JP3856057B2 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
JP3856057B2
JP3856057B2 JP19313797A JP19313797A JP3856057B2 JP 3856057 B2 JP3856057 B2 JP 3856057B2 JP 19313797 A JP19313797 A JP 19313797A JP 19313797 A JP19313797 A JP 19313797A JP 3856057 B2 JP3856057 B2 JP 3856057B2
Authority
JP
Japan
Prior art keywords
armature
linear motor
fixed
yoke
armature coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19313797A
Other languages
Japanese (ja)
Other versions
JPH1127926A (en
Inventor
恭祐 宮本
健一 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP19313797A priority Critical patent/JP3856057B2/en
Publication of JPH1127926A publication Critical patent/JPH1127926A/en
Application granted granted Critical
Publication of JP3856057B2 publication Critical patent/JP3856057B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Linear Motors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械のテーブルの駆動用等に用いられるリニアモータに関する。
【0002】
【従来の技術】
従来、テーブルの駆動用等に用いられるリニアモータは、例えば図9に示すように構成されているものが開示されている(例えば、特開平5−49230号公報)。
すなわち、固定部10は、断面がU字形で所定の長さを有する磁性体からなるヨーク部20と、ヨーク部20の両方の脚部210、220の内側面210a,220aに取り付けられて、界磁を構成する永久磁石30と、ヨーク部20の両脚部210、220の上面に長手方向に伸びるガイドレール40とから構成されている。
可動部50は、ガイドレール40の上に長手方向に沿って移動し得るように軸受部510によって支持されたテーブル520と、テーブル520の下面に取り付けられ、ヨーク部20の脚部210と220の間の空間に配置された磁性体からなる電機子固定部530と、電機子固定部530の側面に固定され、かつ両方の永久磁石30に対して空隙を介して対向する電機子部60によって構成されている。
【0003】
【発明が解決しようとする課題】
ところが、上記従来技術では、電機子部60が磁性体からなる電機子固定部530を介してテーブル520に取り付けられているため、電機子部60で発生した熱がテーブル520に伝わり易く、半導体製造設備などの熱影響によるテーブルの位置決め精度の誤差が問題となる設備では使用が難しいという問題があった。
また、永久磁石30と電機子部60との間の空隙の磁気吸引力により、ヨーク部20の脚部210、220が撓み、空隙の機械的精度が低下し、磁気的特性が変化するという問題があった。
本発明は、電機子部からテーブルに伝達する熱を少なくし、かつヨーク部の変形を防いで、高精度のリニアモータを提供することを目的とする。
【0004】
【課題を解決するための手段】
上記課題を解決するため、本発明は、平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部とを備えたリニアモータにおいて、前記ヨーク部は長手方向が平板状のベース部に沿って伸びるように固定してあり、前記永久磁石は前記ヨーク部の両側面に互いに背中合わせに固定し、前記電機子部は前記ベース部に平行に設けたテーブルに固定し、前記電機子部の電機子コイルの表面に近接して冷媒通路を設けたものである。
また、前記電機子部は、一方の側面に凹部を反対側の側面に凸部を設けた電機子鉄心に巻回した電機子コイルからなる複数の単位電機子を形成し、一方の前記単位電機子の前記凹部と他方の前記単位電機子の前記凸部を係合させて、順次複数の単位電機子を一体に形成したものである。
また、前記冷媒通路は、前記テーブルの前記電機子コイルに対向する面に設けた冷却用溝の中に冷媒導管を装着して形成したものである。
また、前記冷媒通路は、前記冷却用溝の開口部をシール板で覆い、前記シール板と前記テーブルの間にOリングを装着したものである。
また、前記冷媒通路は、前記電機子コイルのテーブル側と反対側に接触させて設けた冷媒導管からなるものである。
また、前記冷媒通路は、前記電機子鉄心の前記永久磁石と対向する面に固定した冷媒導管からなるものである。
また、前記冷媒導管と前記電機子コイルとの間の空間に熱伝導性の高い樹脂を充填したものである。
【0005】
【発明の実施の形態】
以下、本発明の第1の実施例を図に基づいて説明する。
図1は本発明の第1の実施例を示す正断面図、図2はA−A断面に沿う平断面図、図3はB−B断面に沿う側断面図、図4は外観平面図である。
図において、1は固定部で、平面状のベース部11とベース部11に垂直に設けられ、ベース部11に沿って伸びる棒状の磁性体のヨーク部2とからなり、断面が逆T字形に形成されている。3(3a,3b)は永久磁石で、ヨーク部2の反対側の両側面21a,21bに背中合わせに複数個、長手方向に所定の間隔を開けてそれぞれ取り付けられて、界磁を構成している。4はヨーク部2の長手方向に沿って伸びるガイドレールで、ヨーク部2の両側のベース部11の上面に設けられている。
5は可動部、51は平面状のテーブル、6はテーブル51の下面に取り付けられた電機子部、61(61a,61b)はT字状の薄板鋼板を積層して形成した電機子鉄心で、両側に突出した部分の先端の一方側に凹部611を、他方側に凸部612を形成してある。62(62a,62b)は3相交流(U相、V相、W相)の各相毎に複数個設けられた電機子コイルで、各電機子コイル毎にボビン621に巻回され、それぞれ電機子鉄心61a,61bにボビン621と共に装着して単位電機子6Xを形成してある。テーブル51の電機子コイル62に対向する面にはヨーク部2の長手方向に沿って伸びる冷却用溝52を設けてある。
【0006】
各単位電機子6Xは互いに凹部611と凸部612とを係合させてダブテール結合させ、複数磁極が一体になるように電機子部6を形成してあり、永久磁石3a,3bに対してそれぞれ空隙を介して対向させてある。各電機子コイル62は樹脂モールド63により一体に形成してある。
なお、界磁磁極数をP、電機子極数をN、総数をmとしたとき、
q=N/m・P =1/2,3/8,1/4,1/5 のいずれかになるように、永久磁石3a,3bと電機子6の構成を決めてある。
53は複数の単位電機子6Xを一体に形成した電機子部6の両端に設けたフランジである。
7は電機子鉄心61の下面に取り付けられた軸受部で、ガイドレール4上に可動部5を長手方向に沿って移動し得るように支持してあり、ボルト54によって電機子鉄心61と共にテーブル51に固定されている。
8a,8bは冷却用溝52の中に装着した冷媒を通す2本の冷媒導管で、冷媒通路8を形成し、電機子コイル62の上側表面に接近して設けられ、それぞれ両端をフランジ53に取り付けてある。冷媒導管8a,8bの両端には、フランジ53に設けた供給口531a、531b,排出口532a,532bに連通する開口部81を設けてある。
82は、図4に示すように、冷媒導管8aの排出口532aと冷媒導管8bの供給口531bとを連絡する連結導管である。
【0007】
このような構成により、冷媒を供給口531aから供給すると、冷媒導管8aを通り、電機子コイル62aの表面から熱を奪い、排出口532aから連結導管82を通り冷媒導管8bに入る。冷媒導管8bでは電機子コイル62bの熱を奪い、排出口532bから外部に排出される。
したがって、電機子コイル62は効果的に冷却され、電機子部6で発生した熱がテーブル51に伝わらずに外部に排出されるので、半導体製造設備などの熱影響によるテーブルの位置決め精度の誤差が少なくなる。
また、永久磁石3がヨーク部2の反対側の両側面21a,21bに取り付けられているので、ヨーク部2に作用する電機子部6と界磁を構成する永久磁石3との間の吸引力は相殺される。したがって、ヨーク部2の変形は少なくなり、空隙の機械的精度が向上し、磁気的特性が安定する。
また、電機子部6は、単位電機子6X毎に各電機子コイル62を各電機子鉄心61に整列巻きすることによって形成してあるので、電機子コイル62の占積率を高めることができる。
【0008】
次に、本発明の第2の実施例について説明する。
図5は本発明の第2の実施例を示す正断面図である。
この場合、テーブル51に設けた冷媒通路8は、上記第1の実施例で用いた冷媒導管8a,8bの代わりに、テーブル51に設けた冷却用溝52の開口部を塞ぐシール板55を設けて冷却用溝52とシール板55により冷媒を通すジャケット83(83a,83b)を形成したものである。84は冷却用溝52の両側に設けたOリングで、シール板55とテーブル51との間から冷媒が漏れないようにしてある。
これにより、冷媒の通路の形成が容易となる。
【0009】
次に、本発明の第3の実施例について説明する。
図6は本発明の第3の実施例を示す正断面図である。
この場合、上記第1の実施例に、電機子コイル62a,62bの下面に接触させて冷媒導管85(85a,85b)設け、その両端をフランジ53に固定したもので、冷媒導管85は冷媒導管8と連通するようにしてある。
冷媒導管85と電機子コイル62a,62bとの間に生じる隙間に熱伝導性の高い樹脂を充填し、電機子コイル62a,62bと冷媒導管85との熱伝導度が高くなるようにしてある。
これにより、電機子コイル62は両面から冷却されるので、電機子コイル62はさらに効果的に冷却され、半導体製造設備などの熱影響によるテーブルの位置決め精度の誤差が少なくなる。
【0010】
次に、本発明の第4の実施例について説明する。
図7は本発明の第4の実施例を示す正断面図である。
この場合、上記第1の実施例の電機子鉄心61a,61bの永久磁石3a,3bに対向する面に冷媒導管86a,86bを設けると共に、その両端をフランジ53に固定し、かつ冷媒導管8a、8bと連通するようにしたものである。
これにより、電機子部6から永久磁石3を通ってテーブル51に伝わる熱が少なくなり、更に熱影響によるテーブルの位置決め精度の誤差が少なくなる。
【0011】
次に、本発明の第5の実施例について説明する。
図8は本発明の第5の実施例を示す正断面図である。
この場合、上記第3の実施例の電機子鉄心61と永久磁石3との間に、冷媒導管86を設けて、電機子鉄心61に固定すると共に、その両端をフランジ53に固定し、かつ冷媒導管8、85と連通するようにしたものである。
これにより、電機子部6から永久磁石3を通ってテーブル51に伝わる熱が極めて少なくなり、更に熱影響によるテーブルの位置決め精度の誤差が極めて少なくなる。
【0012】
【発明の効果】
以上述べたように、本発明によれば、電機子コイルの周囲に冷媒導管を配置して、電機子コイルから発生する熱を直接冷却するようにしてあるので、電機子コイルは効果的に冷却され、電機子部で発生した熱がテーブルに伝わらずに外部に排出される。
また、永久磁石がヨーク部の両側面に取り付けられているので、ヨーク部に作用する電機子部と界磁を構成する永久磁石との間の吸引力は相殺される。
また、電機子部は、単位電機子毎に各電機子コイルを各電機子鉄心に整列巻きしてあるので、電機子コイルの占積率を高め、相対的に銅損を低減することができる。
したがって、電機子部からテーブルに伝達される熱が減少し、熱影響によるテーブルの位置決め精度の誤差が少なくなるとともに、ヨーク部の変形は少なくなり、空隙の機械的精度が向上し、安定した磁気的特性を備えた高精度のリニアモータを提供できる効果がある。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示す正断面図である。
【図2】 本発明の第1の実施例を示す平断面図である。
【図3】 本発明の第1の実施例を示す側断面図である。
【図4】 本発明の第1の実施例を示す平面図である。
【図5】 本発明の第2の実施例を示す正断面図である。
【図6】 本発明の第3の実施例を示す正断面図である。
【図7】 本発明の第4の実施例を示す正断面図である。
【図8】 本発明の第5の実施例を示す正断面図である。
【図9】 従来例を示す正断面図である。
【符号の説明】
1:固定部、11:ベース部、2:ヨーク部、21a,21b:側面、3、3a,3b:永久磁石、4:ガイドレール、5:可動部、51:テーブル、52:冷却用溝、53:フランジ、531a、531b:供給口、532a,532b:排出口、54:ボルト、55:シール板、6:電機子部、6X:単位電機子、61、61a,61b:電機子鉄心、611:凹部、612:凸部、62,62a,62b:電機子コイル、621:ボビン、63:樹脂モールド、7:軸受部、8:冷媒通路、8a,8b、85a,85b,86a,86b:冷媒導管、81:開口部、82:連結導管、83:ジャケット、84:Oリング
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a linear motor used for driving a table of a machine tool.
[0002]
[Prior art]
Conventionally, a linear motor used for driving a table or the like has been disclosed, for example, as shown in FIG. 9 (for example, JP-A-5-49230).
That is, the fixed portion 10 is attached to the yoke portion 20 made of a magnetic body having a U-shaped cross section and a predetermined length, and the inner side surfaces 210a and 220a of both leg portions 210 and 220 of the yoke portion 20, The permanent magnet 30 is composed of a magnet, and a guide rail 40 extending in the longitudinal direction on the upper surfaces of both leg portions 210 and 220 of the yoke portion 20.
The movable portion 50 is attached to the lower surface of the table 520 supported by the bearing portion 510 so that the movable portion 50 can move along the longitudinal direction on the guide rail 40, and the leg portions 210 and 220 of the yoke portion 20. An armature fixing portion 530 made of a magnetic material disposed in a space between the armature portion 60 and an armature portion 60 fixed to a side surface of the armature fixing portion 530 and opposed to both permanent magnets 30 with a gap. Has been.
[0003]
[Problems to be solved by the invention]
However, in the above prior art, since the armature part 60 is attached to the table 520 via the armature fixing part 530 made of a magnetic material, the heat generated in the armature part 60 is easily transmitted to the table 520, and the semiconductor manufacturing process. There is a problem that it is difficult to use the equipment where the error in positioning accuracy of the table due to the heat influence of the equipment is a problem.
Further, the magnetic attraction force of the gap between the permanent magnet 30 and the armature part 60 causes the legs 210 and 220 of the yoke part 20 to bend, the mechanical accuracy of the gap decreases, and the magnetic characteristics change. was there.
An object of the present invention is to provide a highly accurate linear motor that reduces heat transmitted from an armature portion to a table and prevents deformation of a yoke portion.
[0004]
[Means for Solving the Problems]
In order to solve the above problems, the present invention is directed to a flat yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and the permanent magnets facing each other through a gap. In a linear motor comprising an armature part formed by winding an armature coil around a plurality of armature cores, the yoke part is fixed so that its longitudinal direction extends along a flat base part, The permanent magnets are fixed back-to-back on both side surfaces of the yoke part, the armature part is fixed to a table provided in parallel with the base part, and close to the surface of the armature coil of the armature part. A passage is provided.
Further, the armature portion forms a plurality of unit armatures composed of armature coils wound around an armature core provided with a concave portion on one side surface and a convex portion on the opposite side surface, A plurality of unit armatures are sequentially formed integrally by engaging the concave portion of the child and the convex portion of the other unit armature.
The refrigerant passage is formed by mounting a refrigerant conduit in a cooling groove provided on a surface of the table facing the armature coil.
The refrigerant passage is formed by covering the opening of the cooling groove with a seal plate and mounting an O-ring between the seal plate and the table.
The refrigerant passage is composed of a refrigerant conduit provided in contact with the side opposite to the table side of the armature coil.
The refrigerant passage is formed of a refrigerant conduit fixed to a surface of the armature core facing the permanent magnet.
The space between the refrigerant conduit and the armature coil is filled with a resin having high thermal conductivity.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a front sectional view showing a first embodiment of the present invention, FIG. 2 is a plan sectional view along the AA section, FIG. 3 is a side sectional view along the BB section, and FIG. is there.
