measuring the time required for hydrogen to pass through the steel sheet by using the test piece as a cathode, generating hydrogen by electrolysis, and passing through the steel plate three times. The hydrogen permeation time of 300 seconds or more was marked with ◯, and less than 300 seconds was marked with x.
[0059]
Measurement of hydrogen permeation time:
Electrolyte: 5% H 2 SO 4 aqueous solution containing 1 g / l As 2 O 3 Liquid temperature: 25 ° C
Current density: 5A / m 2
Detection of permeated hydrogen: Figure 1 shows the gas sensor survey results. From FIG. 1, within the scope of the present invention, the hydrogen permeation time is long and the improvement of the nail skip resistance is recognized.
[0060]
【The invention's effect】
As described above in detail, according to the present invention, a steel plate excellent in nail skip resistance can be easily obtained at low cost, and its industrial value is high.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between coarse bar heating conditions and hydrogen permeation time.

Claims (3)

重量% で、C≦0.1%、Si: 0.01 0.03% Mn:0.05〜0.40% 、P: 0.003 0.028% S:0.005 〜0.05% 、Cu: 0.012 0.046 %、 sol. Al: 0.022 0.071% B:0.001 〜0.02% 、N:0.001 〜0.02% を含有し、残部Feおよび不可避的不純物からなる成分組成の鋼を鋳造し、1200℃以下で加熱し、粗圧延後、750 〜950 ℃まで空冷し、次いで850 〜1050℃の間に20℃以上の加熱を行い、仕上圧延後、巻取り、冷間圧延することを特徴とする耐爪とび性に優れたほうろう用冷延鋼板の製造方法。% By weight, C ≦ 0.1%, Si: 0.01 to 0.03% , Mn: 0.05 to 0.40%, P: 0.003 to 0.028% , S: 0.005 to 0.05%, Cu: 0.012 to 0.046 %, sol. Al: 0.022 to 0.071% , B: 0.001 to 0.02%, N: 0.001 to 0.02% , steel having a component composition consisting of the remainder Fe and inevitable impurities is cast, heated at 1200 ° C. or less, and after rough rolling, 750 to 950 A cold-rolled steel sheet for enamel that has excellent resistance to claw jumping, which is air-cooled to ℃, then heated to 850-1050 ℃ at a temperature of 20 ℃ or higher, and after finish rolling, coiled and cold-rolled. Production method. 重量% で、C≦0.1%、Si: 0.01 0.03% Mn:0.05〜0.40% 、P:0.003 〜0.025%、S:0.005 〜0.05% 、Cu:0.015 〜0.04% 、sol. Al: 0.022 0.071% B:0.001 〜0.02% 、N:0.001 〜0.02% を含有し、残部Feおよび不可避的不純物からなる成分組成の鋼を鋳造し、1200℃以下で加熱し、粗圧延後、750 〜950 ℃まで空冷し、次いで850 〜1050℃の間に20℃以上の加熱を行い、仕上圧延後、600 ℃以上で巻取り、冷間圧延率60% 以上で冷間圧延後、再結晶焼鈍することを特徴とする密着性と耐爪とび性に優れたほうろう用冷延鋼板の製造方法。% By weight, C ≦ 0.1%, Si: 0.01 to 0.03% , Mn: 0.05 to 0.40%, P: 0.003 to 0.025%, S: 0.005 to 0.05%, Cu: 0.015 to 0.04%, sol. Al: 0.022 to 0.071% , B: 0.001 to 0.02%, N: 0.001 to 0.02% , steel having a component composition consisting of the remainder Fe and inevitable impurities is cast, heated at 1200 ° C. or less, and after rough rolling, 750 to 950 Air-cooled to ℃, then heat at 850-1050 ℃ over 20 ℃, wind up after finish rolling, wind up at 600 ℃ or higher, cold-roll at a cold rolling rate of 60% or more, then recrystallize annealing The manufacturing method of the cold rolled steel sheet for enamels which is excellent in the adhesiveness and nail | claw-proof property characterized by these. 再結晶焼鈍が連続焼鈍であることを特徴とする請求項2 記載のほうろう用冷延鋼板の製造方法。  3. The method for producing a cold rolled steel sheet for enamel according to claim 2, wherein the recrystallization annealing is continuous annealing.
JP32982196A 1996-12-10 1996-12-10 Method for producing cold rolled steel sheet for enamel with excellent claw resistance Expired - Fee Related JP3858127B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32982196A JP3858127B2 (en) 1996-12-10 1996-12-10 Method for producing cold rolled steel sheet for enamel with excellent claw resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32982196A JP3858127B2 (en) 1996-12-10 1996-12-10 Method for producing cold rolled steel sheet for enamel with excellent claw resistance

Publications (2)

Publication Number Publication Date
JPH10168522A JPH10168522A (en) 1998-06-23
JP3858127B2 true JP3858127B2 (en) 2006-12-13

Family

ID=18225612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32982196A Expired - Fee Related JP3858127B2 (en) 1996-12-10 1996-12-10 Method for producing cold rolled steel sheet for enamel with excellent claw resistance

Country Status (1)

Country Link
JP (1) JP3858127B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100402009B1 (en) * 1999-10-05 2003-10-17 주식회사 포스코 A method for manufacturing a hot rolled sheet steel for the both side enamel coating
CN109518088A (en) * 2018-12-27 2019-03-26 沈阳大学 A method of spontaneous enhancing abrasion-resistant stee wearability
CN114657348B (en) * 2021-11-26 2023-12-29 安阳钢铁股份有限公司 Production method of low-carbon cold-rolled enamel steel with high anti-scaling performance
CN115537664B (en) * 2022-10-13 2023-05-30 马鞍山钢铁股份有限公司 Hot-rolled pickled enamel steel with yield strength more than or equal to 300MPa after enameling and production method thereof

Also Published As

Publication number Publication date
JPH10168522A (en) 1998-06-23

Similar Documents

Publication Publication Date Title
WO1984001585A1 (en) Process for manufacturing cold-rolled steel for deep drawing
JPH0379420B2 (en)
JPS59140333A (en) Manufacture of cold rolled steel sheet for deep drawing with superior secondary workability and surface treatability
JP3797063B2 (en) Steel plate for enamel with excellent nail skipping resistance, adhesion and workability, and its manufacturing method
JPS6111296B2 (en)
JP3858127B2 (en) Method for producing cold rolled steel sheet for enamel with excellent claw resistance
JP3412565B2 (en) Steel plate for enamel with excellent nail flying resistance and adhesion and method for producing the same
JP3384265B2 (en) Manufacturing method of cold rolled steel sheet for enamel with excellent nail jump resistance
JP3352904B2 (en) Manufacturing method of non-oriented electrical steel sheet
JP2682327B2 (en) Method for producing high-strength cold-rolled steel sheet excellent in bake hardenability and deep drawability
JP2000063985A (en) Cold rolled steel sheet for porcelain enameling, hardly causing strength reduction after firing
JP2002249849A (en) High tensile strength cold rolled steel sheet and production method therefor
JP2718369B2 (en) Steel sheet for galvanizing and method for producing the same
JPH06279864A (en) Production of aluminum killed cold rolled steel sheet for porcelain enameling
JP4419410B2 (en) Cold-rolled steel sheet for high workability enamel and method for producing the same
JP4360009B2 (en) Cold rolled steel sheet for enamel and manufacturing method
JP3446001B2 (en) Method for producing cold-rolled steel sheet and hot-dip galvanized steel sheet with excellent workability
JPS5831035A (en) Production of zinc hot dipped steel plate having excellent workability and baking hardenability
JPH08143969A (en) Production of cold rolled steel sheet excellent in workability
JP2003096542A (en) Steel sheet for enamel, and production method therefor
JP3331535B2 (en) Method for manufacturing thick non-oriented electrical steel sheet with excellent magnetic properties
JP3783372B2 (en) Cold rolled steel sheet for enamel excellent in workability and method for producing the same
JPH0756056B2 (en) Method for producing high strength galvanized steel sheet having high r value
JP4332960B2 (en) Manufacturing method of high workability soft cold-rolled steel sheet
JP3258711B2 (en) Enamelled steel sheet with excellent press formability and weldability

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060721

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090929

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100929

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees