JP3857823B2 - Cooling drum for twin drum thin plate continuous casting equipment - Google Patents

Cooling drum for twin drum thin plate continuous casting equipment Download PDF

Info

Publication number
JP3857823B2
JP3857823B2 JP27028298A JP27028298A JP3857823B2 JP 3857823 B2 JP3857823 B2 JP 3857823B2 JP 27028298 A JP27028298 A JP 27028298A JP 27028298 A JP27028298 A JP 27028298A JP 3857823 B2 JP3857823 B2 JP 3857823B2
Authority
JP
Japan
Prior art keywords
drum
cooling drum
continuous casting
cooling
twin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27028298A
Other languages
Japanese (ja)
Other versions
JP2000094097A (en
Inventor
泰 栗栖
佳昭 四阿
克己 安藤
千博 山地
秀 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27028298A priority Critical patent/JP3857823B2/en
Publication of JP2000094097A publication Critical patent/JP2000094097A/en
Application granted granted Critical
Publication of JP3857823B2 publication Critical patent/JP3857823B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、双ドラム式薄板連続鋳造装置において用いられる冷却ドラムに関するものである。
【0002】
【従来の技術】
従来から一般に知られている例えば双ドラム式薄板連続鋳造装置においては、図12に示されるように、回転する一対の冷却ドラムla、1bとこのドラムの両端面に当接される一対のサイド堰2によって形成される移動鋳型3内に、タンディッシュ4内からノズル5を介して溶湯6を供給し、移動鋳型3内に所定レベルの湯溜り部3pをつくりつつ、一対の冷却ドラム1a、1bで冷却して凝固シェル6sを形成し、この凝固シェルを一対の冷却ドラム1a、1bの最接近部に形成されるギャップ部において圧接・一体化して薄板鋳片6cを連続鋳造するように構成されている。
【0003】
この双ドラム式薄板連続鋳造装置において用いられる、一対の冷却ドラム1a、1bは、一般には熱伝導率の良好なCu又はCu合金によって形成され、図13に示すように、溶鋼6を外周面で冷却して凝固シェル6sを形成するため、および熱負荷に対する耐用性を碓保するために、内部に冷却構造14を備えたものである。
【0004】
この冷却ドラムの端面には、サイド堰が圧着されるため、冷却ドラムの端面はサイド堰の接触面と摺動によって摩耗する。特に、サイド堰の振動や熱変形によってサイド堰との間に不均一な間隙が生じやすく、この間隙に溶鋼が侵入・凝固して、摺動面に凹凸が生じる。その結果、この摺動面でのシール機能が急激に低下して薄板(鋳片)の側端部形状が損なわれるとともに、冷却ドラム端面およびサイド堰の変形・摩耗が促進され、寿命が短命化して長期にわたって安定した連続鋳造操業を実現することができない。
【0005】
このような問題を解決するために、例えば特開平6−336751号公報では、冷却ドラムの端面に、高強度、耐摩耗性およぴ潤滑性を有する例えばCo−Cr−Al、Y系合金、あるいはWC等のセラミックスなどからなるコーティング層を形成することが提案されており、また、特開平6−318041号公報には、冷却ドラムとサイド堰の摺動面を自己潤滑性のある材料で形成したり、この摺動面になんらかの潤滑性剤を供給することが普通である旨の記載がある。
【0006】
しかし、従来公知の潤滑構造においては、用いられてい潤滑剤は、粉体または固形のものであるため、潤滑膜を均一に形成することが難しく、安定した潤滑性を確保することは困難である。このため、この摺動面での変形・摩耗を十分に抑制することができず不均一な隙間が形成される結果、シール性の安定確保ができず、この摺動面に溶鋼が侵入・凝固して、安定した連続鋳造操業を困難にするという不都合を生じることがある。
【0007】
【発明が解決しようとする課題】
本発明は、冷却ドラム端面とサイド堰との摺動面での潤滑性の安定を確保して、上記した従来のような問題点を有利に解決し、長期にわたって安定した連続鋳造を実現できる双ドラム式薄板連続鋳造装置用冷却ドラムを提供するものである。
【0008】
【課題を解決するための手段】
本発明の第一の発明は、互いに反対方向に回転する一対の冷却ドラムと、該冷却ドラムの両端面に当接され移動鋳型を形成する一対のサイド堰を備えた双ドラム式薄板連続鋳造装置で用いられる冷却ドラムであって、サイド堰に接触する端面において、外周面から1〜20mmの範囲に幅が0.1〜5mmの潤滑溝を周方向に形成し、この潤滑溝に潤滑剤を充填してサィド擾との摺動面間に潤滑剤を介在させるように構成したことを特徹とする双ドラム式薄板連続鋳造装置用の冷却ドラム。
第二の発明は、第一の発明において、潤滑溝が周方向で1〜500mm間隔で配置した仕切壁で部分的に仕切られ、周方向で部分連通したことを特徴とする双ドラム式薄板連続鋳造装置用の冷却ドラム。
第三の発明は、第二の発明において仕切壁が周方向に鋸刃状に形成されたことを特徴とする双ドラム式薄板連続鋳造装置用の冷却ドラム。
第四の発明は、第一又は第二の発明において、潤滑溝が周方向に対して1〜90度の角度をなす方向に配設されたことを特徴とするドラム式連続鋳造装置用の冷却ドラムである。
【0009】
【発明の実施の形態】
本発明の冷却ドラムにおいては、サイド堰との摺動面に、使用状態で半固体または液体で、300℃の温度で粘度が10cSt 程度であり潤滑機能を有する、例えば、高融点ワックス、水ガラス、高粘度油(以下、これらのものを、ここでは「潤滑剤」という。)を用いることを前提とするものであり、この潤滑剤を冷却ドラム側に充填するものである。
【0010】
そのために、本発明の冷却ドラムに、潤滑剤を充填する潤滑溝をサイド堰と接触する端面において、周方向あるいは周方向に対して一定の角度をなす方向に形成するものである。この潤滑溝は、冷却ドラム端面の外周面から1〜20mm離れた位置に形成して、この潤滑溝の潤滑剤と溶鋼とが直接接触しないように配置する。
【0011】
また、この潤滑溝は、充填した潤滑剤を端面側に露出する開口を形成したものであり、上下方向に1〜3条配設するものであり、周方向に連続するものでもよいが、潤滑剤を安定供給(均一保持)し、サイド堰に安定接触させるためには、部分的に不連続性を持たせることが有効である。
【0012】
例えば、周方向で1〜500mm間隔で配置した仕切壁で部分的に仕切り、周方向で部分的に連続させ、潤滑剤が周方向で途切れないようにすることが有効である。この仕切壁は、直壁でもよいが端面に対して傾斜面を有するものであれば、この傾斜面で潤滑剤をより安定的に、かつ円滑に供給することができる。
【0013】
なお、潤滑溝の幅は、0.1〜5mmであることが好ましい。0.1mm未満では潤滑膜を十分にかつ均一に形成することができない。周方向溝において5mm超の場合には、潤滑剤を過剰に使用することになり不経済であるし、潤滑剤の落下、あるいは冷却ドラムの端部強度低下の不都合を生じやすくなるので、好ましくない。
【0014】
また、図9(a)にも示すように、潤滑溝が周方向に対してなす角度αが1度未満の場合は、ほぼ周方向溝と同じ作用をなす。また、αが90度超の角度をなす方向に配設されている場合は、溶鋼や地金がドラム端部摺動面に侵入した場合に、ドラムの摺動によって該溶鋼や地金をドラム内径側に誘導する作用が働くという問題があり、好ましくない。従って、角度αは1〜90°の範囲が望ましい。
【0015】
【実施例】
以下に本発明の冷却ドラムの構造例を図1〜図11に示す実施例に基づいて説明する。
図1において、1aは従来の標準的な冷却ドラムで、サイド堰2が当接される端部には、幅xが1〜10mm、高さhが1〜20mmの突出部1tがリング状に形成され、この突出部1tの端面1pと胴部1bの端面1f間に、傾斜角θが80度未満の傾斜面1cが形成されたものであり、胴部1bには冷却構造14を備えたものである。
【0016】
本発明では、例えば、上記のような冷却ドラム1aにおいて、端面部に、図2およぴ図3に示すように、外周面から5mmの位置から軸ls側に幅bが1mm、深さdが2mmの周方向に連続するリング状の潤滑溝7を形成したものである。本発明では、この潤滑溝7に潤滑剤8を充填し、この潤滑剤8をサイド堰2との間の摺動面に介在させることにより、潤滑機能とシール機能を安定確保するものである。
【0017】
なお、潤滑溝7への潤滑剤8の充填は、例えば図4(a)に示すように、サイド堰2以外の冷却ドラム1aの端面近くに充填装置9を位置調整可能に配置し、冷却ドラム1aが回転状態で潤滑溝7の全体に潤滑剤8を適時、適量充填することができる。
【0018】
また、図4(b)に示すように、冷却ドラム1aの端面に、潤滑溝7に続く潤滑剤の供給口13を配置し、冷却ドラム端面の中心近傍に配設した潤滑剤加圧供給装置によって、該供給口13から端面の潤滑溝7に潤滑剤8を供給充填することにより、より好ましく潤滑剤を充填することができる。
【0019】
図5および図6は、本発明の冷却ドラムの他の構造例を示したものである。この例では、例えば、冷却ドラム1aの端面部に、外周面から5mmの位置から軸1s側に幅bが5mm、深さdが5mmの、周方向に仕切壁10で仕切られた多数の潤滑溝7aを形成したものである。
この例では、潤滑溝7aを仕切壁10で仕切ることにより、潤滑剤8の充填、・保持を安定させ、かつ、潤滑剤8をサイド堰2との間の摺動面に均一に介在させることにより、潤滑機能とシール機能を安定確保するものである。
【0020】
なお、図5および図6の例では、潤滑溝7aが独立しているので、充填装置9は、位置調整可能に配置するとともに、簡潔充填できるように充填パターンを採用してもよいが、仕切壁7aを極力薄くすれば、連続充填することができる。
【0021】
図7および図8は、本発明の冷却ドラムの他の構造例を示したものである。この例では、例えば、冷却ドラム1aの端面部に、外周面から10mmの位置から軸1s側に幅bが0.1mm、深さ2mmの、周方向に仕切壁(山部)11と谷部12により潤滑溝7bを形成したものである。
【0022】
ここでは、潤滑溝7bは、図7(b)に示すように、仕切壁11で周方向に周期的に変化し、谷部12の最深部で2mm、仕切壁11の頂点の最浅部は突出部1tの端面とほぼ同じになる、鋸刃状に形成したものである。この例では、この鋸刃状の潤滑溝7bとして、その仕切壁部11で仕切ることで、潤滑剤8の供給能力を向上させる。
【0023】
なお、この例では、潤滑溝7bは仕切壁11により仕切られているので、充填装置9で連続充填することができるが、間欠充填できるように充填パターンを採用してもよい。なおまた、上記の例で仕切壁10、11を設けた場合に、仕切壁間を端面側または内部側で部分的に連通させるようにしてもよい。
【0024】
図9は、本発明の冷却ドラムの他の構造例を示したものである。この例では、例えば、冷却ドラム1aの端面部に、外周面から2mmの位置から軸1s側に半径方向長さh′が6mm、幅bが1mm、深さdが1mmの潤滑溝7cを、周方向に対して角度αが45度の方向になるように形成したものである。ここでは、潤滑溝7cは、図9(a)に示すように、冷却ドラム突出部1tの表面に一定間隔pを約20mmとなるように形成されている。
【0025】
この潤滑溝配置によって、少量の潤滑剤を半径方向の幅h′の部分に均等に供給することが可能となる。また、潤滑溝が周方向に対して角度をもって形成されていることにより、ドラム端部の摺動方向が図9(a)の矢印で示す方向の場合、潤滑剤が外周面すなわち溶鋼の漏出を防ぐ方向に流れようとする作用が生じ、シール機能をより好ましく安定化することが出来る。
なお、上記の例で、潤滑溝が形成されている間の部分に周方向の溝を配設し、端面側または内部側で潤滑溝7cを部分的に連通させるようにしてもよい。
【0026】
図10、図11は、本発明の冷却ドラムの他の構造例を示したものである。図10の例では、例えば、冷却ドラム1aの端面部に、外周面から2mmの位置から軸1s側に半径方向長さh′が6mm、幅bが3mm、b′が2mm、深さdが1mmの潤滑溝7dを、半径方向に形成したものである。ここでは、潤滑溝7dは、図10(a)に示すように、冷却ドラム突出部1tの表面に一定間隔pを約10mmとなるように形成されている。
【0027】
この潤滑溝配置によって、少量の潤滑剤を半径方向の幅h′の部分に均等に供給することが可能となる。また、ドラム端部の摺動方向が図10(a)の矢印で示す方向の場合、潤滑溝7dにおいて、潤滑剤の出口向きの斜面が緩やかであるため、潤滑剤をサイド堰2との間の摺動面により良好な状態で供給することが出来る。
【0028】
なお、潤滑剤の出口向きに緩やかな斜面を形成するために、図11(a)に示すように、潤滑溝7eの形状を、一般に機械加工が容易な半円形の形態としてもよい。また、上記の例で、潤滑溝が形成されている間の部分に周方向の溝を配設し、端面側または内部側で潤滑溝7d又は7eを部分的に連通させるようにしてもよい。
【0029】
またさらに、本発明の冷却ドラム、この冷却ドラムを適用する双ドラム式薄板連続鋳造装置は上記の実施例に限定されるものではない。例えば、冷却ドラムの冷却構造とその配置、潤滑溝形成条件(形状、サイズ、間隔、仕切壁間の連通の有無、連通形状、配置数)、潤滑剤の種類(特性)等については、サイド堰条件(構造、寸法、形状、材料の組み合わせ)、連続鋳造の操業条件(温度、速度、寸法等)等に応じて、選択されるものであり、本発明の講求項の範囲内で変更し得るものである。
【0030】
【発明の効果】
本発明においては、双ドラム式薄板連続鋳造装置で用いられる冷却ドラムにおいて、冷却ドラム端面部に潤滑溝を設けて、この潤滑溝に潤滑剤を充填して冷却ドラムとサィド堰間の摺動面に潤滑剤を介在させようにしたので、この摺動面での潤滑性およびシール性の安定を確保して、長期にわたって安定した連続鋳造を実現できる。
【図面の簡単な説明】
【図1】本発明を適用する冷却ドラムの端部構造例を示ず側断面説明図。
【図2】本発明に係る冷却ドラムの端部構造例を示す側断面説明図。
【図3】図2のAa−Ab矢視断面説明図。
【図4】(a)は、図2で用いる潤滑剤充填装置と配置例を示す一部断面側面説明図。(b)は、図2で用いる他の潤滑剤供給装置と配置例を示す一部断面側面説明図。
【図5】本発明に係る冷却ドラムの他の端部構造例を示す側断面説明図。
【図6】図5のBa−Bb矢視断面説明図。
【図7】(a)図は、本発明の冷却ドラムの他の端部構造例を示す側断面説明図。(b)図は、(a)図の潤滑溝部におけるDa−Db矢視・周方向一部断面面説明図。
【図8】図7のCa−Cb矢視断面説明図。
【図9】(a)図は、本発明の冷却ドラムの他の端部構造例を示す説明図。(b)図は、(a)図の潤滑溝部におけるEa−Eb矢視・周方向一部断面面説明図。
【図10】(a)図は、本発明の冷却ドラムの他の端部構造例を示す説明図。(b)図は、(a)図の潤滑溝部におけるFa−Fb矢視・周方向一部断面面説明図。
【図11】(a)図は、本発明の冷却ドラムの他の端部構造例を示す説明図。(b)図は、(a)図の潤滑溝部におけるGa−Gb矢視・周方向一部断面面説明図。
【図12】本発明を適用する双ドラム式薄板連続鋳造装置の一般的構造例を示す正面説明図。
【図13】図9の双ドラム式薄板連続鋳造装置で用いられている冷却ドラムの標準的構造例を示すA−A面における側断面説明図。
【符号の説明】
1a、1b 冷却ドラム
1t 突出部
1s 軸
1p 端面
2 サイド堰
3 移動鋳型(湯溜り部)
4 タンディッシュ
5 ノズル
6 溶鋼
6s 凝固シェル
6c 薄板(鋳片)
7、7a、7b、7c、7d、7e 潤滑溝
8 潤滑剤
9 潤滑剤充填装置
10 仕切壁
11 仕切壁(山部)
12 谷部
13 潤滑剤供給口
14 冷却構造
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a cooling drum used in a twin drum thin plate continuous casting apparatus.
[0002]
[Prior art]
In a conventionally known twin-drum type thin plate continuous casting apparatus, for example, as shown in FIG. 12, a pair of rotating cooling drums la and 1b and a pair of side weirs abutting against both end faces of the drum. The molten metal 6 is supplied from the tundish 4 through the nozzle 5 into the movable mold 3 formed by the nozzle 2, and a pair of cooling drums 1a, 1b are formed while creating a predetermined level of the hot water pool 3p in the movable mold 3. The solidified shell 6s is formed by cooling at the same time, and the solidified shell 6c is continuously casted by press-contacting and integrating the solidified shell at the gap portion formed at the closest part of the pair of cooling drums 1a and 1b. ing.
[0003]
The pair of cooling drums 1a and 1b used in this twin-drum type thin plate continuous casting apparatus is generally formed of Cu or Cu alloy having a good thermal conductivity, and as shown in FIG. In order to cool and form the solidified shell 6s and to ensure durability against heat load, a cooling structure 14 is provided inside.
[0004]
Since the side weir is pressure-bonded to the end surface of the cooling drum, the end surface of the cooling drum is worn by sliding with the contact surface of the side weir. In particular, nonuniform gaps are easily formed between the side weirs due to vibration and thermal deformation of the side weirs, and molten steel enters and solidifies into the gaps, resulting in unevenness on the sliding surface. As a result, the sealing function on the sliding surface is abruptly deteriorated and the shape of the side end of the thin plate (slab) is damaged, and the deformation and wear of the cooling drum end surface and the side weir are promoted, resulting in a shortened life. Therefore, stable continuous casting operation cannot be realized for a long time.
[0005]
In order to solve such a problem, for example, in JP-A-6-336751, for example, a Co-Cr-Al, Y-based alloy having high strength, wear resistance and lubricity is provided on the end face of the cooling drum. Alternatively, it has been proposed to form a coating layer made of ceramics such as WC, and in Japanese Patent Laid-Open No. 6-318041, the sliding surfaces of the cooling drum and the side weir are formed of a self-lubricating material. There is a description that it is normal to supply some lubricant to the sliding surface.
[0006]
However, in the conventionally known lubricating structure, since the lubricant used is powder or solid, it is difficult to form a lubricating film uniformly, and it is difficult to ensure stable lubricity. . For this reason, deformation and wear on the sliding surface cannot be sufficiently suppressed, and a non-uniform gap is formed. As a result, stable sealing cannot be ensured, and molten steel enters and solidifies on the sliding surface. As a result, there may be a disadvantage that a stable continuous casting operation becomes difficult.
[0007]
[Problems to be solved by the invention]
The present invention ensures stable lubricity on the sliding surface between the cooling drum end face and the side weir, advantageously solves the above-mentioned problems, and realizes continuous casting that is stable over a long period of time. A cooling drum for a drum-type thin plate continuous casting apparatus is provided.
[0008]
[Means for Solving the Problems]
A first invention of the present invention is a twin-drum type thin plate continuous casting apparatus comprising a pair of cooling drums rotating in opposite directions and a pair of side weirs that are in contact with both end faces of the cooling drum to form a moving mold. In the end surface contacting the side weir, a lubricating groove having a width of 0.1 to 5 mm is formed in the circumferential direction in the range of 1 to 20 mm from the outer peripheral surface, and a lubricant is applied to the lubricating groove. A cooling drum for a twin-drum type thin plate continuous casting apparatus, characterized in that the lubricant is interposed between the sliding surfaces with the side rod.
A second invention is the twin-drum type thin plate continuous according to the first invention, wherein the lubricating grooves are partially partitioned by a partition wall arranged at intervals of 1 to 500 mm in the circumferential direction, and partially communicated in the circumferential direction. Cooling drum for casting equipment.
A third invention is a cooling drum for a twin drum thin plate continuous casting apparatus according to the second invention, wherein the partition wall is formed in a saw blade shape in the circumferential direction.
According to a fourth aspect of the present invention, in the first or second aspect, the cooling groove for the drum type continuous casting apparatus is characterized in that the lubricating groove is disposed in a direction that forms an angle of 1 to 90 degrees with respect to the circumferential direction. It is a drum.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
In the cooling drum of the present invention, the sliding surface with the side weir is semi-solid or liquid in use, has a viscosity of about 10 cSt at a temperature of 300 ° C., and has a lubricating function. For example, high melting point wax, water glass These oils are premised on the use of high-viscosity oil (hereinafter referred to as “lubricant”), and this lubricant is filled on the cooling drum side.
[0010]
For this purpose, in the cooling drum of the present invention, a lubricating groove filled with a lubricant is formed in the circumferential direction or in a direction that forms a certain angle with respect to the circumferential direction at the end surface that contacts the side weir. The lubrication groove is formed at a position 1 to 20 mm away from the outer peripheral surface of the end surface of the cooling drum, and is arranged so that the lubricant in the lubrication groove and the molten steel are not in direct contact.
[0011]
In addition, the lubrication groove is formed with an opening that exposes the filled lubricant to the end face side, and is arranged in 1 to 3 strips in the vertical direction and may be continuous in the circumferential direction. In order to stably supply (uniformly hold) the agent and bring it into stable contact with the side weir, it is effective to have a discontinuity in part.
[0012]
For example, it is effective to partly partition with partition walls arranged at intervals of 1 to 500 mm in the circumferential direction, and to partly continue in the circumferential direction so that the lubricant is not interrupted in the circumferential direction. The partition wall may be a straight wall, but if the partition wall has an inclined surface with respect to the end surface, the inclined surface can supply the lubricant more stably and smoothly.
[0013]
The width of the lubricating groove is preferably 0.1 to 5 mm. If the thickness is less than 0.1 mm, the lubricating film cannot be formed sufficiently and uniformly. If the circumferential groove exceeds 5 mm, the lubricant is excessively used, which is uneconomical and is liable to cause the inconvenience of dropping the lubricant or reducing the end strength of the cooling drum. .
[0014]
Further, as shown in FIG. 9A, when the angle α formed by the lubricating groove with respect to the circumferential direction is less than 1 degree, the same action as that of the circumferential groove is achieved. In addition, when α is disposed in a direction that makes an angle of more than 90 degrees, when molten steel or metal enters the drum end sliding surface, the molten steel or metal is removed by drum sliding. There is a problem that the action of guiding to the inner diameter side works, which is not preferable. Therefore, the angle α is preferably in the range of 1 to 90 °.
[0015]
【Example】
Hereinafter, structural examples of the cooling drum of the present invention will be described based on the embodiments shown in FIGS.
In FIG. 1, 1a is a conventional standard cooling drum, and a protruding portion 1t having a width x of 1 to 10 mm and a height h of 1 to 20 mm is formed in a ring shape at an end where the side weir 2 abuts. An inclined surface 1c having an inclination angle θ of less than 80 degrees is formed between the end surface 1p of the projecting portion 1t and the end surface 1f of the body portion 1b. The body portion 1b includes a cooling structure 14. Is.
[0016]
In the present invention, for example, in the cooling drum 1a as described above, as shown in FIGS. 2 and 3, the width b is 1 mm and the depth d from the position 5 mm from the outer peripheral surface to the shaft ls side. Is a ring-shaped lubricating groove 7 which is continuous in the circumferential direction of 2 mm. In the present invention, the lubrication groove 7 is filled with the lubricant 8 and the lubricant 8 is interposed on the sliding surface between the side weirs 2 so that the lubrication function and the sealing function are stably secured.
[0017]
For example, as shown in FIG. 4 (a), the lubricant groove 8 is filled in the lubricating groove 7 by arranging a filling device 9 near the end face of the cooling drum 1a other than the side weir 2 so that the position can be adjusted. The lubricant 8 can be filled into the entire lubricating groove 7 in a timely and appropriate amount while the la is rotating.
[0018]
Further, as shown in FIG. 4B, a lubricant pressure supply device in which a lubricant supply port 13 following the lubrication groove 7 is disposed on the end surface of the cooling drum 1a and is disposed near the center of the end surface of the cooling drum. Thus, the lubricant can be more preferably filled by supplying and filling the lubricant 8 from the supply port 13 to the lubrication groove 7 on the end face.
[0019]
5 and 6 show other structural examples of the cooling drum of the present invention. In this example, for example, a large number of lubricants partitioned by a partition wall 10 in the circumferential direction on the end surface portion of the cooling drum 1a with a width b of 5 mm and a depth d of 5 mm from the position 5 mm from the outer peripheral surface to the shaft 1s side. A groove 7a is formed.
In this example, the lubrication groove 7 a is partitioned by the partition wall 10 to stabilize the filling and holding of the lubricant 8 and to uniformly dispose the lubricant 8 on the sliding surface between the side weir 2. Thus, the lubrication function and the sealing function are ensured stably.
[0020]
In the examples of FIGS. 5 and 6, since the lubricating groove 7a is independent, the filling device 9 may be arranged so that the position can be adjusted, and a filling pattern may be adopted so that the filling can be performed simply. If the wall 7a is made as thin as possible, it can be continuously filled.
[0021]
7 and 8 show other structural examples of the cooling drum of the present invention. In this example, for example, at the end surface portion of the cooling drum 1a, a partition wall (mountain portion) 11 and a valley portion in the circumferential direction having a width b of 0.1 mm and a depth of 2 mm from the position 10 mm from the outer peripheral surface to the shaft 1s side. 12, the lubricating groove 7b is formed.
[0022]
Here, as shown in FIG. 7 (b), the lubricating groove 7 b periodically changes in the circumferential direction at the partition wall 11, 2 mm at the deepest portion of the valley portion 12, and the shallowest portion at the apex of the partition wall 11 It is formed in a saw blade shape that is substantially the same as the end face of the protruding portion 1t. In this example, the sawtooth-shaped lubrication groove 7b is partitioned by the partition wall portion 11 to improve the supply capability of the lubricant 8.
[0023]
In this example, since the lubricating groove 7b is partitioned by the partition wall 11, it can be continuously filled by the filling device 9, but a filling pattern may be adopted so that intermittent filling is possible. In addition, when the partition walls 10 and 11 are provided in the above example, the partition walls may be partially communicated with each other on the end face side or the inner side.
[0024]
FIG. 9 shows another structural example of the cooling drum of the present invention. In this example, for example, a lubricating groove 7c having a radial length h 'of 6 mm, a width b of 1 mm, and a depth d of 1 mm from the position 2 mm from the outer peripheral surface to the shaft 1s side from the end surface of the cooling drum 1a, It is formed so that the angle α is 45 degrees with respect to the circumferential direction. Here, as shown in FIG. 9A, the lubrication groove 7c is formed on the surface of the cooling drum protrusion 1t so that the constant interval p is about 20 mm.
[0025]
With this lubricating groove arrangement, a small amount of lubricant can be evenly supplied to the portion of the radial width h ′. Further, since the lubricating groove is formed at an angle with respect to the circumferential direction, when the sliding direction of the drum end is the direction indicated by the arrow in FIG. 9A, the lubricant leaks out the outer peripheral surface, that is, the molten steel. The action of trying to flow in the preventing direction is generated, and the sealing function can be more preferably stabilized.
In the above example, a circumferential groove may be provided in a portion where the lubricating groove is formed, and the lubricating groove 7c may be partially communicated on the end face side or the inner side.
[0026]
10 and 11 show another structural example of the cooling drum of the present invention. In the example of FIG. 10, for example, on the end surface portion of the cooling drum 1a, the radial length h 'is 6 mm, the width b is 3 mm, b' is 2 mm, and the depth d is 2 mm from the outer peripheral surface to the shaft 1s side. A 1 mm lubricating groove 7d is formed in the radial direction. Here, as shown in FIG. 10A, the lubrication groove 7d is formed on the surface of the cooling drum protrusion 1t so that the constant interval p is about 10 mm.
[0027]
With this lubricating groove arrangement, a small amount of lubricant can be evenly supplied to the portion of the radial width h ′. Further, when the sliding direction of the drum end is the direction indicated by the arrow in FIG. 10A, the slanting surface of the lubricating groove 7 d toward the outlet of the lubricant is gentle. It can be supplied in a good state by the sliding surface.
[0028]
In order to form a gentle slope toward the outlet of the lubricant, as shown in FIG. 11A, the shape of the lubricating groove 7e may be a semicircular shape that is generally easy to machine. Further, in the above example, a circumferential groove may be provided in a portion while the lubricating groove is formed, and the lubricating groove 7d or 7e may be partially communicated on the end face side or the inner side.
[0029]
Furthermore, the cooling drum of the present invention and the twin drum thin plate continuous casting apparatus to which the cooling drum is applied are not limited to the above-described embodiments. For example, regarding the cooling structure and arrangement of the cooling drum, lubrication groove forming conditions (shape, size, spacing, presence / absence of communication between partition walls, communication shape, number of arrangements), lubricant type (characteristics), etc. It is selected according to conditions (combination of structure, dimensions, shape, material), continuous casting operation conditions (temperature, speed, dimensions, etc.), etc., and can be changed within the scope of the subject matter of the present invention. Is.
[0030]
【The invention's effect】
In the present invention, in the cooling drum used in the twin-drum type thin plate continuous casting apparatus, a lubricating groove is provided on the end surface of the cooling drum, and the lubricating groove is filled with a lubricant to slide the sliding surface between the cooling drum and the side weir. Since the lubricant is interposed in the surface, it is possible to ensure the stability of the lubricity and the sealing performance on the sliding surface and realize a stable continuous casting over a long period of time.
[Brief description of the drawings]
FIG. 1 is an explanatory side sectional view showing an example of an end structure of a cooling drum to which the present invention is applied.
FIG. 2 is an explanatory side sectional view showing an example of an end structure of a cooling drum according to the present invention.
3 is a cross-sectional explanatory view taken along arrow Aa-Ab in FIG. 2;
4A is a partially sectional side view illustrating a lubricant filling device used in FIG. 2 and an arrangement example thereof. (B) is a partial cross-sectional side view showing another lubricant supply device used in FIG. 2 and an arrangement example.
FIG. 5 is an explanatory side sectional view showing another example of the end structure of the cooling drum according to the present invention.
6 is a cross-sectional explanatory view taken along the line Ba-Bb in FIG. 5;
7A is a side cross-sectional explanatory view showing another example of the end structure of the cooling drum of the present invention. FIG. (B) The figure is Da-Db arrow view in the lubricating groove part of (a) figure, the circumferential direction partial cross section explanatory drawing.
8 is a cross-sectional explanatory view taken along the line Ca-Cb in FIG. 7;
FIG. 9A is an explanatory view showing another example of the end structure of the cooling drum of the present invention. (B) The figure is Ea-Eb arrow directional view of the lubrication groove part of (a) figure, the circumferential direction partial cross section explanatory drawing.
FIG. 10A is an explanatory view showing another example of the end structure of the cooling drum of the present invention. (B) The figure is a partial cross-sectional explanatory view of the lubrication groove part of FIG.
FIG. 11A is an explanatory view showing another example of the end structure of the cooling drum of the present invention. (B) The figure is Ga-Gb arrow view and circumferential direction partial cross-section explanatory drawing in the lubrication groove part of (a) figure.
FIG. 12 is a front explanatory view showing a general structural example of a twin drum thin plate continuous casting apparatus to which the present invention is applied.
13 is a side cross-sectional explanatory view on the AA plane showing an example of a standard structure of a cooling drum used in the twin drum thin plate continuous casting apparatus of FIG. 9;
[Explanation of symbols]
1a, 1b Cooling drum 1t Protruding part 1s Shaft 1p End face 2 Side weir 3 Moving mold (pouring part)
4 Tundish 5 Nozzle 6 Molten steel 6s Solidified shell 6c Thin plate (slab)
7, 7a, 7b, 7c, 7d, 7e Lubrication groove 8 Lubricant 9 Lubricant filling device 10 Partition wall 11 Partition wall (mountain portion)
12 Valley 13 Lubricant supply port 14 Cooling structure

Claims (4)

互いに反対方向に回転する一対の冷却ドラムと、該冷却ドラムの両端面に当接され移動鋳型を形成する一対のサイド堰を備えた双ドラム式薄板連続鋳造装置で用いられる冷却ドラムにおいて、サイド堰に接触する端面に、外周面から1〜20mmの範囲に幅が0.1〜5mmで端面側で開口する潤滑溝を周方向に形成し、この潤滑溝に潤滑剤を充填してサイド堰との摺動面間に潤滑剤を介在させるように構成したことを特徴とする双ドラム式薄板連続鋳造装置用の冷却ドラム。In a cooling drum used in a twin-drum type thin plate continuous casting apparatus provided with a pair of cooling drums rotating in opposite directions and a pair of side weirs that are in contact with both end faces of the cooling drum to form a moving mold, A lubrication groove having a width of 0.1 to 5 mm and an opening on the end surface side is formed in the circumferential direction on the end surface in contact with the outer peripheral surface, and the lubricant is filled in the lubrication groove to form a side weir and A cooling drum for a twin-drum type thin plate continuous casting apparatus, characterized in that a lubricant is interposed between the sliding surfaces. 潤滑溝が、周方向で1〜500mm間隔で配置した仕切壁で部分的に仕切られ、周方向で部分連通したことを特徴とする請求項1記載の双ドラム式薄板連続鋳造装置用の冷却ドラム。2. A cooling drum for a twin-drum type thin plate continuous casting apparatus according to claim 1, wherein the lubricating grooves are partially partitioned by partition walls arranged at intervals of 1 to 500 mm in the circumferential direction and partially communicated in the circumferential direction. . 仕切壁が周方向に鋸刃状に形成されたことを特徴とする請求項2記載の双ドラム式薄板連涜鋳造装置用の冷却ドラム。The cooling drum for a twin-drum type thin plate continuous casting apparatus according to claim 2, wherein the partition wall is formed in a saw blade shape in the circumferential direction. 潤滑溝が周方向に対して1〜90度の角度をなす方向に配設されたことを特徴とする請求項1又は2記載の双ドラム式連続鋳造装置用の冷却ドラム。The cooling drum for a twin-drum type continuous casting apparatus according to claim 1 or 2, wherein the lubricating grooves are arranged in a direction that forms an angle of 1 to 90 degrees with respect to the circumferential direction.
JP27028298A 1998-09-24 1998-09-24 Cooling drum for twin drum thin plate continuous casting equipment Expired - Lifetime JP3857823B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27028298A JP3857823B2 (en) 1998-09-24 1998-09-24 Cooling drum for twin drum thin plate continuous casting equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27028298A JP3857823B2 (en) 1998-09-24 1998-09-24 Cooling drum for twin drum thin plate continuous casting equipment

Publications (2)

Publication Number Publication Date
JP2000094097A JP2000094097A (en) 2000-04-04
JP3857823B2 true JP3857823B2 (en) 2006-12-13

Family

ID=17484095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27028298A Expired - Lifetime JP3857823B2 (en) 1998-09-24 1998-09-24 Cooling drum for twin drum thin plate continuous casting equipment

Country Status (1)

Country Link
JP (1) JP3857823B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6511969B2 (en) * 2015-06-03 2019-05-15 日産自動車株式会社 Twin roll vertical casting machine

Also Published As

Publication number Publication date
JP2000094097A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
KR890007816A (en) Twin Roll Continuous Casting Machine
KR100301095B1 (en) Twin drum type sheet steel continuous casting device and continuous casting method therefor
JP3857823B2 (en) Cooling drum for twin drum thin plate continuous casting equipment
FI94103C (en) Installation for continuous casting between rollers
JP2930384B2 (en) Side dam lubrication method for continuous sheet casting machine
JP3085351B2 (en) Lubricated side dam for twin-drum continuous sheet casting machine
JPS6264456A (en) Continuous casting device for thin sheet of steel
JPH01273653A (en) Method for lubricating end part of twin drum type continuous casting machine
JP6512042B2 (en) Twin roll vertical casting machine
CA1147799A (en) Machine and method for continuously casting battery grids
JPH09295106A (en) Method for continuously casting thin cast slab
JPS6021159A (en) Continuous casting device for thin plate
JP2977316B2 (en) Continuous casting method and apparatus for thin cast slab
JP2000230182A (en) Rod like lubricating material for twin drum type thin plate continuous molding
JP2000202589A (en) Lubricating method and liquid lubricator in twin drum type strip continuos casting
JP2004257473A (en) Sealing device
RU2041768C1 (en) Device for continuous casting
JP4720145B2 (en) Molten metal supply nozzle
JPS59153557A (en) Continuous casting method for steel
JPH04270034A (en) Device for continuously casting thin film metal product between two rotating cooling rolls
JPH02220738A (en) Mold for continuous casting
JP6511969B2 (en) Twin roll vertical casting machine
JPH09248658A (en) Twin roll type thin plate continuous caster and method for continuously casting strip with it
JPH0335017B2 (en)
JP3370492B2 (en) Side dam lubrication structure of continuous sheet casting machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040902

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060915

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term