JP3856224B2 - Manufacturing method of solar cell module - Google Patents

Manufacturing method of solar cell module Download PDF

Info

Publication number
JP3856224B2
JP3856224B2 JP2002343937A JP2002343937A JP3856224B2 JP 3856224 B2 JP3856224 B2 JP 3856224B2 JP 2002343937 A JP2002343937 A JP 2002343937A JP 2002343937 A JP2002343937 A JP 2002343937A JP 3856224 B2 JP3856224 B2 JP 3856224B2
Authority
JP
Japan
Prior art keywords
solar cell
manufacturing
sheet
sealing material
cell module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002343937A
Other languages
Japanese (ja)
Other versions
JP2004179397A (en
Inventor
勇次郎 綿貫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002343937A priority Critical patent/JP3856224B2/en
Publication of JP2004179397A publication Critical patent/JP2004179397A/en
Application granted granted Critical
Publication of JP3856224B2 publication Critical patent/JP3856224B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法に関する。
【0002】
【従来の技術】
薄膜太陽電池は、薄型で軽量、製造コストの安さ、大面積化が容易であることなどから、今後の太陽電池の主流となると考えられ、電力供給用以外に、建物の屋根や窓などにとりつけて利用される業務用,一般住宅用にも需要が広がってきている。一般住宅用として、太陽電池付き屋根瓦なども開発されている。
【0003】
近年では、プラスチックフィルムを用いたフレキシブルタイプの太陽電池の研究開発が進められており、このフレキシブル性を生かし、ロールツーロール方式やステップロール方式の製造方法により大量生産が可能となっている。
【0004】
上記薄膜太陽電池は、通常、太陽電池モジュールとして使用される。このモジュールとしては、電気絶縁性を有するフィルム基板上に形成された太陽電池を、電気絶縁性の保護材により封止するために、太陽電池の受光面側および非受光面側の双方に保護層を設けたものが知られている。
【0005】
図6および図7は、従来の太陽電池モジュールの模式的構造の一例を示し、図6は、太陽電池モジュールの側断面図、図7は、断面コ字形の金属製枠体を有するフレームに装着した状態の太陽電池モジュールの側断面図を示す。
【0006】
図6において、太陽電池1は、複数個の太陽電池素子が直列または並列接続されており、その受光面側にガラス板などの表面保護部材2、裏面側にアルミ箔の両面に一弗化エチレン(商品名:テドラー,デュポン社製)を接着した防湿保護シートなどの裏面保護部材3が設けられ、接着封止性に優れかつ安価なEVA(エチレン−酢酸ビニル共重合樹脂)などの接着性樹脂封止材4により熱融着封止されている。
【0007】
また太陽電池1は、そのプラス(+)極とマイナス(−)極に、内部リード線5、6が電気的に接続され、この内部リード線5、6は、裏面保護部材3に接着固定された端子ボックス7に、裏面保護部材3を貫通して導かれ、端子ボックス7の内部で外部リード線としてのケーブル8の芯線9、10と電気的に接続され、これら全体として太陽電池モジュール11を形成している。
【0008】
なお、前記表面保護部材2としては、ガラス板などの無機系材料の外に、透光性のアクリル樹脂板やポリカーボネイト樹脂板などの有機系材料を用いることもある。また、裏面保護部材3としては、上記金属箔入り樹脂以外に、フツ素系フィルムなどの有機系フィルム単体、有機系フィルムと金属箔を貼り合せた複合材料、もしくは金属板やガラス板などの金属・無機系材料を用いることもある。
【0009】
図7は、フレームに装着した太陽電池モジュールの一例を示し、図7において、太陽電池モジュール11は、その周囲にフレーム12が配置され、太陽電池モジュール11の周縁部が、金属製フレーム12の断面コ字形の枠体を有する保持部12aの内部に挿入され、隙間を埋めるように注入された接着性シール材13で固定保持されている。ここで、接着性シール材13は、加熱流動性のあるブチルゴムや液状で硬化後に固体となるシリコーンゴムなどの接着性のある弾性シール材が用いられ、ガラス板などの表面保護部材2やフレーム12の熱膨張を吸収するとともに、水分侵入を抑制している。
【0010】
次に太陽電池モジュール11の製造方法に関わる各構成部材のラミネート(熱融着封止)方法について、その一例として、真空ラミネート方式に関し、図8により説明する。図8において、太陽電池モジュール11は、予め表面保護部材2、接着性樹脂封止材4、リード線5、6が取付けられた太陽電池1、接着性樹脂封止材4、裏面保護部材3が順次積層されて真空ラミネート装置100に入れられる。しかる後、真空ラミネート装置100の上筐体101が閉じられて密閉され、加熱板103で所定温度に加熱されるとともに下筐体102に取り付けられた排気管104から図示しない排気装置でモジュール11が置かれている空間部105の空気が排気されて真空に保たれる。
【0011】
また同時に上筐体101に取り付けられた給排気管106からもゴム製ダイヤフラム107と上筐体101とで形成する空間部108の空気が排気されて真空となり、ゴム製ダイヤフラム107は上筐体101の内壁面109に張り付いている。この状態で太陽電池モジユール11が所定温度で所定時間、加熱された後、給排気管106から空気が導入され、空間部105と空間部108の圧力差(略大気圧差)で太陽電池モジュール11はゴム製ダイヤフラム107により真空加圧され、図6で示す断面構造の太陽電池モジュール11を形成する。
【0012】
前記太陽電池モジュールの構造や製造方法に関しては、上記以外にも種々の構造や製造方法が採用されている。図5は、太陽電池モジュールの諸構造を概括的に示す模式的断面図で、主要部材のみを示している。
【0013】
図5(a)は、図6に示した構造の太陽電池モジュールに相当し、21は太陽電池、22は表面保護部材(ガラス板)、23は裏面保護部材としての背面材(アルミ箔ラミネートポリフッ化ビニール、24は接着性樹脂封止材(EVA)を示す。
【0014】
図5(b)は、所謂スーパーストレート構造に相当し、ガラス基板に直接太陽電池を形成したもので、31はガラス基板太陽電池、33は背面材(アルミ箔ラミネートポリフッ化ビニール)、34は接着性樹脂封止材(EVA)を示す。
【0015】
また、図5(c)は、所謂サブストレート構造であって、SUS基板またはプラスチック基板に太陽電池を形成し、表面保護部材としてプラスチックの保護膜を用いたもので、41は太陽電池、42は表面保護膜(ETFEまたはFEP)、43は背面構造支持体(表面処理AL−亜鉛鋼板)、44は接着性樹脂封止材(EVA)を示す。
【0016】
さらに、図5(d)は、フレキシブルモジュールであって、表面保護部材および裏面保護部材としてプラスチックフィルムの保護膜を用いたもので、51は太陽電池、52は表面保護膜(ETFEまたはFEP)、53は裏面保護膜(ETFE,FEP,PVF等)、54は接着性樹脂封止材(EVA)を示す。さらにまた、図5(e)は、図5(d)の表面保護部材および裏面保護部材において、強化層としてガラス不織布65を追加したものを示す。
【0017】
上記以外にも、種々の太陽電池モジュール構造があり、ニーズに適した構造が採用される。なお、本件発明は、詳細は後述するように、ガラス板を用いない形式、即ち、図5(c)〜(e)に示すようなガラスレスの薄型太陽電池モジュールを対象とし、その製造方法に関する。図5(c)に示す43の背面構造支持体は、厚板状に図示しているが、薄板鋼板を使用する。
【0018】
図4は、前記ガラスレスの薄型太陽電池モジュールを形成する際の積層シートに関わる模式的構成図であって、背面構造支持体として鋼板を使用するモジュールの一例を示す(この種の各種モジュールの詳細については、例えば、特許文献1参照)。
【0019】
図4(a)は太陽電池モジュール用積層シートの平面図であり、図4(b)は図4(a)におけるX−X断面図である。図4においては、フレキシブル基板上に光電変換部が形成されてなる太陽電池70の両側には、内部配線72が配置され、補助配線73を介して太陽電池70の裏面電極に接続されている。これらはEVAなどのシート状の接着性樹脂封止材25により封止され、さらに光入射側は、ETFE(四フッ化エチレンポリマー)などの耐候性のある保護フィルム74により被覆され、光入射側と反対側は、鋼板等の裏面保護材により被覆されて、全体として鋼板付き太陽電池モジュール80を構成する。
【0020】
上記のような太陽電池モジュールの製造方法としては、前記図4(b)に示すような構造に積層組立て後、シート状の接着性樹脂封止材25の軟化・溶融から硬化工程、ならびに室温までの冷却工程等を、連続して同一真空ラミネート装置内で行っていた。
【0021】
【特許文献1】
特開2000−349308号公報(第2〜5頁、図1〜8参照)
【0022】
【発明が解決しようとする課題】
ところで、前述の同一真空ラミネート装置内で各種の処理を連続して行なう太陽電池モジュールの製造方法においては、下記のような問題があった。
【0023】
まず、EVAは、過酸化物で架橋されるため、架橋時間が10分から30分程度かかり、さらに真空処理や加熱冷却工程を含めると、約60〜70分程度と製造時間が長くなり、真空ラミネート装置を長時間拘束することとなる。従って、太陽電池モジュールを量産する場合、生産性が悪く、ひいては製造コストが高くなる問題があった。
【0024】
一方、近年、ガラス板を使用したガラスカバーモジュールタイプの製造方法として、真空ラミネート装置において、接着性樹脂封止材の溶融終了途中で取り出し、別の加熱装置(乾燥機等)で接着性樹脂封止材の硬化を完了させることが検討されている。この場合には、真空ラミネート装置を長時間拘束することなく、生産性は向上するものの、接着性樹脂封止材(EVA)が、上記別の加熱装置での硬化途中に、モジュールからはみ出し、この部分が加熱装置を汚す等の問題があり、この汚染の悪影響により、生産性が低下してしまう問題があった。
【0025】
上記ガラスカバーモジュールタイプの場合には、前記汚染の問題を解消するために、図6および図8で示すモジュールのように、保護フィルム(図6の3)の寸法を大きくして、真空ラミネート時に、EVAのはみ出し部分をここで受ける構造とする方法がとられており、若干はみ出した部分は、後で削除される。
【0026】
前記はみ出しの問題は、ガラスレスの薄型太陽電池モジュールでも同様に発生する問題ではあるが、ガラスレスの場合には、剛性が小さく腰が弱く、またモジュールの厚さ寸法も小とすることが要請されるので、前記保護フィルムの寸法増大による方法では、解消が困難である。また、剛性が小さいので、上記別の加熱装置への搬送は難がある等の問題もあり、同一の真空ラミネート装置内で、連続処理せざるを得ない。
【0027】
この発明は、上記のような点に鑑みてなされたもので、本発明の課題は、真空ラミネート装置を長時間拘束する問題および接着性樹脂封止材のはみ出しの問題を解消し、作業性,生産性の向上および外観不良の防止を図り、もって量産性に優れたガラスレスの薄型太陽電池モジュールの製造方法を提供することにある。
【0028】
【課題を解決するための手段】
前述の課題を解決するため、この発明においては、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法において1)表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理する工程(一次硬化処理工程)と、2)前記一次硬化処理工程後の積層シートを、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理する工程(二次硬化処理工程)とを含み、前記二次硬化処理工程の際、前記一次硬化処理工程後の積層シートを複数段、各積層シートの両主面に剥離シートを介して積層した積層体を、一括して加熱加圧処理することを特徴とする(請求項1の発明)
【0029】
上記方法によれば、真空ラミネート装置による一次硬化工程で、架橋反応をそれ程進行させずに比較的短時間で積層シートを接着した上で、加熱加圧処理装置に搬入し、二次硬化工程で架橋を完了させてモジュールを形成するので、前記真空ラミネート装置の長時間拘束問題および接着性樹脂封止材のはみ出し問題を解消し、作業性,生産性の向上および外観不良の防止を図ることができる。特に、前記の積層体を一括して加熱加圧処理することにより、作業時間の短縮とコスト低減が図れる。
【0030】
前記請求項1の発明の実施態様としては、下記請求項2ないしの発明が好ましい。即ち、前記請求項1に記載の製造方法において、前記積層体における各剥離シートは、各積層シートの両主面に対してそれぞれ各1枚配設し、かつ隣接する積層シートにおける各剥離シートの間に、それぞれゴム板を配設して、前記二次硬化処理を行なう(請求項2の発明)。これにより、ゴム板が緩衝材として作用し、シワ等の外観不良の発生が防止できる。
【0031】
また、前記請求項1または2に記載の製造方法において、前記接着性樹脂封止材はEVA(エチレン−酢酸ビニル共重合樹脂)とし、かつ前記一次硬化処理工程における所定温度は140〜160℃とし、所定時間は5〜10分とする(請求項3の発明)。EVAの架橋硬化度合いは、温度と時間によって異なるが、比較的短時間で積層シートを接着し、搬送可能な状態とするためには、上記の範囲が好ましい。
【0032】
また、前記請求項1ないし3のいずれか1項に記載の製造方法において、前記一次硬化処理工程の際、前記積層シートの両主面に剥離シートを重ねて処理する(請求項4の発明)。この剥離シートは、複数モジュール処理におけるセパレーターとしての機能の他に、ガラスレス方式における積層シートの剛性強化の機能も兼ね、これにより、作業性が向上する。
【0033】
さらに、前記請求項1ないしのいずれか1項に記載の製造方法において、前記接着性樹脂封止材はEVAとし、かつ前記二次硬化処理工程における所定温度は140〜160℃とし、所定圧力は0.001〜0.1MPaとする(請求項5の発明)。0.001MPaより小さい場合には、加圧効果が得られない。なぜならば、太陽電池の有無の境目部分等で、圧力が掛かり難い場所があって、膜厚が不均一となる場合があり、外観不良をも招く問題が発生する。また、0.1MPaより大きい場合には、過加圧により膜厚が薄くなり、寸法の安定性に難があり、また基板端部からEVAがはみ出す問題が発生する。
【0034】
さらにまた、前記請求項1ないし5のいずれか1項に記載の製造方法において、前記剥離シートは、エンボス付のフッ素樹脂含浸ガラスクロスからなることとする(請求項6の発明)。これにより、剥離が容易となり、かつ強度が向上する。
【0035】
【発明の実施の形態】
本発明の実施例について、比較例と共に以下に述べる。後述する実施例および比較例に用いた太陽電池モジュールの構成は、前記図4に示す積層シートから形成したものと同様である。
【0036】
(実施例)
前記図4(b)において、保護フィルム74は厚さ0.025mmのETFE耐候性フィルムとし、接着性樹脂封止材75として厚さ0.4mmのEVAを用いた。内部配線72はSn/Cu/Sn材料からなる厚さ0.10mm、幅8mmの金属箔を用いた。内部配線72としては、はんだメッキCu材料を用いることもできる。補助配線73としては、厚さ0.025mmのPETフィルムと厚さ0.030mmのアルミニウムとの積層体に導電性粘着剤を付した幅8mmのテープを用いた。
【0037】
図4(b)に示すような構造で、まず保護フィルム74を、図1に示すエンボス付きの剥離シート91(中興化成製、商品名:チューコーフロー:FGF−400)上にセットし、接着性樹脂封止材75を組立てた後、あらかじめ表面側に0.3mm膜厚の接着性樹脂封止材75が仮ラミネートされた太陽電池10と内部配線72とを所定の位置にセットし、補助配線73で太陽電池10と内部配線72との電気的接続を行った。次に、接着性樹脂封止材75を載置した後、ガルバリウム鋼板(川鉄鋼板製、商品名:レジノカラー新茶)71を載置し、最後にエンボス付きの剥離シート91をセットして組立てを終了する。
【0038】
所定枚数組立てて、真空ラミネート装置内に並行にセットし、150℃の温度で、所定の条件(例えば、5分間真空引き、1分間プレス、5分間一次硬化)で一次硬化処理を行い、高温状態の仮ラミネートされた太陽電池モジュールを、エンボス付き剥離シート91と共にそのまま取り出し、室温で一時保管した。
【0039】
前記工程を繰り返し、10数枚の一次硬化処理工程終了品を作製した後、図1の概略図に示すように、10数枚の太陽電池モジュール積層体を構成し、図示しないプレス簡易治具の上下のプレート93間に剥離シート91、ゴム板92の順に組立て、その間に前記一次キュアした剥離シート間にセットされた太陽電池モジュール80を、順次、ゴム板92を挿入しながら所定段数組立てた。次に、面圧が0.05MPaとなるように圧力を調整して加圧した。
【0040】
前記太陽電池モジュールを積層組立て終了したプレス簡易治具を、図2に示すように、加熱加圧処理装置90内にセットし、温度150℃で、約1時間二次硬化処理を行なった。その後、加熱加圧処理装置90の図示しない加熱処理用のスイッチを切り、60℃に低下するまで徐々に冷却し、鋼板付き太陽電池モジュールを製作した。
【0041】
(比較例)
前記図8に示すラミネート処理装置により、図3に示すラミネート条件プロファイル(15分間真空引き、1分間プレス、20分間硬化工程)により、真空ラミネート処理し、室温まで冷却して取り出した。なお、この時の作業時間は65分を要した。
【0042】
上記実施例により製作した太陽電池モジュールの製造工程の時間は、組立てから硬化取り出しまでが、モジュール1枚に換算すると約20分以内となり、工程時間を従来方法の比較例に比べて大幅に短縮することができた。また、従来方法は、EVAのはみ出しによる装置の汚染、それに伴う生産性の低下の問題があったが、フッ素樹脂系の剥離シートをモジュールの上下に重ねることにより、装置の汚染の問題は解消した。
【0043】
さらに、比較例の太陽電池モジュールの製造方法は、昇温工程、接着性樹脂封止材75の軟化・溶融から硬化、および室温まで冷却する工程を連続して同一真空ラミネート装置内で行なうため、装置が1時間以上拘束されてしまい、7〜8サイクル/日しか製造できない。従って、生産性が悪く、コスト高となるが、本発明の前記実施例のように、5分間真空引き、1分間プレス、5分間一次硬化の工程を行い、高温状態で取り出し、一時保管する方法を採用すれば、28〜32サイクル/日の製造が可能となる。従って、従来に比べて、生産性が著しく向上し、その分、コストの低減が図れる。
【0044】
【発明の効果】
この発明によれば前述のように、表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法において、1)表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理する工程(一次硬化処理工程)と、2)前記一次硬化処理工程後の積層シートを、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧 力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理する工程(二次硬化処理工程)とを含み、前記二次硬化処理工程の際、前記一次硬化処理工程後の積層シートを複数段、各積層シートの両主面に剥離シートを介して積層した積層体を、一括して加熱加圧処理することにより、
真空ラミネート装置を長時間拘束する問題および接着性樹脂封止材のはみ出しの問題を解消し、作業性,生産性の向上および外観不良の防止を図ることができる。
【図面の簡単な説明】
【図1】 本発明の実施例に関わるモジュールの積層体を示す図
【図2】 本発明の実施例に関わる加熱加圧処理装置の概略図
【図3】 従来の製造方法に関わる比較例のラミネート処理条件プロファイルを示す図
【図4】 本発明の対象とする太陽電池モジュールの積層シートに関わる模式的構成図
【図5】 従来の各種太陽電池モジュールの模式的構成の概略側断面図
【図6】 従来の太陽電池モジュールの一例を示す模式的構成の側断面図
【図7】 図6の太陽電池モジュールをフレームに取り付けた太陽電池モジュールの模式的構成の側断面図
【図8】 太陽電池モジュールの製造方法に関わる真空ラミネート装置の側断面図
【符号の説明】
70:太陽電池、71:鋼板、74:保護フィルム、75:接着性樹脂封止材、80:太陽電池モジュール、90:加熱加圧処理装置、91:剥離シート、92:ゴム板、93:プレート、100:真空ラミネート装置。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a glass formed by sealing a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a front surface protective member and a back surface protective member via a sheet-like adhesive resin sealing material. The present invention relates to a method for manufacturing a thin thin solar cell module.
[0002]
[Prior art]
Thin-film solar cells are expected to become the mainstream of solar cells in the future because they are thin and lightweight, inexpensive to manufacture, and easy to increase in area, and are attached to roofs and windows of buildings in addition to power supply. Demand is also expanding for commercial and general residential use. Roof tiles with solar cells have also been developed for general housing.
[0003]
In recent years, research and development of flexible type solar cells using plastic films have been promoted, and by utilizing this flexibility, mass production is possible by a roll-to-roll type or step roll type manufacturing method.
[0004]
The thin film solar cell is usually used as a solar cell module. As this module, a solar cell formed on an electrically insulating film substrate is sealed with an electrically insulating protective material so that a protective layer is formed on both the light-receiving surface side and the non-light-receiving surface side of the solar cell. What is provided is known.
[0005]
6 and 7 show an example of a schematic structure of a conventional solar cell module, FIG. 6 is a side sectional view of the solar cell module, and FIG. 7 is attached to a frame having a U-shaped metal frame. The sectional side view of the solar cell module of the state which carried out is shown.
[0006]
In FIG. 6, a solar cell 1 has a plurality of solar cell elements connected in series or in parallel, a surface protection member 2 such as a glass plate on the light receiving surface side, and ethylene monofluoride on both surfaces of an aluminum foil on the back surface side. Adhesive resin such as EVA (ethylene-vinyl acetate copolymer resin), which is provided with a back surface protection member 3 such as a moisture-proof protective sheet to which (trade name: Tedlar, manufactured by DuPont) is bonded, has excellent adhesive sealing properties, and is inexpensive. The sealing material 4 is heat-sealed and sealed.
[0007]
The solar cell 1 has internal lead wires 5 and 6 electrically connected to the positive (+) and negative (−) electrodes, and the internal lead wires 5 and 6 are bonded and fixed to the back surface protection member 3. The terminal box 7 is guided through the back surface protection member 3 and is electrically connected to the core wires 9 and 10 of the cable 8 as an external lead wire inside the terminal box 7. Forming.
[0008]
The surface protection member 2 may be made of an organic material such as a light-transmitting acrylic resin plate or a polycarbonate resin plate in addition to an inorganic material such as a glass plate. Further, as the back surface protection member 3, in addition to the resin containing the metal foil, an organic film alone such as a fluorine film, a composite material obtained by bonding an organic film and a metal foil, or a metal such as a metal plate or a glass plate・ Inorganic materials may be used.
[0009]
FIG. 7 shows an example of a solar cell module mounted on a frame. In FIG. 7, the solar cell module 11 has a frame 12 around it, and the peripheral portion of the solar cell module 11 is a cross section of the metal frame 12. It is inserted into the holding portion 12a having a U-shaped frame and fixed and held by an adhesive seal material 13 injected so as to fill the gap. Here, the adhesive seal material 13 is made of an adhesive elastic seal material such as heat-flowable butyl rubber or liquid silicone rubber that is solid after curing, and the surface protection member 2 such as a glass plate or the frame 12. In addition to absorbing the thermal expansion of water, moisture intrusion is suppressed.
[0010]
Next, as an example of a method for laminating (heat sealing and sealing) each constituent member related to the method for manufacturing the solar cell module 11, a vacuum laminating method will be described with reference to FIG. In FIG. 8, the solar cell module 11 includes a surface protection member 2, an adhesive resin sealing material 4, a solar cell 1 to which lead wires 5 and 6 are attached, an adhesive resin sealing material 4, and a back surface protection member 3. The layers are sequentially stacked and placed in the vacuum laminating apparatus 100. Thereafter, the upper casing 101 of the vacuum laminating apparatus 100 is closed and sealed, heated to a predetermined temperature by the heating plate 103, and the module 11 is connected to the lower casing 102 by an exhaust apparatus (not shown) from the exhaust pipe 104. The air in the space 105 is exhausted and kept in a vacuum.
[0011]
At the same time, the air in the space 108 formed by the rubber diaphragm 107 and the upper casing 101 is exhausted from the air supply / exhaust pipe 106 attached to the upper casing 101 to be evacuated, and the rubber diaphragm 107 is evacuated. It sticks to the inner wall surface 109. In this state, after the solar cell module 11 is heated at a predetermined temperature for a predetermined time, air is introduced from the air supply / exhaust pipe 106, and the solar cell module 11 is caused by a pressure difference (substantially atmospheric pressure difference) between the space portion 105 and the space portion 108. Are vacuum-pressurized by a rubber diaphragm 107 to form a solar cell module 11 having a cross-sectional structure shown in FIG.
[0012]
Regarding the structure and manufacturing method of the solar cell module, various structures and manufacturing methods other than the above are employed. FIG. 5 is a schematic sectional view schematically showing various structures of the solar cell module, and shows only main members.
[0013]
FIG. 5 (a) corresponds to the solar cell module having the structure shown in FIG. 6, wherein 21 is a solar cell, 22 is a surface protection member (glass plate), and 23 is a back material (aluminum foil laminated polypropylene film) as a back surface protection member. Vinyl chloride 24 indicates an adhesive resin sealing material (EVA).
[0014]
FIG. 5B corresponds to a so-called super straight structure, in which solar cells are directly formed on a glass substrate, 31 is a glass substrate solar cell, 33 is a back material (aluminum foil laminated polyvinyl fluoride), and 34 is bonded. The resin sealing material (EVA) is shown.
[0015]
FIG. 5C shows a so-called substrate structure, in which a solar cell is formed on a SUS substrate or a plastic substrate, and a plastic protective film is used as a surface protection member. A surface protective film (ETFE or FEP), 43 is a back structure support (surface-treated AL-zinc steel plate), and 44 is an adhesive resin sealing material (EVA).
[0016]
Further, FIG. 5 (d) shows a flexible module using a protective film of a plastic film as a surface protective member and a back surface protective member, 51 is a solar cell, 52 is a surface protective film (ETFE or FEP), Reference numeral 53 denotes a back surface protective film (ETFE, FEP, PVF, etc.), and 54 denotes an adhesive resin sealing material (EVA). Furthermore, FIG.5 (e) shows what added the glass nonwoven fabric 65 as a reinforcement layer in the surface protection member and back surface protection member of FIG.5 (d).
[0017]
In addition to the above, there are various solar cell module structures, and a structure suitable for the needs is adopted. As will be described in detail later, the present invention is directed to a method that does not use a glass plate, that is, a glassless thin solar cell module as shown in FIGS. . Although the back structure support body 43 shown in FIG. 5C is illustrated as a thick plate, a thin steel plate is used.
[0018]
FIG. 4 is a schematic configuration diagram relating to a laminated sheet when forming the glassless thin solar cell module, and shows an example of a module using a steel plate as a back structure support (of various kinds of modules of this type). For details, see, for example, Patent Document 1).
[0019]
Fig.4 (a) is a top view of the lamination sheet for solar cell modules, FIG.4 (b) is XX sectional drawing in Fig.4 (a). In FIG. 4, internal wiring 72 is arranged on both sides of a solar cell 70 in which a photoelectric conversion part is formed on a flexible substrate, and is connected to the back electrode of the solar cell 70 via an auxiliary wiring 73. These are sealed with a sheet-like adhesive resin sealing material 25 such as EVA, and the light incident side is covered with a weather-resistant protective film 74 such as ETFE (tetrafluoroethylene polymer). The opposite side is covered with a back surface protection material such as a steel plate to constitute a solar cell module with steel plate 80 as a whole.
[0020]
As a manufacturing method of the solar cell module as described above, after laminating and assembling in the structure as shown in FIG. 4B, from the softening / melting of the sheet-like adhesive resin sealing material 25 to the curing step, and to room temperature. The cooling process was continuously performed in the same vacuum laminating apparatus.
[0021]
[Patent Document 1]
JP 2000-349308 A (refer to pages 2 to 5 and FIGS. 1 to 8)
[0022]
[Problems to be solved by the invention]
By the way, in the manufacturing method of the solar cell module in which various processes are continuously performed in the same vacuum laminating apparatus, there are the following problems.
[0023]
First, EVA is cross-linked with a peroxide, so that the cross-linking time takes about 10 to 30 minutes. In addition, when vacuum treatment and heating / cooling steps are included, the manufacturing time becomes about 60 to 70 minutes, and vacuum lamination The device will be restrained for a long time. Therefore, when the solar cell module is mass-produced, there is a problem that the productivity is low and the manufacturing cost is high.
[0024]
On the other hand, in recent years, as a glass cover module type manufacturing method using a glass plate, in a vacuum laminating apparatus, the adhesive resin sealing material is taken out in the middle of melting, and the adhesive resin sealing is performed with another heating device (dryer or the like). It is being considered to complete the curing of the stop material. In this case, although productivity is improved without constraining the vacuum laminating apparatus for a long time, the adhesive resin sealing material (EVA) protrudes from the module during the curing in the other heating apparatus, and this There is a problem that the part contaminates the heating device, and there is a problem that productivity is lowered due to the adverse effect of this contamination.
[0025]
In the case of the glass cover module type, in order to eliminate the contamination problem, the size of the protective film (3 in FIG. 6) is increased as in the module shown in FIGS. The method of receiving the protruding portion of EVA here is adopted, and the slightly protruding portion is deleted later.
[0026]
The problem of protrusion is a problem that occurs in a glassless thin solar cell module as well, but in the case of glassless, it is required that the rigidity is small and the waist is weak and the thickness of the module is also small. Therefore, it is difficult to solve the problem by increasing the size of the protective film. Moreover, since rigidity is small, there also exists a problem that conveyance to said another heating apparatus has difficulty, etc., and it must be processed continuously in the same vacuum laminating apparatus.
[0027]
The present invention has been made in view of the above points, and the object of the present invention is to solve the problem of restraining the vacuum laminating apparatus for a long time and the problem of the sticking out of the adhesive resin sealing material. An object of the present invention is to provide a method for producing a glassless thin solar cell module which improves productivity and prevents appearance defects and thus has excellent mass productivity.
[0028]
[Means for Solving the Problems]
In order to solve the above-described problems, in the present invention, a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a surface protection member and a back surface protection member is formed into a sheet-like adhesive resin sealing material. In a method for manufacturing a glassless thin solar cell module formed by sealing via a sheet , 1) a solar cell is laminated between a front surface protective member and a back surface protective member via a sheet-like adhesive resin sealing material The laminated sheet is heated and pressed at a predetermined temperature for a predetermined time with a vacuum laminator, and the adhesive resin sealing material is subjected to a primary curing process (primary curing process) , and 2) after the primary curing process A step of subjecting the adhesive resin sealing material to a secondary curing treatment by subjecting the laminated sheet to a heat and pressure treatment at a predetermined pressure and a predetermined temperature for a predetermined time with a heat and pressure processing apparatus different from the vacuum laminating apparatus (2) Curing treatment step) and a, when the secondary curing treatment step, a plurality of stages of stacked sheet after the primary curing treatment step, a laminate was laminated via a peeling sheet on both main surfaces of each laminated sheet, bulk Then, the heat and pressure treatment is performed (the invention of claim 1) .
[0029]
According to the above method, in the primary curing step with the vacuum laminating apparatus, the laminated sheet is adhered in a relatively short time without causing the crosslinking reaction to proceed so much, and then carried into the heat and pressure treatment apparatus, and in the secondary curing step. Since the module is formed by completing the cross-linking, it is possible to solve the long-time restraint problem of the vacuum laminating apparatus and the protruding problem of the adhesive resin sealing material, and to improve workability and productivity and to prevent the appearance defect. it can. In particular, working time and cost can be reduced by batch heating and pressurizing the laminate.
[0030]
As an embodiment of the invention of claim 1, the inventions of claims 2 to 6 below are preferable. That is, in the manufacturing method according to claim 1 , each release sheet in the laminate is disposed on each main surface of each laminate sheet, and each release sheet in an adjacent laminate sheet is provided. A rubber plate is provided between each of them to perform the secondary curing process (invention of claim 2 ). As a result, the rubber plate acts as a cushioning material and can prevent appearance defects such as wrinkles.
[0031]
In the manufacturing method according to claim 1 or 2 , the adhesive resin sealing material is EVA (ethylene-vinyl acetate copolymer resin), and the predetermined temperature in the primary curing treatment step is 140 to 160 ° C. The predetermined time is 5 to 10 minutes (invention of claim 3 ). Although the degree of crosslinking and curing of EVA varies depending on the temperature and time, the above range is preferable in order to bond the laminated sheet in a relatively short time and make it transportable.
[0032]
Moreover, in the manufacturing method according to any one of claims 1 to 3, in the primary curing treatment step, a release sheet is overlapped and processed on both main surfaces of the laminated sheet (invention of claim 4 ). . The release sheet, in addition to the function as a separator in several module processing, also functions of rigidity enhancement of the laminated sheet in the glass-less system, thereby improving the workability.
[0033]
Furthermore, in the manufacturing method according to any one of claims 1 to 4 , the adhesive resin sealing material is EVA, and the predetermined temperature in the secondary curing treatment step is 140 to 160 ° C, and the predetermined pressure is set. Is set to 0.001 to 0.1 MPa (Invention of Claim 5 ). When the pressure is less than 0.001 MPa, the pressurizing effect cannot be obtained. This is because there is a place where pressure is difficult to be applied at the boundary between the presence and absence of the solar cell, etc., and the film thickness may be non-uniform, which causes a problem of appearance defects. On the other hand, when the pressure is larger than 0.1 MPa, the film thickness becomes thin due to over-pressurization, the dimensional stability is difficult, and there is a problem that EVA protrudes from the edge of the substrate.
[0034]
Furthermore, in the manufacturing method according to any one of claims 1 to 5 , the release sheet is made of an embossed fluororesin-impregnated glass cloth (invention of claim 6 ). Thereby, peeling becomes easy and intensity | strength improves.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the present invention will be described below together with comparative examples. The configuration of the solar cell module used in Examples and Comparative Examples described later is the same as that formed from the laminated sheet shown in FIG.
[0036]
(Example)
In FIG. 4B, the protective film 74 is an ETFE weather-resistant film having a thickness of 0.025 mm, and EVA having a thickness of 0.4 mm is used as the adhesive resin sealing material 75. For the internal wiring 72, a metal foil made of Sn / Cu / Sn material having a thickness of 0.10 mm and a width of 8 mm was used. As the internal wiring 72, a solder-plated Cu material can also be used. As the auxiliary wiring 73, a tape having a width of 8 mm obtained by attaching a conductive adhesive to a laminate of a PET film having a thickness of 0.025 mm and aluminum having a thickness of 0.030 mm was used.
[0037]
4B, first, the protective film 74 is set on an embossed release sheet 91 (manufactured by Chuko Kasei Co., Ltd., trade name: Chuko Flow: FGF-400) shown in FIG. After assembling the resin sealing material 75, the solar cell 10 and the internal wiring 72 on which the adhesive resin sealing material 75 having a thickness of 0.3 mm is preliminarily laminated on the surface side are set in a predetermined position, and the auxiliary wiring 73 is provided. Thus, the solar cell 10 and the internal wiring 72 were electrically connected. Next, after the adhesive resin sealing material 75 is placed, a Galvalume steel plate (made by Kawatetsu steel plate, trade name: Resino Color Shincha) 71 is placed, and finally a release sheet 91 with an emboss is set to complete the assembly. To do.
[0038]
Assemble the specified number of sheets, set them in the vacuum laminator in parallel, and perform the primary curing process at the temperature of 150 ° C under the specified conditions (for example, evacuation for 5 minutes, press for 1 minute, primary curing for 5 minutes) Was temporarily taken out together with the embossed release sheet 91 and temporarily stored at room temperature.
[0039]
After repeating the above steps and producing 10 or more finished products of the primary curing treatment process, as shown in the schematic diagram of FIG. The release sheet 91 and the rubber plate 92 were assembled in this order between the upper and lower plates 93, and the solar cell module 80 set between the first cured release sheets in the meantime was assembled in a predetermined number of stages while the rubber plates 92 were inserted. Next, the pressure was adjusted so that the surface pressure was 0.05 MPa.
[0040]
As shown in FIG. 2, the simple press jig after the lamination and assembly of the solar cell module was set in a heat and pressure treatment apparatus 90 and subjected to secondary curing treatment at a temperature of 150 ° C. for about 1 hour. Thereafter, the heat treatment switch (not shown) of the heat and pressure treatment apparatus 90 was turned off and gradually cooled until the temperature decreased to 60 ° C., thereby producing a solar cell module with a steel plate.
[0041]
(Comparative example)
With the laminating apparatus shown in FIG. 8, vacuum laminating was performed according to the laminating condition profile shown in FIG. 3 (evacuation for 15 minutes, pressing for 1 minute, curing process for 20 minutes), cooling to room temperature, and taking out. In addition, the work time at this time required 65 minutes.
[0042]
The manufacturing process time of the solar cell module manufactured according to the above embodiment is about 20 minutes from assembly to curing removal in terms of one module, and the process time is significantly shortened compared to the comparative example of the conventional method. I was able to. In addition, the conventional method has a problem of contamination of the device due to the protrusion of EVA, and a decrease in productivity, but the problem of contamination of the device has been solved by stacking fluororesin-based release sheets on the top and bottom of the module. .
[0043]
Furthermore, since the manufacturing method of the solar cell module of the comparative example performs the steps of raising the temperature, softening / melting the adhesive resin sealing material 75 from the melting and curing, and cooling to room temperature in the same vacuum laminating apparatus, The device is constrained for more than 1 hour and can only be produced at 7-8 cycles / day. Therefore, the productivity is poor and the cost is high. However, as in the above-described embodiment of the present invention, a method of evacuating for 5 minutes, pressing for 1 minute, performing primary curing for 5 minutes, taking it out at a high temperature, and temporarily storing it. If it is adopted, it becomes possible to produce 28 to 32 cycles / day. Therefore, the productivity is remarkably improved as compared with the conventional case, and the cost can be reduced accordingly.
[0044]
【The invention's effect】
According to this invention, as described above, a solar cell in which a plurality of solar cell elements are connected in series or in parallel between the front surface protection member and the back surface protection member is interposed via the sheet-like adhesive resin sealing material. In a manufacturing method of a glassless thin solar cell module formed by sealing, 1) a laminated sheet in which solar cells are laminated via a sheet-like adhesive resin sealing material between a front surface protective member and a back surface protective member. Are subjected to heat and pressure treatment at a predetermined temperature for a predetermined time by a vacuum laminating apparatus to perform a primary curing treatment of the adhesive resin sealing material (primary curing treatment step), and 2) a laminated sheet after the primary curing treatment step , said by different heating and pressing treatment apparatus with a vacuum laminator, a predetermined time at a predetermined pressure force and a predetermined temperature, heating and pressurizing treatment, the adhesive resin sealing material for secondary hardening treatment process (secondary hardening Process) Wherein the time of secondary curing step, the plurality of stages of stacked sheets after the primary curing treatment step, a laminate was laminated via a peeling sheet on both main surfaces of each laminated sheet, heating and pressing treatment collectively By doing
The problem of restraining the vacuum laminating apparatus for a long time and the problem of the sticking of the adhesive resin sealing material can be solved, and workability and productivity can be improved and appearance defects can be prevented.
[Brief description of the drawings]
FIG. 1 is a diagram showing a laminated body of modules according to an embodiment of the present invention. FIG. 2 is a schematic view of a heat and pressure treatment apparatus according to an embodiment of the present invention. FIG. 4 is a diagram showing a lamination processing condition profile. FIG. 4 is a schematic configuration diagram relating to a laminated sheet of solar cell modules targeted by the present invention. FIG. 5 is a schematic side sectional view of schematic configurations of various conventional solar cell modules. 6] A side sectional view of a schematic configuration showing an example of a conventional solar cell module. [Fig. 7] Fig. 7 is a side sectional view of a schematic configuration of a solar cell module in which the solar cell module of Fig. 6 is attached to a frame. Side cross-sectional view of vacuum laminating equipment related to module manufacturing method 【Explanation of symbols】
70: Solar cell, 71: Steel plate, 74: Protective film, 75: Adhesive resin sealing material, 80: Solar cell module, 90: Heat and pressure treatment device, 91: Release sheet, 92: Rubber plate, 93: Plate 100: Vacuum laminating apparatus.

Claims (6)

表面保護部材と裏面保護部材との間に、複数個の太陽電池素子を直列または並列接続した太陽電池を、シート状の接着性樹脂封止材を介して封止してなるガラスレスの薄型太陽電池モジュールの製造方法において
1)表面保護部材と裏面保護部材との間に、シート状の接着性樹脂封止材を介して太陽電池を積層した積層シートを、真空ラミネート装置により所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を一次硬化処理する工程(一次硬化処理工程)と、
2)前記一次硬化処理工程後の積層シートを、前記真空ラミネート装置とは異なる加熱加圧処理装置により、所定圧力および所定温度で所定時間、加熱加圧処理し、前記接着性樹脂封止材を二次硬化処理する工程(二次硬化処理工程)と、
を含み、前記二次硬化処理工程の際、前記一次硬化処理工程後の積層シートを複数段、各積層シートの両主面に剥離シートを介して積層した積層体を、一括して加熱加圧処理することを特徴とする太陽電池モジュールの製造方法
A glassless thin solar cell in which a solar cell in which a plurality of solar cell elements are connected in series or in parallel between a front surface protective member and a back surface protective member is sealed with a sheet-like adhesive resin sealing material. In the battery module manufacturing method ,
1) A laminated sheet in which solar cells are laminated between a front surface protective member and a back surface protective member via a sheet-like adhesive resin sealing material is heated and pressurized at a predetermined temperature for a predetermined time by a vacuum laminator. , A step of primary curing treatment of the adhesive resin sealing material (primary curing treatment step) ;
2) The laminated sheet after the primary curing treatment step is subjected to heat and pressure treatment at a predetermined pressure and a predetermined temperature for a predetermined time by a heat and pressure processing device different from the vacuum laminating device, and the adhesive resin sealing material is A secondary curing process (secondary curing process) ;
In the secondary curing treatment step, a plurality of laminated sheets after the primary curing treatment step are laminated, and a laminated body obtained by laminating both main surfaces of each laminated sheet via release sheets is collectively heated and pressed. The manufacturing method of the solar cell module characterized by processing .
請求項1に記載の製造方法において、前記積層体における各剥離シートは、各積層シートの両主面に対してそれぞれ各1枚配設し、かつ隣接する積層シートにおける各剥離シートの間に、それぞれゴム板を配設して、前記二次硬化処理を行なうことを特徴とする太陽電池モジュールの製造方法。 In the manufacturing method according to claim 1 , each release sheet in the laminate is disposed on each main surface of each laminate sheet, and between each release sheet in an adjacent laminate sheet, A method for manufacturing a solar cell module, wherein a rubber plate is provided and the secondary curing process is performed. 請求項1または2に記載の製造方法において、前記接着性樹脂封止材はEVA(エチレン−酢酸ビニル共重合樹脂)とし、かつ前記一次硬化処理工程における所定温度は140〜160℃とし、所定時間は5〜10分とすることを特徴とする太陽電池モジュールの製造方法。 3. The manufacturing method according to claim 1, wherein the adhesive resin sealing material is EVA (ethylene-vinyl acetate copolymer resin), and the predetermined temperature in the primary curing treatment step is 140 to 160 ° C. for a predetermined time. Is 5-10 minutes, The manufacturing method of the solar cell module characterized by the above-mentioned. 請求項1ないし3のいずれか1項に記載の製造方法において、前記一次硬化処理工程の際、前記積層シートの両主面に剥離シートを重ねて処理することを特徴とする太陽電池モジュールの製造方法。The manufacturing method according to any one of claims 1 to 3 , wherein, in the primary curing process, a release sheet is overlapped and processed on both main surfaces of the laminated sheet. Method. 請求項1ないしのいずれか1項に記載の製造方法において、前記接着性樹脂封止材はEVAとし、かつ前記二次硬化処理工程における所定温度は140〜160℃とし、所定圧力は0.001〜0.1MPaとすることを特徴とする太陽電池モジュールの製造方法。In the production method according to any one of claims 1 to 4, wherein the adhesive resin sealing material and EVA, and a predetermined temperature in the second curing step is set to 140 to 160 ° C., the predetermined pressure is 0. The manufacturing method of the solar cell module characterized by setting it as 001-0.1 MPa. 請求項1ないし5のいずれか1項に記載の製造方法において、前記剥離シートは、エンボス付のフッ素樹脂含浸ガラスクロスからなることを特徴とする太陽電池モジュールの製造方法。6. The method for manufacturing a solar cell module according to claim 1 , wherein the release sheet is made of an embossed fluororesin-impregnated glass cloth.
JP2002343937A 2002-11-27 2002-11-27 Manufacturing method of solar cell module Expired - Fee Related JP3856224B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343937A JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343937A JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Publications (2)

Publication Number Publication Date
JP2004179397A JP2004179397A (en) 2004-06-24
JP3856224B2 true JP3856224B2 (en) 2006-12-13

Family

ID=32705605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343937A Expired - Fee Related JP3856224B2 (en) 2002-11-27 2002-11-27 Manufacturing method of solar cell module

Country Status (1)

Country Link
JP (1) JP3856224B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2873499B1 (en) * 2004-07-23 2007-05-25 Thales Sa PROCESS FOR SOLDING OR ASSEMBLING MULTIPLE ELEMENTS
JP4795031B2 (en) * 2006-01-30 2011-10-19 日本メクトロン株式会社 Method for stacking printed circuit boards
JP5209229B2 (en) * 2007-05-09 2013-06-12 中島硝子工業株式会社 Manufacturing method of solar cell module
JP5974580B2 (en) * 2011-03-28 2016-08-23 三菱化学株式会社 Manufacturing method of solar cell module
JP5470341B2 (en) * 2011-08-01 2014-04-16 中島硝子工業株式会社 Manufacturing method of solar cell module
JPWO2015019443A1 (en) * 2013-08-07 2017-03-02 株式会社エヌ・ピー・シー Solar cell module laminating equipment

Also Published As

Publication number Publication date
JP2004179397A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4401649B2 (en) Manufacturing method of solar cell module
EP2913921B1 (en) Solar cell apparatus
US6075202A (en) Solar-cell module and process for its production, building material and method for its laying, and electricity generation system
US8389850B2 (en) Solar cell module and method of manufacturing the same
US20030005954A1 (en) Solar cell module and method of manufacturing the same
WO2019196332A1 (en) Curved photovoltaic tile and preparation method therefor
US20200028010A1 (en) Planarization of photovoltaics
JP2002039631A (en) Photothermal hybrid panel, hybrid panel main body using it, and method of manufacturing it
AU770820B2 (en) Method of encapsulating a photovoltaic module by an encapsulating material and the photovoltaic module
JP3856224B2 (en) Manufacturing method of solar cell module
KR102493651B1 (en) High-power shingled construction material integrated solar module for building facade and manufacturing method thereof
CN113809193A (en) Curved surface photovoltaic assembly and preparation method thereof
JP2007242677A (en) Solar battery module, method of manufacturing the same and solar battery system
JP2001077387A (en) Solar battery module
JPH11216832A (en) Manufacturing of laminate
JP2002111014A (en) Solar light generating plastic module
JP2004311571A (en) Method of manufacturing solar cell module
JP2012151423A (en) Method of manufacturing electronic component
JP4069405B2 (en) Manufacturing method of solar cell module
JPH11254526A (en) Laminating apparatus and method
JP2001144312A (en) Method and device for manufacturing thin-film solar cell module
JP4061525B2 (en) Manufacturing method of solar cell module
JPH09312408A (en) Manufacture of solar battery module
JP4106608B2 (en) Manufacturing method of solar cell module
KR102478448B1 (en) Flexible solar module, texturing method of the same, and texturing equipment of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060622

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees