JP3856812B2 - Light source device and projection-type image display device - Google Patents

Light source device and projection-type image display device Download PDF

Info

Publication number
JP3856812B2
JP3856812B2 JP2005188850A JP2005188850A JP3856812B2 JP 3856812 B2 JP3856812 B2 JP 3856812B2 JP 2005188850 A JP2005188850 A JP 2005188850A JP 2005188850 A JP2005188850 A JP 2005188850A JP 3856812 B2 JP3856812 B2 JP 3856812B2
Authority
JP
Japan
Prior art keywords
reflector
light source
source device
heat
arc tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005188850A
Other languages
Japanese (ja)
Other versions
JP2006179450A (en
Inventor
逸郎 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2005188850A priority Critical patent/JP3856812B2/en
Priority to PCT/JP2005/020375 priority patent/WO2006057151A1/en
Priority to TW094140081A priority patent/TWI277709B/en
Publication of JP2006179450A publication Critical patent/JP2006179450A/en
Application granted granted Critical
Publication of JP3856812B2 publication Critical patent/JP3856812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3102Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators
    • H04N9/3111Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources
    • H04N9/3114Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM] using two-dimensional electronic spatial light modulators for displaying the colours sequentially, e.g. by using sequentially activated light sources by using a sequential colour filter producing one colour at a time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/75Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with fins or blades having different shapes, thicknesses or spacing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/76Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical parallel planar fins or blades, e.g. with comb-like cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • F21V29/74Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades
    • F21V29/77Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section
    • F21V29/773Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks with fins or blades with essentially identical diverging planar fins or blades, e.g. with fan-like or star-like cross-section the planes containing the fins or blades having the direction of the light emitting axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/16Cooling; Preventing overheating
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2026Gas discharge type light sources, e.g. arcs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/3144Cooling systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
    • H04N9/3141Constructional details thereof
    • H04N9/315Modulator illumination systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/505Cooling arrangements characterised by the adaptation for cooling of specific components of reflectors

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Description

本発明は、熱伝導部材を設けることにより光源となる発光管の放熱性を高めた光源装置、及びそのような光源装置を適用した投影型画像表示装置に関する。   The present invention relates to a light source device in which heat dissipation of a luminous tube serving as a light source is improved by providing a heat conducting member, and a projection type image display device to which such a light source device is applied.

従来、フロントプロジェクション方式として光源により生成した画像に係る変調光をスクリーンに投影してスクリーン上に画像表示を行うプロジェクタ(投影型画像表示装置)が存在する。また、このような投影型画像表示装置の構成は、リアプロジェクションテレビに代表されるリアプロジェクション方式にも適用されている。投影型画像表示装置には輝度の高い光源が要求されており、メタルハライドランプ及び高圧水銀ランプ等のランプ(放電式の発光管)を用いた光源装置が内蔵されている。   2. Description of the Related Art Conventionally, there is a projector (projection type image display device) that projects modulated light on an image generated by a light source on a screen and displays an image on the screen as a front projection method. Further, such a configuration of the projection type image display apparatus is also applied to a rear projection system represented by a rear projection television. Projection-type image display devices are required to have a high-luminance light source, and a light source device using a lamp (discharge-type arc tube) such as a metal halide lamp and a high-pressure mercury lamp is built in.

光源装置は、光源のランプから放射される光を所望の方向へ反射させるために、発光管を一方向側から覆う形状のリフレクタを備えている。このリフレクタは内周面を鏡面にすることで凹面鏡として機能させ、発光管が放射する光をリフレクタの開口側から外方へ反射する。   The light source device includes a reflector having a shape that covers the arc tube from one side in order to reflect light emitted from the lamp of the light source in a desired direction. The reflector functions as a concave mirror by making the inner peripheral surface a mirror surface, and reflects light emitted from the arc tube outward from the opening side of the reflector.

メタルハライドランプ及び高圧水銀ランプ等のランプは、発熱量が大きく使用状態では高温に達する。ランプ自体が高温に達すると、ランプ本体及びリフレクタの内周面(凹面鏡)の温度を過度に上昇させることになり、ランプ自体の寿命を縮めたり、凹面鏡の反射層を劣化させる等の様々な不具合を生じさせる。そのため、投影型画像表示装置では光源装置の周辺に冷却ファンを配置し、光源装置全体を送風により強制冷却するような冷却機構を設けることが必須になっていた。   Lamps such as metal halide lamps and high-pressure mercury lamps generate a large amount of heat and reach a high temperature in use. If the lamp itself reaches a high temperature, the temperature of the lamp body and the inner peripheral surface (concave mirror) of the reflector will be excessively increased, leading to various problems such as shortening the life of the lamp itself and degrading the reflective layer of the concave mirror. Give rise to Therefore, in the projection type image display apparatus, it has been essential to provide a cooling mechanism in which a cooling fan is disposed around the light source device and the entire light source device is forcibly cooled by blowing air.

なお、光源のランプ(高圧水銀ランプ)を構成するガラス製の棒状支持体(ガラス支持体)の内部には、有害な水銀及びハロゲンガス等が封入されており、点灯時に内部圧力は150気圧を越えるため、何らかの要因によりガラス支持体が破裂すると大音量の破裂音が発生すると共に有害物及びガラス等が飛散するおそれがある。そのため、投入電力が約150W(ワット)以下のランプを用いる光源装置にはリフレクタの開口側をガラス板又は光学レンズ等で閉鎖し、破裂音及び有害物の漏洩を防ぐようにした略密閉式の防爆仕様のものがある。しかし、防爆仕様にするとランプ及びリフレクタの内周面を外部から直接的に冷却できないため、投入電力が約150Wを越える光源装置は一般的に防爆仕様を採用していない。   In addition, harmful mercury and halogen gas are enclosed in the glass rod-shaped support (glass support) that constitutes the lamp of the light source (high-pressure mercury lamp). Therefore, if the glass support is ruptured for some reason, a loud plosive sound is generated and harmful substances and glass may be scattered. For this reason, in a light source device using a lamp with an input power of about 150 W (watts) or less, the opening side of the reflector is closed with a glass plate or an optical lens, etc., so as to prevent a plosive sound and leakage of harmful substances. Some are explosion proof. However, if the explosion-proof specification is used, the inner peripheral surfaces of the lamp and the reflector cannot be cooled directly from the outside. Therefore, the light source device whose input power exceeds about 150 W generally does not adopt the explosion-proof specification.

また、特許文献1にはリフレクタの開口側にガラス板又は光学レンズを設けた光源装置において、ランプ及びリフレクタの内周面への送風を可能にするため、リフレクタの一部に開口を設け、その開口を通じて冷却風をリフレクタ内部に送り込むようにしたものが提案されている。
なお、特許文献2には、上述した光源装置のランプと相異する種類のキセノンランプにおいて、対向する電極の一方を支持するための支持部材をリフレクタに連結した構成のものが記載されている。
Further, in Patent Document 1, in a light source device in which a glass plate or an optical lens is provided on the opening side of a reflector, an opening is provided in a part of the reflector in order to enable ventilation to the inner peripheral surface of the lamp and the reflector. There has been proposed one in which cooling air is sent into the reflector through the opening.
Patent Document 2 describes a xenon lamp of a type different from the lamp of the light source device described above, in which a support member for supporting one of the opposing electrodes is connected to a reflector.

さらに、特許文献3には、発光管の発光球体部(チャンバー部)の温度低下を図るため、リフレクタの発光管取付孔の孔縁から突設する熱伝導用接触体を設けた光源装置が開示されている。
特開平11−39934号公報 米国特許第6400067号明細書 特開2005−71814号公報
Further, Patent Document 3 discloses a light source device provided with a heat conduction contact member protruding from the hole edge of the arc tube mounting hole of the reflector in order to lower the temperature of the luminous bulb portion (chamber portion) of the arc tube. Has been.
JP 11-39934 A US Patent No. 6400067 JP-A-2005-71814

特許文献1に係る装置では、リフレクタの一部に開口が設けられているので、光源のランプが破裂すると、開口を通じて爆発音及び有害物が外部へ漏洩することを確実に防止できないと云う問題がある。また、防爆仕様の光源装置では、リフレクタ内部のランプ及びリフレクタ内部を十分に冷却できないと云う問題がある。   In the apparatus according to Patent Document 1, since an opening is provided in a part of the reflector, there is a problem that explosion sound and harmful substances cannot be reliably prevented from leaking outside through the opening when the lamp of the light source is ruptured. is there. Further, the explosion-proof light source device has a problem that the lamp inside the reflector and the inside of the reflector cannot be cooled sufficiently.

一方、光源となるランプは、両端が封止されたガラス支持体の中央部分に形成されたチャンバー部の内部空洞に電極を対向配置する構造になっており、このチャンバー部は約1000℃の耐熱性を有するが、両端の封止部は約400℃までの耐熱性しか有していない。このような構造のランプは一方の端部がリフレクタに取り付けられており、ランプ点灯によりガラス支持体に発生する熱の中で、チャンバー部からリフレクタへの取付側の端部の範囲での発熱は、熱伝導によりリフレクタへ移動するため、ある程度緩和できる。   On the other hand, a lamp as a light source has a structure in which electrodes are arranged opposite to each other in an internal cavity of a chamber portion formed in a central portion of a glass support whose both ends are sealed. This chamber portion has a heat resistance of about 1000 ° C. However, the sealing portions at both ends have only heat resistance up to about 400 ° C. One end of the lamp having such a structure is attached to the reflector, and heat generated in the glass support when the lamp is turned on does not generate heat in the range of the end on the attachment side from the chamber to the reflector. Since it moves to the reflector by heat conduction, it can be relaxed to some extent.

しかし、チャンバー部から取付側とは反対側の端部までの封止部の範囲は、リフレクタ内でに浮いた状態で突出しているので、発生した熱を効率的に移動できないので熱が溜まり、取付側の端部に比べて温度が上昇すると云う問題がある。なお、このような発光管における温度上昇の傾向は、防爆仕様の光源装置及び防爆仕様でない光源装置の両方で生じる。また、昨今の投射型画像表示装置は据え置きタイプに比べて持ち運び性を重視した小型のタイプのものが登場しており、このような小型の投射型画像表示装置では、装置筐体内部の実装度が高まることから、光源装置に対して良好な冷却性を確保するのが一層困難になっている。 However, the range of the sealing portion from the chamber part to the end portion opposite to the mounting side, since the protruding in a state of floating in the air within the reflector, heat accumulation can not move generated heat efficiently There is a problem that the temperature rises compared to the end on the mounting side. Note that such a temperature rise tendency in the arc tube occurs in both the explosion-proof light source device and the non-explosion-proof light source device. In addition, recent projection-type image display devices have appeared in a small type that emphasizes portability compared to the stationary type, and in such a small projection-type image display device, the degree of mounting inside the device casing has been increased. Therefore, it becomes more difficult to ensure good cooling performance for the light source device.

なお、特許文献2に係る構成は、単に一方の電極を支持するキセノンランプに係るものであり、両端に封止部を設けると共に中央部分のチャンバー部内に電極を構成のランプ(発光管)をリフレクタに取り付ける光源装置とは、構造的に全く相異する。そのため、一方の電極を周囲から支持すると云う特許文献2に係る構成は、ランプをリフレクタに取り付ける光源装置には構造上適用できないと共に、ランプの熱をリフレクタへ逃がす構成に対して直接的に流用できない。 In addition, the structure which concerns on the patent document 2 is related only to the xenon lamp which supports one electrode, is provided with the sealing part in both ends, and the lamp (light-emitting tube) which comprises an electrode in the chamber part of a center part is a reflector. It is structurally different from the light source device to be attached to. Therefore, the configuration according to Patent Document 2 that supports one electrode from the surroundings cannot be applied structurally to the light source device that attaches the lamp to the reflector, and cannot be directly applied to the configuration that releases the heat of the lamp to the reflector. .

また、特許文献3に係る光源装置では、リフレクタの発光管取付孔の孔縁から突設する熱伝導用接触体が、ランプにおけるチャンバー部からリフレクタへの取付側の部分と接触する構成のため、チャンバー部から突出する側の範囲で発生する熱をリフレクタへ直接的に移動させることはできない。   Further, in the light source device according to Patent Document 3, the heat conduction contact member protruding from the edge of the arc tube attachment hole of the reflector is in contact with the attachment side portion from the chamber portion to the reflector in the lamp. The heat generated in the range protruding from the chamber portion cannot be directly transferred to the reflector.

本発明は、斯かる問題に鑑みてなされたものであり、防爆仕様及び防爆仕様に関係なく発光管の点灯による発熱を効率的に抑制、特に発光管のチャンバー部から突出する側に対して効率的に放熱できるようにした光源装置及び投影型画像表示装置を提供することを目的とする。   The present invention has been made in view of such a problem, and efficiently suppresses heat generation due to lighting of the arc tube regardless of the explosion-proof specification and the explosion-proof specification, in particular, with respect to the side protruding from the chamber portion of the arc tube. An object of the present invention is to provide a light source device and a projection-type image display device that are capable of radiating heat.

上記課題を解決するために本発明に係る光源装置は、発光管が凹状の内周面を反射面にしたリフレクタの中心から反射側へ突出するように、前記発光管の一端が前記リフレクタに取り付けてあり、前記発光管は、両端側の封止部間に形成されたチャンバー部内に一対の電極が対向配置してある光源装置において、前記発光管のチャンバー部より突出する側の封止部と前記リフレクタとを繋ぐ熱伝導部材を備え、前記熱伝導部材は、発光管側からリフレクタ側へ放射状に延出する延出部を有し、前記延出部の延出方向に直交する断面の形状は楔状であり、前記発光管の取り付け方向を楔状の先細側にしてあることを特徴とする。 In order to solve the above-mentioned problems, the light source device according to the present invention has one end of the arc tube attached to the reflector so that the arc tube protrudes from the center of the reflector having a concave inner peripheral surface as a reflection surface to the reflection side. In the light source device in which a pair of electrodes are disposed opposite to each other in a chamber portion formed between the sealing portions on both ends, the arc tube has a sealing portion on a side protruding from the chamber portion of the arc tube. A heat conducting member connecting the reflector, the heat conducting member having an extending portion extending radially from the arc tube side to the reflector side, and having a cross-sectional shape orthogonal to the extending direction of the extending portion Has a wedge shape, and the mounting direction of the arc tube is a wedge-shaped tapered side .

本発明にあっては、発光管とリフレクタとが熱伝導部材で繋げてあるので、点灯により発光管に生じる熱を熱伝導部材を通じてリフレクタへ直接的に伝導させることが可能となる。その結果、発光管の温度上昇が抑制され光源装置は全体として点灯時も良好な温度特性を確保でき、発光管及びリフレクタの使用寿命を伸ばすことができる。なお、熱伝導部材に用いる材質としては、熱伝導率が良好な銅、アルミニウム等の金属、及び窒化アルミニウムからなるセラミックス等を適用することが好ましい。   In the present invention, since the arc tube and the reflector are connected by the heat conducting member, the heat generated in the arc tube by lighting can be directly conducted to the reflector through the heat conducting member. As a result, the temperature rise of the arc tube is suppressed, and the light source device as a whole can secure good temperature characteristics even when lit, and the service life of the arc tube and the reflector can be extended. In addition, as a material used for a heat conductive member, it is preferable to apply ceramics etc. which consist of metals, such as copper and aluminum with favorable heat conductivity, and aluminum nitride.

しかも、発光管のチャンバー部より突出側の封止部とリフレクタとを熱伝導部材で繋ぐので、突出側の封止部から熱伝導部材を通じてリフレクタへ熱を逃がす熱経路が形成されることになり、発光管の点灯により温度が上昇しやすい突出端側の封止部を確実に冷却でき、通常の状態では封止部側の端部温度を350℃以下に維持できるため、発光管の長寿命化を達成できる。
更に、本発明にあっては、発光管側からリフレクタ側へ放射状に延出する延出部で両者を繋ぐので、発光管から発せられてリフレクタで反射されて外方へ向けて放出される光を遮るものは延出部のみとなり、延出部は放射状の配置であるため、外方へ放射される光を遮る程度を最小限に抑えることができ、光源装置の光源としての機能を妨げることもなくなる。また、延出部を放射状に延出させることで、発光管とリフレクタとを最短的な距離で繋げるようになり、熱伝導部材の長さによる熱伝導性の悪化を抑制して、発光管を効率良く冷却できる。なお、延出部は1本以上であれば構成上、成立するが、構造的な安定性と光を遮る程度とのバランスを考慮すると3本の延出部を設けることが最適であるが、3本以上の延出部を設けることも勿論可能である。そして更に、本発明にあっては、延出部の断面の形状を、発光管の取付方向に対応する側を先細にした楔状であるため、リフレクタの反射光を遮る程度を一段と抑制できる。即ち、リフレクタで反射した光(光束)を形成する各光線は、リフレクタの反射面が所定の曲率を有することから、ある程度広がりながら進行する。そのため、延出部の断面を発光管の取付方向側が先細の楔状にすることで、光線を遮る箇所は楔状の先端箇所のみとなり、光線が楔状の斜辺に沿って進行すれば、楔状の先端箇所を通過した光線も延出部で遮られることが無くなり、光量の低下を最小にできる。
In addition, since the sealing portion on the protruding side from the chamber portion of the arc tube and the reflector are connected by the heat conducting member, a heat path for releasing heat from the sealing portion on the protruding side to the reflector through the heat conducting member is formed. Longer life of arc tube because the sealed part on the protruding end side, where the temperature tends to rise due to the lighting of the arc tube, can be reliably cooled, and the end part temperature on the sealed part side can be maintained at 350 ° C or lower in normal conditions. Can be achieved.
Furthermore, in the present invention, since both are connected by the extending portion that extends radially from the arc tube side to the reflector side, the light emitted from the arc tube and reflected by the reflector is emitted outward. Since only the extension part is obstructed, and the extension part has a radial arrangement, it is possible to minimize the extent to which the light radiated outwards is blocked, and hinder the function of the light source device as the light source. Also disappear. In addition, by extending the extending portion radially, the arc tube and the reflector can be connected at the shortest distance, the deterioration of the thermal conductivity due to the length of the heat conducting member is suppressed, and the arc tube is It can be cooled efficiently. It should be noted that if the number of extension portions is one or more, the configuration is established, but considering the balance between structural stability and the degree of light blocking, it is optimal to provide three extension portions, Of course, it is possible to provide three or more extending portions. Further, in the present invention, since the cross-sectional shape of the extending portion is a wedge shape with the side corresponding to the mounting direction of the arc tube tapered, the degree of blocking the reflected light of the reflector can be further suppressed. That is, each light beam forming the light (light flux) reflected by the reflector travels while spreading to some extent because the reflecting surface of the reflector has a predetermined curvature. Therefore, by making the cross-section of the extension part into a tapered wedge shape on the arc tube mounting direction side, the light blocking location is only the wedge-shaped tip portion, and if the light beam travels along the wedge-shaped hypotenuse, the wedge-shaped tip portion The light beam that has passed through is not blocked by the extending portion, and the decrease in the amount of light can be minimized.

本発明に係る光源装置は、前記リフレクタの基材は、金属材料であることを特徴とする。
本発明にあっては、リフレクタの基材を金属材料にしているので、熱伝導部材により伝導されてきた熱がリフレクタへ伝わりやすくなると共に、伝わった熱を外部へ放熱すると云う光源装置全体の放熱能力も向上する。なお、リフレクタの基材に適用する金属材料としては、10W/m・K以上の熱伝導率を有するアルミニウム、銅等が好適である。
The light source device according to the present invention is characterized in that a base material of the reflector is a metal material.
In the present invention, the base material of the reflector is made of a metal material, so that the heat conducted by the heat conducting member is easily transmitted to the reflector, and the transmitted heat is radiated to the outside. Ability also improves. In addition, as a metal material applied to the base material of the reflector, aluminum, copper, or the like having a thermal conductivity of 10 W / m · K or more is preferable.

本発明に係る光源装置は、前記延出部には、曲部が形成してあることを特徴とする。
本発明にあっては、延出部に曲部が形成してあるので、熱伝導部材自体の温度が上昇することで生じる不具合を解消できる。
The light source device according to the present invention is characterized in that a curved portion is formed in the extending portion.
In the present invention, since the curved portion is formed in the extending portion, it is possible to eliminate a problem caused by an increase in the temperature of the heat conducting member itself.

即ち、熱伝導部材が金属材料で形成されている場合は、発光管から伝導される熱及びリフレクタで反射される光に照射されることで、熱伝導部材が熱せられる。熱伝導部材が熱せられると熱伝導部材を構成する部材が熱膨張し、リフレクタの中心に配置されている発光管に応力がかかり発光管に位置ズレが生じたり、最悪の場合、発光管のガラス支持体が割れてしまうこと等が想定される。   That is, when the heat conducting member is formed of a metal material, the heat conducting member is heated by being irradiated with heat conducted from the arc tube and light reflected by the reflector. When the heat conducting member is heated, the members constituting the heat conducting member are thermally expanded, stress is applied to the arc tube arranged at the center of the reflector, and the arc tube is misaligned. In the worst case, the glass of the arc tube It is assumed that the support is broken.

しかし、本発明では曲部により熱膨張分を吸収して逃がすことにより、発光管に応力がかからないようになり、上述した不具合の発生を防止できる。なお、曲部の曲げ方向は光源装置の寸法、仕様等に応じて適宜設定でき、例えば、延出部の放射状方向と直交する方向に曲げた曲部の場合では、熱膨張分を接線方向へ逃がすことができる。   However, in the present invention, by absorbing the thermal expansion by the curved portion and releasing it, the arc tube is not stressed, and the above-described problems can be prevented. The bending direction of the curved portion can be appropriately set according to the dimensions, specifications, etc. of the light source device. For example, in the case of a curved portion bent in a direction perpendicular to the radial direction of the extending portion, the thermal expansion component is tangentially increased. I can escape.

本発明に係る光源装置は、前記発光管の対向配置された一対の電極は、両者が対向する先端が頂点となるように前記頂点側から逆側へ斜面が形成されており、前記曲部は、前記両電極の斜面間へ発せられた光束が前記リフレクタで反射される領域に形成してあることを特徴とする。 In the light source device according to the present invention, the pair of electrodes arranged opposite to each other in the arc tube has a slope formed from the apex side to the opposite side so that the tips facing each other are apexes, The light beam emitted between the inclined surfaces of the two electrodes is formed outside the region where it is reflected by the reflector .

本発明にあっては、両電極の斜面間へ発せられた光束が前記リフレクタで反射される領域外、即ち光束密度の低い領域に曲部を形成することにより、リフレクタで反射されて外方へ放出される光を曲部で遮る影響を最低限に抑えることができ、光源装置の光源特性の低下を防止できる。なお、光束密度の低い領域としてはリフレクタ側の周辺が該当し、発光管の長さがリフレクタの寸法に比べて短い場合は発光管の周辺も該当する。 In the present invention, the light beam emitted between the inclined surfaces of both electrodes is reflected by the reflector to the outside by forming a curved portion outside the region where the light beam is reflected by the reflector, that is, in a region where the light beam density is low. The influence of blocking the emitted light at the curved portion can be minimized, and the deterioration of the light source characteristics of the light source device can be prevented. In addition, the area | region of the reflector side corresponds as an area | region with a low light beam density, and when the length of an arc_tube | light_emitting_tube is short compared with the dimension of a reflector, the periphery of an arc_tube | light_emitting_tube corresponds also.

本発明に係る光源装置は、前記熱伝導部材は、前記発光管を外嵌する外嵌環状部を備え、該外嵌環状部から前記延出部が延出してあることを特徴とする。
本発明にあっては、発光管を外嵌する外嵌環状部を設けているので、外嵌環状部により熱伝導部材と発光管との接触面積を大きく確保でき、発光管で生じた熱を熱伝導部材が吸収する効率を高めて発光管を冷却できる。
The light source device according to the present invention is characterized in that the heat conducting member includes an outer fitting annular portion that externally fits the arc tube, and the extension portion extends from the outer fitting annular portion.
In the present invention, since the outer fitting annular portion for fitting the arc tube is provided, a large contact area between the heat conducting member and the arc tube can be secured by the outer fitting annular portion, and the heat generated in the arc tube can be secured. The arc tube can be cooled by increasing the efficiency absorbed by the heat conducting member.

なお、外嵌環状部の長さは、封止部の全ての範囲をカバーできる寸法に設定することも、封止部の一部の範囲をカバーする寸法に設定することも可能であり、外嵌環状部の形態は長さに応じてパイプ状からリング状のものが適用できる。さらに、外嵌環状部は必ずしも周方向に連続している必要はなく、部分的に分断部を設けて熱膨張による膨張分を吸収できるようにしてもよい。また、外嵌環状部から延出部を延出させることで、発光管から外嵌環状部に伝導された熱をスムーズに延出部に伝導できるようになり、効率的な熱の移動を達成できる。   Note that the length of the outer ring portion can be set to a dimension that can cover the entire range of the sealing part, or can be set to a dimension that covers a part of the range of the sealing part. The shape of the fitting annular portion can be a pipe shape or a ring shape depending on the length. Furthermore, the externally fitted annular portion does not necessarily have to be continuous in the circumferential direction, and a partial cut portion may be provided so as to absorb the expansion due to thermal expansion. In addition, by extending the extension part from the outer ring part, heat conducted from the arc tube to the outer ring part can be smoothly conducted to the extension part, thereby achieving efficient heat transfer. it can.

本発明に係る光源装置は、前記熱伝導部材は、前記リフレクタの周面に嵌合される嵌合環状部を備え、該嵌合環状部に前記延出部の延出端が連結してあることを特徴とする。
本発明にあっては、リフレクタの周面に嵌合される嵌合環状部を設けて、その嵌合環状部に延出部を連結してあるので、嵌合環状部により熱伝導部材とリフレクタとの接触面積を大きく確保でき、熱伝導部材が有する熱をスムーズにリフレクタへ伝導させることができる。なお、嵌合環状部も、外嵌環状部と同様に必ずしも周方向に連続している必要はなく、分断部を設けて熱膨張分を吸収できるようにしてもよい。
In the light source device according to the present invention, the heat conducting member includes a fitting annular portion fitted to the peripheral surface of the reflector, and an extending end of the extending portion is connected to the fitting annular portion. It is characterized by that.
In the present invention, since the fitting annular part fitted to the peripheral surface of the reflector is provided and the extension part is connected to the fitting annular part, the heat conducting member and the reflector are connected by the fitting annular part. A large contact area can be secured, and the heat of the heat conducting member can be smoothly conducted to the reflector. The fitting annular portion is not necessarily continuous in the circumferential direction like the outer fitting annular portion, and a dividing portion may be provided to absorb the thermal expansion.

本発明に係る光源装置は、前記延出部の延出端には屈曲部が設けてあり、前記屈曲部は、前記リフレクタの内周面に当接してあることを特徴とする。
本発明にあっては、リフレクタの内周面に当接する屈曲部を延出部の延出端に設けているので、熱伝導部材のリフレクタ側への取り付けを容易に行える。即ち、熱伝導部材をリフレクタの反射側開口から取り付けるだけで、屈曲部がリフレクタの内周面に当接して熱伝導部材を固定できる。また、屈曲部がリフレクタの内周面に当接するため、延出部からリフレクタへ屈曲部を通じて熱を伝導できる。なお、屈曲部でのリフレクタへの固定を強固にする場合は、熱伝導性の良好な接着剤(固着剤)を用いてもよく、あるいは、ネジ止め、ろう付け等で固定を行ってもよい。
The light source device according to the present invention is characterized in that a bent portion is provided at an extending end of the extending portion, and the bent portion is in contact with an inner peripheral surface of the reflector.
In the present invention, since the bent portion that contacts the inner peripheral surface of the reflector is provided at the extending end of the extending portion, the heat conducting member can be easily attached to the reflector side. That is, simply by attaching the heat conducting member from the reflection side opening of the reflector, the bent portion can be brought into contact with the inner peripheral surface of the reflector to fix the heat conducting member. Further, since the bent portion is in contact with the inner peripheral surface of the reflector, heat can be conducted from the extending portion to the reflector through the bent portion. In addition, when fixing to a reflector in a bending part, you may use an adhesive agent (adhesive agent) with favorable heat conductivity, or you may fix by screwing, brazing, etc. .

本発明に係る光源装置は、前記延出部の延出端には前記リフレクタの反射側開口の端面に平行的な折曲部が設けてあり、前記折曲部は、前記リフレクタの反射側開口の端面に当接してあることを特徴とする。
本発明にあっては、リフレクタの反射側開口の端面に当接する折曲部を延出部の延出端に設けているので、熱伝導部材をリフレクタへ取り付けた場合に、熱伝導部材をリフレクタへ確実に当接する箇所が折曲部により確保される。そのため、熱伝導部材からリフレクタへ折曲部を通じて確実に熱を伝導できる。なお、折曲部をリフレクタへ固定するには、熱伝導性の良好な接着剤(固着剤)を用いること、あるいは、ネジ止め、ろう付け等を適用することが好ましく、また、このような固定作業は、リフレクタの外方を向いた端面で行うため、作業性も良好である。
In the light source device according to the present invention, a bent portion parallel to an end surface of the reflection side opening of the reflector is provided at an extension end of the extension portion, and the bending portion is a reflection side opening of the reflector. It is characterized by being in contact with the end face.
In the present invention, since the bent portion that contacts the end face of the reflection side opening of the reflector is provided at the extending end of the extending portion, the heat conducting member is attached to the reflector when the heat conducting member is attached to the reflector. A portion that reliably contacts is secured by the bent portion. Therefore, heat can be reliably conducted from the heat conducting member to the reflector through the bent portion. In order to fix the bent part to the reflector, it is preferable to use an adhesive (adhesive) having good thermal conductivity, or to apply screwing, brazing, or the like. Since the work is performed on the end face facing outward of the reflector, workability is also good.

本発明に係る光源装置は、前記熱伝導部材の前記延出部の延出方向に対応する前記リフレクタの箇所にはスリットが形成してあり、該スリットに前記延出部の延出端が嵌合してあることを特徴とする。
本発明にあっては、リフレクタに形成したスリットに、延出部の延出端を嵌合する構成なので、スリットに延出端を嵌め込むだけで熱伝導部材をリフレクタ側へ取り付けることができる。また、スリットに嵌合した延出端は、スリットの周縁に当接するので、この当接箇所を通じて、熱伝導部材からリフレクタへ熱を伝導できる。さらに、熱伝導及びリフレクタでの反射光の照射により延出部が熱膨張しても、延出端はスリットを通じて延出する方向に熱膨張することが妨げられないため、熱膨張したとしても延出端側に膨張することになり、発光管に無用な応力がかかることを回避できる。
In the light source device according to the present invention, a slit is formed at a location of the reflector corresponding to the extending direction of the extending portion of the heat conducting member, and the extending end of the extending portion is fitted into the slit. It is characterized by being combined.
In the present invention, since the extending end of the extending portion is fitted into the slit formed in the reflector, the heat conducting member can be attached to the reflector side simply by fitting the extending end into the slit. Moreover, since the extended end fitted to the slit contacts the peripheral edge of the slit, heat can be conducted from the heat conducting member to the reflector through the contact portion. Furthermore, even if the extension portion is thermally expanded due to heat conduction and irradiation of the reflected light from the reflector, the extension end is not prevented from thermally expanding in the direction of extending through the slit. It will expand | swell to the exit end side, and it can avoid applying unnecessary stress to an arc tube.

本発明に係る光源装置は、前記延出部の延出端には屈曲部が設けてあり、前記屈曲部は、前記リフレクタの外周面に当接してあることを特徴とする。
本発明にあっては、リフレクタの外周面に当接する屈曲部を延出部の延出端に設けているので、熱伝導部材は、スリットを抜けた延出端の屈曲部でリフレクタの外周面を外嵌することができ、リフレクタへの取付が確実になると共に、リフレクタとの接触面積を拡大して、リフレクタへの熱伝導効率を高められる。なお、屈曲部におけるリフレクタへの取付を強固にするには、熱伝導性の良好な接着剤(固着剤)、ネジ止め、ろう付け等を適用でき、これらの作業はリフレクタの外周面側から行えるので、作業性も良好である。
The light source device according to the present invention is characterized in that a bent portion is provided at an extended end of the extended portion, and the bent portion is in contact with an outer peripheral surface of the reflector.
In the present invention, since the bent portion that contacts the outer peripheral surface of the reflector is provided at the extended end of the extending portion, the heat conducting member is the outer peripheral surface of the reflector at the bent portion of the extended end that passes through the slit. Can be externally fitted, and the attachment to the reflector can be ensured, and the contact area with the reflector can be expanded to increase the efficiency of heat conduction to the reflector. In addition, in order to strengthen the attachment to the reflector at the bent portion, it is possible to apply an adhesive (fixing agent) having good thermal conductivity, screwing, brazing, etc., and these operations can be performed from the outer peripheral surface side of the reflector. Therefore, workability is also good.

本発明に係る光源装置は、前記延出部の延出方向に直交する楔状の断面の形状は、前記発光管の長手方向に平行的な第1方向の寸法が、前記第1方向に直交的な第2方向の寸法に比べて大きくしてあることを特徴とする。
本発明にあっては、延出部の楔状の断面が、発光管の長手方向に平行的な第1方向の寸法が、第1方向に対して直交的な第2方向の寸法に比べて大きいので、熱伝導に必要な断面積を確保する際に第1方向の寸法を大きくすることで対応でき、良好な熱伝導性を確保した上でリフレクタの反射光を遮る程度を最小限に抑えられる。
In the light source device according to the present invention, the shape of the wedge-shaped cross section orthogonal to the extending direction of the extending portion is such that the dimension in the first direction parallel to the longitudinal direction of the arc tube is orthogonal to the first direction. It is characterized by being larger than the dimension in the second direction.
In the present invention, the wedge-shaped cross section of the extending portion is larger in the dimension in the first direction parallel to the longitudinal direction of the arc tube than the dimension in the second direction orthogonal to the first direction. Therefore, when securing the cross-sectional area necessary for heat conduction, it can be dealt with by increasing the dimension in the first direction, and the degree of blocking the reflected light of the reflector can be minimized while ensuring good heat conductivity. .

本発明に係る光源装置は、前記熱伝導部材の表面は、酸化防止膜で被覆してあることを特徴とする。
本発明にあっては、熱伝導部材の表面を酸化防止膜で被膜することで、リフレクタで反射された光の照射により熱伝導部材発熱することを抑制できる。即ち、熱伝導部材はリフレクタの反射光で照射されるため、点灯中は反射光により熱せられることになるが、酸化防止膜で表面を被覆することにより表面が曇らなくなり、照射された光を表面で適宜反射して熱伝導部材がリフレクタからの照射により熱せられることを防止して、熱伝導効率が低下することを抑制できる。なお、熱伝導部材の表面は反射特性を高めておくことが好ましく、熱伝導部材の表面を予め研磨又はメッキ等の処理により光沢をもたせておき、このような光沢のある表面を酸化防止膜で被覆することが好適である。なお、酸化防止膜には二酸化珪素を成分に含むもの、石英コーティングなどを用いることが好ましい。
The light source device according to the present invention is characterized in that the surface of the heat conducting member is coated with an antioxidant film.
In the present invention, by coating the surface of the heat conducting member in preventing oxide film can be suppressed heat conductive member generates heat by irradiation with light reflected by the reflector. That is, since the heat conducting member is irradiated with the reflected light of the reflector, it is heated by the reflected light during lighting, but the surface is not fogged by covering the surface with the anti-oxidation film, and the irradiated light is reflected on the surface. Therefore, it is possible to prevent the heat conduction member from being heated by irradiation from the reflector by appropriately reflecting and suppressing the heat conduction efficiency from being lowered. In addition, it is preferable that the surface of the heat conducting member has high reflection characteristics, and the surface of the heat conducting member is previously glossed by a treatment such as polishing or plating, and such a glossy surface is formed with an antioxidant film. It is preferable to coat. Note that it is preferable to use an antioxidant film containing silicon dioxide as a component, quartz coating, or the like.

本発明に係る光源装置は、前記リフレクタの内周面が赤外線を熱変換する赤外線熱変換層で被覆されており、前記赤外線熱変換層の前記リフレクタの内周面とは逆側が可視光を反射する可視光反射層で被覆されていることを特徴とする。
本発明にあっては、リフレクタの内周面が赤外線を熱変換する赤外線熱変換層で被覆されているので、反射面の温度が過度に上昇することがなくなり、反射面の劣化を防止できると共に、リフレクタ自体の放熱性を良好に維持できる。
In the light source device according to the present invention, the inner peripheral surface of the reflector is coated with an infrared heat conversion layer that converts infrared rays into heat, and the opposite side of the infrared heat conversion layer from the inner peripheral surface of the reflector reflects visible light. It is covered with a visible light reflecting layer .
In the present invention, Runode inner circumferential surface of the reflector is covered with the infrared heat conversion layer of thermally converting the infrared, the temperature of the reflective surface prevents the excessive increase, it is possible to prevent deterioration of the reflecting surface The heat dissipation of the reflector itself can be maintained well.

本発明に係る光源装置は、前記反射面の前記熱伝導部材が繋がれる箇所は、前記リフレクタの基材が表出してあることを特徴とする。
本発明にあっては、リフレクタの反射面において、熱伝導部材が繋がれる箇所はリフレクタの基材を表出させているので、熱伝導部材からリフレクタへ熱を伝導する経路中に、熱拡散膜が存在しなくなる。その結果、熱拡散膜が熱伝導の抵抗になることがなく、効率良く熱を伝導することが可能になる。
The light source device according to the present invention is characterized in that a base material of the reflector is exposed at a location where the heat conducting member of the reflecting surface is connected.
In the present invention, the portion where the heat conducting member is connected on the reflecting surface of the reflector exposes the reflector base material, so that the heat diffusion film is in the path for conducting heat from the heat conducting member to the reflector. No longer exists. As a result, the heat diffusion film does not become a resistance for heat conduction, and heat can be efficiently conducted.

本発明に係る光源装置は、前記リフレクタは、外周面に放熱フィンを備えることを特徴とする。
本発明にあっては、リフレクタが外周面に放熱フィンを備えるので、リフレクタの放熱性を一段と向上でき、リフレクタの温度上昇を抑えて熱伝導部材からリフレクタへの熱伝導をスムーズに行うことができる。
The light source device according to the present invention is characterized in that the reflector includes a radiating fin on an outer peripheral surface.
In the present invention, since the reflector is provided with heat radiation fins on the outer peripheral surface, the heat dissipation of the reflector can be further improved, and the heat conduction from the heat conducting member to the reflector can be smoothly performed while suppressing the temperature rise of the reflector. .

本発明に係る光源装置は、前記リフレクタの内周面から突出する突出熱伝導部を備え、該突出熱伝導部は、前記発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐようにしてあることを特徴とする。
本発明にあっては、発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐように、リフレクタに突出熱伝導部を設けたので、突出熱伝導部を通じて、発光管のチャンバー部を含んだリフレクタへの取付側の範囲で発生する熱を効率良くリフレクタへ移動させることができる。その結果、発光管のリフレクタへの取付側となる一方の端部側では、突出熱伝導部でリフレクタへ熱を伝導させ、発光管の突出側となる他方の端部側では、上述した熱伝導部材でリフレクタへ熱を伝導させることになり、発光管で発生する全体的な熱をリフレクタへ移動させることが可能になり、発光管が過度に高温になる事態を防止できる。
The light source device according to the present invention includes a projecting heat conducting portion projecting from the inner peripheral surface of the reflector, and the projecting heat conducting portion includes a sealing portion on the attachment side from the chamber portion of the arc tube to the reflector and the It is characterized by being connected to a reflector.
In the present invention, the projecting heat conducting part is provided in the reflector so as to connect the sealing part on the attachment side to the reflector from the chamber part of the arc tube and the reflector. Heat generated in the range of the attachment side to the reflector including the chamber portion of the tube can be efficiently transferred to the reflector. As a result, heat is conducted to the reflector at the one end side which is the mounting side of the arc tube to the reflector, and the heat conduction described above is conducted at the other end side which is the projecting side of the arc tube. The member conducts heat to the reflector, and it is possible to transfer the entire heat generated in the arc tube to the reflector, thereby preventing the arc tube from becoming excessively hot.