In the figure, reference numeral 1 denotes a fixed portion, which is composed of a planar base portion 11 and a bar-shaped magnetic yoke portion 2 that is provided perpendicular to the base portion 11 and extends along the base portion 11, and has a cross-section having an inverted T shape. Is formed. 3 (3a, 3b) are permanent magnets, which are attached to both side surfaces 21a, 21b on the opposite side of the yoke portion 2 back to back, and are respectively attached at predetermined intervals in the longitudinal direction to constitute a field. . Reference numeral 4 denotes a guide rail extending along the longitudinal direction of the yoke portion 2, and is provided on the upper surface of the base portion 11 on both sides of the yoke portion 2.
5 is a movable part, 51 is a flat table, 6 is an armature part attached to the lower surface of the table 51, 61 (61a, 61b) is an armature core formed by laminating T-shaped thin steel plates, A concave portion 611 is formed on one side of the tip of the portion protruding to both sides, and a convex portion 612 is formed on the other side. 62 (62a, 62b) is a plurality of armature coils provided for each phase of three-phase alternating current (U phase, V phase, W phase), and is wound around a bobbin 621 for each armature coil. The unit armature 6X is formed by being mounted on the cores 61a and 61b together with the bobbin 621. A cooling groove 52 extending along the longitudinal direction of the yoke portion 2 is provided on the surface of the table 51 facing the armature coil 62.
[0006]
Each unit armature 6X has a concave portion 611 and a convex portion 612 engaged with each other to form a dovetail connection, and the armature portion 6 is formed so that a plurality of magnetic poles are integrated. It is made to oppose through the space | gap. Each armature coil 62 is integrally formed by a resin mold 63.
When the number of field magnetic poles is P, the number of armature poles is N, and the total number is m,
The configurations of the permanent magnets 3a and 3b and the armature 6 are determined so that q = N / m · P = 1/2, 3/8, 1/4, or 1/5.
Reference numeral 53 denotes a flange provided at both ends of the armature portion 6 formed integrally with a plurality of unit armatures 6X.
Reference numeral 7 denotes a bearing portion attached to the lower surface of the armature core 61, which supports the movable portion 5 on the guide rail 4 so as to be movable along the longitudinal direction, and a table 51 together with the armature core 61 by bolts 54. It is fixed to.
Reference numerals 8a and 8b denote two refrigerant conduits through which the refrigerant mounted in the cooling groove 52 passes. The refrigerant passage 8 is formed and is provided close to the upper surface of the armature coil 62. It is attached. At both ends of the refrigerant conduits 8a and 8b, openings 81 that communicate with supply ports 531a and 531b and discharge ports 532a and 532b provided in the flange 53 are provided.
As shown in FIG. 4, 82 is a connecting conduit that connects the outlet 532a of the refrigerant conduit 8a and the supply port 531b of the refrigerant conduit 8b.
[0007]
With such a configuration, when the refrigerant is supplied from the supply port 531a, heat is taken from the surface of the armature coil 62a through the refrigerant conduit 8a, and enters the refrigerant conduit 8b through the connection port 82 from the discharge port 532a. In the refrigerant conduit 8b, the armature coil 62b is deprived of heat and discharged from the discharge port 532b to the outside.
Therefore, the armature coil 62 is effectively cooled, and the heat generated in the armature portion 6 is discharged to the outside without being transmitted to the table 51, so that the error in the positioning accuracy of the table due to the thermal influence of the semiconductor manufacturing equipment or the like is caused. Less.
Further, since the permanent magnet 3 is attached to the opposite side surfaces 21a and 21b on the opposite side of the yoke part 2, the attractive force between the armature part 6 acting on the yoke part 2 and the permanent magnet 3 constituting the field magnet. Is offset. Therefore, the deformation of the yoke portion 2 is reduced, the mechanical accuracy of the air gap is improved, and the magnetic characteristics are stabilized.
Moreover, since the armature part 6 is formed by winding each armature coil 62 around each armature core 61 for every unit armature 6X, the space factor of the armature coil 62 can be increased. .
[0008]
Next, a second embodiment of the present invention will be described.
FIG. 5 is a front sectional view showing a second embodiment of the present invention.
In this case, the refrigerant passage 8 provided in the table 51 is provided with a seal plate 55 for closing the opening of the cooling groove 52 provided in the table 51 instead of the refrigerant conduits 8a and 8b used in the first embodiment. The jacket 83 (83a, 83b) through which the coolant passes is formed by the cooling groove 52 and the seal plate 55. 84 is an O-ring provided on both sides of the cooling groove 52 so that the refrigerant does not leak from between the seal plate 55 and the table 51.
This facilitates the formation of the refrigerant passage.
[0009]
Next, a third embodiment of the present invention will be described.
FIG. 6 is a front sectional view showing a third embodiment of the present invention.
In this case, in the first embodiment, the refrigerant conduits 85 (85a, 85b) are provided in contact with the lower surfaces of the armature coils 62a, 62b, and both ends thereof are fixed to the flange 53. The refrigerant conduit 85 is a refrigerant conduit. 8 is communicated.
A gap formed between the refrigerant conduit 85 and the armature coils 62a and 62b is filled with a resin having high thermal conductivity so that the thermal conductivity between the armature coils 62a and 62b and the refrigerant conduit 85 is increased.
Thereby, since the armature coil 62 is cooled from both surfaces, the armature coil 62 is further effectively cooled, and the error in the positioning accuracy of the table due to the thermal influence of a semiconductor manufacturing facility or the like is reduced.
[0010]
Next, a fourth embodiment of the present invention will be described.
FIG. 7 is a front sectional view showing a fourth embodiment of the present invention.
In this case, refrigerant conduits 86a and 86b are provided on the surfaces of the armature cores 61a and 61b of the first embodiment facing the permanent magnets 3a and 3b, both ends thereof are fixed to the flange 53, and the refrigerant conduits 8a, It communicates with 8b.
Thereby, the heat transmitted from the armature portion 6 through the permanent magnet 3 to the table 51 is reduced, and the error in the positioning accuracy of the table due to the thermal effect is further reduced.
[0011]
Next, a fifth embodiment of the present invention will be described.
FIG. 8 is a front sectional view showing a fifth embodiment of the present invention.
In this case, a refrigerant conduit 86 is provided between the armature core 61 and the permanent magnet 3 of the third embodiment and fixed to the armature core 61, and both ends thereof are fixed to the flange 53, and the refrigerant The pipes 8 and 85 are communicated with each other.
Thereby, the heat transmitted from the armature portion 6 through the permanent magnet 3 to the table 51 is extremely reduced, and further, the error in the positioning accuracy of the table due to the thermal effect is extremely reduced.
[0012]
【The invention's effect】
As described above, according to the present invention, the refrigerant conduit is arranged around the armature coil so as to directly cool the heat generated from the armature coil, so that the armature coil is effectively cooled. The heat generated in the armature portion is discharged to the outside without being transmitted to the table.
Further, since the permanent magnets are attached to both side surfaces of the yoke portion, the attractive force between the armature portion acting on the yoke portion and the permanent magnet constituting the field is canceled out.
Moreover, since the armature part has each armature coil aligned and wound around each armature core for each unit armature, the space factor of the armature coil can be increased and the copper loss can be relatively reduced. .
Therefore, the heat transferred from the armature part to the table is reduced, the error in the positioning accuracy of the table due to the thermal effect is reduced, the deformation of the yoke part is reduced, the mechanical precision of the air gap is improved, and the stable magnetic There is an effect that it is possible to provide a high-precision linear motor with special characteristics.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing a first embodiment of the present invention.
FIG. 2 is a cross-sectional plan view showing a first embodiment of the present invention.
FIG. 3 is a side sectional view showing a first embodiment of the present invention.
FIG. 4 is a plan view showing a first embodiment of the present invention.
FIG. 5 is a front sectional view showing a second embodiment of the present invention.
FIG. 6 is a front sectional view showing a third embodiment of the present invention.
FIG. 7 is a front sectional view showing a fourth embodiment of the present invention.
FIG. 8 is a front sectional view showing a fifth embodiment of the present invention.
FIG. 9 is a front sectional view showing a conventional example.
[Explanation of symbols]
1: fixed part, 11: base part, 2: yoke part, 21a, 21b: side surface, 3, 3a, 3b: permanent magnet, 4: guide rail, 5: movable part, 51: table, 52: cooling groove, 53: flange, 531a, 531b: supply port, 532a, 532b: discharge port, 54: bolt, 55: seal plate, 6: armature part, 6X: unit armature, 61, 61a, 61b: armature core, 611 : Concave portion, 612: convex portion, 62, 62a, 62b: armature coil, 621: bobbin, 63: resin mold, 7: bearing portion, 8: refrigerant passage, 8a, 8b, 85a, 85b, 86a, 86b: refrigerant Conduit, 81: Opening, 82: Connecting conduit, 83: Jacket, 84: O-ring

Claims (6)

平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部とを備えたリニアモータにおいて、
前記ヨーク部は長手方向が平板状のベース部に沿って伸びるように固定してあり、
前記永久磁石は前記ヨーク部の両側面に互いに背中合わせに固定し、
前記電機子部は前記ベース部に平行に設けたテーブルに固定し、
前記電機子部の電機子コイルの表面に近接して冷媒通路を設け、
かつ、前記電機子部は、一方の側面に凹部を反対側の側面に凸部を設けた電機子鉄心に巻回した電機子コイルからなる複数の単位電機子を形成し、一方の前記単位電機子の前記凹部と他方の前記単位電機子の前記凸部を係合させて、順次複数の単位電機子を一体に形成したことを特徴とするリニアモータ。
A plate-shaped yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and an armature coil on a plurality of armature cores facing the permanent magnet via a gap In a linear motor having an armature portion formed by winding,
The yoke part is fixed so that its longitudinal direction extends along a flat base part,
The permanent magnets are fixed back to back on both sides of the yoke part,
The armature part is fixed to a table provided in parallel with the base part,
Providing a refrigerant passage close to the surface of the armature coil of the armature part,
And the said armature part forms the several unit armature which consists of the armature coil wound around the armature core which provided the convex part in the side surface of the other side with the recessed part, and formed the one said unit electric machine A linear motor , wherein a plurality of unit armatures are integrally formed in order by engaging the concave portion of the child and the convex portion of the other unit armature .
平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部とを備えたリニアモータにおいて、
前記ヨーク部は長手方向が平板状のベース部に沿って伸びるように固定してあり、
前記永久磁石は前記ヨーク部の両側面に互いに背中合わせに固定し、
前記電機子部は前記ベース部に平行に設けたテーブルに固定し、
前記電機子部の電機子コイルの表面に近接して冷媒通路を設け、
前記冷媒通路は、前記テーブルの前記電機子コイルに対向する面に設けた冷却用溝の中に冷媒導管を装着して形成したことを特徴とするリニアモータ。
A plate-shaped yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and an armature coil on a plurality of armature cores facing the permanent magnet via a gap In a linear motor having an armature portion formed by winding,
The yoke part is fixed so that its longitudinal direction extends along a flat base part,
The permanent magnets are fixed back to back on both sides of the yoke part,
The armature part is fixed to a table provided in parallel with the base part,
Providing a refrigerant passage close to the surface of the armature coil of the armature part,
The linear motor is characterized in that the refrigerant passage is formed by mounting a refrigerant conduit in a cooling groove provided on a surface of the table facing the armature coil .
平板状のヨーク部と、前記ヨーク部の長手方向に交互に異極が現れるように配置した複数の永久磁石と、前記永久磁石に空隙を介して対向する複数の電機子鉄心に電機子コイルを巻回して形成した電機子部とを備えたリニアモータにおいて、
前記ヨーク部は長手方向が平板状のベース部に沿って伸びるように固定してあり、
前記永久磁石は前記ヨーク部の両側面に互いに背中合わせに固定し、
前記電機子部は前記ベース部に平行に設けたテーブルに固定し、
前記電機子部の電機子コイルの表面に近接して冷媒通路を設け、
前記冷媒通路は、前記冷却用溝の開口部をシール板で覆い、前記シール板と前記テーブルの間にOリングを装着したことを特徴とするリニアモータ。
A plate-shaped yoke portion, a plurality of permanent magnets arranged so that different polarities appear alternately in the longitudinal direction of the yoke portion, and an armature coil on a plurality of armature cores facing the permanent magnet via a gap In a linear motor having an armature portion formed by winding,
The yoke part is fixed so that its longitudinal direction extends along a flat base part,
The permanent magnets are fixed back to back on both sides of the yoke part,
The armature part is fixed to a table provided in parallel with the base part,
Providing a refrigerant passage close to the surface of the armature coil of the armature part,
The linear motor is characterized in that the coolant passage covers an opening of the cooling groove with a seal plate, and an O-ring is mounted between the seal plate and the table .
前記冷媒通路は、前記電機子コイルのテーブル側と反対側の側面に接触させて設けた冷媒導管からなることを特徴とする請求項2または3に記載のリニアモータ。 4. The linear motor according to claim 2, wherein the refrigerant passage includes a refrigerant conduit provided in contact with a side surface of the armature coil opposite to the table side . 前記冷媒通路は、前記電機子鉄心の前記永久磁石と対向する面に固定した冷媒導管からなることを特徴とする請求項2から4までのいずれか1項に記載のリニアモータ。The linear motor according to any one of claims 2 to 4, wherein the refrigerant passage is formed of a refrigerant conduit fixed to a surface of the armature core facing the permanent magnet . 前記冷媒導管と前記電機子コイルとの間の空間に熱伝導性の高い樹脂を充填したことを特徴とする請求項3から5までのいずれか1項に記載のリニアモータ。The linear motor according to any one of claims 3 to 5, wherein a space between the refrigerant conduit and the armature coil is filled with a resin having high heat conductivity .
JP19313797A 1997-07-02 1997-07-02 Linear motor Expired - Fee Related JP3856057B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19313797A JP3856057B2 (en) 1997-07-02 1997-07-02 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19313797A JP3856057B2 (en) 1997-07-02 1997-07-02 Linear motor

Publications (2)

Publication Number Publication Date
JPH1127926A JPH1127926A (en) 1999-01-29
JP3856057B2 true JP3856057B2 (en) 2006-12-13

Family

ID=16302902

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19313797A Expired - Fee Related JP3856057B2 (en) 1997-07-02 1997-07-02 Linear motor

Country Status (1)

Country Link
JP (1) JP3856057B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047129A1 (en) 2008-10-23 2010-04-29 株式会社ソディック Linear motor coil assembly comprising cooling device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4533525B2 (en) * 2000-10-31 2010-09-01 東芝機械株式会社 Drive unit with linear motor
JP2002315297A (en) * 2001-04-11 2002-10-25 Shinko Electric Co Ltd Linear motor system and movable body system
JP2003047229A (en) * 2001-07-31 2003-02-14 Ichinomiya Denki:Kk Winding coil unit, linear core unit, linear motor, and assembly method of linear core unit
JP2006034017A (en) * 2004-07-16 2006-02-02 Shin Etsu Chem Co Ltd Linear motor for machine tool
JP2010226834A (en) * 2009-03-23 2010-10-07 Sinfonia Technology Co Ltd Linear motor
JP2016059117A (en) * 2014-09-08 2016-04-21 住友重機械工業株式会社 Armature for linear motor
JP5931304B1 (en) 2015-05-27 2016-06-08 三菱電機株式会社 Electric motor
WO2019074931A1 (en) * 2017-10-10 2019-04-18 Mts Systems Corporation Linear motor with armature cooling channels

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047129A1 (en) 2008-10-23 2010-04-29 株式会社ソディック Linear motor coil assembly comprising cooling device
US8664808B2 (en) 2008-10-23 2014-03-04 Sodick Co., Ltd. Linear motor coil assembly with cooling device

Also Published As

Publication number Publication date
JPH1127926A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
KR100702821B1 (en) Linear motor coil assembly and method for manufacturing the same
JP5399470B2 (en) Armature for linear motor
JP3856057B2 (en) Linear motor
US20050253464A1 (en) Linear motor not requiring yoke
WO2004019470A1 (en) Coreless linear motor
WO2010047129A1 (en) Linear motor coil assembly comprising cooling device
JP4277337B2 (en) Linear motor and table feeder using the same
US6657327B2 (en) Linear direct current motor
JP3478084B2 (en) Linear motor
JP3694821B2 (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
JP2002218730A (en) Linear motor fitted with core, its manufacturing method, cooling member used for its production, and its manufacturing method
JP2820531B2 (en) Fluid-cooled electric machine
EP1469578A2 (en) Actuator coil cooling system
TWI272755B (en) Cooling structure of a linear motor
JP2003250239A (en) Stator construction of dynamo-electric machine
JP3539140B2 (en) Machine tool table feeder
JP4372319B2 (en) Linear motor and manufacturing method thereof
JP2524103Y2 (en) Synchronous linear motor
JP4048557B2 (en) Linear motor cooling system
JPH11113238A (en) Linear motor
JP3786150B2 (en) Linear motor
JP2585818Y2 (en) Stator for canned linear motor
JPH0662786U (en) Synchronous linear motor
JP2001224159A (en) Linear slider

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040618

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050414

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140922

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees