JP3856500B2 - X-ray thin film thickness analysis method and analyzer - Google Patents

X-ray thin film thickness analysis method and analyzer Download PDF

Info

Publication number
JP3856500B2
JP3856500B2 JP23318796A JP23318796A JP3856500B2 JP 3856500 B2 JP3856500 B2 JP 3856500B2 JP 23318796 A JP23318796 A JP 23318796A JP 23318796 A JP23318796 A JP 23318796A JP 3856500 B2 JP3856500 B2 JP 3856500B2
Authority
JP
Japan
Prior art keywords
ray
thin film
film thickness
sample
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23318796A
Other languages
Japanese (ja)
Other versions
JPH1078313A (en
Inventor
和浩 上田
勝久 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP23318796A priority Critical patent/JP3856500B2/en
Publication of JPH1078313A publication Critical patent/JPH1078313A/en
Application granted granted Critical
Publication of JP3856500B2 publication Critical patent/JP3856500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length-Measuring Devices Using Wave Or Particle Radiation (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、X線を用いた薄膜の膜厚計測方法及びそのための装置に関する。
【0002】
【従来の技術】
薄膜材料は半導体、磁気ディスク等の多くの分野のデバイスに用いられている。デバイスの特性は、薄膜の膜厚や密度、結晶構造、ラフネスなどによる影響を大きく受けるため、これらの計測はデバイスの開発に当たって、あるいは製造されるデバイスの特性を均一に保つために重要である。
【0003】
このうち膜厚は従来は触針法で求められていたが、非破壊での計測が重要視され、蛍光X線法、エリプソメトリ法が用いられるようになっている。また、最近では、X線を用いた薄膜の膜厚計測方法としてX線反射率法が注目されている。これは試料表面すれすれに単色で平行性のよいX線を入射し、入射角=出射角の条件で、反射(鏡面反射)されたX線の強度を測定する手法である。測定される反射強度は、試料表面及び薄膜界面で反射されたX線が互いに干渉するため、入射角(=出射角)に従って振動する。この振動構造を解析して薄膜の膜厚を求める方法である。
【0004】
【発明が解決しようとする課題】
X線反射率法は有用な膜厚計測法ではあるが、X線を試料表面すれすれに入射させる必要があるため、幅wのX線ビームは試料表面でw/sinω(ω:入射角)だけ広がってしまう。実際の測定では、入射角ωを臨界角(0.1〜0.2°)程度から、1〜2°程度まで変化させる。このため実用的に用いられている幅w=0.05mmのX線ビームでは、試料上の測定領域は10mm程度(入射角:臨界角近傍)から1〜2mm(入射角:2〜1°)まで変化する。このため面内の構造が不均一な試料や、サイズの小さな試料に対しては高精度な測定を行うことができない。
【0005】
その解決策として、入射角や出射角に連動してX線ビームの出射スリット幅を変える方法が考案されているが、この方法では制御機構が複雑になるとともに、実用上のスリット幅も極端に狭くできないので1mm以下の微小領域の測定は困難である。
X線反射率法で入射角を0.5°〜1°と大きくとり、しかも入射角の走査範囲を狭くすることにより試料表面でのX線の広がりと照射領域の変化を小さくすることは可能であるが、この方法では入射角の4乗に反比例して正反射の強度が減衰することと、表面のラフネスが大きい試料は入射角に対する強度の減少が著しいため、膜厚の決定精度が低下する。また、入射角を0.5°〜1°とし、しかも入射角の走査範囲を狭くしたX線反射率法では1点の計測に1〜2時間程度必要となり、膜厚のマッピングには多大な計測時間を必要とする。
【0006】
本発明は、このような従来技術の問題点に鑑み、より高精度で迅速な膜厚マッピング方法とそのための装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
本発明者らは、薄膜試料の表面に単色X線を一定の入射角で入射させ、試料から散乱されるX線を測定する実験を行う過程で、散乱X線の強度が図2に例示するように出射角依存性を示す現象を見出した。本発明は、この散乱X線の強度分布の振動構造が薄膜の表面で散漫散乱されたX線と薄膜の裏面で散漫されたX線の干渉に起因することを突き止め、この振動構造から膜厚を求めることができることを見出して完成されたものである。
【0008】
図1(a)は散乱X線の強度分布測定のための装置の概略図、図1(b)は図1(a)中の円で示した部分の拡大図であり、薄膜でのX線の散乱を説明する図である。
X線源1で発生したX線はX線分光器2で単色化された後、スリット3で幅と高さを制限され、入射X線4となる。この入射X線4を入射角ωで基板7上に薄膜6が形成された試料5に入射する。試料表面での入射X線4の幅Dは、入射X線4の幅をwとすると、D=w/sinωとなる。入射X線4は試料表面で屈折され、角度ω′になって薄膜6の中に入る。薄膜6中に入ったX線は、薄膜6と基板7の界面で角度α′に散乱される。界面で散乱されたX線8は、薄膜6の表面で屈折し、出射角αで空気中に出射する。試料表面で角度αに散乱されたX線9と、薄膜6と基板7の界面で散乱されて出射角αで空気中に出射したX線8は干渉して散乱X線10になる。
【0009】
散乱X線10の強度をX線検出器11で出射角を変えながら計測すると、図2に示すような散乱X線の強度分布が得られる。図2中、矢印12で示すピークは鏡面反射ピークであり、矢印13の部分は臨界角に最大強度を有するヨネダ・ウイング(Yoneda wing)と呼ばれる散乱ピークである。散乱強度には、これらのピーク以外に振動構造14が見られる。
【0010】
図2は、ガラス基板7の上にパーマロイ膜6を蒸着した試料5からの波長λ=0.154nmのX線の散乱強度分布であり、この試料を従来のX線反射率法により膜厚を計測した結果、パーマロイ膜6の膜厚は49.4nmであった。
次に、散乱X線強度の振動構造14を薄膜6の界面で散漫散乱されたX線の干渉現象として説明する。
【0011】
図1を参照して、屈折率が(1−δ)で膜厚tである薄膜6に細いX線4を入射角ωで入射させた場合を考える。X線の波長をλ、入射角ωは、薄膜の臨界角をθc として、ω>θc とする。屈折の効果により試料中での入射角をω′、出射角をα′とすると、薄膜6の表面で散乱されたX線と、基板7と薄膜6の界面で散乱されたX線の光路差は、薄膜6の密度が基板7の密度より大きい場合は次の〔数1〕のようになり、薄膜6の密度が基板7の密度より小さい場合は次の〔数2〕のようになる。
【0012】
【数1】
t(1−δ)(sinω′+sinα′)+0.5λ
【0013】
【数2】
t(1−δ)(sinω′+sinα′)
表面で散乱されたX線と界面で散乱されたX線は相互に干渉するため、出射角を変えると散乱強度が振動する。この振動構造の強度の極大値、又は強度の極小値を与える角度αと膜厚tには、X線の波長をλ、入射角をω、薄膜の臨界角をθc とすると、近似的に次の〔数3〕の関係が成り立つ。
【0014】
【数3】
α2=θc 2+{−(θc 2−ω21/2+λ(N−1)/2t}2
ここで、Nは干渉の次数を表す整数であり、密度の大きい薄膜から密度の小さい基板に入る場合には、Nが偶数のとき角度αで強度が極大となり、Nが奇数のとき角度αで強度が極小になる。逆に、密度の小さい薄膜から密度の大きい基板に入る場合には、Nが偶数のとき角度αで強度が極小となり、Nが奇数のとき角度αで強度が極大となる。
【0015】
前記〔数3〕を利用すると、散乱強度の極大値又は極小値を与える角度αの組を用いて薄膜6の膜厚tを求めることができる。一例として、振動構造の隣接する強度の極大値と極小値を与える角度をα1,α2とすると、膜厚tは角度α1,α2を用いて次の〔数4〕のように表すことができる。
【0016】
【数4】
t=λ/{2|(α1 2−θc 21/2−(α2 2−θc 21/2|}
図2の計測例の場合、パーマロイ膜の臨界角θc は0.3925°(6.848×10-3rad)であり、α1とα2の組としてα1=0.701°(1.223×10-2rad),α2=0.777°(1.356×10-2rad)を採用し、これらの値を〔数4〕に当てはめると、次式〔数5〕のように膜厚tは49.1nmと求められる。この結果は、従来のX線反射率法で求めた膜厚49.4nmとよく一致している。
【0017】
【数5】
t=0.1541/〔2|{(1.223×10-22−(6.848×10-321/2−{(1.356×10-22−(6.848×10-321/2|〕≒49.1
ここで、試料を移動可能な試料支持台に固定し、試料支持台を移動しながら測定することにより、試料の膜厚をマッピングすることが可能となる。膜厚のマッピングに際しては、測定時間短縮の観点から、X線検出器として位置敏感型X線検出器又は2次元X線検出器を用いるのが実用的である。
【0018】
また、〔数3〕の振動は、Cを定数とし、試料中での出射角α′を用いて次の〔数6〕のように表すことができる。
【0019】
【数6】
cos(2πtα′/λ+C)
そこで、得られた計測結果からベース成分を差し引き、振動成分を抽出し、これをフーリエ解析する。フーリエ変換して得られるピークの位置(周波数)から試料の膜厚tを次のように求めることができる。すなわち、フーリエピークの位置をhとすると、〔数6〕より、2πtα′/λ=hα′となる。したがって、膜厚tは、次の〔数7〕で与えられる。
【0020】
【数7】
t=λh/2π
以上述べてきた薄膜膜厚解析方法は、基板の上に一層膜がある場合のものである。基板上に複数膜がある場合は、それぞれの膜の界面で散乱X線が発生するため、前述の〔数1〕〜〔数4〕が各界面間で成り立つ。振動のピーク位置を界面の数より多く選ぶことにより、例えば各界面間の式〔数4〕の連立方程式を解くことにより、複数の膜のそれぞれの膜厚を求めることができる。
【0021】
また、フーリエ解析する場合は、試料中での出射角α′をそれぞれの膜の屈折率で補正した後フーリエ変換する。フーリエ変換して得られた複数のピーク位置からそれぞれの膜厚を求めることができる。複数層を挟んだ界面からの散乱は、屈折率としてそれぞれの膜の屈折率の膜厚の加重平均を用いることにより、干渉している界面間の距離(各層の合計膜厚に対応)が得られる。
【0022】
例えば、多層膜(A膜/B膜/C膜)の場合、散乱は表面、A/B界面、B/C界面で発生し、互いに干渉する。このため、フーリエピークは、表面−A/B界面、表面−B/C界面、A/B−B/C界面の干渉に対応したピークが得られる。フーリエ変換のとき横軸をα′に変換する必要がある。表面−A/B界面の干渉からA膜の膜厚を求めるときはθc としてA膜の値を用い、A/B−B/C界面の干渉からB膜の膜厚を求めるときはθc としてB膜の値を用いる。表面−B/C界面の干渉を利用するときはθc にA膜のθc とB膜のθc を膜厚で加重平均した値を用いることにより、A膜とB膜を足した膜厚を求めることができる。
【0023】
上述のように、本発明のX線薄膜膜厚解析方法は、単色X線を所定の入射角度で薄膜試料に入射させて試料から発生される散乱X線の出射角に対する強度分布を測定し、強度分布の極大値又は極小値を与える出射角の組み合わせを用いて、又は散乱X線強度の角度分布をフーリエ変換して得られるピーク周波数を用いて薄膜の膜厚を求めることを特徴とする。
【0024】
また、本発明は、X線源と、ゴニオメーターと、試料支持台と、X線検出器と、X線検出器の信号が入力される信号処理手段とを備えるX線薄膜膜厚解析装置において、X線検出器は所定の出射角範囲で試料から発生される散乱X線強度を測定可能であり、信号処理手段は、散乱X線の出射角に対する強度分布の極大値又は極小値を与える角度の組み合わせを用いて試料の膜厚を求める演算処理を行うものであることを特徴とする。
【0025】
試料支持台を少なくとも2次元方向に移動可能とし、試料支持台を2次元方向に移動して試料へのX線入射位置を走査することにより薄膜試料の膜厚をマッピングすることができる。
X線検出器としては位置敏感型検出器又は2次元検出器を用いるのが好ましい。X線源とゴニオメーターとの間には、X線を単色化するためのX線フィルタ又はX線分光器を設置することもでき、入射X線を試料表面に集光させる集光鏡を備えることもできる。
【0026】
本発明のX線薄膜解析方法あるいはX線薄膜膜厚解析装置によると、試料表面での測定領域の変化無く、薄膜の膜厚を求めることが可能となる。
【0027】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
図3は、本発明によるX線薄膜膜厚解析装置の一例を示す全体構成図である。X線源で発生したX線はX線フィルタ又はX線分光器(図示せず)で単色化し、スリット3で幅20μm高さ1mmの短冊状の入射X線4に形成し、試料5に入射角2°で入射することにより、試料表面でのX線照射領域を1mm×1mmに制限することができる。
【0028】
試料5はXYステージ付き試料支持台15に固定されたゴニオメーター16のω軸上に配置されている。また、ω軸と同軸の2θアーム17は、2θアーム17上に配置したスリット18とX線検出器の一種であるNaIシンチレーションカウンター19を動かす軸となっている。ゴニオメーター16の各軸とXYステージ付き試料支持台15のX、Y軸はパルスモーターで駆動されており、その制御はドライバー/コントローラ20を介してコンピューター21で行っている。またNaIシンチレーションカウンター19で計測したX線強度はスケラー/チャンネルアナライザー22を経由してコンピューター21に取り込み、その結果を画像表示部23に示す構成になっている。
【0029】
この装置を用いて入射角(ω軸)を1°に固定し、2θアーム17を走査して散乱X線10の強度分布をを測定した。散乱強度分布は横軸を散乱角、縦軸を強度として、図2に示すような測定結果が得られた。散乱強度にみられる振動構造14の隣接する極小値と極小値、極大値と極大値を与える角度から前記〔数3〕や〔数4〕を用いて計算することにより、あるいは計測結果をフーリエ変換して得られるフーリエピークの位置から前記〔数7〕を用いて膜厚を求めることができる。
【0030】
このX線薄膜膜厚解析装置を用いれば、測定中の入射角変化がないため、試料表面での測定領域の変化が無く薄膜の膜厚を求めることが可能である。そのため試料を面内で走査し、X線の照射位置を変えて計測し、前記〔数3〕や〔数4〕や〔数7〕を用いた解析を測定各点で行うことにより、試料面内の膜厚マッピングを行うことができる。この膜厚マッピングは、前述のように、面内分解能1mm×1mm程度で行うことができる。
【0031】
図4は、本発明によるX線薄膜膜厚解析装置の他の例を示す全体構成図である。X線源で発生したX線はX線フィルタ又はX線分光器(図示せず)で単色化され、スリット3で幅20μm高さ1mmの短冊状の入射X線4に形成され、試料5に入射角2°で入射することにより、試料表面でのX線照射領域を1mm×1mmに制限することができる。
【0032】
試料5は、XYステージ付き試料支持台15に固定され、ゴニオメーター16のω軸上に配置されている。ω軸と同軸の2θアーム17は、2θアーム17上に配置した位置敏感型X線検出器の一種である位置敏感性比例計数管24を動かす軸となっている。ゴニオメーター16の各軸とXYステージ付き試料支持台15のX、Y軸はパルスモーターで駆動されており、その制御はドライバー/コントローラ20を介してコンピューター21により行われる。位置敏感性比例計数管24で計測されたX線強度は、スケラー/チャンネルアナライザー22を経由してコンピューター21に取り込まれ、その結果が画像表示部23に示される構成になっている。
【0033】
この装置を用いて入射角(ω軸)を1°に固定し、散乱X線10の強度を測定すると、散乱強度分布は横軸を位置敏感性比例計数管上の位置、縦軸を強度として測定される。位置敏感性比例計数管上の位置を散乱角に変換し、入射角だけ補正すると図2と同様な結果が得られた。散乱強度にみられる振動構造14の隣接する極小値と極小値、極大値と極大値を与える角度から前記〔数3〕や〔数4〕を用いた計算により、あるいは計測結果をフーリエ変換して得られるフーリエピークの位置から前記〔数7〕を用いて膜厚を求めることができた。
【0034】
この装置を用いることで、試料上の1点の計測時間を従来の120分から0.5分に短縮することができた。また、この装置を用いれば測定中の入射角変化がないため、試料表面での測定領域の変化無く薄膜の膜厚を求めることが可能となる。そのため、試料を面内で走査し、X線の照射位置を変えて計測し、前記〔数3〕や〔数4〕や〔数7〕を用いた解析を測定各点で行うことにより、試料面内の膜厚マッピングを行うことができる。試料面内の膜厚分布のマッピングは、面内分解能1mm×1mm程度で行うことができる。
【0035】
図5は、本発明によるX線薄膜膜厚解析装置の別の例を示す全体構成図である。図5は集光したX線を用いた例である。X線源で発生したX線はX線フィルタ又はX線分光器(図示せず)で単色化、平行ビーム化され、集光鏡25で集光される。この集束X線26を、スリット3で幅20μm高さ0.5mmの短冊状の入射X線4に形成し、試料5に入射角2°で入射することにより、試料表面でのX線照射領域を0.5mm×0.5mmに制限することができた。
【0036】
試料5はXYステージ付き試料支持台15に固定されゴニオメーター16のω軸上に配置されている。また、ω軸と同軸の2θアーム17は、2θアーム17上に配置した2次元検出器(CCDカメラ)27を動かす軸となっている。ゴニオメーター16の各軸とXYステージ付き試料支持台15のX、Y軸はパルスモーターで駆動されており、その制御はドライバー/コントローラ20を介してコンピューター21で行っている。また2次元検出器(CCDカメラ)27の各チャンネルで計測したX線強度は、スケラー/チャンネルアナライザー22を経由してコンピューター21に取り込み、その結果を画像表示部23に示す構成になっている。
【0037】
この装置を用いて入射角(ω軸)を2°に固定し、散乱X線10の強度を測定し縦方向に積算すると、散乱強度分布は横軸は2次元検出器(CCDカメラ)上の位置、縦軸は強度として測定される。2次元検出器(CCDカメラ)上の位置を散乱角に変換し、入射角だけ補正すると図2と同様の測定結果が得られた。
この図5の装置の場合、前述の図3又は図4の装置に比べて入射X線を集束していること、X線に角度広がりがあることにより、散乱X線の強度が増加した。しかし、散乱強度分布に見られる振動構造14の周期は変化しなかった。したがって、前記装置と同様に、隣接する極小値と極小値、極大値と極大値を与える角度から前記〔数3〕や〔数4〕を用いて計算を行うことにより、あるいは計測結果をフーリエ変換して得られるフーリエピークの位置から前記〔数7〕を用いて試料の膜厚を求めることができた。
【0038】
この装置によると、1点の計測時間を、前述の装置同様に従来の120分から0.5分に短縮することができた。また、この装置を用いれば測定中の入射角変化がないため、試料表面での測定領域の変化無く膜厚を求めることができる。これにより試料を面内で走査し、X線の照射位置を変えて計測し、前記〔数3〕や〔数4〕や〔数7〕を用いた解析を測定各点で行うことにより、試料面内の膜厚マッピングを行うことができる。この膜厚マッピングは、面内分解能1mm×1mm程度で行うことができる。
【0039】
【発明の効果】
本発明によれば、試料表面での測定領域の変化無く試料面内の各測定点で膜厚を求めることができ、試料を面内走査することで試料面内の膜厚マッピングを高精度かつ迅速に行うことができる。さらに、位置敏感型X線検出器又は2次元X線検出器を散乱強度の計測に用いることにより、1点の測定時間を短縮することができ、より迅速な膜厚マッピングが可能となる。
【図面の簡単な説明】
【図1】(a)は散乱X線の強度分布測定のための装置の概略図、(b)は(a)中の円で示した部分の拡大図であり、薄膜でのX線の散乱を説明する図。
【図2】散乱X線強度の出射角依存性を示す図。
【図3】本発明によるX線薄膜膜厚解析装置の一例の全体構成図。
【図4】本発明によるX線薄膜膜厚解析装置の他の例の全体構成図。
【図5】本発明によるX線薄膜膜厚解析装置の他の例の全体構成図。
【符号の説明】
1 X線源
2 X線分光器
3 スリット
4 入射X線
5 試料
6 薄膜
7 基板
8 界面で散乱されたX線
9 表面で散乱されたX線
10 散乱X線
11 X線検出器
12 鏡面反射ピーク
13 ヨネダ・ウイング
14 振動構造
15 XYステージ付き試料支持台
16 ゴニオメーター
17 2θアーム
18 スリット
19 NaIシンチレーションカウンター
20 ドライバー/コントローラ
21 コンピュータ
22 スケーラ/チャンネルアナライザー
23 画像出力装置
24 位置敏感性比例計数管
25 集光鏡
26 集束X線
27 2次元X線検出器(CCDカメラ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thin film thickness measuring method using X-rays and an apparatus therefor.
[0002]
[Prior art]
Thin film materials are used in many fields of devices such as semiconductors and magnetic disks. Since device characteristics are greatly affected by the film thickness and density of thin films, crystal structure, roughness, etc., these measurements are important for device development or for maintaining uniform device characteristics.
[0003]
Of these, the film thickness has been conventionally obtained by the stylus method, but non-destructive measurement is regarded as important, and the fluorescent X-ray method and the ellipsometry method are used. Recently, the X-ray reflectivity method has attracted attention as a method for measuring the thickness of a thin film using X-rays. This is a technique in which X-rays having a single color and good parallelism are incident on the grazing surface of the sample, and the intensity of the reflected (specular reflection) X-ray is measured under the condition of incident angle = exit angle. The measured reflection intensity vibrates according to the incident angle (= exit angle) because the X-rays reflected at the sample surface and the thin film interface interfere with each other. This is a method for obtaining the film thickness of the thin film by analyzing the vibration structure.
[0004]
[Problems to be solved by the invention]
Although the X-ray reflectivity method is a useful film thickness measurement method, it is necessary to make the X-ray incident on the sample surface, so the X-ray beam of width w is only w / sinω (ω: incident angle) on the sample surface. It spreads. In actual measurement, the incident angle ω is changed from about the critical angle (0.1 to 0.2 °) to about 1 to 2 °. For this reason, in an X-ray beam having a width w = 0.05 mm that is practically used, the measurement region on the sample is about 10 mm (incident angle: near the critical angle) to 1 to 2 mm (incident angle: 2 to 1 °). Change to. For this reason, it is not possible to perform highly accurate measurement on a sample having a non-uniform in-plane structure or a sample having a small size.
[0005]
As a solution, a method of changing the exit slit width of the X-ray beam in conjunction with the incident angle and the exit angle has been devised. However, this method complicates the control mechanism and extremely reduces the practical slit width. Since it cannot be narrowed, it is difficult to measure a minute area of 1 mm or less.
It is possible to reduce the spread of X-rays on the sample surface and changes in the irradiation area by increasing the incident angle from 0.5 ° to 1 ° by the X-ray reflectivity method and narrowing the scanning range of the incident angle. However, in this method, the intensity of specular reflection attenuates in inverse proportion to the fourth power of the incident angle, and the sample with a large surface roughness has a significant decrease in the intensity with respect to the incident angle, so the accuracy of determining the film thickness decreases. To do. In addition, in the X-ray reflectivity method in which the incident angle is set to 0.5 ° to 1 ° and the scanning range of the incident angle is narrowed, one point measurement is required for about 1 to 2 hours. Requires measurement time.
[0006]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a more accurate and quick film thickness mapping method and an apparatus therefor.
[0007]
[Means for Solving the Problems]
In the process of performing experiments in which monochromatic X-rays are incident on the surface of a thin film sample at a constant incident angle and the X-rays scattered from the sample are measured, the intensity of scattered X-rays is illustrated in FIG. Thus, the phenomenon which shows output angle dependence was found. The present invention finds out that the vibration structure of the intensity distribution of the scattered X-rays is caused by the interference between the X-rays diffusely scattered on the surface of the thin film and the X-rays diffused on the back surface of the thin film. It has been completed by finding that it can be requested.
[0008]
FIG. 1A is a schematic view of an apparatus for measuring the intensity distribution of scattered X-rays, and FIG. 1B is an enlarged view of a portion indicated by a circle in FIG. It is a figure explaining scattering of.
X-rays generated by the X-ray source 1 are monochromatized by the X-ray spectrometer 2, and then the width and height are limited by the slit 3 to become incident X-rays 4. The incident X-rays 4 are incident on a sample 5 having a thin film 6 formed on a substrate 7 at an incident angle ω. The width D of the incident X-ray 4 on the sample surface is D = w / sinω, where w is the width of the incident X-ray 4. The incident X-ray 4 is refracted at the sample surface and enters the thin film 6 at an angle ω ′. X-rays that have entered the thin film 6 are scattered at an angle α ′ at the interface between the thin film 6 and the substrate 7. The X-rays 8 scattered at the interface are refracted on the surface of the thin film 6 and are emitted into the air at an emission angle α. The X-rays 9 scattered at the angle α on the sample surface and the X-rays 8 scattered at the interface between the thin film 6 and the substrate 7 and emitted into the air at the emission angle α interfere to become scattered X-rays 10.
[0009]
When the intensity of the scattered X-ray 10 is measured by the X-ray detector 11 while changing the emission angle, the intensity distribution of the scattered X-ray as shown in FIG. 2 is obtained. In FIG. 2, the peak indicated by the arrow 12 is a specular reflection peak, and the arrow 13 is a scattering peak called Yoneda wing having the maximum intensity at the critical angle. In addition to these peaks, the vibration structure 14 is seen in the scattering intensity.
[0010]
FIG. 2 is an X-ray scattering intensity distribution with a wavelength λ = 0.154 nm from a sample 5 in which a permalloy film 6 is vapor-deposited on a glass substrate 7, and the thickness of this sample is increased by a conventional X-ray reflectivity method. As a result of measurement, the film thickness of the permalloy film 6 was 49.4 nm.
Next, the vibration structure 14 having scattered X-ray intensity will be described as an interference phenomenon of X-rays diffusely scattered at the interface of the thin film 6.
[0011]
Referring to FIG. 1, consider a case where a thin X-ray 4 is incident at an incident angle ω on a thin film 6 having a refractive index of (1-δ) and a film thickness t. The wavelength of the X-ray lambda, the incident angle omega, as the critical angle of the thin film theta c, and ω> θ c. When the incident angle in the sample is ω ′ and the emission angle is α ′ due to the effect of refraction, the optical path difference between the X-rays scattered at the surface of the thin film 6 and the X-rays scattered at the interface between the substrate 7 and the thin film 6. When the density of the thin film 6 is larger than the density of the substrate 7, the following [Equation 1] is obtained, and when the density of the thin film 6 is smaller than the density of the substrate 7, the following [Equation 2] is obtained.
[0012]
[Expression 1]
t (1-δ) (sinω ′ + sinα ′) + 0.5λ
[0013]
[Expression 2]
t (1-δ) (sinω ′ + sinα ′)
Since the X-rays scattered at the surface and the X-rays scattered at the interface interfere with each other, the scattering intensity vibrates when the emission angle is changed. The angle α and the film thickness t giving the maximum value or the minimum value of the intensity of the vibration structure are approximately when the wavelength of the X-ray is λ, the incident angle is ω, and the critical angle of the thin film is θ c. The following [Equation 3] relationship holds.
[0014]
[Equation 3]
α 2 = θ c 2 + {− (θ c 2 −ω 2 ) 1/2 + λ (N−1) / 2t} 2
Here, N is an integer representing the order of interference. When a thin film having a high density enters a low density substrate, the intensity is maximized at an angle α when N is an even number, and at an angle α when N is an odd number. The strength is minimal. Conversely, when entering a high density substrate from a low density thin film, the intensity is minimal at angle α when N is an even number, and the intensity is maximized at angle α when N is an odd number.
[0015]
When the above [Equation 3] is used, the film thickness t of the thin film 6 can be obtained using a set of angles α that gives the maximum value or the minimum value of the scattering intensity. As an example, if the angles at which the maximum and minimum values of adjacent strengths of the vibration structure are given are α 1 and α 2 , the film thickness t is expressed by the following [Equation 4] using the angles α 1 and α 2. be able to.
[0016]
[Expression 4]
t = λ / {2 | (α 1 2 −θ c 2 ) 1/2 − (α 2 2 −θ c 2 ) 1/2 |}
For the measurement example 2, the critical angle theta c permalloy film is 0.3925 ° (6.848 × 10 -3 rad ), α 1 = 0.701 ° as the set of alpha 1 and alpha 2 (1 .223 × 10 −2 rad), α 2 = 0.777 ° (1.356 × 10 −2 rad) and applying these values to [Equation 4], the following equation [Equation 5] is obtained. The film thickness t is calculated to be 49.1 nm. This result is in good agreement with the film thickness of 49.4 nm obtained by the conventional X-ray reflectivity method.
[0017]
[Equation 5]
t = 0.1541 / [2 | {(1.223 × 10 −2 ) 2 − (6.848 × 10 −3 ) 2 } 1/2 − {(1.356 × 10 −2 ) 2 − (6 .848 × 10 −3 ) 2 } 1/2 |] ≈49.1
Here, it is possible to map the film thickness of the sample by fixing the sample to a movable sample support and measuring while moving the sample support. When mapping the film thickness, it is practical to use a position sensitive X-ray detector or a two-dimensional X-ray detector as the X-ray detector from the viewpoint of shortening the measurement time.
[0018]
Further, the vibration of [Equation 3] can be expressed as [Equation 6] below by using C as a constant and using the emission angle α ′ in the sample.
[0019]
[Formula 6]
cos (2πtα '/ λ + C)
Therefore, the base component is subtracted from the obtained measurement result, the vibration component is extracted, and this is subjected to Fourier analysis. The film thickness t of the sample can be obtained from the peak position (frequency) obtained by Fourier transform as follows. That is, when the Fourier peak position is h, 2πtα ′ / λ = hα ′ from [Equation 6]. Therefore, the film thickness t is given by the following [Equation 7].
[0020]
[Expression 7]
t = λh / 2π
The thin film thickness analysis method described above is for the case where there is a single layer film on the substrate. When there are a plurality of films on the substrate, scattered X-rays are generated at the interfaces of the respective films, and the above-described [Equation 1] to [Equation 4] are established between the interfaces. By selecting the vibration peak position more than the number of interfaces, for example, by solving the simultaneous equations of the equations [Equation 4] between the interfaces, the respective film thicknesses of the plurality of films can be obtained.
[0021]
In the case of Fourier analysis, the output angle α ′ in the sample is corrected with the refractive index of each film, and then Fourier transform is performed. Each film thickness can be obtained from a plurality of peak positions obtained by Fourier transform. Scattering from the interface between multiple layers is obtained by using the weighted average of the refractive index of each film as the refractive index, thereby obtaining the distance between the interfering interfaces (corresponding to the total film thickness of each layer). It is done.
[0022]
For example, in the case of a multilayer film (A film / B film / C film), scattering occurs at the surface, the A / B interface, and the B / C interface and interferes with each other. For this reason, the peak corresponding to the interference of a surface-A / B interface, a surface-B / C interface, and an A / BB / C interface is obtained. In the case of Fourier transform, it is necessary to convert the horizontal axis to α ′. Using the values of A membrane as the theta c when the interference of the surface -A / B interface obtains the thickness of the film A, when determining the thickness of the B layer from the interference of the A / B-B / C interface theta c The value of the B film is used as By using the value obtained by weighted average film thickness of the theta c of theta c and B film A film theta c when utilizing interference surface -B / C interface, thickness plus A film and B film Can be requested.
[0023]
As described above, the X-ray thin film thickness analysis method of the present invention measures the intensity distribution with respect to the emission angle of scattered X-rays generated from a sample by causing monochromatic X-rays to enter the thin film sample at a predetermined incident angle. It is characterized in that the film thickness of the thin film is obtained by using a combination of emission angles giving a maximum value or a minimum value of the intensity distribution, or by using a peak frequency obtained by Fourier transforming the angle distribution of the scattered X-ray intensity.
[0024]
The present invention also relates to an X-ray thin film thickness analysis apparatus comprising an X-ray source, a goniometer, a sample support, an X-ray detector, and a signal processing means for inputting a signal from the X-ray detector. The X-ray detector can measure the intensity of scattered X-rays generated from the sample in a predetermined emission angle range, and the signal processing means provides an angle that gives a maximum value or a minimum value of the intensity distribution with respect to the emission angle of the scattered X-rays. The calculation processing for obtaining the film thickness of the sample is performed using a combination of the above.
[0025]
The film thickness of the thin film sample can be mapped by making the sample support table movable at least in the two-dimensional direction and moving the sample support table in the two-dimensional direction and scanning the X-ray incident position on the sample.
As the X-ray detector, a position sensitive detector or a two-dimensional detector is preferably used. Between the X-ray source and the goniometer, an X-ray filter or an X-ray spectrometer for monochromatic X-rays can be installed, and a condensing mirror for condensing incident X-rays on the sample surface is provided. You can also
[0026]
According to the X-ray thin film analysis method or the X-ray thin film thickness analysis apparatus of the present invention, the film thickness of the thin film can be obtained without changing the measurement region on the sample surface.
[0027]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 3 is an overall configuration diagram showing an example of an X-ray thin film thickness analysis apparatus according to the present invention. X-rays generated by the X-ray source are monochromatic by an X-ray filter or an X-ray spectrometer (not shown), formed into a strip-shaped incident X-ray 4 having a width of 20 μm and a height of 1 mm by a slit 3 and incident on a sample 5. By entering at an angle of 2 °, the X-ray irradiation area on the sample surface can be limited to 1 mm × 1 mm.
[0028]
The sample 5 is disposed on the ω axis of a goniometer 16 fixed to the sample support 15 with an XY stage. Further, the 2θ arm 17 coaxial with the ω axis is an axis for moving a slit 18 disposed on the 2θ arm 17 and a NaI scintillation counter 19 which is a kind of X-ray detector. Each axis of the goniometer 16 and the X and Y axes of the sample support 15 with the XY stage are driven by a pulse motor, and the control is performed by a computer 21 via a driver / controller 20. The X-ray intensity measured by the NaI scintillation counter 19 is taken into the computer 21 via the scaler / channel analyzer 22 and the result is shown in the image display unit 23.
[0029]
Using this apparatus, the incident angle (ω axis) was fixed at 1 °, and the 2θ arm 17 was scanned to measure the intensity distribution of the scattered X-rays 10. As for the scattering intensity distribution, the measurement result as shown in FIG. 2 was obtained with the horizontal axis representing the scattering angle and the vertical axis representing the intensity. Calculate by using the above [Equation 3] and [Equation 4] from the adjacent local minimum value and local minimum value, local maximum value and local maximum value of the vibration structure 14 observed in the scattering intensity, or Fourier transform the measurement result Then, the film thickness can be obtained from the position of the Fourier peak obtained by using the above [Equation 7].
[0030]
If this X-ray thin film thickness analyzer is used, since there is no change in the incident angle during measurement, it is possible to determine the thickness of the thin film without any change in the measurement region on the sample surface. Therefore, the sample surface is scanned in-plane, the X-ray irradiation position is changed and measured, and the analysis using the above [Equation 3], [Equation 4] and [Equation 7] is performed at each measurement point. The film thickness mapping can be performed. As described above, this film thickness mapping can be performed with an in-plane resolution of about 1 mm × 1 mm.
[0031]
FIG. 4 is an overall configuration diagram showing another example of an X-ray thin film thickness analyzing apparatus according to the present invention. X-rays generated by the X-ray source are monochromatized by an X-ray filter or an X-ray spectrometer (not shown), and are formed into a strip-shaped incident X-ray 4 having a width of 20 μm and a height of 1 mm by a slit 3. By entering at an incident angle of 2 °, the X-ray irradiation area on the sample surface can be limited to 1 mm × 1 mm.
[0032]
The sample 5 is fixed to a sample support 15 with an XY stage and is disposed on the ω axis of the goniometer 16. The 2θ arm 17 coaxial with the ω axis is an axis for moving a position sensitive proportional counter 24 which is a kind of a position sensitive X-ray detector disposed on the 2θ arm 17. Each axis of the goniometer 16 and the X and Y axes of the sample support 15 with the XY stage are driven by a pulse motor, and the control is performed by the computer 21 via the driver / controller 20. The X-ray intensity measured by the position sensitive proportional counter 24 is taken into the computer 21 via the scaler / channel analyzer 22, and the result is displayed on the image display unit 23.
[0033]
When the incident angle (ω axis) is fixed to 1 ° using this apparatus and the intensity of the scattered X-ray 10 is measured, the distribution of the scattered intensity is represented by the horizontal axis as the position on the position sensitive proportional counter and the vertical axis as the intensity. Measured. When the position on the position sensitive proportional counter was converted into a scattering angle and only the incident angle was corrected, the same result as in FIG. 2 was obtained. From the adjacent local minimum value and local minimum value, the local maximum value and the local maximum value of the vibration structure 14 as seen in the scattering intensity, calculation using the above [Equation 3] and [Equation 4], or Fourier transform of the measurement result It was possible to obtain the film thickness from the obtained Fourier peak position using the above [Equation 7].
[0034]
By using this apparatus, the measurement time for one point on the sample could be shortened from 120 minutes to 0.5 minutes. Further, when this apparatus is used, since there is no change in the incident angle during measurement, the thickness of the thin film can be obtained without changing the measurement region on the sample surface. Therefore, the sample is scanned in-plane, measured by changing the X-ray irradiation position, and the analysis using the above [Equation 3], [Equation 4] and [Equation 7] is performed at each measurement point. In-plane film thickness mapping can be performed. Mapping of the film thickness distribution in the sample surface can be performed with an in-plane resolution of about 1 mm × 1 mm.
[0035]
FIG. 5 is an overall configuration diagram showing another example of the X-ray thin film thickness analyzing apparatus according to the present invention. FIG. 5 shows an example using condensed X-rays. X-rays generated by the X-ray source are monochromatic and parallel beams by an X-ray filter or an X-ray spectrometer (not shown), and are collected by a condenser mirror 25. The focused X-ray 26 is formed into a strip-shaped incident X-ray 4 having a width of 20 μm and a height of 0.5 mm by the slit 3 and is incident on the sample 5 at an incident angle of 2 °. Can be limited to 0.5 mm × 0.5 mm.
[0036]
The sample 5 is fixed to a sample support 15 with an XY stage and is disposed on the ω axis of the goniometer 16. A 2θ arm 17 coaxial with the ω axis is an axis for moving a two-dimensional detector (CCD camera) 27 disposed on the 2θ arm 17. Each axis of the goniometer 16 and the X and Y axes of the sample support 15 with the XY stage are driven by a pulse motor, and the control is performed by a computer 21 via a driver / controller 20. Further, the X-ray intensity measured in each channel of the two-dimensional detector (CCD camera) 27 is taken into the computer 21 via the scaler / channel analyzer 22, and the result is shown in the image display unit 23.
[0037]
When the incident angle (ω axis) is fixed to 2 ° using this apparatus, the intensity of scattered X-rays 10 is measured and integrated in the vertical direction, the scattered intensity distribution is on the two-dimensional detector (CCD camera). The position and the vertical axis are measured as intensity. When the position on the two-dimensional detector (CCD camera) was converted into a scattering angle and only the incident angle was corrected, the same measurement results as in FIG. 2 were obtained.
In the case of the apparatus shown in FIG. 5, the intensity of scattered X-rays is increased by focusing incident X-rays and widening the angle of X-rays as compared with the apparatus shown in FIG. 3 or FIG. However, the period of the vibration structure 14 seen in the scattering intensity distribution did not change. Therefore, in the same manner as in the above apparatus, the calculation is performed using the above [Equation 3] and [Equation 4] from the angle at which adjacent local minimum value and local minimum value, local maximum value and local maximum value are given, or the measurement result is Fourier transformed. The film thickness of the sample could be obtained from the position of the Fourier peak obtained as described above using [Formula 7].
[0038]
According to this apparatus, the measurement time for one point could be shortened from 120 minutes to 0.5 minutes in the same manner as the above-described apparatus. Further, when this apparatus is used, there is no change in the incident angle during measurement, so that the film thickness can be obtained without changing the measurement region on the sample surface. Thus, the sample is scanned in-plane, measured by changing the X-ray irradiation position, and the analysis using the above [Equation 3], [Equation 4], and [Equation 7] is performed at each measurement point. In-plane film thickness mapping can be performed. This film thickness mapping can be performed with an in-plane resolution of about 1 mm × 1 mm.
[0039]
【The invention's effect】
According to the present invention, the film thickness can be obtained at each measurement point in the sample surface without changing the measurement region on the sample surface, and the film thickness mapping in the sample surface can be performed with high accuracy by scanning the sample in the surface. Can be done quickly. Furthermore, by using the position sensitive X-ray detector or the two-dimensional X-ray detector for the measurement of the scattering intensity, the measurement time for one point can be shortened, and more rapid film thickness mapping can be performed.
[Brief description of the drawings]
FIG. 1A is a schematic view of an apparatus for measuring the intensity distribution of scattered X-rays, and FIG. 1B is an enlarged view of a portion indicated by a circle in FIG. FIG.
FIG. 2 is a diagram showing the emission angle dependence of scattered X-ray intensity.
FIG. 3 is an overall configuration diagram of an example of an X-ray thin film thickness analysis apparatus according to the present invention.
FIG. 4 is an overall configuration diagram of another example of an X-ray thin film thickness analysis apparatus according to the present invention.
FIG. 5 is an overall configuration diagram of another example of an X-ray thin film thickness analysis apparatus according to the present invention.
[Explanation of symbols]
1 X-ray source 2 X-ray spectrometer 3 Slit 4 Incident X-ray 5 Sample 6 Thin film 7 Substrate 8 X-ray scattered at the interface 9 X-ray scattered at the surface 10 Scattered X-ray 11 X-ray detector 12 Specular reflection peak 13 Yoneda Wing 14 Vibrating Structure 15 Sample Support Stand 16 with XY Stage Goniometer 17 2θ Arm 18 Slit 19 NaI Scintillation Counter 20 Driver / Controller 21 Computer 22 Scaler / Channel Analyzer 23 Image Output Device 24 Position Sensitive Proportional Counter 25 Optical mirror 26 Focused X-ray 27 Two-dimensional X-ray detector (CCD camera)

Claims (9)

単色X線を所定の入射角度で薄膜試料に入射させて前記試料から発生される散乱X線の出射角に対する強度分布を測定し、前記強度分布の極大値又は極小値を与える出射角の組み合わせを用いて薄膜の膜厚を求めることを特徴とするX線薄膜膜厚解析方法。  A monochromatic X-ray is made incident on a thin film sample at a predetermined incident angle, an intensity distribution with respect to an emission angle of scattered X-rays generated from the sample is measured, and an emission angle combination that gives a maximum value or a minimum value of the intensity distribution is determined. An X-ray thin film thickness analysis method characterized in that the film thickness of the thin film is used. 請求項1記載のX線薄膜膜厚解析方法において、
前記単色X線の波長をλ、前記薄膜の全反射臨界角をθとするとき、前記強度分布の隣り合う極大値と極小値を与える出射角α,αから、薄膜の膜厚tを下式により求めることを特徴とするX線薄膜膜厚解析方法。
t=λ/{2|(α −θ 1/2−(α −θ 1/2|}
In the X-ray thin film thickness analysis method according to claim 1,
When the wavelength of the monochromatic X-ray is λ and the total reflection critical angle of the thin film is θ c , the film thickness t of the thin film is determined from the emission angles α 1 and α 2 that give the adjacent maximum and minimum values of the intensity distribution. An X-ray thin film thickness analysis method characterized by:
t = λ / {2 | (α 1 2 −θ c 2 ) 1/2 − (α 2 2 −θ c 2 ) 1/2 |}
請求項1記載のX線薄膜膜厚解析方法において、
散乱X線強度の角度分布をフーリエ変換して得られるピーク周波数から薄膜の膜厚を求めることを特徴とするX線薄膜膜厚解析方法。
In the X-ray thin film thickness analysis method according to claim 1,
An X-ray thin film thickness analysis method characterized in that a film thickness of a thin film is obtained from a peak frequency obtained by Fourier transforming an angular distribution of scattered X-ray intensity.
請求項3記載のX線薄膜膜厚解析方法において、
前記ピーク周波数をhとするとき、薄膜の膜厚tを下式により求めることを特徴とするX線薄膜膜厚解析方法。
t=λh/2π
In the X-ray thin film thickness analysis method according to claim 3,
An X-ray thin film thickness analysis method characterized in that, when the peak frequency is h, a thin film thickness t is obtained by the following equation.
t = λh / 2π
X線源と、ゴニオメーターと、試料支持台と、X線検出器と、前記X線検出器の信号が入力される信号処理手段とを備えるX線薄膜膜厚解析装置において、
前記X線検出器は所定の出射角範囲で試料から発生される散乱X線強度を測定可能であり、前記信号処理手段は、前記試料支持台に保持された薄膜試料に前記X線源から発生した単色X線を一定の入射角度で入射させたとき前記X線検出器で測定した前記散乱X線の出射角に対する強度分布の極大値又は極小値を与える角度の組み合わせを用いて試料の膜厚を求める演算処理を行うものであることを特徴とするX線薄膜膜厚解析装置。
In an X-ray thin film thickness analysis apparatus comprising an X-ray source, a goniometer, a sample support, an X-ray detector, and a signal processing means to which a signal of the X-ray detector is input,
The X-ray detector can measure the intensity of scattered X-rays generated from a sample in a predetermined emission angle range, and the signal processing means is generated from the X-ray source on a thin film sample held on the sample support. The film thickness of the sample using a combination of angles giving a maximum value or a minimum value of the intensity distribution with respect to the emission angle of the scattered X-rays measured by the X-ray detector when the monochromatic X-rays made incident at a constant incident angle. An X-ray thin film thickness analysis apparatus characterized by performing a calculation process for obtaining the above.
請求項5記載のX線薄膜膜厚解析装置において、
前記試料支持台は少なくとも2次元方向に移動可能であり、前記試料支持台を2次元方向に移動して試料へのX線入射位置を走査することにより薄膜試料の膜厚をマッピングする機能を有することを特徴とするX線薄膜膜厚解析装置。
In the X-ray thin film thickness analyzer of Claim 5,
The sample support is movable at least in a two-dimensional direction, and has a function of mapping the film thickness of a thin film sample by moving the sample support in a two-dimensional direction and scanning an X-ray incident position on the sample. An X-ray thin film thickness analyzer characterized by that.
請求項5又は6記載のX線薄膜膜厚解析装置において、
前記X線検出器として位置敏感型検出器又は2次元検出器を用いることを特徴とするX線薄膜膜厚解析装置。
In the X-ray thin film thickness analyzer of Claim 5 or 6,
A position sensitive detector or a two-dimensional detector is used as the X-ray detector.
請求項5、6又は7記載のX線薄膜膜厚解析装置において、
前記X線源と前記ゴニオメーターとの間にX線フィルタ又はX線分光器を設置したことを特徴とするX線薄膜膜厚解析装置。
In the X-ray thin film thickness analyzer of Claim 5, 6 or 7,
An X-ray thin film thickness analysis apparatus, wherein an X-ray filter or an X-ray spectrometer is installed between the X-ray source and the goniometer .
請求項5〜8のいずれか1項記載のX線薄膜膜厚解析装置において、
入射X線を試料表面に集光させる集光鏡を備えることを特徴とするX線薄膜膜厚解析装置。
In the X-ray thin film thickness analyzer of any one of Claims 5-8,
An X-ray thin film thickness analysis apparatus comprising a condensing mirror for condensing incident X-rays on a sample surface.
JP23318796A 1996-09-03 1996-09-03 X-ray thin film thickness analysis method and analyzer Expired - Fee Related JP3856500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23318796A JP3856500B2 (en) 1996-09-03 1996-09-03 X-ray thin film thickness analysis method and analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23318796A JP3856500B2 (en) 1996-09-03 1996-09-03 X-ray thin film thickness analysis method and analyzer

Publications (2)

Publication Number Publication Date
JPH1078313A JPH1078313A (en) 1998-03-24
JP3856500B2 true JP3856500B2 (en) 2006-12-13

Family

ID=16951110

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23318796A Expired - Fee Related JP3856500B2 (en) 1996-09-03 1996-09-03 X-ray thin film thickness analysis method and analyzer

Country Status (1)

Country Link
JP (1) JP3856500B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009109387A (en) * 2007-10-31 2009-05-21 Fujitsu Ltd Sample analysis apparatus and method

Also Published As

Publication number Publication date
JPH1078313A (en) 1998-03-24

Similar Documents

Publication Publication Date Title
US5619548A (en) X-ray thickness gauge
JP5009563B2 (en) Sample inspection method and apparatus
KR20020079727A (en) Optical method for the characterization of integrated circuits
JPH04501175A (en) Surface measurement device and method using ellipsometry
JPH0695075B2 (en) Surface texture detection method
JP2002107119A (en) Method and apparatus for measurement of thickness of specimen
JP3889851B2 (en) Film thickness measurement method
JP2821585B2 (en) In-plane distribution measuring method and apparatus
JP3856500B2 (en) X-ray thin film thickness analysis method and analyzer
JP3423486B2 (en) Method and apparatus for measuring refractive index distribution of optical element
JPH05240787A (en) Surface plasmon microscope
JPH07294220A (en) Method and apparatus for detecting film thickness of multilayered thin film
JP2009109387A (en) Sample analysis apparatus and method
JP2906924B2 (en) Wafer surface roughness measurement method
US7724872B2 (en) Inspection method for thin film stack
JP3219223B2 (en) Characteristic value measuring method and device
WO2020037837A1 (en) Three-dimensional imaging apparatus based on k space transformation and imaging method thereof
Dhez et al. Tests Of Short Period X-Ray Multilayer Mirrors Using A Position Sensitive Proportional Counter
JP2787809B2 (en) Method and apparatus for measuring the refractive index of a wafer made of glass material
JP3599921B2 (en) Method and apparatus for measuring refractive index distribution
JP2002333409A (en) X-ray stress measuring device
JPS6353457A (en) 2-d scan type state analyzer
JP2006105748A (en) Analyzing method accompanied by incidence of beam
JP2953742B2 (en) Surface roughness evaluation method
JPH08338819A (en) Method and apparatus for x ray analysis

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060912

LAPS Cancellation because of no payment of annual fees