本発明に係る光源装置は、前記発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐ取付側熱伝導部材を備えることを特徴とする。
本発明にあっては、発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐ取付側熱伝導部材を備えるので、発光管のチャンバー部を含んだリフレクタへの取付側の範囲で発生する熱を取付側熱伝導部材でリフレクタへ移動させられる。そのため、発光管で発生する全体的な熱を熱伝導部材及び取付側熱伝導部材の両部材を通じてリフレクタへ移動させることが可能になり、発光管に対する冷却性を一段と向上できる。また、取付側熱伝導部材は、リフレクタと別部材であるため、リフレクタの製作が困難になることもない。
The light source device according to the present invention includes an attachment-side heat conduction member that connects the sealing portion on the attachment side to the reflector from the chamber portion of the arc tube and the reflector.
In the present invention, since the mounting side heat conduction member that connects the sealing portion on the mounting side to the reflector from the chamber portion of the arc tube and the reflector is provided, the mounting to the reflector including the chamber portion of the arc tube The heat generated in the side range can be moved to the reflector by the mounting side heat conducting member. Therefore, it is possible to move the overall heat generated in the arc tube to the reflector through both the heat conducting member and the attachment side heat conducting member, and the cooling performance for the arc tube can be further improved. Moreover, since the attachment-side heat conducting member is a separate member from the reflector, it is not difficult to manufacture the reflector.

本発明に係る光源装置は、前記取付側熱伝導部材は、前記発光管が前記リフレクタに取り付けてある箇所を通じて前記リフレクタの外方へ延出しており、延出した箇所にフィンを備えることを特徴とする。
本発明にあっては、取付側熱伝導部材におけるリフレクタの外方へ延出した箇所にフィンを備えるので、発光管から取付側熱伝導部材へ移動した熱の一部は、リフレクタへ移動することなく、取付側熱伝導部材の外方へ延出した箇所からフィンを通じて直接的に放熱できるようになる。その結果、リフレクタの放熱負担を低減できると共に、取付側熱伝導部材で効率良く放熱が行うことができ、発光管に対する冷却性を向上できる。
In the light source device according to the present invention, the attachment-side heat conducting member extends outward from the reflector through a portion where the arc tube is attached to the reflector, and includes a fin at the extended portion. And
In the present invention, since the fin is provided at the location where the reflector on the attachment side heat conduction member extends outward, a part of the heat moved from the arc tube to the attachment side heat conduction member is moved to the reflector. Instead, heat can be directly radiated through the fins from the part extending outward of the attachment side heat conducting member. As a result, it is possible to reduce the heat radiation load of the reflector, and to efficiently dissipate heat with the attachment side heat conducting member, thereby improving the cooling performance for the arc tube.

本発明に係る光源装置は、前記リフレクタの反射側開口を閉鎖するように取り付けてある透光性部材を備えることを特徴とする。
本発明にあっては、リフレクタの反射側開口を閉鎖する透光性部材を備えるので光源装置を防爆仕様にでき、破裂音及び有害物の漏洩を防止した上で、熱伝導部材により発光管の温度上昇を防止でき、長時間の点灯でも安定した使用状態を確保できる。なお、本発明の防爆仕様の光源装置は、熱伝導部材で発光管を冷却するので従来の防爆仕様の光源装置に比べて発光管への投入電力を高くしても安定した点灯を維持でき、具体的には、150Wを越える180Wから約200W程度までの電力(仕様によっては最大200W以上も可能)を投入でき、一段と高い輝度を提供できる。
The light source device according to the present invention includes a translucent member attached so as to close a reflection side opening of the reflector.
In the present invention, since the translucent member that closes the reflection side opening of the reflector is provided, the light source device can be made explosion-proof, and after preventing the plosive sound and the leakage of harmful substances, the heat conducting member can Temperature rise can be prevented, and stable use can be ensured even after lighting for a long time. In addition, the explosion-proof light source device of the present invention cools the arc tube with a heat conducting member, so that stable lighting can be maintained even if the input power to the arc tube is increased compared to the conventional explosion-proof light source device, Specifically, electric power from 180 W exceeding 150 W to about 200 W (up to 200 W or more depending on the specification) can be input, and higher brightness can be provided.

本発明に係る投影型画像表示装置は、前記光源装置と、該光源装置から発せられる光で画像に係る変調光を生成する空間光変調素子と、該空間光変調素子が生成した変調光を被投影体へ投影する投影レンズとを備えることを特徴とする。
本発明にあっては、従来に比べて冷却効率を高めた光源装置を投影型画像表示装置が備えるので、発熱に起因する不具合を解消できると共に、光源装置の強制冷却機構の簡易化、更には強制冷却機構自体の省略も可能となり、その結果、装置の小型軽量化も達成しやすくなり、装置コストの低減にも貢献できる。
A projection-type image display device according to the present invention includes the light source device, a spatial light modulation element that generates modulated light according to an image using light emitted from the light source device, and modulated light generated by the spatial light modulation element. And a projection lens that projects onto the projection body.
In the present invention, since the projection type image display device includes a light source device that has improved cooling efficiency as compared with the prior art, it is possible to eliminate problems caused by heat generation, simplify the forced cooling mechanism of the light source device, and The forced cooling mechanism itself can be omitted. As a result, it is easy to achieve a reduction in size and weight of the apparatus, which can contribute to a reduction in apparatus cost.

本発明にあっては、発光管及びリフレクタを熱伝導部材で繋げることで、発光管に生じる熱をリフレクタへ熱伝導部材を通じて伝導でき、発光管の温度上昇を抑制して、安定した点灯を実現すると共に発光管の長寿命化を図れると共に、発光管の突出端側の封止部とリフレクタとを熱伝導部材で繋ぐので、発光管の温度が上昇しやすい突出端側の封止部を通常の状態では350℃以下に維持できる。
また本発明にあっては、発光管側からリフレクタ側へ放射状に延出する延出部を熱伝導部材に設けるので、リフレクタの反射光を遮る程度を最小限に抑えることができ、冷却性能を向上させた上で光源装置の所定の光源特性も維持できる。更に 本発明にあっては、延出部の断面の形状を、発光管の取付方向に相当する側を先細にした楔状にするので、リフレクタの反射光を遮る程度を一段と抑制できる。
In the present invention, by connecting the arc tube and the reflector with the heat conducting member, the heat generated in the arc tube can be conducted to the reflector through the heat conducting member, and the temperature rise of the arc tube is suppressed to realize stable lighting. At the same time, the life of the arc tube can be extended, and the sealing portion on the protruding end side of the arc tube and the reflector are connected by a heat conducting member, so the sealing portion on the protruding end side where the temperature of the arc tube tends to rise is usually In this state, it can be maintained at 350 ° C. or lower.
In the present invention, since the heat conducting member is provided with an extending portion that extends radially from the arc tube side to the reflector side, the degree of blocking the reflected light of the reflector can be minimized and the cooling performance can be reduced. The predetermined light source characteristics of the light source device can be maintained while improving. Furthermore, in the present invention, since the cross-sectional shape of the extending portion is a wedge shape in which the side corresponding to the mounting direction of the arc tube is tapered, the degree of blocking the reflected light of the reflector can be further suppressed.

本発明にあっては、リフレクタの基材を金属材料にすることで、熱伝導部材により伝導されてきた熱がリフレクタへスムーズに伝えることができ、光源装置全体の放熱能力を向上できる。 In the present invention, the base material of the reflector is made of a metal material, so that the heat conducted by the heat conducting member can be smoothly transferred to the reflector, and the heat dissipation capability of the entire light source device can be improved .

本発明にあっては、延出部に曲部が形成してあるので、曲部で熱膨張分を逃がして熱膨張に起因する不具合発生を解消できる。
本発明にあっては、両電極の斜面間へ発せられた光束が前記リフレクタで反射される領域外、即ち光束密度の低い領域に曲部を形成することで、リフレクタの反射光が曲部で遮る影響を最低限に抑えることができ、光源装置の光源特性が低下することを防止できる。
In the present invention, since the curved portion is formed in the extending portion, it is possible to eliminate a problem caused by the thermal expansion by letting the curved portion escape the thermal expansion.
In the present invention, the light reflected between the inclined surfaces of both electrodes is formed in a curved portion outside the region where the light beam is reflected by the reflector, that is, in a region where the light beam density is low. It is possible to minimize the influence of blocking and prevent the light source characteristics of the light source device from deteriorating.

本発明にあっては、熱伝導部材が発光管を外嵌する外嵌環状部を有するので、発光管との接触面積を大きく確保して発光管で生じた熱を熱伝導部材へ伝導させる効率を向上できる。
本発明にあっては、熱伝導部材がリフレクタの周面に嵌合される嵌合環状部を有するので、リフレクタとの接触面積を大きく確保して熱伝導部材が有する熱をスムーズにリフレクタへ伝導させることができる。
In the present invention, since the heat conducting member has an outer ring portion that fits the arc tube, the efficiency of conducting heat generated in the arc tube to the heat conducting member while ensuring a large contact area with the arc tube. Can be improved.
In the present invention, since the heat conducting member has a fitting annular portion fitted to the peripheral surface of the reflector, a large contact area with the reflector is ensured and the heat of the heat conducting member is smoothly conducted to the reflector. Can be made.

本発明にあっては、リフレクタの内周面に当接する屈曲部を延出部の延出端に設けるので、熱伝導部材を容易にリフレクタへ取り付けられると共に、屈曲部でリフレクタへの伝熱箇所を確保して、効率的な熱伝導を図れる。
本発明にあっては、リフレクタの反射側開口の端面に当接する折曲部を延出部の延出端に設けるので、折曲部を通じて確実にリフレクタへの伝熱箇所を確保できると共に、熱伝導部材をリフレクタに接合固定する場合は、リフレクタの端面箇所の折曲部で容易に接合のための作業を行える。
In the present invention, since the bent portion that contacts the inner peripheral surface of the reflector is provided at the extended end of the extending portion, the heat conducting member can be easily attached to the reflector, and the heat transfer location to the reflector at the bent portion. To ensure efficient heat conduction.
In the present invention, since the bent portion that contacts the end surface of the reflection-side opening of the reflector is provided at the extended end of the extending portion, a heat transfer location to the reflector can be ensured through the bent portion, and When the conductive member is joined and fixed to the reflector, the work for joining can be easily performed at the bent portion of the end face portion of the reflector.

本発明にあっては、スリットに延出端を嵌め込むだけで熱伝導部材をリフレクタ側へ容易に取り付けることができると共に、スリットに嵌め込まれた延出端がスリットの周縁に当接してリフレクタへスムーズに熱伝導を行える。
本発明にあっては、リフレクタの外周面に当接する屈曲部を延出部の延出端に設けているので、屈曲部がリフレクタの外周面を外嵌して熱伝導部材をリフレクタへ強固に取り付けられると共に、屈曲部を通じてもリフレクタへ熱伝導を行えるので、熱伝導効率を高められる。
In the present invention, the heat conducting member can be easily attached to the reflector side simply by fitting the extension end into the slit, and the extension end fitted into the slit comes into contact with the peripheral edge of the slit to the reflector. Conducts heat smoothly.
In the present invention, since the bent portion that contacts the outer peripheral surface of the reflector is provided at the extended end of the extending portion, the bent portion externally fits the outer peripheral surface of the reflector so that the heat conducting member is firmly attached to the reflector. In addition to being attached, heat conduction can be performed to the reflector through the bent portion, so that the heat conduction efficiency can be improved.

本発明にあっては、延出部の楔状の断面が、発光管の長手方向に平行的な第1方向の寸法が、第1方向に対して直交的な第2方向の寸法に比べて大きいので、良好な熱伝導性を確保した上でリフレクタの反射光を遮る程度を最小限に抑えられる。 In the present invention, the wedge-shaped cross section of the extending portion is larger in the dimension in the first direction parallel to the longitudinal direction of the arc tube than the dimension in the second direction orthogonal to the first direction. Therefore, it is possible to minimize the degree of blocking the reflected light of the reflector while ensuring good thermal conductivity .

本発明にあっては、熱伝導部材の表面を酸化防止膜で被膜することで、リフレクタの反射光により熱伝導部材が熱せられることを抑制でき、光源装置の点灯中であっても熱伝導部材の良好な熱伝導性を維持できる。   In the present invention, the surface of the heat conducting member is coated with an anti-oxidation film, so that the heat conducting member can be prevented from being heated by the reflected light of the reflector. Can maintain good thermal conductivity.

本発明にあっては、リフレクタの内周面が赤外線を熱変換する赤外線熱変換層で被覆されているので、反射面の劣化を防止すると共に、熱伝導部材からリフレクタへの熱伝導も効率的に行える。
本発明にあっては、熱伝導部材が繋がれる箇所はリフレクタの基材を表出させているので、熱伝導部材から直接的にリフレクタへ熱伝導を行うことができ、熱拡散膜を設けても良好な熱伝導を行える。
本発明にあっては、リフレクタが外周面に放熱フィンを備えるので、リフレクタ自体の放熱性を向上でき、熱伝導部材からリフレクタへ良好に熱伝導を行える。
In the present invention, Runode inner circumferential surface of the reflector is covered with the infrared heat conversion layer of thermally converting the infrared, while preventing deterioration of the reflecting surface, the thermal conductivity is also efficient from the heat conduction member to the reflector Can be done.
In the present invention, the portion where the heat conducting member is connected exposes the base material of the reflector, so heat conduction can be performed directly from the heat conducting member to the reflector, and a heat diffusion film is provided. Can also conduct heat well.
In the present invention, since the reflector includes the heat radiation fins on the outer peripheral surface, the heat radiation property of the reflector itself can be improved, and the heat conduction from the heat conducting member to the reflector can be performed well.

本発明にあっては、リフレクタに突出熱伝導部を設けたので、突出熱伝導部を通じて、発光管のチャンバー部を含んだリフレクタへの取付側の範囲で発生する熱もスムーズにリフレクタへ移動させて、発光管の温度上昇を防止できる。   In the present invention, since the projecting heat conducting portion is provided on the reflector, the heat generated in the range of the attachment side to the reflector including the chamber portion of the arc tube is also smoothly transferred to the reflector through the projecting heat conducting portion. Thus, the temperature rise of the arc tube can be prevented.

本発明にあっては、取付側熱伝導部材を備えるので、発光管のチャンバー部を含んだリフレクタへの取付側の範囲で発生する熱を取付側熱伝導部材でリフレクタへ移動して、発光管の温度上昇防止を抑制できる。
本発明にあっては、取付側熱伝導部材にフィンを備えるので、発光管から取付側熱伝導部材へ移動した熱をフィンを通じて直接的に放熱でき、放熱性を一段と向上できる。
In the present invention, since the mounting side heat conducting member is provided, the heat generated in the range of the mounting side to the reflector including the chamber portion of the arc tube is moved to the reflector by the mounting side heat conducting member, and the arc tube It is possible to suppress the temperature rise prevention.
In the present invention, since the attachment-side heat conductive member is provided with the fins, the heat transferred from the arc tube to the attachment-side heat conduction member can be directly radiated through the fins, and the heat dissipation can be further improved.

本発明にあっては、リフレクタの反射側開口を閉鎖する透光性部材を備えるので、透光性部材により破裂音及び有害物の漏洩防止を実現できると共に、熱伝導部材により発光管の温度上昇を防止することもできるという、従来の光源装置では両立し得なかった効果を達成できる。 In the present invention, since including a transparent member for closing the reflection side opening of the reflector, can achieve a leakage prevention pop and harmful substance according translucent member Rutotomoni, the temperature of the arc tube by heat conduction member It is possible to achieve an effect that could not be achieved by the conventional light source device, which could prevent the rise.

本発明にあっては、従来に比べて冷却効率を高めた光源装置を投影型画像表示装置が備えるので、発熱に起因する不具合を解消できると共に、光源装置の強制冷却機構の簡易化、更には強制冷却機構自体を省略することも可能となり、小型軽量化も推進できる。   In the present invention, since the projection type image display device includes a light source device that has improved cooling efficiency as compared with the prior art, it is possible to eliminate problems caused by heat generation, simplify the forced cooling mechanism of the light source device, and The forced cooling mechanism itself can be omitted, and the reduction in size and weight can be promoted.

図1は、本発明の第1実施形態に係る投影型画像表示装置(プロジェクタ)1の内部構成を示すブロック図である。本実施形態の投影型画像表示装置1は、従来に比べて冷却性及び放熱性を向上させた光源装置10を筐体1aの内部に設けており、冷却ファンによる強制冷却機構を省略していることが特徴である。   FIG. 1 is a block diagram showing an internal configuration of a projection type image display apparatus (projector) 1 according to the first embodiment of the present invention. In the projection type image display apparatus 1 of the present embodiment, the light source device 10 that has improved cooling performance and heat dissipation performance compared to the prior art is provided inside the housing 1a, and a forced cooling mechanism using a cooling fan is omitted. It is a feature.

投影型画像表示装置1は光学系の部分として、光源装置10に対向してカラーホイール2を配置すると共に、光源装置10から放射される光線の進行方向においてカラーホイール2より下流となる側へ順にロッドレンズ3、コンデンサレンズ4、TIRプリズム5、反射ミラー6、DMD(Digital Micromirror Device:登録商標。以下同様)7、及び投影レンズ8を設けている。また、筐体1aの内部の他の箇所には、上述した光学系の各部を制御する回路基板9が配置されている。   The projection-type image display device 1 has a color wheel 2 as an optical system portion facing the light source device 10, and in order toward the downstream side of the color wheel 2 in the traveling direction of light rays emitted from the light source device 10. A rod lens 3, a condenser lens 4, a TIR prism 5, a reflection mirror 6, a DMD (Digital Micromirror Device: registered trademark, the same applies hereinafter) 7, and a projection lens 8 are provided. In addition, a circuit board 9 that controls each part of the optical system described above is disposed at other locations inside the housing 1a.

光源装置10が放射する光線には、紫外線、可視光線、及び赤外線が含まれており、視認上は白色光線である。また、放射される光線の焦点近傍に配置されるカラーホイール2は、少なくとも赤色、緑色、及び青色の光線を透過させる3つのセグメントに分割されている。   Light rays emitted from the light source device 10 include ultraviolet rays, visible rays, and infrared rays, and are white rays for visual recognition. The color wheel 2 disposed near the focal point of the emitted light beam is divided into three segments that transmit at least red, green, and blue light rays.

カラーホイール2の下流側のロッドレンズ3は主に硝子基材で柱状に形成されており、一方の端面(入射面)から所望の広がり角で入射した光線の束(光束)を、硝子基材の内面側の界面(側面)で全反射を繰り返して効率良く伝播させ、他方の端面(出射面)から出射する光束の照度を均一にしている。ロッドレンズ3で照度が均一にされた光束は、コンデンサレンズ4及びTIRプリズム5を通過してから、反射ミラー6及びTIRプリズム5で順次反射されてDMD7へ入射する。 The rod lens 3 on the downstream side of the color wheel 2 is mainly formed of a glass base material in a columnar shape, and a bundle of light rays (light flux) incident at a desired divergence angle from one end face (incident surface) is converted into a glass base material. The total reflection is repeated and efficiently propagated at the interface (side surface) on the inner surface side, and the illuminance of the light beam emitted from the other end surface (outgoing surface) is made uniform. The light flux whose illuminance is made uniform by the rod lens 3 passes through the condenser lens 4 and the TIR prism 5, is sequentially reflected by the reflection mirror 6 and the TIR prism 5, and enters the DMD 7.

DMD7は空間光変調素子に相当し、ミクロンオーダーで可動するミラーアレイを制御して画像を生成する素子で形成されており、入射された光束に伴いDMD7で生成された画像の変調光は投影レンズ8から図示しないスクリーン(被投影体)へ投影される。なお、投影型画像表示装置1は、空間光変調素子としてDMD7の替わりに液晶パネルを用いることも可能である。   The DMD 7 corresponds to a spatial light modulation element, and is formed by an element that generates an image by controlling a mirror array that can move in the micron order. The modulated light of the image generated by the DMD 7 along with the incident light beam is a projection lens. 8 is projected onto a screen (projection target) (not shown). Note that the projection-type image display device 1 can use a liquid crystal panel instead of the DMD 7 as a spatial light modulation element.

投影型画像表示装置1の投影に係る制御を説明すると、回路基板9に設けられた制御回路部はDMD7の同期信号によりカラーホイール2の位相回転制御を行い、例えば、DMD7へ赤色画像データが入力されている時間帯に光源装置10から放射された光線がカラーホイール2の赤色セグメントを通過するようにカラーホイール2の回転を制御する。   The control related to the projection of the projection-type image display device 1 will be described. The control circuit unit provided on the circuit board 9 controls the phase rotation of the color wheel 2 by the synchronization signal of the DMD 7 and, for example, the red image data is input to the DMD 7. The rotation of the color wheel 2 is controlled so that the light beam emitted from the light source device 10 passes through the red segment of the color wheel 2 during the set time period.

そのため、光源装置10の光線はカラーホイール2を通過することで、順に赤色(R)、緑色(G)、及び青色(B)の光線となり、それと同期してDMD7も順にR、G、B用の画像を形成するので、R、G、B光線がDMD7に入出射されることにより順にR、G、B画像の光線が生成される。これらR、G、B画像の光線(変調光)が投影レンズ8からスクリーン(図示せず)へ投影されることで、スクリーンにR、G、B画像が表示される。なお、スクリーン上に表示されたR、G、B画像は各々が180Hz以上の人間の色分解能以上の速さで切り替えられるため、錯覚的にカラー画像として視認される。   Therefore, the light beam of the light source device 10 passes through the color wheel 2 to become red (R), green (G), and blue (B) rays in order, and the DMD 7 is also sequentially used for R, G, and B in synchronization therewith. Since the R, G, and B light beams are incident on and emitted from the DMD 7, light beams of the R, G, and B images are sequentially generated. By projecting the light rays (modulated light) of these R, G, and B images onto the screen (not shown) from the projection lens 8, the R, G, and B images are displayed on the screen. Note that the R, G, and B images displayed on the screen are each switched at a speed equal to or higher than human color resolution of 180 Hz or higher, so that they are visually recognized as color images.

図2は、上述した投影型画像表示装置1に適用されている光源装置10の分解状態を示している。本実施形態の光源装置10は防爆仕様であり、内部に発光管12を配置したリフレクタ11の開口11dを閉鎖する円板状の防爆ガラス29(透光性部材に相当)を有する。なお、防爆ガラス29の替わりに光学レンズを適用することも可能である。また、光学装置10は、発光管12とリフレクタ11とを繋ぐ羽根車状の熱伝導部材20を有しており、点灯により発光管12に生じた熱を熱伝導部材20によりリフレクタ11へ伝導させる。以下、光源装置10の各部の構成を詳述する。   FIG. 2 shows an exploded state of the light source device 10 applied to the projection type image display device 1 described above. The light source device 10 of this embodiment is explosion-proof specification and has a disk-shaped explosion-proof glass 29 (corresponding to a translucent member) that closes the opening 11d of the reflector 11 in which the arc tube 12 is arranged. An optical lens can be applied in place of the explosion-proof glass 29. The optical device 10 also has an impeller-like heat conducting member 20 that connects the arc tube 12 and the reflector 11, and conducts heat generated in the arc tube 12 by lighting to the reflector 11 by the heat conducting member 20. . Hereinafter, the configuration of each part of the light source device 10 will be described in detail.

リフレクタ11は、図3にも示すように、内周面11fが楕円面又は双曲面に形成された凹面鏡部11aの反射側となる開口11d側の周縁にフランジ部11bを設け、また逆側の端部には発光管12を取り付けるための筒部11cを頂部から突出している。凹面鏡部11a、フランジ部11b、及び筒部11cはリフレクタ11の基材に相当し、基材には熱伝導率が10W/m・K以上の金属材料を適用しており、本実施形態では熱伝導率が約200W/m・Kのアルミニウムを用いている。   As shown in FIG. 3, the reflector 11 is provided with a flange portion 11 b on the peripheral edge on the opening 11 d side which is the reflection side of the concave mirror portion 11 a having an inner peripheral surface 11 f formed as an elliptical surface or a hyperboloid, and on the opposite side. A cylindrical portion 11c for attaching the arc tube 12 protrudes from the top at the end. The concave mirror part 11a, the flange part 11b, and the cylindrical part 11c correspond to the base material of the reflector 11, and a metal material having a thermal conductivity of 10 W / m · K or more is applied to the base material. Aluminum having a conductivity of about 200 W / m · K is used.

凹面鏡部11aの凹状の内周面11fは反射面になっており、高い反射率を得るために、アルミニウム又は銀などの金属を内周面11fに蒸着している。なお、金属蒸着以外には、SiO2 等の低屈折材料とTiO2 等の高屈折材料とを交互に蒸着した誘電体多層膜で内周面11fを成膜すること又は内周面11f自体を鏡面研磨することも可能である。 The concave inner peripheral surface 11f of the concave mirror portion 11a is a reflective surface, and a metal such as aluminum or silver is deposited on the inner peripheral surface 11f in order to obtain a high reflectance. In addition to metal deposition, the inner peripheral surface 11f may be formed by using a dielectric multilayer film in which a low refractive material such as SiO 2 and a high refractive material such as TiO 2 are alternately deposited, or the inner peripheral surface 11f itself is formed. Mirror polishing is also possible.

凹面鏡部11aは、内周面11fの中心頂部11iと筒部11cの内部とを連通するように発光管12の取付用の穴部11hを形成している。また、内周面11fのフランジ部11b側の周縁には熱伝導部材20を嵌合するための嵌合面11gを凹設し、嵌合される熱伝導部材20に対して十分な接触面積を確保している。なお、フランジ部11bは内部に防爆ガラス29の取付用の窪部11eを形成しており、凹面鏡部11aには、後述する発光管12のリード線d2を引き出すための孔部11jが設けられている(図3参照)。   The concave mirror portion 11a has a hole 11h for attaching the arc tube 12 so as to communicate the central top portion 11i of the inner peripheral surface 11f with the inside of the cylindrical portion 11c. Further, a fitting surface 11g for fitting the heat conducting member 20 is recessed in the peripheral edge on the flange portion 11b side of the inner peripheral surface 11f, and a sufficient contact area is provided for the heat conducting member 20 to be fitted. Secured. The flange portion 11b has a recess 11e for attaching the explosion-proof glass 29 therein, and the concave mirror portion 11a is provided with a hole portion 11j for drawing out a lead wire d2 of the arc tube 12 described later. (See FIG. 3).

リフレクタ11の穴部11hに取り付けられる発光管12は超高圧水銀ランプであり、図4(a)にも示すように、両端側に封止部13d、13eを設けた石英ガラス製のガラス支持体13と一組のタングステン電極14、15で主に構成されている。タングステン電極14、15はガラス支持体13の両側の封止部13d、13eの間となる中央箇所で球状に膨出したチャンバー部13c内の空洞Kに対向配置されており、チャンバー部13の空洞Kには水銀及び希ガスが所定量封入されている。   The arc tube 12 attached to the hole 11h of the reflector 11 is an ultra-high pressure mercury lamp, and as shown in FIG. 4A, a glass support made of quartz glass having sealing portions 13d and 13e provided at both ends. 13 and a pair of tungsten electrodes 14 and 15. The tungsten electrodes 14 and 15 are disposed opposite to the cavity K in the chamber portion 13 c swelled in a spherical shape at the central portion between the sealing portions 13 d and 13 e on both sides of the glass support 13. K contains a predetermined amount of mercury and a rare gas.

また、チャンバー部13内の各タングステン電極14、15はガラス支持体13の各端部13a、13bで封止されたモリブデン箔16、17と導通するように接続されており、各モリブデン箔16、17からはリード線d1、d2が延出している。なお、各リード線d1、d2は図示しない点灯用電気回路に接続されタングステン電極14、15へ電力を投入できるようにしている。   The tungsten electrodes 14 and 15 in the chamber portion 13 are connected so as to be electrically connected to the molybdenum foils 16 and 17 sealed at the end portions 13a and 13b of the glass support 13, respectively. From 17, lead wires d 1 and d 2 extend. The lead wires d1 and d2 are connected to a lighting electric circuit (not shown) so that power can be supplied to the tungsten electrodes 14 and 15.

図4(b)は、各タングステン電極14、15の対向する端部を示している。各タングステン電極14、15は、先端14a、15aが頂点となるように斜面14a、15bが形成されており、斜面14a、15bの間に角度θの範囲が生じる。角度θの範囲は、各タングステン電極14、15の放電により生じた光(光束)が外方へ進行する際に斜面14a、15bに干渉することなく直接的に進行できるため高い輝度が得られており、また、角度θの範囲を外れた領域は、相対的に輝度は低くなる。   FIG. 4B shows the opposing ends of the tungsten electrodes 14 and 15. The tungsten electrodes 14 and 15 are formed with slopes 14a and 15b so that the tips 14a and 15a are apexes, and a range of an angle θ is generated between the slopes 14a and 15b. In the range of the angle θ, high brightness is obtained because light (light flux) generated by the discharge of the tungsten electrodes 14 and 15 can travel directly without interfering with the inclined surfaces 14a and 15b when traveling outward. In addition, the luminance is relatively low in a region outside the range of the angle θ.

そのため、図3に示すように発光管12をリフレクタ11へ取り付けると、各タングステン電極14、15の角度θの範囲から放射された光束がリフレクタ11の内周面11fで反射した部分(図中、二点鎖線で囲まれたハッチング範囲)は光束密度の高い領域Rとなり、領域R以外の箇所は、領域Rに比べて光束密度が低い領域になっている。なお、内周面11fでは、光束を形成する光と内周面11fとが交わる点での接線に対して入射角及び反射角が等しくなるように反射が行われる。   Therefore, when the arc tube 12 is attached to the reflector 11 as shown in FIG. 3, the portion of the light beam radiated from the range of the angle θ of each tungsten electrode 14, 15 is reflected by the inner peripheral surface 11 f of the reflector 11 ( A hatching range surrounded by a two-dot chain line) is a region R having a high light flux density, and portions other than the region R are regions having a light flux density lower than that of the region R. The inner peripheral surface 11f is reflected so that the incident angle and the reflection angle are equal to the tangent at the point where the light forming the light beam and the inner peripheral surface 11f intersect.

発光管12のリフレクタ11への具体的な取付は、発光管12を形成するガラス支持体13の一方の端部13aをリフレクタ11の穴部11hへ挿入し、発光管12の軸芯をリフレクタ11の中心頂部11iを通過する中心軸Cに合わせると共に、チャンバー部13cの中心付近となる発光点がリフレクタ11の焦点と一致するように配置し、この状態で固着剤18により両者を固着する。このように固着されることで、発光管12はリフレクタ11の内部で突出した状態で支持されている。   Specifically, the arc tube 12 is attached to the reflector 11 by inserting one end 13a of the glass support 13 forming the arc tube 12 into the hole 11h of the reflector 11, and the axis of the arc tube 12 being the reflector 11. The light emitting point near the center of the chamber portion 13c coincides with the focal point of the reflector 11, and the both are fixed by the fixing agent 18 in this state. By being fixed in this way, the arc tube 12 is supported in a state of protruding inside the reflector 11.

一方、発光管12とリフレクタ11とを繋ぐ熱伝導部材20(図2参照)は銅製であり、中央に設けられた筒状の外嵌環状部21から放射状に延出する3本の延出部23〜25を設けると共に、各延出部23〜25の延出端をリング状の嵌合環状部22に連結し、各部21〜25の表面を研磨して光沢性を確保した上で酸化防止膜により被覆している。本実施形態では、酸化防止膜にクラリアント社製のNL110と云う製品を用いているが、石英コーティング製のもの、二酸化珪素を成分とするものを酸化防止膜に適用することが可能である。   On the other hand, the heat conducting member 20 (see FIG. 2) connecting the arc tube 12 and the reflector 11 is made of copper, and three extending portions extending radially from a cylindrical outer fitting annular portion 21 provided in the center. 23-25 are provided, and the extending ends of the extending portions 23 to 25 are connected to the ring-shaped fitting annular portion 22, and the surfaces of the respective portions 21 to 25 are polished to ensure gloss and prevent oxidation. It is covered with a membrane. In this embodiment, a product called NL110 manufactured by Clariant Co. is used for the antioxidant film. However, it is possible to apply a quartz coating or silicon dioxide as a component to the antioxidant film.

図3、5に示すように、中央の外嵌環状部21は内部の空間部21aを発光管12の突出する端部13b側の封止部13d(チャンバー部13cから端部13bの部分:図4(a)参照)に外嵌できる大きさにしており、長さは封止部13dより少しだけ短い寸法にしている。このような外嵌環状部21の長手方向における一端側の周面より各延出部23〜25を延出している。   As shown in FIGS. 3 and 5, the outer ring-shaped portion 21 in the center has an inner space portion 21 a that is a sealing portion 13 d on the side of the end portion 13 b projecting from the arc tube 12 (part from the chamber portion 13 c to the end portion 13 b: FIG. 4 (a)), and the length is slightly shorter than the sealing portion 13d. Each extension part 23-25 is extended from the surrounding surface of the one end side in the longitudinal direction of such an external fitting annular part 21. As shown in FIG.

延出部23〜25には、外側の嵌合環状部22側の箇所に曲部23a〜25aがそれぞれ形成してある。曲部23a〜25aの曲始点23b〜25bは、熱伝導部材20が図3に示すように取り付けられた場合、領域Rと各延出部23〜25が交わる点に一致させている。なお、図3、5に示す距離Tは、延出部23が領域Rと交わる範囲を示しており、中央の外嵌環状部21側の点23cは距離Tの中央側の端を示している。なお、他の延出部24、25も同様に、距離Tの範囲で領域Rと交わる。   In the extending portions 23 to 25, curved portions 23 a to 25 a are formed at locations on the outer fitting annular portion 22 side, respectively. The bending start points 23b to 25b of the bending portions 23a to 25a coincide with the points where the region R and the extending portions 23 to 25 intersect when the heat conducting member 20 is attached as shown in FIG. The distance T shown in FIGS. 3 and 5 indicates the range where the extending portion 23 intersects the region R, and the point 23c on the center outer ring portion 21 side indicates the end on the center side of the distance T. . Similarly, the other extending portions 24 and 25 intersect with the region R within the range of the distance T.

また、各延出部23〜25に連結される外側の嵌合環状部22は、リフレクタ11の嵌合面11gに嵌め合わせるできる外径及び幅寸法にしてある。なお、嵌合環状部22の幅寸法は、本実施形態では中央の外嵌環状部21の長さの約5分の1にしており、この幅寸法は各延出部23〜25も同等である。また、熱伝導部材20を形成する外嵌環状部21、嵌合環状部22、及び各延出部23〜25の厚みは、約0.5mm〜約1.0mmの寸法にしている。   Further, the outer fitting annular portion 22 connected to each of the extending portions 23 to 25 has an outer diameter and a width dimension that can be fitted to the fitting surface 11 g of the reflector 11. In this embodiment, the width dimension of the fitting annular portion 22 is about one fifth of the length of the central outer fitting annular portion 21, and this width dimension is equivalent to each of the extending portions 23 to 25. is there. Moreover, the thickness of the external fitting annular part 21, the fitting annular part 22, and each extension part 23-25 which form the heat conductive member 20 is set to the dimension of about 0.5 mm-about 1.0 mm.

熱伝導部材20の取付は、中央の外嵌環状部21を発光管12の封止部13dに外嵌すると共に外側の嵌合環状部22をリフレクタ11の嵌合面11gに嵌合することで行い、図3に示すように発光管12の端部13bに外嵌環状部21の端面が一致した状態で取り付ける。なお、図3では示していないが、外嵌環状部21と発光管12の封止部13dとの間には、発光管12とリフレクタ11との固着に用いている固着剤18を介在させている。このように熱伝導部材20を取り付けることで、ガラス支持体13とリフレクタ11とは熱伝導部材20で繋がれることになる。   The heat conducting member 20 is attached by fitting the outer fitting annular portion 21 at the center to the sealing portion 13d of the arc tube 12 and fitting the outer fitting annular portion 22 to the fitting surface 11g of the reflector 11. As shown in FIG. 3, the end portion 13 b of the arc tube 12 is attached to the end portion 13 b in a state where the end face of the outer fitting annular portion 21 is aligned. Although not shown in FIG. 3, an adhesive 18 used for fixing the arc tube 12 and the reflector 11 is interposed between the outer ring portion 21 and the sealing portion 13 d of the arc tube 12. Yes. By attaching the heat conducting member 20 in this way, the glass support 13 and the reflector 11 are connected by the heat conducting member 20.

上述したように熱伝導部材20を取り付けた後、発光管12の突出側のリード線d2を孔部11jよりリフレクタ11の外方へ引き出し、それから、リフレクタ11のフランジ部11bの窪部11eに防爆ガラス29を接着し、防爆仕様の光源装置10を完成する。   After attaching the heat conducting member 20 as described above, the lead wire d2 on the protruding side of the arc tube 12 is drawn out of the reflector 11 from the hole 11j, and then explosion-proof in the recess 11e of the flange 11b of the reflector 11 The glass 29 is adhered to complete the explosion-proof light source device 10.

完成した光源装置10のリード線d1、d2に所要の接続を行い、電力を投入すると発光管12が発光し光源装置10が点灯する。点灯中は、発光管12の各タングステン電極14、15が放電して光及び熱が発生し、発生した光は図3に示すようにリフレクタ11で反射して防爆ガラス29を通過して外方へ放出される。この際、光束密度の高い領域Rを遮るのは、発光管12側からリフレクタ11側へ放射状に延出する各延出部23〜25のみなので、熱伝導部材20を取り付けても光源装置10の照射特性を殆ど悪化させることはない。   When necessary connections are made to the lead wires d1 and d2 of the completed light source device 10 and power is turned on, the arc tube 12 emits light and the light source device 10 is turned on. During lighting, the tungsten electrodes 14 and 15 of the arc tube 12 are discharged to generate light and heat. The generated light is reflected by the reflector 11 and passes through the explosion-proof glass 29 as shown in FIG. Is released. At this time, the region R having a high light flux density is blocked only by the extending portions 23 to 25 extending radially from the arc tube 12 side to the reflector 11 side, so that even if the heat conducting member 20 is attached, Irradiation characteristics are hardly deteriorated.

なお、光源装置10から照射される光には、熱伝導部材20の存在により、延出部23〜25により一部の光が遮られるため、部分的に影が生じることになる。しかし、投影型画像表示装置1では図1に示すように、光源装置10から照射された光はロッドレンズ3へ入射するので、ロッドレンズ3での全反射によりロッドレンズ3を通過した光の照度が均一化される。その結果、熱伝導部材20の延出部23〜25の影は投影されず、投影された画像に影は表示されない。   In addition, since the light irradiated from the light source device 10 is partially blocked by the extending portions 23 to 25 due to the presence of the heat conducting member 20, a shadow is partially generated. However, in the projection type image display device 1, as shown in FIG. 1, since the light emitted from the light source device 10 enters the rod lens 3, the illuminance of the light that has passed through the rod lens 3 due to total reflection at the rod lens 3. Is made uniform. As a result, the shadows of the extending portions 23 to 25 of the heat conducting member 20 are not projected, and no shadow is displayed on the projected image.

また、発光管12で発生する熱でガラス支持体13の温度が上昇する。本実施形態の光源装置10における放熱形態としては、対流熱伝達、放射、及び熱伝導の3形態があり、この3形態の中で最も熱移動の効率が高いのは熱伝導であり、2番目が放射である。以下、各形態における熱の移動を説明する。   Further, the temperature of the glass support 13 rises due to heat generated in the arc tube 12. There are three forms of heat dissipation in the light source device 10 of the present embodiment: convective heat transfer, radiation, and heat conduction. Among these three forms, heat conduction has the highest efficiency of heat transfer. Is radiation. Hereinafter, heat transfer in each embodiment will be described.

対流熱伝達は、発光管12の周囲に存在するリフレクタ11内に閉じこめられた空気を介在して発光管12からリフレクタ11へ熱が伝達されるものと、発光管12の周囲に存在する空気を介在して発光管12から前面側の防爆ガラス29へ熱が伝達されるものの2系統で熱の移動が行われる。また、放射は発光管12とリフレクタ11との間で行われている。   Convective heat transfer involves the transfer of heat from the arc tube 12 to the reflector 11 via the air confined in the reflector 11 existing around the arc tube 12 and the air present around the arc tube 12. Although heat is transferred from the arc tube 12 to the explosion-proof glass 29 on the front surface side, heat is transferred in two systems. Further, radiation is performed between the arc tube 12 and the reflector 11.

最後に、熱伝導は2系統の熱経路が存在し、1つ目の熱経路は発光管12のリフレクタ11との取付側となる一方の端部13aから固着剤18を通じてリフレクタ11へ熱が伝導されるものである。なお、上述した対流熱伝達、放熱及び1つ目の熱経路に係る熱伝導に関しては、従来の防爆仕様の光源装置でも生じている。   Finally, there are two heat paths for heat conduction, and the first heat path conducts heat from one end 13a on the side of the arc tube 12 attached to the reflector 11 to the reflector 11 through the fixing agent 18. It is what is done. Note that the above-described convective heat transfer, heat dissipation, and heat conduction related to the first heat path also occur in the conventional explosion-proof light source device.

熱伝導の2つ目の熱経路は、本発明の光源装置10の特徴となるものであり、発光管12のチャンバー部13cより突出する側の封止部13dから熱伝導部材20を通じてリフレクタ11へ熱が伝導されるものである。発光管12はチャンバー部13cが最も高温となり、このチャンバー部13cの熱が突出側の封止部13dへ伝わることで封止部13dの温度は上昇するが、本発明の光源装置10では封止部13dの熱を熱伝導部材20と云う熱経路を通じてリフレクタ11へ移動し、封止部13dの温度上昇を抑制して発光管12の長寿命化を図っている。   The second heat path for heat conduction is a feature of the light source device 10 of the present invention. From the sealing portion 13d of the arc tube 12 protruding from the chamber portion 13c to the reflector 11 through the heat conduction member 20. Heat is conducted. The arc tube 12 has the highest temperature in the chamber portion 13c, and the heat of the chamber portion 13c is transmitted to the sealing portion 13d on the protruding side, so that the temperature of the sealing portion 13d rises. The heat of the portion 13d is moved to the reflector 11 through a heat path called the heat conducting member 20, and the temperature rise of the sealing portion 13d is suppressed to extend the life of the arc tube 12.

特に、本実施形態では熱伝導部材20の中央側の外嵌環状部21は、チャンバー部13cの直近箇所から封止部13dを外嵌しているので、封止部13dと外嵌環状部21とは十分な接触面積が確保して高温となるチャンバー部13cから封止部13dに移ってきた熱を効率的に外嵌環状部21(熱伝導部材20)へ移動させられる。また、外嵌環状部21に移動した熱は3方向の延出部23〜25を延出先の方向に移動して外側の嵌合環状部22へ向かう。延出部23〜25通じて外側の嵌合環状部22へ移動した熱は、それから嵌合環状部22と接触している嵌合面11gを通じてリフレクタ11へ移動する。   In particular, in the present embodiment, since the outer fitting annular portion 21 on the center side of the heat conducting member 20 is fitted with the sealing portion 13d from the immediate vicinity of the chamber portion 13c, the sealing portion 13d and the outer fitting annular portion 21 are fitted. Means that the heat transferred from the chamber portion 13c to the sealing portion 13d, which has a sufficient contact area and becomes high temperature, can be efficiently transferred to the outer ring-shaped portion 21 (heat conducting member 20). Moreover, the heat which moved to the external fitting annular part 21 moves to the direction of the extension destination of the extension parts 23-25 of 3 directions, and goes to the outer fitting annular part 22. FIG. The heat moved to the outer fitting annular portion 22 through the extending portions 23 to 25 then moves to the reflector 11 through the fitting surface 11g in contact with the fitting annular portion 22.

なお、このような熱伝導部材20を通じた発光管12の封止部13dからリフレクタ11への熱移動は、封止部13dが熱伝導部材20及びリフレクタ11に比べて温度が高くなると開始されて、封止部13dの温度が熱伝導部材20及びリフレクタ11より低くなるまで行われる。また、発光管12の封止部13dに外嵌される外嵌環状部21の長手方向の寸法は、チャンバー部13cに近付けるように設定するほど、チャンバー部13cに対する放熱性を高めることができ、逆にチャンバー部13cから離れるように設定すると、封止部13dを対象にして放熱性を高めることができる。   The heat transfer from the sealing portion 13d of the arc tube 12 to the reflector 11 through the heat conducting member 20 is started when the temperature of the sealing portion 13d becomes higher than that of the heat conducting member 20 and the reflector 11. This is performed until the temperature of the sealing portion 13d becomes lower than that of the heat conducting member 20 and the reflector 11. Moreover, the heat dissipation with respect to the chamber part 13c can be improved, so that the dimension of the longitudinal direction of the external fitting annular part 21 fitted to the sealing part 13d of the arc tube 12 is set so as to be close to the chamber part 13c. On the contrary, if it sets so that it may leave | separate from the chamber part 13c, heat dissipation can be improved targeting the sealing part 13d.

リフレクタ11は、それ自体で放熱特性を有するので、上述した発光管12から移動してきた熱は最終的にリフレクタ11で放熱される。そのため、発光管12が熱伝導部材20で冷却されることになり、点灯中は高温となるチャンバー部13cの温度は800℃から1000℃以下に抑えられ、突出側の封止部13dの温度は確実に400℃以下に抑えられている。そのため、発光管12へ従来の防爆仕様での上限となる150Wを越える200W以上の電力を投入できるようになり、本実施形態の光源装置10は、従来からの熱を逃がす経路に加えて熱伝導部材20による経路が存在することから、点灯中も発光管12を上述した温度で維持した上で、200W以上の電力投入により従来に比べて高輝度特性を確保している。   Since the reflector 11 itself has a heat radiation characteristic, the heat transferred from the arc tube 12 is finally radiated by the reflector 11. Therefore, the arc tube 12 is cooled by the heat conducting member 20, the temperature of the chamber portion 13c, which is high during lighting, is suppressed to 800 ° C. to 1000 ° C. or less, and the temperature of the sealing portion 13d on the protruding side is The temperature is surely kept below 400 ° C. Therefore, it becomes possible to input 200 W or more electric power exceeding 150 W, which is the upper limit in the conventional explosion-proof specification, to the arc tube 12, and the light source device 10 of the present embodiment conducts heat in addition to the conventional heat release path. Since the path by the member 20 exists, the luminous tube 12 is maintained at the above-mentioned temperature even during lighting, and the high luminance characteristics are ensured compared with the conventional case by turning on the power of 200 W or more.

一方、光源装置10の点灯中、熱伝導部材20(特に延出部23〜25)はリフレクタ11で反射される光束に照射されるが、熱伝導部材20の表面は研磨により光沢性が確保されているので、照射された光束を表面で反射させて熱伝導部材20(延出部23〜25)が熱を吸収する率を低減させている。しかも、熱伝導部材20の表面は酸化防止膜で被覆されているので、点灯中に表面が曇り、光沢性が低下することを防止している。   On the other hand, while the light source device 10 is turned on, the heat conducting member 20 (particularly the extending portions 23 to 25) is irradiated with the light beam reflected by the reflector 11, but the surface of the heat conducting member 20 is ensured to be glossy by polishing. Therefore, the irradiated light flux is reflected on the surface to reduce the rate at which the heat conducting member 20 (extending portions 23 to 25) absorbs heat. In addition, since the surface of the heat conducting member 20 is covered with an anti-oxidation film, the surface is prevented from being clouded during lighting and the glossiness is prevented from being lowered.

上述した熱伝導部材20の表面での反射により、熱伝導部材20は光束の照射による温度上昇を抑制しているが、長時間の照射及び発光管12からリフレクタ11へ熱伝導を行うことで銅製の熱伝導部材20自体の温度が上昇して熱膨張が生じる。   The reflection on the surface of the heat conducting member 20 described above suppresses the temperature rise due to the irradiation of the light flux, but the copper is made by conducting heat for a long time and conducting heat from the arc tube 12 to the reflector 11. The temperature of the heat conducting member 20 itself rises and thermal expansion occurs.

図5に示すように、熱伝導部材20の各延出部23〜25での熱膨張は放射方向(径方向)になるが、各延出部23〜25には曲部23a〜25aが設けられているので、径方向の膨張が曲部23a〜25aに沿った方向(図中の黒矢印方向)へ変換され、最終的に膨張分は外側の嵌合環状部22との連結箇所における接線方向への延びとなる。その結果、中央の外嵌環状部21で外嵌されている発光管12へ熱伝導部材20の熱膨張による無用な応力が必要以上にかかることを防止でき、発光管12の位置ズレによる光源装置10の光束の放射特性に変化が生じることもなく、また、発光管12を構成するガラス支持体13が熱伝導部材20の熱膨張により破壊されることもない。   As shown in FIG. 5, the thermal expansion in the extending portions 23 to 25 of the heat conducting member 20 is in the radial direction (radial direction), but the extending portions 23 to 25 are provided with curved portions 23 a to 25 a. Therefore, the expansion in the radial direction is converted into the direction along the curved portions 23a to 25a (the black arrow direction in the figure), and finally the expansion is tangent at the connecting point with the outer fitting annular portion 22 It becomes an extension in the direction. As a result, it is possible to prevent unnecessary stress due to thermal expansion of the heat conducting member 20 from being applied to the arc tube 12 that is externally fitted at the center external ring portion 21, and the light source device due to misalignment of the arc tube 12. No change occurs in the radiation characteristics of the 10 luminous fluxes, and the glass support 13 constituting the arc tube 12 is not broken by the thermal expansion of the heat conducting member 20.

なお、本発明に係る投影型画像表示装置1及び光源装置10は、上述した形態に限定されるものではなく、種々の変形例の適用が可能である。例えば、投影型画像表示装置1には、光源装置10を強制冷却する冷却ファンを適用してもよく、このように冷却ファンを適用することでリフレクタ11の放熱性を高めることができ、投入する電力値を一段と高めて高輝度にしても安定した点灯を確保できる。また、光源装置10は防爆ガラス29を省略して防爆仕様に対応させないことも可能である。この場合は、リフレクタ11内への送風が可能になることから、熱伝導部材20による熱伝導との組み合わせにより冷却特性を更に高められる。   The projection type image display device 1 and the light source device 10 according to the present invention are not limited to the above-described embodiments, and various modifications can be applied. For example, a cooling fan that forcibly cools the light source device 10 may be applied to the projection-type image display device 1. By applying the cooling fan in this way, the heat dissipation of the reflector 11 can be improved and turned on. Stable lighting can be secured even if the power value is further increased to increase the brightness. Further, the light source device 10 can be made not to correspond to the explosion-proof specification by omitting the explosion-proof glass 29. In this case, since the air can be blown into the reflector 11, the cooling characteristics can be further enhanced by the combination with the heat conduction by the heat conducting member 20.

さらに、光源装置10の熱伝導部材20は、銅以外の材料として、熱伝導率が良好なアルミニウム等の他の金属材料を適用することが可能であり、金属材料以外には窒化アルミニウムからなるセラミックス適用してもよい。なお、熱伝導部材20の表面の光沢性を高めるため鏡面研磨を施す以外にメッキ又は蒸着等により表面処理を施すことが好ましい。このような表面の光沢性を維持するためには、上述したように酸化防止膜で被覆する以外に、防爆仕様の場合は酸化防止用のガスをリフレクタ11の内部に充填してもよい。   Furthermore, as the heat conducting member 20 of the light source device 10, other metal materials such as aluminum having good thermal conductivity can be applied as materials other than copper, and ceramics made of aluminum nitride other than the metal materials. You may apply. In addition, in order to improve the glossiness of the surface of the heat conductive member 20, it is preferable to perform surface treatment by plating or vapor deposition in addition to performing mirror polishing. In order to maintain such glossiness of the surface, in addition to coating with an antioxidant film as described above, an antioxidant gas may be filled in the reflector 11 in the case of explosion-proof specifications.

また、熱伝導部材20の各延出部23〜25の個数は3個に限定されるものではなく、1個以上であれば個数は限定されない。この場合、個数が少ない程、リフレクタ11で反射された光束を遮る程度を減少でき、また個数が多い程、熱伝導部材20の熱伝導性を高められる。   Further, the number of the extending portions 23 to 25 of the heat conducting member 20 is not limited to three, and the number is not limited as long as it is one or more. In this case, the smaller the number, the smaller the degree of blocking the light beam reflected by the reflector 11, and the larger the number, the higher the thermal conductivity of the heat conducting member 20.

さらに、熱伝導部材20の外側の嵌合環状部22はリフレクタ11の内周面側に嵌合させる以外に、光源装置10を防爆仕様にしないときは外周面側に嵌合する構成も可能になる。この場合、リフレクタ11は開口側のフランジ部11bを省略し、嵌合環状部22は、内径をリフレクタ11の開口周縁の外周面側に嵌合できる寸法に設定すると共に、嵌合環状部22の幅を各延出部23〜25の幅より長くして嵌合代を設けることにより、リフレクタ11の開口側端面に各延出部23〜25を当接させた状態で嵌合環状部22をリフレクタ11の外周面側に嵌合させることも可能になる。   Further, the fitting annular portion 22 on the outer side of the heat conducting member 20 can be fitted to the inner peripheral surface side of the reflector 11 and can be fitted to the outer peripheral surface side when the light source device 10 is not explosion-proof. Become. In this case, the reflector 11 omits the opening-side flange portion 11b, and the fitting annular portion 22 has an inner diameter set to a dimension that can be fitted to the outer peripheral surface side of the opening peripheral edge of the reflector 11, and the fitting annular portion 22 By providing a fitting margin by making the width longer than the width of each extending portion 23-25, the fitting annular portion 22 is made in a state in which each extending portion 23-25 is in contact with the opening side end surface of the reflector 11. It can also be fitted to the outer peripheral surface side of the reflector 11.

さらにまた、熱伝導部材20は、外側の嵌合環状部22自体を省略した構成にすることも可能である。このようにすることで熱伝導部材20の構成を更に簡略化できコストの低減を図れる。嵌合環状部22を省略した場合は、各延出部23〜25の延出端を直接的にリフレクタ11の内部に接触するように嵌め合わせることになるが、リフレクタ11に各延出部23〜25を嵌め合わせるスリットのような切り込みを設けて、各延出部23〜25とリフレクタ11との接触性を高めるようにしてもよい。   Furthermore, the heat conducting member 20 can be configured such that the outer fitting annular portion 22 itself is omitted. By doing in this way, the structure of the heat conductive member 20 can further be simplified and cost reduction can be aimed at. When the fitting annular portion 22 is omitted, the extending ends of the extending portions 23 to 25 are fitted so as to directly contact the inside of the reflector 11, but the extending portions 23 are fitted to the reflector 11. It is also possible to provide a notch such as a slit for fitting ˜25 to enhance the contact between each of the extending portions 23 to 25 and the reflector 11.

図6は、変形例の熱伝導部材30を示している。この変形例の熱伝導部材30は各延出部33〜35における中央の外嵌環状部31側にも曲部33d〜35dを設けていることが特徴である。中央側の曲部33dの曲始点33cは、光束密度が高い領域Rと交わる距離Tの一方側の点にしているため、リフレクタ11で反射される光束の密度が高い部分を曲部33dで妨げることはなく、このことは他の曲部34d、35dでも同様である。このように各延出部33〜35のそれぞれに外側及び中央側の2個の曲部33a〜35a、33d〜35dを設けることで、一段と熱膨張による延びを吸収でき、熱膨張による影響を緩和できる。なお、この変形例の熱伝導部材30において、リフレクタ11の形状等により外側の曲部33a〜35aを設けることが困難なときは、外側の曲部33a〜35aの省略も可能である。   FIG. 6 shows a heat conductive member 30 according to a modification. The heat conducting member 30 of this modification is characterized in that curved portions 33d to 35d are also provided on the center of the extending portions 33 to 35 on the outer ring portion 31 side. Since the bending start point 33c of the central curved portion 33d is a point on one side of the distance T intersecting with the region R having a high luminous flux density, the curved portion 33d blocks a portion where the density of the luminous flux reflected by the reflector 11 is high. This is not the case, and the same applies to the other music parts 34d and 35d. Thus, by providing the two bent portions 33a to 35a and 33d to 35d on each of the extended portions 33 to 35, the extension due to thermal expansion can be absorbed further, and the influence due to thermal expansion can be reduced. it can. In addition, in the heat conductive member 30 of this modification, when it is difficult to provide the outer curved portions 33a to 35a due to the shape of the reflector 11, the outer curved portions 33a to 35a can be omitted.

図7(a)〜(c)は、別の変形例の熱伝導部材40〜60を示している。図7(a)の熱伝導部材40は、中央の外嵌環状部41と外側の嵌合環状部42とを直線状の延出部43〜45で連結したものであり、各延出部43〜45には曲部を設けていない。このような熱伝導部材40の材料に熱膨張が生じにくいセラミックスが適用されている場合に、好適である。   FIGS. 7A to 7C show heat conductive members 40 to 60 of another modification. The heat conducting member 40 of FIG. 7A is obtained by connecting a central outer ring portion 41 and an outer fitting ring portion 42 by linear extending portions 43 to 45, and each extending portion 43. No. 45 has no music part. This is suitable when a ceramic material that hardly causes thermal expansion is applied to the material of the heat conducting member 40.

図7(b)の熱伝導部材50は、中央の外嵌環状部51から延出する各延出部53〜55に分断した円弧状嵌合部52a〜52cを連結したものであり、図7(c)の熱伝導部材60は、中央側の分断した円弧状外嵌部61a〜61cのそれぞれから各延出部63〜65を延出し、延出端に嵌合環状部62を連結したものである。各熱伝導部材50、60では、外側又は中央側に分断した円弧状嵌合部52a〜52c又は円弧状外嵌部61a〜61cを設けているので、外側又は中央側の嵌合箇所での熱膨張による影響を低減できる。なお、変形例の熱伝導部材50、60の構成は、曲部を有する図5、6に示す熱伝導部材20、30にも適用可能である。   The heat conductive member 50 of FIG.7 (b) connects the arc-shaped fitting part 52a-52c divided to each extension part 53-55 extended from the center external fitting annular part 51, FIG. The heat conducting member 60 of (c) is obtained by extending each extending portion 63 to 65 from each of the arcuate outer fitting portions 61a to 61c divided on the center side, and connecting the fitting annular portion 62 to the extending end. It is. Since each of the heat conducting members 50 and 60 is provided with the arcuate fitting portions 52a to 52c or the arcuate outer fitting portions 61a to 61c divided on the outer side or the center side, the heat at the outer side or the center side fitting portion is provided. The influence by expansion can be reduced. In addition, the structure of the heat conductive members 50 and 60 of a modification is applicable also to the heat conductive members 20 and 30 shown in FIG.

図8(a)は変形例の光源装置10′を示しており、この光源装置10′は、上述した発光管12を取り付けたリフレクタ11に変形例の熱伝導部材70を設けたものである。変形例の熱伝導部材70は、延出部73、74(3個目の延出部は図示せず)の中央の外嵌環状部71からの延出箇所を発光管12のチャンバー部13c側へ移動したことを特徴にしている。なお、各延出部73、74は、延出端が光束密度の高い領域Rと干渉しないような位置に設けられており、外側の嵌合環状部72もリフレクタ11の内周曲面に応じた形状にされている。 FIG. 8A shows a modified light source device 10 ′. This light source device 10 ′ is obtained by providing a modified heat conduction member 70 on the reflector 11 to which the above-described arc tube 12 is attached. The heat conduction member 70 of the modified example is such that the extension part 73, 74 (the third extension part is not shown) extends from the center outer fitting annular part 71 on the chamber part 13c side of the arc tube 12. It is characterized by having moved to. Incidentally, each of the extension portions 73, 74 extending end is provided at a position so as not to interfere with the high region R of the light flux density, corresponding to the inner peripheral curved face of the outer fitting annular portion 72 reflector 11 It is in shape.

この変形例の熱伝導部材70は、各延出部73〜74の径方向の長さ寸法L2を、中央側の外嵌環状部71の突出側の端部71bからリフレクタ11までの長さ寸法L1に比べて短くできるため、熱伝導の経路長を短縮でき熱伝導効率を向上できる。また、この変形例の熱伝導部材70の構成は、防爆仕様でない光源装置において発光管12の軸方向の長さがリフレクタ11を越えて突出する寸法を有するタイプに対しても好適である。   In the heat conducting member 70 of this modification, the length dimension L2 in the radial direction of each of the extension parts 73 to 74 is the length dimension from the projecting side end 71b of the center-side outer fitting annular part 71 to the reflector 11. Since it can be shorter than L1, the path length of heat conduction can be shortened, and the heat conduction efficiency can be improved. The configuration of the heat conducting member 70 of this modification is also suitable for a type of light source device that is not explosion-proof and has a dimension in which the axial length of the arc tube 12 protrudes beyond the reflector 11.

図8(b)は別の変形例の光源装置10″を示しており、この光源装置10″は、発光管12を取り付けたリフレクタ11に変形例の熱伝導部材80を設けたものである。変形例の熱伝導部材80は、中央の外嵌環状部81から延出する延出部83、84(3個目の延出部は図示せず)及び外側の嵌合環状部82の幅寸法Wを、領域Rと交わらない範囲で図3に示す熱伝導部材20に比べて長くしたことが特徴である。このようにすることで、延出部83、84の延出方向に直交する断面積を図3に示す熱伝導部材20の各延出部23、24に比べて大きくでき、一段と熱伝導効率を向上できる。   FIG. 8B shows a light source device 10 ″ according to another modified example. This light source device 10 ″ is obtained by providing a heat conducting member 80 according to a modified example on the reflector 11 to which the arc tube 12 is attached. The heat conduction member 80 according to the modified example has a width dimension of extending portions 83 and 84 (a third extending portion is not shown) extending from the center outer fitting annular portion 81 and an outer fitting annular portion 82. A characteristic is that W is made longer than the heat conducting member 20 shown in FIG. By doing in this way, the cross-sectional area orthogonal to the extension direction of the extension parts 83 and 84 can be enlarged compared with each extension part 23 and 24 of the heat conductive member 20 shown in FIG. 3, and heat transfer efficiency is improved further. Can be improved.

図9は防爆仕様でない変形例の光源装置100を示しており、この光源装置100は、発光管12を取り付けたリフレクタ11′に変形例の熱伝導部材90を設けたものである。変形例の熱伝導部材90は、発光管12の封止部13の全体を覆うのではなく、突出側の端部13b付近で封止部13dを覆う長さの外嵌環状部91を設け、この外嵌環状部91から延出部93、94(3個目の延出部は図示せず)を延出して、延出端に外側の嵌合環状部92を設けている。この変形例の熱伝導部材90は、外嵌環状部91、各延出部93、94、及び嵌合環状部92の幅が同等なので製作が行いやすく、また、最も耐熱性が劣る発光管12の封止部13における端部13bから集中的に熱の移動を行うことができる。   FIG. 9 shows a light source device 100 of a modified example that is not explosion-proof specification. This light source device 100 is provided with a heat conducting member 90 of a modified example on a reflector 11 ′ to which the arc tube 12 is attached. The heat conducting member 90 of the modified example does not cover the entire sealing portion 13 of the arc tube 12, but is provided with an outer fitting annular portion 91 having a length covering the sealing portion 13d in the vicinity of the protruding end portion 13b. Extending portions 93 and 94 (a third extending portion is not shown) are extended from the outer fitting annular portion 91, and an outer fitting annular portion 92 is provided at the extending end. The heat conducting member 90 of this modified example is easy to manufacture because the width of the outer fitting annular portion 91, the extending portions 93 and 94, and the fitting annular portion 92 is equal, and the arc tube 12 having the lowest heat resistance. The heat can be intensively transferred from the end portion 13 b of the sealing portion 13.

さらに、変形例の熱伝導部材90が電気的に導通性のある材料で形成されている場合は、発光管12の突出側のモリブデン箔17からはリード線を延出させず、延出部94にモリブデン箔17と導通接触するL字状の接触部96を設け、外側の嵌合環状部92の嵌合箇所に設けたリフレクタ11′の孔部11j′を通じてリード線d3と嵌合環状部92とを接合するようにしてもよい。このようにすることで、熱伝導部材90を発光管12に対するリード線の一部として利用でき、光源装置100の配線構成の簡略化を図れる。   Furthermore, when the heat conductive member 90 of the modified example is formed of an electrically conductive material, the lead wire is not extended from the molybdenum foil 17 on the projecting side of the arc tube 12, and the extension portion 94 is provided. An L-shaped contact portion 96 that is in conductive contact with the molybdenum foil 17 is provided in the lead wire d3 and the fitting annular portion 92 through the hole 11j 'of the reflector 11' provided at the fitting portion of the outer fitting annular portion 92. And may be joined. By doing in this way, the heat conductive member 90 can be utilized as a part of lead wire with respect to the arc_tube | light_emitting_tube 12, and the wiring structure of the light source device 100 can be simplified.

図10(a)は、本発明の光源装置に適用される変形例のリフレクタ111を示している。変形例のリフレクタ111は、凹面鏡部111aの内周面111fを熱拡散膜115で被覆して、リフレクタ111の熱拡散性を向上させていることが特徴である。この熱拡散膜115は、3層構造であり、内周面111f側より赤外線熱変換層112、光沢緩衝層113、及び可視光反射層114を備える。   FIG. 10A shows a reflector 111 of a modification applied to the light source device of the present invention. The reflector 111 of the modified example is characterized in that the thermal diffusivity of the reflector 111 is improved by covering the inner peripheral surface 111f of the concave mirror portion 111a with the thermal diffusion film 115. The thermal diffusion film 115 has a three-layer structure, and includes an infrared heat conversion layer 112, a gloss buffer layer 113, and a visible light reflection layer 114 from the inner peripheral surface 111f side.

赤外線熱変換層112は、内周面111fを陽極酸化することで成膜され、可視光反射層114及び光沢緩衝層113を通過する波長領域の光を吸収して効率的に熱変換するものである。光沢緩衝層113は赤外線熱変換層112の上にSi系樹脂又はポリイミド系樹脂を高温で焼成することで成膜され、赤外線変換層112と可視光反射層114とが直接的に接しないように両者の緩衝を図るものである。可視光反射層114は、光沢緩衝層113の上に形成され可視光の反射を行うものである。よって、変形例のリフレクタ111は、上述した積層構造の熱拡散膜115を有することで発光管12から放出される光束を反射していても、効率的に熱を拡散でき反射面の劣化を防いでいる。   The infrared heat conversion layer 112 is formed by anodizing the inner peripheral surface 111f, and absorbs light in a wavelength region that passes through the visible light reflection layer 114 and the gloss buffer layer 113 to efficiently convert heat. is there. The gloss buffer layer 113 is formed on the infrared heat conversion layer 112 by baking a Si-based resin or a polyimide-based resin at a high temperature so that the infrared conversion layer 112 and the visible light reflecting layer 114 are not in direct contact with each other. It is intended to buffer both. The visible light reflection layer 114 is formed on the gloss buffer layer 113 and reflects visible light. Therefore, the reflector 111 of the modified example includes the thermal diffusion film 115 having the above-described laminated structure, so that heat can be efficiently diffused even when the luminous flux emitted from the arc tube 12 is reflected, and the deterioration of the reflecting surface is prevented. It is out.

図10(b)は、本発明の光源装置に適用される別の変形例のリフレクタ121を示している。この変形例のリフレクタ121は、凹面鏡部121aの外周面121kより多数の放熱フィン130a〜130iを突出させていることが特徴である。なお、凹面鏡部121aの内周面121fには、赤外線熱変換層122、光沢緩衝層123、及び可視光反射層124を設けているが、各層の省略は可能である。   FIG.10 (b) has shown the reflector 121 of another modification applied to the light source device of this invention. The reflector 121 of this modification is characterized in that a large number of heat radiation fins 130a to 130i are projected from the outer peripheral surface 121k of the concave mirror part 121a. In addition, although the infrared heat conversion layer 122, the gloss buffer layer 123, and the visible light reflection layer 124 are provided on the inner peripheral surface 121f of the concave mirror 121a, each layer can be omitted.

このように放熱フィン130a〜130iを設けることで、リフレクタ121は周囲に存在する空気との接触面積を大幅に拡大でき放熱特性を向上できる。なお、放熱フィン130a〜131iは凹面鏡部121aと一体に設けること又は別体で設けることのいずれにしてもよく、また突出方向は筒部121cの突出方向と平行にする以外に、外周面121kから放射方向に突出させてもよい。   By providing the radiation fins 130a to 130i in this manner, the reflector 121 can greatly increase the contact area with the air existing in the surrounding area, and the heat radiation characteristics can be improved. The radiating fins 130a to 131i may be provided integrally with the concave mirror part 121a or provided separately, and the protruding direction is not parallel to the protruding direction of the cylindrical part 121c, but from the outer peripheral surface 121k. You may project in the radial direction.

図11(a)は、さらに別の変形例のリフレクタ131を示している。このリフレクタ131は、図10(a)のリフレクタ111のように、内周面111fの全体を熱拡散膜115で被覆するのではなく、熱伝導部材20を取り付ける箇所は、赤外線熱変換層132、光沢緩衝層133、及び可視光反射層134からなる熱拡散膜135を設けずに、リフレクタ131の凹面鏡部131aの基材を表出させて、熱伝導部材20の嵌合面131gを形成したことが特徴である。   FIG. 11A shows a reflector 131 of still another modified example. Unlike the reflector 111 in FIG. 10A, the reflector 131 does not cover the entire inner peripheral surface 111f with the heat diffusion film 115, but the portion where the heat conducting member 20 is attached is the infrared heat conversion layer 132, The fitting surface 131g of the heat conducting member 20 was formed by exposing the base material of the concave mirror part 131a of the reflector 131 without providing the heat diffusion film 135 composed of the gloss buffer layer 133 and the visible light reflecting layer 134. Is a feature.

よって、図11(b)に示すように熱伝導部材20をリフレクタ131に取り付けると、延出部24の端部に設けられた嵌合環状部22が直接的に嵌合面131gと当接し、熱拡散膜135を設けた場合でも熱伝導部材20からリフレクタ131へスムーズに伝熱できる。なお、図11(a)(b)に示すリフレクタ131は、上述した各種熱伝導部材20〜90に対応でき、また、図10(b)に示す放熱フィン130a〜130iを設けたリフレクタ121に対しても、リフレクタ131に係る基材を表出させる構成を適用できる。   Therefore, when the heat conducting member 20 is attached to the reflector 131 as shown in FIG. 11B, the fitting annular portion 22 provided at the end of the extending portion 24 directly contacts the fitting surface 131g, Even when the thermal diffusion film 135 is provided, heat can be smoothly transferred from the heat conducting member 20 to the reflector 131. Note that the reflector 131 shown in FIGS. 11A and 11B can correspond to the various heat conducting members 20 to 90 described above, and is different from the reflector 121 provided with the radiation fins 130a to 130i shown in FIG. However, the structure which exposes the base material which concerns on the reflector 131 is applicable.

図12は、別の変形例に係る非防爆仕様の光源装置210を示し、この光源装置210では、リフレクタ211(凹面鏡部211a)の開口211dの縁部211bに計3箇所のスリット211h〜211jを形成すると共に、熱伝導部材220を、図7(a)に示す熱伝導部材40から嵌合環状部42を省略した構成にしていることが特徴である。熱伝導部材220をリフレクタ211に取り付けるには、リフレクタ211に予め取り付けられた発光管12(ガラス支持体13)の封止部13dに外嵌環状部221を外嵌すると共に、各延出部223〜225の延出端223a〜225aをリフレクタ211(凹面鏡部211a)のスリット211h〜211jに夫々嵌合する(図13参照)。このように変形例の光源装置210では、簡単に熱伝導部材220を取り付けることができる。   FIG. 12 shows a non-explosion-proof specification light source device 210 according to another modified example. In this light source device 210, a total of three slits 211h to 211j are formed on the edge 211b of the opening 211d of the reflector 211 (concave mirror portion 211a). While being formed, the heat conducting member 220 is characterized in that the fitting annular portion 42 is omitted from the heat conducting member 40 shown in FIG. In order to attach the heat conducting member 220 to the reflector 211, the outer fitting annular portion 221 is fitted on the sealing portion 13d of the arc tube 12 (glass support 13) attached in advance to the reflector 211, and each extending portion 223 is fitted. The extended ends 223a to 225a of ˜225 are fitted into the slits 211h to 211j of the reflector 211 (concave mirror portion 211a), respectively (see FIG. 13). As described above, in the light source device 210 according to the modification, the heat conducting member 220 can be easily attached.

また、完成した光源装置210で発光を行うと、熱伝導部材220が金属製である場合、リフレクタ211での反射光の照射により各延出部223〜225が延出方向へ膨張するので、図5の熱伝導部材20のように曲部23a〜25aを設けなくても、発光管12に熱膨張に伴う応力がかからない。各延出部223〜225の延出方向に対応して設けられるスリット211h〜211jの幅寸法は、延出端223a〜225aに対して圧入気味(しまりばめ又は中間ばめ)に設定すること、遊嵌気味(すきまばめ)に設定することの両方が可能である。圧入気味に設定した場合は、延出端223a〜225aの嵌合のみで熱伝導部材220を取り付けることができ、また、遊嵌気味に設定した場合は、熱伝導性の良好な固着剤を用いて熱伝導部材220を固定することが好適である。なお、熱伝導部材220に対しても、図7(b)〜図9に示す熱伝導部材60〜90に係る各種構成を適用できる。   Further, when light is emitted by the completed light source device 210, when the heat conducting member 220 is made of metal, each of the extending portions 223 to 225 expands in the extending direction due to irradiation of the reflected light from the reflector 211. Even if the curved portions 23a to 25a are not provided as in the case of the heat conducting member 5 of 5, the arc tube 12 is not subjected to stress due to thermal expansion. The width dimensions of the slits 211h to 211j provided corresponding to the extending directions of the extending portions 223 to 225 should be set so as to have a press fit (an interference fit or an intermediate fit) with respect to the extending ends 223a to 225a. Both can be set to loose fit (clear fit). When set to press fit, the heat conductive member 220 can be attached only by fitting the extended ends 223a to 225a, and when set to loose fit, a sticking agent having good heat conductivity is used. It is preferable to fix the heat conducting member 220. Note that various configurations according to the heat conductive members 60 to 90 shown in FIGS. 7B to 9 can be applied to the heat conductive member 220.

図14(a)は、別の変形例に係る熱伝導部材240を示している。この熱伝導部材240は、図12の熱伝導部材220の延出端223a〜225aに屈曲部を設けた構造になっており、具体的には外嵌環状部241から延出する延出部243〜245の先端箇所をL字状に屈曲して屈曲部243a〜245aを形成すると共に、各屈曲部243a〜245aに貫通穴243b〜245bを穿設している。一方、図14(b)に示すように、熱伝導部材240を取り付けるリフレクタ231は、基本的に図12のリフレクタ211と同様に、スリット231hを設けたものであるが、スリット231hのそばの縁部231bにネジ穴231kを形成している。   FIG. 14A shows a heat conducting member 240 according to another modification. The heat conducting member 240 has a structure in which bent portions are provided at the extending ends 223a to 225a of the heat conducting member 220 in FIG. 12, and specifically, an extending portion 243 extending from the outer fitting annular portion 241. The tip portions of ˜245 are bent in an L shape to form bent portions 243a˜245a, and through holes 243b˜245b are formed in the respective bent portions 243a˜245a. On the other hand, as shown in FIG. 14 (b), the reflector 231 to which the heat conducting member 240 is attached is basically provided with a slit 231h, similar to the reflector 211 of FIG. 12, but the edge near the slit 231h. A screw hole 231k is formed in the portion 231b.

よって、熱伝導部材240をリフレクタ231へ取り付けると、延出部243〜245の端がスリット231hに嵌合すると共に、屈曲部243a〜245aがリフレクタ231凹面鏡部231a)の外周面231cを外嵌する。この状態で図14(b)に示すように、ネジNを貫通孔243b〜245bに貫通させてネジ穴231kに螺合して、屈曲部243a〜245aをリフレクタ231に固定する。 Therefore, when the heat conducting member 240 is attached to the reflector 231, the ends of the extending portions 243 to 245 are fitted into the slit 231h, and the bent portions 243a to 245a are externally fitted to the outer peripheral surface 231c of the reflector 231 ( concave mirror portion 231a). To do. In this state, as shown in FIG. 14B, the screw N is passed through the through holes 243 b to 245 b and screwed into the screw holes 231 k to fix the bent portions 243 a to 245 a to the reflector 231.

このように、ネジ止めすることで、熱伝導部材240が強固にリフレクタ231へ取り付けられるので、投影型画像表示装置の移動等に伴う振動を受けても熱伝導部材240が外れることもなく、また、屈曲部243a〜245aが確実にリフレクタ231へ当接するため、熱伝導も適切に行える。なお、ネジ止めの替わりに、熱伝導性の良好な固着剤、ろう付け等を適用してもよく、また、屈曲部243a〜245aが外嵌だけで強固に固定できる場合は、ネジ止めを省略してもよく、ネジ止めを行わない場合は、貫通孔243a〜245a及びネジ穴231kも省略できる。   In this way, by screwing, the heat conducting member 240 is firmly attached to the reflector 231. Therefore, the heat conducting member 240 does not come off even when subjected to vibration accompanying the movement of the projection type image display device, etc. In addition, since the bent portions 243a to 245a reliably contact the reflector 231, heat conduction can be appropriately performed. Note that, instead of screwing, an adhesive with good thermal conductivity, brazing, or the like may be applied. If the bent portions 243a to 245a can be firmly fixed only by external fitting, the screwing is omitted. Alternatively, the through holes 243a to 245a and the screw holes 231k can be omitted when the screws are not fixed.

図15(a)は、さらに別の変形例に係る取付状態を示している。この変形例で用いるリフレクタ231′は、図14(b)のリフレクタ231からスリット231hを省略した構成であり、ネジ穴231k′は設けている。また、熱伝導部材243は基本的に図14(a)に示す構成と同様であるが、各延出部243〜245の延出寸法を短くして、屈曲部243a〜245aをリフレクタ231′の内周面231f′に当接する寸法に設定している。熱伝導部材240のリフレクタ231′への取付は、屈曲部243a〜245aをリフレクタ231′の内周面231f′に内嵌させ、この状態でネジNを貫通孔243a〜245aに貫通させてネジ穴231kに螺合して、屈曲部243a〜245aをリフレクタ231に固定する。よって、熱伝導部材240は強固にリフレクタ231′へ固定されると共に、屈曲部243a〜245aを通じてリフレクタ231′へスムーズに伝熱できる。   Fig.15 (a) has shown the attachment state which concerns on another modification. The reflector 231 ′ used in this modification has a configuration in which the slit 231h is omitted from the reflector 231 in FIG. 14B, and a screw hole 231k ′ is provided. Further, the heat conducting member 243 is basically the same as the configuration shown in FIG. 14A, but the extension dimension of each of the extension parts 243 to 245 is shortened, and the bent parts 243a to 245a of the reflector 231 ′ are reduced. The dimension is set to abut against the inner peripheral surface 231f ′. The heat conducting member 240 is attached to the reflector 231 'by fitting the bent portions 243a to 245a into the inner peripheral surface 231f' of the reflector 231 'and passing the screw N through the through holes 243a to 245a in this state. The bent portions 243a to 245a are fixed to the reflector 231 by screwing to 231k. Therefore, the heat conducting member 240 is firmly fixed to the reflector 231 ′ and can smoothly transfer heat to the reflector 231 ′ through the bent portions 243a to 245a.

また、図15(b)は、図15(a)に示す構成に対する変形であり、熱伝導部材240′は、延出部243′の延出端に設けた屈曲部243a′に貫通孔を穿設しておらず、リフレクタ231″も縁部231b″にネジ穴を設けていない。この図15(b)に示す変形例では、屈曲部243a′をリフレクタ231″の内周面231f″へ圧入気味に内嵌すること、若しくは、ろう付け又は熱伝導性の良好な固着剤を用いて固定し、ネジ止め作業の省略を実現している。 FIG. 15B is a modification to the configuration shown in FIG. 15A, and the heat conducting member 240 ′ has a through-hole formed in the bent portion 243a ′ provided at the extending end of the extending portion 243 ′. The reflector 231 ″ is not provided with a screw hole in the edge portion 231b ″. In the modification shown in FIG. 15 (b), the bent portion 243a ′ is fitted into the inner peripheral surface 231f ″ of the reflector 231 ″ in a press-fit manner , or a fixing agent having good brazing or thermal conductivity is used. This eliminates the need for screwing.

図16は、さらに別の変形例に係る光源装置250を示し、この光源装置250では、リフレクタ251の反射側となる開口251dの縁部251bより一段奥まった箇所に設けた防爆ガラス(図示せず)の取付用の窪部251eの端面251cにネジ穴251i〜251kを穿設した凹部251f〜251hを形成している。また、熱伝導部材260は、図14に示す熱伝導部材240の延出端に、リフレクタ251の端面251cに平行的な折曲部263b〜265bを更に設けたような構成にしている。詳しくは、外嵌環状部261から延出する延出部263〜265の延出端側を一度、延出方向に対して直交するようにL字状に屈曲して屈曲部263a〜265aを形成し、屈曲部263a〜265aの後端側となる端部を再度、L字状に折り曲げてリフレクタ251の端面251cに平行的な面を有する折曲部263b〜265bを設け、各折曲部263b〜265bに貫通孔263c〜265cを穿設している。   FIG. 16 shows a light source device 250 according to yet another modified example. In this light source device 250, an explosion-proof glass (not shown) provided at a position that is one step deeper than the edge 251b of the opening 251d on the reflection side of the reflector 251. ) Recesses 251f to 251h having screw holes 251i to 251k formed in the end surface 251c of the mounting recess 251e. Further, the heat conducting member 260 is configured such that bent portions 263b to 265b parallel to the end surface 251c of the reflector 251 are further provided at the extending end of the heat conducting member 240 shown in FIG. Specifically, the extending ends 263 to 265 extending from the outer fitting annular portion 261 are bent once in an L shape so as to be orthogonal to the extending direction to form bent portions 263a to 265a. Then, the end portion on the rear end side of the bent portions 263a to 265a is again bent into an L shape to provide bent portions 263b to 265b having surfaces parallel to the end surface 251c of the reflector 251, and each bent portion 263b. Through holes 263c to 265c are formed in .about.265b.

熱伝導部材260をリフレクタ251に取り付けるには、リフレクタ251に予め取り付けられた発光管12(ガラス支持体13)の封止部13dに外嵌環状部261を外嵌すると共に、各折曲部263b〜265bをリフレクタ251の端面251cに設けた凹部251f〜251hに収めて、ネジNを貫通孔263c〜265cに貫通させてネジ穴251i〜251kに螺合する(図17(b)参照)。このネジ止め作業は、リフレクタ251の端面251c側から行えるので作業性は良好である。このように熱伝導部材260を取り付けた後に防爆ガラス(図示せず)を窪部251eに取り付けることで、光源装置250は完成する。   In order to attach the heat conducting member 260 to the reflector 251, the outer fitting annular portion 261 is fitted on the sealing portion 13 d of the arc tube 12 (glass support 13) previously attached to the reflector 251, and each bent portion 263 b. ˜265b are housed in recesses 251f to 251h provided on the end surface 251c of the reflector 251, and the screw N is passed through the through holes 263c to 265c and screwed into the screw holes 251i to 251k (see FIG. 17B). Since this screwing operation can be performed from the end surface 251c side of the reflector 251, the workability is good. The light source device 250 is completed by attaching the explosion-proof glass (not shown) to the recess 251e after attaching the heat conducting member 260 in this way.

このような光源装置250では、リフレクタ251の端面251cに熱伝導部材260の折曲部263b〜265bが当接しているので、折曲部263b〜265bを通じて熱伝導部材260からリフレクタ251へ伝熱できる。なお、折曲部263b〜265bの取付は、ロウ付け又は熱伝導性の良好な固着剤を用いて行ってもよい。また、図16、17に示す光源装置250は、防爆ガラスを取り付けない仕様にすることも可能である。   In such a light source device 250, since the bent portions 263b to 265b of the heat conducting member 260 are in contact with the end surface 251c of the reflector 251, heat can be transferred from the heat conducting member 260 to the reflector 251 through the bent portions 263b to 265b. . Note that the bent portions 263b to 265b may be attached using an adhesive having a good brazing property or thermal conductivity. In addition, the light source device 250 shown in FIGS. 16 and 17 can be designed to have no explosion-proof glass attached.

図18(a)は、図17(a)に示す熱伝導部材260の延出部263のA−A線における断面(延出方向に直交する断面)を示しており、図中のZ方向(第1方向に相当)は、断面において図16に示すリフレクタ251に取り付けられた発光管12の長手方向に平行的な方向であり、図中のY方向(第2方向に相当)は、断面においてZ方向に直交的な方向である。よって、延出部263の断面は、Z方向に応じた寸法wをY方向に応じた寸法t(幅寸法)を大きくしているので、熱伝導に必要な所定の断面積を確保しても、Y方向の幅が小さいためリフレクタ251の反射光を遮る程度を最小限に抑えている。   FIG. 18A shows a cross section (cross section orthogonal to the extending direction) of the extending portion 263 of the heat conducting member 260 shown in FIG. (Corresponding to the first direction) is a direction parallel to the longitudinal direction of the arc tube 12 attached to the reflector 251 shown in FIG. 16 in the cross section, and the Y direction (corresponding to the second direction) in the figure is The direction is orthogonal to the Z direction. Therefore, since the cross section of the extending portion 263 has a dimension w corresponding to the Z direction and a dimension t (width dimension) corresponding to the Y direction, even if a predetermined cross sectional area necessary for heat conduction is secured. Since the width in the Y direction is small, the degree of blocking the reflected light of the reflector 251 is minimized.

図18(b)は、図18(a)の延出部263の変形例の断面形状を示し、変形例の延出部263′の断面形状は、発光管12のリフレクタ251の取付側に相当する向きを先細側の頂点263d′にした楔状にしている。なお、変形例の延出部263′は、図18(a)の延出部263と同等の断面積を得られるように、開口側となる端辺部263e′は、図18の寸法tと同等に設定する一方、Z方向の寸法は図18(a)の延出部263より長く設定している。このように断面を楔状にすることで、延出部263が遮る光の量(光線)を最小限に抑えられる。   18B shows a cross-sectional shape of a modified example of the extending portion 263 of FIG. 18A, and the cross-sectional shape of the extended portion 263 ′ of the modified example corresponds to the attachment side of the reflector 251 of the arc tube 12. FIG. The wedge is formed in a wedge shape with the taper side apex 263d '. In addition, the extension part 263 'of the modified example has an end side part 263e' on the opening side of the dimension t in FIG. 18 so that a cross-sectional area equivalent to that of the extension part 263 in FIG. On the other hand, the dimension in the Z direction is set longer than that of the extending portion 263 in FIG. By making the cross section wedge like this, the amount of light (light rays) blocked by the extending portion 263 can be minimized.

図18(c)は、図18(a)(b)に夫々示す断面の形状を重ね合わせたものであり、具体的には、リフレクタ251で反射した光束を形成する光線L1、L2は、図中二点破線で示す矩形状の断面を有する延出部263では、端部263dで干渉して遮られることになる。しかし、光線L1、L2は、曲率を有する反射面で反射された影響により、少し広がりながら進行するため、楔状の断面を有する延出部263′では、頂点263d′を通過して斜面263f′、263g′に干渉しなければ、延出部263′を通過できるため、延出部263′で遮る光線量を最小限にできる。なお、図18(a)(b)に示す断面の形態は、上述した各熱伝導部材20〜90、220、240、240′にも勿論適用可能である。   FIG. 18C is a view obtained by superimposing the cross-sectional shapes shown in FIGS. 18A and 18B. Specifically, the light beams L1 and L2 that form the light beam reflected by the reflector 251 are shown in FIG. The extended portion 263 having a rectangular cross section indicated by the middle two-dot broken line is blocked by interference with the end portion 263d. However, since the light rays L1 and L2 travel while being slightly expanded due to the influence of being reflected by the reflecting surface having a curvature, the extended portion 263 ′ having a wedge-shaped cross section passes through the apex 263d ′ and the inclined surface 263f ′, If it does not interfere with 263g ′, it can pass through the extending portion 263 ′, so that the amount of light blocked by the extending portion 263 ′ can be minimized. The cross-sectional forms shown in FIGS. 18A and 18B are naturally applicable to the above-described heat conductive members 20 to 90, 220, 240, and 240 ′.

また、第1実施形態の各種光源装置を構成する上述した各リフレクタ11、11′、111、121、131、211、231、231′、231″、251に取り付ける発光管12には、超高圧水銀ランプの他にメタルハライドランプ、ハロゲンランプ等が適用できる。なお、本発明に係る投影型画像表示装置1の構成及び光源装置10、10′、10″、100、210、250(上述した熱伝導部材及びリフレクタの各変形例を適用したものも含む)は、フロントプロジェクション方式又はリアプロジェクション方式のいずれにも適用可能である。   Further, the arc tube 12 attached to each of the reflectors 11, 11 ′, 111, 121, 131, 211, 231, 231 ′, 231 ″, 251 constituting the various light source devices of the first embodiment includes ultrahigh pressure mercury. In addition to the lamp, a metal halide lamp, a halogen lamp, etc. can be applied, and the configuration of the projection-type image display device 1 according to the present invention and the light source devices 10, 10 ′, 10 ″, 100, 210, 250 (the heat conducting member described above). And those to which the respective modifications of the reflector are applied) can be applied to either the front projection system or the rear projection system.

図19、20は、本発明の第2実施形態に係る光源装置300を示している。第2実施形態の光源装置300は、リフレクタ311に取り付ける発光管301の突出側となる封止部302b側に第1熱伝導部材320を取り付けると共に、取付側となる封止部302aにも第2熱伝導部材330を取り付けることが特徴である。第2実施形態では、発光管301の両側に熱伝導部材320、330を取り付けることで、発光管301のガラス支持体302の両側の封止部302a、302b、及び中央のチャンバー部302cから効果的に熱を奪い取るようにしている。なお、発光管301は、図4(a)に示す構成と同等である。   19 and 20 show a light source device 300 according to the second embodiment of the present invention. In the light source device 300 of the second embodiment, the first heat conducting member 320 is attached to the sealing portion 302b side that is the protruding side of the arc tube 301 attached to the reflector 311 and the second sealing portion 302a that is the attachment side is also second. It is characterized in that the heat conducting member 330 is attached. In the second embodiment, by attaching the heat conducting members 320 and 330 to both sides of the arc tube 301, the sealing portions 302a and 302b on both sides of the glass support 302 of the arc tube 301 and the central chamber portion 302c are effective. To take away heat. The arc tube 301 has the same configuration as that shown in FIG.

リフレクタ311は、基本的に第1実施形態と同様であり、凹面鏡部311の頂点側に筒部311cを設けると共に、筒部311cの内部には発光管301を取り付けるためにリフレクタ311の内部と連通する穴部311gを形成している。なお、穴部311gは、第2熱伝導部材330のパイプ部331を挿通するため、第1実施形態より大きい穴径にしている。また、リフレクタ311は、開口311d側の端面311bにネジ穴311h〜311jを計3箇所穿設している。   The reflector 311 is basically the same as that of the first embodiment, and is provided with a cylindrical portion 311c on the apex side of the concave mirror portion 311 and communicates with the inside of the reflector 311 in order to attach the arc tube 301 inside the cylindrical portion 311c. The hole 311g to be formed is formed. The hole 311g has a larger hole diameter than the first embodiment in order to pass through the pipe portion 331 of the second heat conducting member 330. Further, the reflector 311 has a total of three screw holes 311h to 311j formed in the end surface 311b on the opening 311d side.

一方、第1熱伝導部材320は、図16に示す第1実施形態の変形例に係る熱伝導部材260と同等の構成であり、外嵌環状部321から延出する延出部323〜325の延出端側に屈曲部323a〜325aを形成し、屈曲部323a〜325aの後端側に折曲部323b〜325bを設け、各折曲部323b〜325bに貫通孔323c〜325cを穿設している。   On the other hand, the 1st heat conductive member 320 is the structure equivalent to the heat conductive member 260 which concerns on the modification of 1st Embodiment shown in FIG. 16, and the extension parts 323-325 extended from the external fitting annular part 321 are the same. Bending portions 323a to 325a are formed on the extending end side, bent portions 323b to 325b are provided on the rear end sides of the bent portions 323a to 325a, and through holes 323c to 325c are formed in the bent portions 323b to 325b. ing.

また、第2熱伝導部材330(取付側熱伝導部材に相当)は、発光管301の取付側の封止部302aと同等の長さのパイプ部331を有し、このパイプ部331のリフレクタ311の取付側の一端部331aと反対側になる他端部331b側となる外周面から放熱用のフィン332〜337を放射状に突設している。なお、第2熱伝導部材330の材質には、第1熱伝導部材320と同等のものを適用でき、第2実施形態でも熱伝導率が約200W/m・Kのアルミニウムを用いている。また、パイプ部331は、内径を発光管301の封止部302aを外嵌できる寸法にしており、外径をリフレクタ311の穴部311gに内嵌できる寸法にしている。   The second heat conducting member 330 (corresponding to the mounting side heat conducting member) has a pipe portion 331 having a length equivalent to that of the sealing portion 302a on the mounting side of the arc tube 301, and a reflector 311 of the pipe portion 331. The fins 332 to 337 for heat radiation are projected radially from the outer peripheral surface on the side of the other end 331b opposite to the one end 331a on the mounting side. In addition, the material equivalent to the 1st heat conductive member 320 can be applied to the material of the 2nd heat conductive member 330, and aluminum whose heat conductivity is about 200 W / m * K is used also in 2nd Embodiment. The pipe portion 331 has an inner diameter that allows the sealing portion 302 a of the arc tube 301 to be fitted outside, and an outer diameter that can fit within the hole 311 g of the reflector 311.

第2実施形態の光源装置300の組立は、先ず、発光管301の取付側の封止部302aの周囲に熱伝導性の良好な固着剤(図示せず)を塗布すると共に、第2熱伝導部材330のパイプ部331の一端部331a側の外周面にも同様な固着剤305を塗布する。次に、発光管301の封止部302aをリフレクタ311の穴部311gに挿入し、それから、第2熱伝導部材330のパイプ部331を発光管301の封止部302aに外嵌すると共に、リフレクタ311の穴部311gに内嵌する。この状態で固着剤が固化することで、発光管301がリフレクタ311内で突出した状態で穴部311g内に固定される。このように発光管301を取り付けてから、第1実施形態と同様に第1熱伝導部材320を取り付ける。   In assembling the light source device 300 according to the second embodiment, first, an adhesive (not shown) having good thermal conductivity is applied around the sealing portion 302a on the mounting side of the arc tube 301, and the second thermal conductivity is applied. A similar fixing agent 305 is also applied to the outer peripheral surface of the pipe portion 331 of the member 330 on the one end portion 331a side. Next, the sealing portion 302a of the arc tube 301 is inserted into the hole 311g of the reflector 311. Then, the pipe portion 331 of the second heat conducting member 330 is externally fitted to the sealing portion 302a of the arc tube 301, and the reflector. It fits in the hole 311g of 311. When the fixing agent is solidified in this state, the arc tube 301 is fixed in the hole 311g in a state of protruding in the reflector 311. After the arc tube 301 is attached in this way, the first heat conducting member 320 is attached as in the first embodiment.

完成した光源装置300は、図20に示すように、第2熱伝導部材330のパイプ部331が発光管301の取付側の封止部302aとリフレクタ311を繋ぐため、封止部302aで発生する熱を、封止部302a自体に加えてパイプ部331でもリフレクタ311へ熱伝導を行える。しかも、パイプ部331は、一端部331aがリフレクタ311の内周面311fより寸法X1突出してチャンバー部301cに近接するので、最も高温となるチャンバー部301cの熱もパイプ部331を通じてリフレクタ311へ伝熱させることが可能となる。   As shown in FIG. 20, the completed light source device 300 is generated in the sealing portion 302 a because the pipe portion 331 of the second heat conducting member 330 connects the sealing portion 302 a on the attachment side of the arc tube 301 and the reflector 311. In addition to the sealing portion 302 a itself, heat can be conducted to the reflector 311 also in the pipe portion 331. Moreover, the pipe portion 331 has one end portion 331a protruding from the inner peripheral surface 311f of the reflector 311 by the dimension X1 and close to the chamber portion 301c, so that the heat of the chamber portion 301c having the highest temperature is also transferred to the reflector 311 through the pipe portion 331. It becomes possible to make it.

さらに、パイプ部331は、他端部331b側がリフレクタ311の穴部311gを通じて外方へ延出し、その延出した箇所からフィン332〜337を突設しているので、パイプ部331に伝導された熱の一部は、リフレクタ311へ移動することなく、パイプ部331を通じてリフレクタ311の外方へ移動し、フィン332〜337より直接的に放熱されることになる。そのため、リフレクタ311の放熱負担が低減され、リフレクタ311及びフィン332〜337の全体で多量の放熱を行える。なお、発光管301の突出側の封止部302bでは、第1実施形態と同様に第1熱伝導部材320でリフレクタ311へ熱を伝導させている。そのため、発光管301は、両側の熱伝導部材320、330でスムーズに熱が奪われて冷却される。   Further, the pipe portion 331 is connected to the pipe portion 331 because the other end portion 331b side extends outward through the hole 311g of the reflector 311 and the fins 332 to 337 protrude from the extended portion. Part of the heat moves to the outside of the reflector 311 through the pipe portion 331 without moving to the reflector 311, and is directly radiated from the fins 332 to 337. Therefore, the heat radiation burden of the reflector 311 is reduced, and a large amount of heat radiation can be performed by the reflector 311 and the fins 332 to 337 as a whole. In the sealing portion 302b on the protruding side of the arc tube 301, heat is conducted to the reflector 311 by the first heat conducting member 320 as in the first embodiment. Therefore, the arc tube 301 is cooled by heat being smoothly taken away by the heat conducting members 320 and 330 on both sides.

第2実施形態に係る光源装置300は、上述した構成以外は第1実施形態と同様であり、フロントプロジェクション方式及びリアプロジェクション方式の両方の投影型画像表示装置に適用できる。なお、第2実施形態においても、図19、20に示す構成以外の変形例の適用が可能である。   The light source device 300 according to the second embodiment is the same as that of the first embodiment except for the configuration described above, and can be applied to both a front projection type and a rear projection type projection image display device. In the second embodiment, modifications other than the configurations shown in FIGS. 19 and 20 can be applied.

図21(a)は、変形例の光源装置300′を示し、この光源装置300′は、図19に示す、発光管301、リフレクタ311及び第1熱伝導部材320を用いる一方、第2熱伝導部材340をパイプ部341のみの構成にした点が特徴である。パイプ部341は、発光管302の取付側の封止部302aを外嵌すると共に、穴部311gに内嵌され固着剤305を通じて封止部302aとリフレクタ311を繋いでいる。この変形例でも、取付側の封止部302a側は、リフレクタ311へ通じるパイプ部341による熱経路が存在するため、チャンバー部302c及び封止部302aで発生する熱を効率良くリフレクタ311へ伝導させることができる。   FIG. 21A shows a modified light source device 300 ′. The light source device 300 ′ uses the arc tube 301, the reflector 311, and the first heat conducting member 320 shown in FIG. The feature is that the member 340 includes only the pipe portion 341. The pipe portion 341 externally fits the sealing portion 302a on the mounting side of the arc tube 302, and is fitted inside the hole portion 311g to connect the sealing portion 302a and the reflector 311 through the fixing agent 305. Also in this modified example, since the heat path by the pipe part 341 leading to the reflector 311 exists on the sealing part 302a side on the attachment side, the heat generated in the chamber part 302c and the sealing part 302a is efficiently conducted to the reflector 311. be able to.

また、図21(b)は、別の変形例の光源装置350を示し、この光源装置350は、第2熱伝導部材の替わりに、リフレクタ351の筒部351cの穴部351gの穴周縁より円筒状の突出熱伝導部351hを突出させていることが特徴である。なお、穴部351bの内径は、発光管301の封止部302aを挿入できる寸法に設定しており、突出熱伝導部351hの内周面351fからの突出代は、穴部351gに取り付けた発光管301のチャンバー部302cに近接する寸法にしている。なお、発光管301の突出側の封止部302bは、上記と同様に熱伝導部材320を取り付けている。   FIG. 21B shows a light source device 350 according to another modification. The light source device 350 is cylindrical from the hole periphery of the hole portion 351g of the cylindrical portion 351c of the reflector 351 instead of the second heat conducting member. A feature is that a protruding heat conduction portion 351h is protruded. The inner diameter of the hole portion 351b is set to a dimension that allows the sealing portion 302a of the arc tube 301 to be inserted, and the protrusion margin from the inner peripheral surface 351f of the protruding heat conducting portion 351h is the light emission attached to the hole portion 351g. The dimensions are close to the chamber portion 302 c of the tube 301. Note that the heat conducting member 320 is attached to the protruding portion 302b of the arc tube 301 in the same manner as described above.

この変形例の光源装置350でも、取付側の封止部302a側は、リフレクタ351へ通じる突出熱伝導部351hが封止部302aとリフレクタ351の凹面鏡部351aを繋ぐので、突出熱伝導部351hを通じてチャンバー部302c及び封止部302aで発生する熱を効率良くリフレクタ351へ伝導させることができる。なお、第2実施形態で述べた各光源装置300、300′、350に対しては、第1実施形態に係る各種変形例の適用が可能であり、特に発光管301の突出側の封止部302bに取り付ける第1熱伝導部材320(熱伝導部材)には、第1実施形態で説明した様々な熱伝導部材20〜90、220、240、240′を適用できる。   Also in the light source device 350 of this modified example, the projecting heat conducting part 351h communicating with the reflector 351 connects the sealing part 302a and the concave mirror part 351a of the reflector 351 on the mounting side sealing part 302a side. Heat generated in the chamber portion 302c and the sealing portion 302a can be efficiently conducted to the reflector 351. Note that various modifications according to the first embodiment can be applied to the light source devices 300, 300 ′, and 350 described in the second embodiment, and in particular, a sealing portion on the protruding side of the arc tube 301. The various heat conducting members 20 to 90, 220, 240, and 240 ′ described in the first embodiment can be applied to the first heat conducting member 320 (heat conducting member) attached to 302b.

本発明の第1実施形態に係る投影型画像表示装置の内部構成を示すブロック図である。It is a block diagram which shows the internal structure of the projection type image display apparatus which concerns on 1st Embodiment of this invention. 第1実施形態の光源装置の分解状態を示す斜視図である。It is a perspective view which shows the decomposition | disassembly state of the light source device of 1st Embodiment. 第1実施形態の光源装置を示す断面図である。It is sectional drawing which shows the light source device of 1st Embodiment. (a)は発光管の概略図であり、(b)は発光管のタングステン電極を拡大した拡大概略図である。(A) is the schematic of an arc_tube | light_emitting_tube, (b) is the enlarged schematic diagram which expanded the tungsten electrode of the arc_tube | light_emitting_tube. 熱伝導部材の正面図である。It is a front view of a heat conductive member. 変形例の熱伝導部材の正面図である。It is a front view of the heat conductive member of a modification. (a)〜(c)は別の変形例の熱伝導部材の正面図である。(A)-(c) is a front view of the heat conductive member of another modification. (a)(b)は変形例の光源装置を示す断面図である。(A) (b) is sectional drawing which shows the light source device of a modification. 別の変形例の光源装置を示す断面図である。It is sectional drawing which shows the light source device of another modification. (a)(b)は変形例のリフレクタを示す断面図である。(A) (b) is sectional drawing which shows the reflector of a modification. (a)は別の変形例のリフレクタを示す断面図であり、(b)は熱伝導部材を取り付けたリフレクタの要部拡大断面図である。(A) is sectional drawing which shows the reflector of another modification, (b) is a principal part expanded sectional view of the reflector which attached the heat conductive member. 変形例の光源装置の分解状態を示す斜視図である。It is a perspective view which shows the decomposition | disassembly state of the light source device of a modification. 変形例の光源装置の正面図である。It is a front view of the light source device of a modification. (a)は変形例の熱伝導部材の斜視図であり、(b)は変形例の熱伝導部材をリフレクタへ取り付ける状態を示す要部拡大図である。(A) is a perspective view of the heat conductive member of a modification, (b) is a principal part enlarged view which shows the state which attaches the heat conductive member of a modification to a reflector. (a)は別の変形例の熱伝導部材をリフレクタへ取り付ける状態を示す要部拡大図であり、(b)は更に別の変形例に係る熱伝導部材のリフレクタへの取付箇所を示す要部拡大図である。(A) is a principal part enlarged view which shows the state which attaches the heat conductive member of another modification to a reflector, (b) is a principal part which shows the attachment location to the reflector of the heat conductive member which concerns on another modification. It is an enlarged view. 別の変形例の光源装置の分解状態を示す斜視図である。It is a perspective view which shows the decomposition | disassembly state of the light source device of another modification. 変形例の熱伝導部材をリフレクタへ取り付ける状態を示す要部拡大断面図である。It is a principal part expanded sectional view which shows the state which attaches the heat conductive member of a modification to a reflector. (a)は延出部の断面を示す概略図、(b)は変形例の断面を示す概略図、(c)は(a)の断面と(b)の断面とを比較した概略図である。(A) is the schematic which shows the cross section of the extension part, (b) is the schematic which shows the cross section of a modification, (c) is the schematic which compared the cross section of (a) and the cross section of (b). . 本発明の第2実施形態に係る光源装置の分解状態を示す斜視図である。It is a perspective view which shows the decomposition | disassembly state of the light source device which concerns on 2nd Embodiment of this invention. 第2実施形態の光源装置を示す断面図である。It is sectional drawing which shows the light source device of 2nd Embodiment. (a)は第2実施形態の変形例の光源装置を示す断面図、(b)は別の変形例の光源装置を示す断面図である。(A) is sectional drawing which shows the light source device of the modification of 2nd Embodiment, (b) is sectional drawing which shows the light source device of another modification.

符号の説明Explanation of symbols

1 投影型画像表示装置
2 カラーホイール
7 DMD
8 投影レンズ
10 光源装置
11 リフレクタ
11f 内周面
12 発光管
13 ガラス支持体
13c チャンバー部
13d、13e 封止部
14、15 タングステン電極
20 熱伝導部材
21 外嵌環状部
22 嵌合環状部
23〜25 延出部
23a〜25a 曲部
115 熱拡散膜
130a〜130i 放熱フィン
330 第2熱伝導部材
332〜337 フィン
d1、d2 リード線
R 光束密度の高い領域
DESCRIPTION OF SYMBOLS 1 Projection type image display apparatus 2 Color wheel 7 DMD
DESCRIPTION OF SYMBOLS 8 Projection lens 10 Light source device 11 Reflector 11f Inner peripheral surface 12 Light emission tube 13 Glass support body 13c Chamber part 13d, 13e Sealing part 14, 15 Tungsten electrode 20 Thermal conduction member 21 Outer fitting annular part 22 Fitting annular part 23-25 Extension part 23a-25a Bending part 115 Thermal diffusion film 130a-130i Radiation fin 330 2nd heat conduction member 332-337 Fin d1, d2 Lead wire R Area | region with high light flux density

Claims (20)

発光管が凹状の内周面を反射面にしたリフレクタの中心から反射側へ突出するように、前記発光管の一端が前記リフレクタに取り付けてあり、前記発光管は、両端側の封止部間に形成されたチャンバー部内に一対の電極が対向配置してある光源装置において、
前記発光管のチャンバー部より突出する側の封止部と前記リフレクタとを繋ぐ熱伝導部材を備え
前記熱伝導部材は、発光管側からリフレクタ側へ放射状に延出する延出部を有し、
前記延出部の延出方向に直交する断面の形状は楔状であり、前記発光管の取り付け方向を楔状の先細側にしてあること
を特徴とする光源装置。
One end of the arc tube is attached to the reflector so that the arc tube protrudes from the center of the reflector having a concave inner peripheral surface as a reflection surface to the reflection side. In the light source device in which a pair of electrodes are arranged to face each other in the chamber portion formed in
A heat conduction member that connects the sealing portion on the side protruding from the chamber portion of the arc tube and the reflector ;
The heat conducting member has an extending portion extending radially from the arc tube side to the reflector side,
The light source device characterized in that the shape of the cross section perpendicular to the extending direction of the extending portion is wedge-shaped, and the mounting direction of the arc tube is on the wedge-shaped tapered side .
前記リフレクタの基材は、金属材料であることを特徴とする請求項1に記載の光源装置。   The light source device according to claim 1, wherein a base material of the reflector is a metal material. 前記延出部には、曲部が形成してあることを特徴とする請求項1又は請求項2に記載の光源装置。 The light source device according to claim 1 , wherein a curved portion is formed in the extension portion. 前記発光管の対向配置された一対の電極は、両者が対向する先端が頂点となるように前記頂点側から逆側へ斜面が形成されており、
前記曲部は、前記両電極の斜面間へ発せられた光束が前記リフレクタで反射される領域に形成してあることを特徴とする請求項に記載の光源装置。
The pair of electrodes arranged opposite to each other of the arc tube has a slope formed from the apex side to the opposite side so that the tip facing both is the apex,
The light source device according to claim 3 , wherein the curved portion is formed outside a region where a light beam emitted between the inclined surfaces of the two electrodes is reflected by the reflector .
前記熱伝導部材は、前記発光管を外嵌する外嵌環状部を備え、
該外嵌環状部から前記延出部が延出してあることを特徴とする請求項1乃至請求項4のいずれか1つに記載の光源装置。
The heat conducting member includes an outer fitting annular portion for fitting the arc tube,
The light source device according to any one of claims 1 to 4 , wherein the extension portion extends from the outer fitting annular portion.
前記熱伝導部材は、前記リフレクタの周面に嵌合される嵌合環状部を備え、
該嵌合環状部に前記延出部の延出端が連結してあることを特徴とする請求項1乃至請求項5のいずれか1つに記載の光源装置。
The heat conducting member includes a fitting annular portion fitted to the peripheral surface of the reflector,
6. The light source device according to claim 1 , wherein an extending end of the extending portion is connected to the fitting annular portion.
前記延出部の延出端には屈曲部が設けてあり、
前記屈曲部は、前記リフレクタの内周面に当接してあることを特徴とする請求項1乃至請求項5のいずれか1つに記載の光源装置。
A bent portion is provided at the extended end of the extended portion,
The light source device according to claim 1 , wherein the bent portion is in contact with an inner peripheral surface of the reflector.
前記延出部の延出端には前記リフレクタの反射側開口の端面に平行的な折曲部が設けてあり、
前記折曲部は、前記リフレクタの反射側開口の端面に当接してあることを特徴とする請求項1乃至請求項5のいずれか1つに記載の光源装置。
A bent portion parallel to the end face of the reflection side opening of the reflector is provided at the extension end of the extension portion,
6. The light source device according to claim 1 , wherein the bent portion is in contact with an end face of a reflection-side opening of the reflector.
前記熱伝導部材の前記延出部の延出方向に対応する前記リフレクタの箇所にはスリットが形成してあり、
該スリットに前記延出部の延出端が嵌合してあることを特徴とする請求項1乃至請求項5のいずれか1つに記載の光源装置。
A slit is formed at a location of the reflector corresponding to the extending direction of the extending portion of the heat conducting member,
The light source device according to claim 1 , wherein an extending end of the extending portion is fitted to the slit.
前記延出部の延出端には屈曲部が設けてあり、
前記屈曲部は、前記リフレクタの外周面に当接してあることを特徴とする請求項9に記載の光源装置。
A bent portion is provided at the extended end of the extended portion,
The light source device according to claim 9 , wherein the bent portion is in contact with an outer peripheral surface of the reflector.
前記延出部の延出方向に直交する楔状の断面の形状は、前記発光管の長手方向に平行的な第1方向の寸法が、前記第1方向に直交的な第2方向の寸法に比べて大きくしてあることを特徴とする請求項1乃至請求項10のいずれか1つに記載の光源装置。 The shape of the wedge-shaped cross section perpendicular to the extending direction of the extending portion is such that the dimension in the first direction parallel to the longitudinal direction of the arc tube is larger than the dimension in the second direction orthogonal to the first direction. 11. The light source device according to claim 1 , wherein the light source device is large. 前記熱伝導部材の表面は、酸化防止膜で被覆してあることを特徴とする請求項1乃至請求項11のいずれか1つに記載の光源装置。 The light source device according to claim 1 , wherein a surface of the heat conducting member is covered with an antioxidant film. 前記リフレクタの内周面が赤外線を熱変換する赤外線熱変換層で被覆されており、前記赤外線熱変換層の前記リフレクタの内周面とは逆側が可視光を反射する可視光反射層で被覆されていることを特徴とする請求項1乃至請求項12のいずれか1つに記載の光源装置。 The inner peripheral surface of the reflector is covered with an infrared heat conversion layer that converts infrared rays into heat, and the opposite side of the infrared heat conversion layer from the inner peripheral surface of the reflector is covered with a visible light reflecting layer that reflects visible light. The light source device according to claim 1 , wherein the light source device is a light source device. 前記反射面の前記熱伝導部材が繋がれる箇所は、前記リフレクタの基材が表出してあることを特徴とする請求項13に記載の光源装置。 The light source device according to claim 13 , wherein a base material of the reflector is exposed at a place where the heat conducting member of the reflecting surface is connected. 前記リフレクタは、外周面に放熱フィンを備えることを特徴とする請求項1乃至請求項14のいずれか1つに記載の光源装置。 The light source device according to claim 1 , wherein the reflector includes a heat radiating fin on an outer peripheral surface. 前記リフレクタの内周面から突出する突出熱伝導部を備え、
該突出熱伝導部は、前記発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐようにしてあることを特徴とする請求項1乃至請求項15のいずれか1つに記載の光源装置。
Protruding heat conduction part protruding from the inner peripheral surface of the reflector,
Projecting heat output conductive portion, any one of claims 1 to 15, characterized in that from the chamber part of the arc tube are so connect the said sealing portion of the mounting side reflector to the reflector The light source device according to one.
前記発光管のチャンバー部より前記リフレクタへの取付側の封止部と前記リフレクタとを繋ぐ取付側熱伝導部材を備えることを特徴とする請求項1乃至請求項15のいずれか1つに記載の光源装置。 The mounting side heat conduction member which connects the sealing part by the side of the attachment to the reflector from the chamber part of the arc tube, and the reflector is provided, The statement of any 1 paragraph of Claims 1 thru / or 15 characterized by things . Light source device. 前記取付側熱伝導部材は、前記発光管が前記リフレクタに取り付けてある箇所を通じて前記リフレクタの外方へ延出しており、
延出した箇所にフィンを備えることを特徴とする請求項17に記載の光源装置。
The attachment-side heat conduction member extends outward of the reflector through a location where the arc tube is attached to the reflector,
The light source device according to claim 17 , further comprising a fin at an extended portion.
前記リフレクタの反射側開口を閉鎖するように取り付けてある透光性部材を備えることを特徴とする請求項1乃至請求項18のいずれか1つに記載の光源装置。 The light source device according to any one of claims 1 to 18 , further comprising a translucent member attached so as to close a reflection-side opening of the reflector. 前記請求項1乃至請求項19のいずれか1つに記載の光源装置と、
該光源装置から発せられる光で画像に係る変調光を生成する空間光変調素子と、
該空間光変調素子が生成した変調光を被投影体へ投影する投影レンズと
を備えることを特徴とする投影型画像表示装置。
The light source device according to any one of claims 1 to 19 ,
A spatial light modulation element that generates modulated light according to an image with light emitted from the light source device;
A projection type image display apparatus comprising: a projection lens that projects the modulated light generated by the spatial light modulation element onto a projection target.
JP2005188850A 2004-11-29 2005-06-28 Light source device and projection-type image display device Expired - Fee Related JP3856812B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005188850A JP3856812B2 (en) 2004-11-29 2005-06-28 Light source device and projection-type image display device
PCT/JP2005/020375 WO2006057151A1 (en) 2004-11-29 2005-11-07 Light source device and projection type image display device
TW094140081A TWI277709B (en) 2004-11-29 2005-11-15 Light source apparatus and projection type image display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004344749 2004-11-29
JP2005188850A JP3856812B2 (en) 2004-11-29 2005-06-28 Light source device and projection-type image display device

Publications (2)

Publication Number Publication Date
JP2006179450A JP2006179450A (en) 2006-07-06
JP3856812B2 true JP3856812B2 (en) 2006-12-13

Family

ID=36497891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005188850A Expired - Fee Related JP3856812B2 (en) 2004-11-29 2005-06-28 Light source device and projection-type image display device

Country Status (3)

Country Link
JP (1) JP3856812B2 (en)
TW (1) TWI277709B (en)
WO (1) WO2006057151A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4612638B2 (en) * 2007-01-11 2011-01-12 シャープ株式会社 Light source device and video display device using the same
EP2017668B1 (en) * 2007-07-17 2011-06-22 Ushiodenki Kabushiki Kaisha Light source device having noise reduction properties
US8858032B2 (en) 2008-10-24 2014-10-14 Cree, Inc. Lighting device, heat transfer structure and heat transfer element
JP2011029432A (en) * 2009-07-27 2011-02-10 Sharp Corp Light-emitting device and lighting device with the same
JP2011049513A (en) * 2009-07-30 2011-03-10 Ushio Inc Light source device
JP2011054759A (en) * 2009-09-02 2011-03-17 Sharp Corp Wavelength converting member-holding member and method of manufacturing the same, heat radiation structure of the wavelength converting member, and light-emitting device
JP5903860B2 (en) * 2011-12-08 2016-04-13 セイコーエプソン株式会社 LIGHT SOURCE DEVICE, PROJECTOR, AND LIGHT SOURCE DEVICE MANUFACTURING METHOD
JP6064279B2 (en) * 2012-12-05 2017-01-25 パナソニックIpマネジメント株式会社 lighting equipment
CN106662302B (en) * 2014-09-02 2019-11-19 飞利浦灯具控股公司 Lighting apparatus
TWI595189B (en) * 2014-09-02 2017-08-11 Huan-Chiu Chou Internal reflection lamp
CN106886122A (en) * 2015-12-15 2017-06-23 鸿富锦精密工业(武汉)有限公司 The heat dissipating method of projecting apparatus and projecting apparatus
CN106595481B (en) * 2016-12-14 2019-05-07 海信集团有限公司 The facula measurement method and device of laser projection system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3502929A (en) * 1967-07-14 1970-03-24 Varian Associates High intensity arc lamp
JPH07226103A (en) * 1994-02-10 1995-08-22 Eye Lighting Syst Corp Light shield body for lighting equipment
JP3330134B2 (en) * 1999-12-02 2002-09-30 松下電器産業株式会社 Discharge lamp and lamp device
JP2004170877A (en) * 2002-11-22 2004-06-17 Sharp Corp Reflector and manufacturing method thereof
JP3934565B2 (en) * 2003-02-21 2007-06-20 富士通株式会社 Semiconductor device
JP3855955B2 (en) * 2003-03-28 2006-12-13 セイコーエプソン株式会社 Light source device and projector

Also Published As

Publication number Publication date
TW200632251A (en) 2006-09-16
JP2006179450A (en) 2006-07-06
TWI277709B (en) 2007-04-01
WO2006057151A1 (en) 2006-06-01

Similar Documents

Publication Publication Date Title
JP3856812B2 (en) Light source device and projection-type image display device
JP4715916B2 (en) LIGHTING DEVICE AND PROJECTOR HAVING THE SAME
TWI285247B (en) Light source device and projector
US7252410B2 (en) Projector
US7059746B2 (en) Illumination device and projector equipping the same
JP2007220435A (en) Light source device and projector
JP4349366B2 (en) Light source device and projector
JP4193063B2 (en) Lamp device and projector equipped with the same
JP2007335196A (en) Light source device and projector
JP2007214078A (en) Light source device, and projector
WO2005022584A1 (en) Light emitting lamp, lighting apparatus having the light emitting lamp, and projector
JP2006189486A (en) Rear-projection apparatus
JP2008305758A (en) Light source device, and projection-type display device equipped with the device
JP4822973B2 (en) Optical unit and video display device using the same
JP3968568B2 (en) LIGHT SOURCE UNIT AND LIGHTING DEVICE USING THE SAME
JP2011154931A (en) Light source apparatus and projective display device
JP4811482B2 (en) Light source device and projector
WO2005088189A1 (en) Illuminator and projector with same
JP2006120358A (en) Light source device and projector
JP2009087798A (en) Light source, luminaire, and projection video display device
JP2010170858A (en) Light source device and projector
JP2005056793A (en) Light source device
JP2008108701A (en) Projector
JP2007227690A (en) Reflector, and light-emitting module using it
JP2005070411A (en) Internal condensing light source lamp and projection device using internal condensing light source lamp

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060912

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees