JP3855899B2 - Iron-based mixed powder for powder metallurgy - Google Patents

Iron-based mixed powder for powder metallurgy Download PDF

Info

Publication number
JP3855899B2
JP3855899B2 JP2002278584A JP2002278584A JP3855899B2 JP 3855899 B2 JP3855899 B2 JP 3855899B2 JP 2002278584 A JP2002278584 A JP 2002278584A JP 2002278584 A JP2002278584 A JP 2002278584A JP 3855899 B2 JP3855899 B2 JP 3855899B2
Authority
JP
Japan
Prior art keywords
powder
iron
machinability
calcium pyrophosphate
based mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002278584A
Other languages
Japanese (ja)
Other versions
JP2004115847A (en
Inventor
聡 上ノ薗
純一 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2002278584A priority Critical patent/JP3855899B2/en
Publication of JP2004115847A publication Critical patent/JP2004115847A/en
Application granted granted Critical
Publication of JP3855899B2 publication Critical patent/JP3855899B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉末冶金用鉄基混合粉に係り、とくにSによって焼結炉の発熱体、搬送ベルト等が汚染されるのを防止でき、かつ焼結体の切削性改善を可能とする粉末冶金用鉄基混合粉に関する。
【0002】
【従来の技術】
粉末冶金技術の進歩により、高寸法精度の複雑な形状の部品をニアネット形状に製造することが可能となっている。鉄系粉末冶金製品は、鉄基粉末に、銅粉、黒鉛粉などの合金用粉末と、ステアリン酸亜鉛、ステアリン酸リチウム等の潤滑剤とを混合した鉄基混合粉を金型に充填したのち、加圧成形し、ついで焼結処理を施され焼結体とされたのち、必要に応じ切削加工されて、製品とされる。
【0003】
このようにして製造された焼結体は、空孔の含有比率が高く、溶解法による金属材料にくらべ、切削抵抗が高い。そのため、従来から、焼結体の切削性を向上する目的で、Pb、Se、Te、MnS 、S等、種々の切削性改善用粉末が鉄基混合粉に添加、あるいは鉄粉に合金化して添加することが行われてきた。しかしながら、Pbは融点が330 ℃と低いため焼結過程で溶融し、しかも鉄中に固溶せず基地中に均一に分散させることが難しいという問題がある。また、Se、Teは焼結体を脆化させるため、焼結体の機械的特性の劣化が著しいという問題があった。これらの粉末以外にも、切削性改善用粉末として、種々の粉末を用いることが提案されている。
【0004】
例えば、特許文献1には、鉄または鉄基合金に、BaSO4 、BaS を単独、あるいは複合して添加した粉末冶金法で製造された快削性金属材料が開示されている。この技術ではBaSO4 、BaS を単独、あるいは複合して添加することにより切削などの機械加工性が向上するとしている。
また、特許文献2には、鉄系原料粉に硫化カルシウムCaS あるいは硫酸カルシウムCaSO4 を添加した混合粉を圧縮成形したのち、焼結する快削焼結鋼の製造方法が提案されている。
【0005】
しかしながら、切削性改善用粉末として、SあるいはMnS,BaS,CaS 等のSを含む化合物を混合すると、焼結時に発生するH2S が焼結炉の耐火物、搬送用のメッシュベルト、発熱体等を汚染し、それら部品の寿命を短くするという問題があった。さらに加えて、焼結体の外観不良という問題もあり、Sを含む化合物粉を切削性改善用粉末として鉄基混合粉に混合することは敬遠されている。また、BaS 、CaS 等が焼結体中に残留すると、BaS 、CaS の吸湿性に起因して焼結体が錆びやすいという問題もある。
【0006】
このような問題に対し、例えば、特許文献3には、Ca:0.001 〜0.10%、O:0.05〜1.0 %含有する被削性の良好な焼結体を与える焼結用鋼粉末が開示されている。しかしながら、特許文献3に記載された焼結用粉末で製造された焼結体では、Sを含まないため焼結炉の汚染という問題はないが、カルシウム酸化物が吸湿性を有するため、粉体の流動性が劣化し、成形が不安定になるという問題があった。
【0007】
また、特許文献4には、鉄粉を主体とし、アノールサイト相および/またはゲーレナイト相を有する平均粒径50μm 以下のCaO-Al2O3-SiO2系複合酸化物の粉末/ 0.02〜0.3 重量%含有する粉末冶金用鉄系混合粉末が開示されている。しかしながら、不純物が少なく、かつ粒度を制限したCaO-Al2O3-SiO2系複合酸化物の粉末を使用しないと、粉体特性、焼結体特性が低下するという問題があった。
【0008】
【特許文献1】
特公昭46-39654号公報
【特許文献2】
特開昭52-16684号公報
【特許文献3】
特開昭57-198201 号公報
【特許文献4】
特開平9-279204号公報
【0009】
【発明を解決するための課題】
さらに最近では、焼結部品そのものの原価低減要求が強く、とくに原価に大きな割合を占める切削加工費も更なる低減が求められている。このようなことから、上記した従来技術よりさらに切削性が改善され、同時に焼結体の機械的特性の劣化を生じることのない焼結体を形成できる鉄基混合粉が熱望されている。
【0010】
本発明は、上記した従来技術の問題を解決し、焼結体の機械的特性の劣化を生じることなくさらに切削性を向上できる鉄基混合粉を提供することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、焼結体の機械的特性の劣化を生じることなく切削性を向上できる切削性改善用粉末について、鋭意研究した。その結果、本発明者らは、すでに、焼結体の機械的特性の劣化を生じることなく切削性を向上できる鉄基混合粉として、特願2001-259470 号明細書に、切削性改善用粉末として、リン酸カルシウムおよび/またはヒドロキシアパタイトをCa換算で合計0.02〜0.39質量%含有させた鉄基混合粉を提案した。また、特願2002-24391号明細書には、切削性改善用粉末として、結晶子サイズが200 Å超えのヒドロキシアパタイト粉末をCa換算で合計0.02〜0.40質量%含有させた鉄基混合粉を提案した。
【0012】
更なる切削性向上のために、本発明者らは、鉄基混合粉に添加する切削性改善用粉末として、リン酸カルシウム化合物に着目し、リン酸カルシウム化合物の種類と切削性改善の関係について鋭意検討した。その結果、リン酸カルシウム化合物のうち、ピロリン酸カルシウム(Ca2P2O7 )が、焼結体の切削性をさらに向上させることを見出した。なかでも、結晶が板状に成長しやすく劈開性を示す可能性があるβ−ピロリン酸カルシウム(β−Ca2P2O7 )の含有量が多いほど切削性が顕著に向上することを見出した。
【0013】
まず、本発明者らが行った基礎的実験結果を説明する。
鉄基粉末として還元鉄粉に、合金用粉末として平均粒径45μm 以下を70%程度を含む水アトマイズ銅粉と、平均粒径5μm の黒鉛粉末とを、切削性改善用粉末として、β−ピロリン酸カルシウムを5〜80質量%含有する平均粒径20μm のピロリン酸カルシウム粉末(残部はα−ピロリン酸カルシウム)を、潤滑剤としてステアリン酸亜鉛を、混合機に装入し均一となるように混合し、鉄基混合粉とした。なお、合金用粉末としての水アトマイズ銅粉は、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対し1.5 質量%配合し、また合金用粉末としての黒鉛粉末は、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対し0.6 質量%配合した。また、切削性改善用粉末としてのピロリン酸カルシウム粉末は、鉄基粉末と合金用粉末と切削性改善用粉末との合計量に対しCa換算で0〜0.6 質量%配合した。また、潤滑剤は、鉄基粉末と合金用粉末と切削性改善用粉末との合計量100 重量部に対し、0.75重量部配合した。
【0014】
得られたこれら鉄基混合粉を金型に挿入し、圧粉密度が6.8 Mg/m3 になるように圧縮成形し、外径35mm×内径14mm×高さ10mmの圧環強さ試験用リング状試験片、および外径60mm×高さ10mmのドリル穿孔試験用円盤状試験片とした。ついで、これら試験片をRXガス雰囲気中でメッシュベルト炉を使用し、1130℃×20min の条件で焼結した。
【0015】
得られた焼結体試験片について、JIS Z 2507の規定に準拠した圧環強さ試験、および回転数1000rpm 、送り:0.012mm/rev の条件でドリル穿孔試験を、それぞれ実施し、圧環強さおよび穿孔数を求めた。なお、穿孔数は、ドリル(ハイス製1.2mm φ)が折損するまでに開いた孔の数(個)とした。これらの結果を、図1、図2に示す。また、ピロリン酸カルシウムを0.10質量%(Ca換算)含有する鉄基混合粉について、穿孔数に及ぼすピロリン酸カルシウム粉末中のβ−ピロリン酸カルシウムの含有量の影響を図3に示す。
【0016】
なお、ピロリン酸カルシウム粉末中のβ−ピロリン酸カルシウムの含有量は、粉末X線回折により測定した、β−ピロリン酸カルシウムの(008)面とα−ピロリン酸カルシウムの(031)面との強度比(I(β−ピロリン酸カルシウム)/(I(α−ピロリン酸カルシウム)+I(β−ピロリン酸カルシウム))から算出した。なお、測定条件は、加速電圧:48KV、加速電流:200mA として発生したCoK α線を使用し、scan speedを0.5 °/min とした。
【0017】
図1から、鉄基混合粉中のピロリン酸カルシウム粉末の含有量の増加に従い、穿孔数は増加し、ピロリン酸カルシウム粉末の含有量(Ca換算)が0.02質量%以上で飽和することがわかる。また図2から、鉄基混合粉中のピロリン酸カルシウム粉末の含有量(Ca換算)が0.4 質量%を超えると、急激に圧環強さが低下する。これらのことから、鉄基混合粉中のピロリン酸カルシウム粉末の含有量を0.02〜0.4 質量%の範囲とすることにより、優れた切削性と高い圧環強さを併せ有することができることになるという知見を得た。
【0018】
また、図3から、ピロリン酸カルシウム粉末中のβ−ピロリン酸カルシウム量が増加するに従い、穿孔数は増加することがわかる。とくに、切削性改善用粉末として、粉末中にβ−ピロリン酸カルシウムを15質量%以上含有するピロリン酸カルシウム粉末を適用した場合に、焼結体の切削性向上が顕著となることを知見した。
【0019】
また、本発明者らは、ピロリン酸カルシウムに加えて、ヒドロキシアパタイト、フッ化カルシウムを混合粉中に添加しても、焼結体の機械的特性を劣化させることなく、切削性を向上させることができるという知見を得た。
本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。
【0020】
すなわち、本発明の要旨はつぎのとおりである。
(1)鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる鉄基混合粉であって、前記切削性改善用粉末をピロリン酸カルシウムとし、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対しCa換算で0.02〜0.40質量%含有することを特徴とする粉末治金用鉄基混合粉。
(2)(1)において、前記ピロリン酸カルシウムが、β−ピロリン酸カルシウムをピロリン酸カルシウム全量に対し15質量%以上含まれることを特徴とする粉末治金用鉄基混合粉。
(3)(1)または(2)において、前記切削性改善用粉末が、ピロリン酸カルシウムに加えてさらに、フッ化カルシウムおよび/またはヒドロキシアパタイトを含み、該切削性改善用粉末を鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対しCa換算で合計0.02〜0.40質量%含有することを特徴とする粉末冶金用鉄基混合粉。
(4)(1)ないし(3)のいずれかにおいて、前記鉄基粉末の一部または全部が、表面に合金用粉末および/または切削性改善用粉末を結合材により固着してなることを特徴とする粉末冶金用鉄基混合粉。
(5)(1)ないし(4)のいずれかにおいて、前記合金用粉末の含有量が、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対し5質量%以下であることを特徴とする粉末冶金用鉄基混合粉。
(6)(1)ないし(5)のいずれかにおいて、前記潤滑剤の含有量が、前記鉄基粉末、合金用粉末および切削性改善用粉末の合計量100 重量部に対し0.2 〜1.5 重量部であることを特徴とする粉末冶金用鉄基混合粉。
【0021】
【発明の実施の形態】
本発明の鉄基混合粉は、鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる鉄基混合粉であり、切削性改善用粉末をピロリン酸カルシウム粉末とし、鉄基粉末、合金用粉末および切削性改善用粉末の合金量に対しCa換算で0.02〜0.40質量%含有する。
【0022】
本発明の鉄基混合粉は、切削性改善用粉末としてピロリン酸カルシウム粉末を用いることに特徴がある。切削性改善用粉末としてピロリン酸カルシウム粉末を用いることにより、機械的特性の劣化が少なくて切削性の顕著な改善が得られる。
鉄基混合粉中のピロリン酸カルシウムの含有量は、鉄基粉末、合金用粉末および切削性改善用粉末の合金量に対しCa換算で合計0.02〜0.40質量%とする。ピロリン酸カルシウムの含有量がCa換算で合計0.02質量%未満では、切削性の向上が顕著に認められない。一方、Ca換算で合計0.40質量%を超えて含有すると、寸法変化が大きくなり、圧環強さの低下等機械的特性が低下する。このため、鉄基混合粉中のピロリン酸カルシウムの含有量はCa換算で合計0.02〜0.40質量%とした。
【0023】
また、本発明では、切削性改善用粉末の最大粒径は、63μm 以下とすることが好ましい。粗大粒子は焼結体の脱落・欠けの原因となり、外観不良率が高くなるため、粒子の最大粒径はできるだけ低減することが好ましいが、経済性を考慮して63μm 以下とした。なお、本発明では、粒径はレーザーを用いたマイクロトラック法で測定した値を用いるものとする。
【0024】
なお、本発明では、切削性改善用粉末としてのピロリン酸カルシウム粉末には、α−ピロリン酸カルシウムのみでもよいが、β−ピロリン酸カルシウムを15質量%以上含むことが好ましい。この場合、ピロリン酸カルシウム粉末のβ−ピロリン酸カルシウム以外の残部は実質的にα−ピロリン酸カルシウムである。
ピロリン酸カルシウム粉末中のβ−ピロリン酸カルシウム含有量が15重量%未満では、切削性の向上代が小さい。β−ピロリン酸カルシウムが劈開性を示すため、β−ピロリン酸カルシウムの含有によりα−ピロリン酸カルシウムのみの場合に比べて切削性の改善度合いが大きくなると考えられる。β−ピロリン酸カルシウム含有量の上限はピロリン酸カルシウム全量に対し100 質量%であるが、熱処理温度の観点から、β−ピロリン酸カルシウム100 %とすることは原料費が高騰し経済的に問題となるため、90%程度以下とすることが好ましい。
【0025】
なお、ピロリン酸カルシウム粉末は、上記したα−ピロリン酸カルシウム、β−ピロリン酸カルシウム以外の残部は不可避的不純物である。不可避的不純物として、リン酸三カルシウム(Ca3(PO4)2 )が5質量%以下混在していても何ら問題はない。
本発明では、切削性改善用粉末として、上記したピロリン酸カルシウムに加えて、さらにヒドロキシアパタイト(Ca10(PO4)6(OH)2 )および/またはフッ化カルシウムCaF2を含有してもよい。この場合、切削性改善用粉の含有量は、すなわち、ピロリン酸カルシウム、およびヒドロキシアパタイトおよび/またはフッ化カルシウムの合計含有量は、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対しCa換算で合計0.02〜0.40質量%とすることが好ましい。フッ化カルシウムを、ヒドロキシアパタイトと複合することにより、フッ化カルシウム単独で含有する時よりも加工性が向上する。また、ピロリン酸カルシウムと、ヒドロキシアパタイトおよび/またはフッ化カルシウムを複合して使用しても、ピロリン酸カルシウム単独使用と同様、またはそれ以上の効果を有する。
【0026】
なお、結晶子サイズが200 Å超え、好ましくは結晶子サイズが600 Åを超えるヒドロキシアパタイト粉末を用いることが切削性向上の観点から好ましい。ヒドロキシアパタイト粉末の結晶子サイズは市販の粉末に過熱処理を施して調整することができる。大きな結晶サイズとするには、加熱処理の温度を高くし、小さな結晶子サイズとする場合には、 加熱処理の加熱温度を低くする。
【0027】
なお、本発明でいうヒドロキシアパタイト粉末の結晶子サイズの測定は、X線回折を利用して行なう。粉末にX線を照射して、ヒドロキシアパタイト(002 )面の回折ピークを求め半価巾Bを測定し、次(1)式
B=0.9 λ/(tcos θ) ………(1)
ここで、B:半価巾、λ:入射X線の波長(1.5417Å)、t:結晶子サイズ(Å)、2θ:25.8(deg.)
を用いて算出した値tを結晶子サイズ(Å)とする。
【0028】
また、鉄基混合粉に含有される合金用粉末としては、黒鉛粉、銅粉等を、所望の製品特性に要求される特性に応じ選定し含有する。
本発明では、鉄基粉末としては、アトマイズ鉄粉、還元鉄粉等の純鉄粉、あるいは純鉄粉に代えて合金元素を予め合金した鋼粉(予合金鋼粉)、あるいは合金元素が部分合金化された鋼粉(部分合金化鋼粉)がいずれも好適に用いることができる。また、これらを混合して使用してもよいことはいうまでもない。
【0029】
鉄基混合粉に含有される潤滑剤としては、ステアリン酸亜鉛、ステアリン酸リチウム等の金属石鹸、あるいはワックスが好ましい。
なお、潤滑剤の配合量は、鉄基粉末、合金用粉末および切削性改善用粉末の合計量100 重量部に対し0.2 〜1.5 重量部とするのが好ましい。潤滑剤の配合量が0.2 重量部未満では、金型との摩擦が著しく増加し抜出力が増大するため金型寿命が低下する。一方、1.5 重量部を超えると、成形体密度の低下が著しくなり、焼結体密度が低下する。
【0030】
本発明の鉄基混合粉は、上記した鉄基粉末に、上記した切削性改善用粉末、合金用粉末、さらに潤滑剤を添加して、Vブレンダ、ダブルコーンブレンダ等の通常公知の混合機を用いる方法で、一度に混合し、あるいは2回以上に分けて混合し鉄基混合粉とするか、あるいは合金用粉末および/または切削性改善用粉末を結合材により鉄基粉末の表面に固着する偏析防止処理を施した鉄基混合粉としてもよい。このような鉄基粉末を用いることにより、より偏析が少なく、流動性に優れた鉄基混合粉とすることができる。
【0031】
偏析防止処理としては、例えば、特許第3004800 号公報に示されるように、鉄基粉末と、合金用粉末と、切削性改善用粉末を、結合材の作用を有する特定の有機化合物とともに混合し、ついで少なくとも該特定の有機化合物のうちの最低融点+10℃以上に加熱して、該有機化合物のうちの1種を溶融させたのち冷却固化して、合金用粉末および/または切削性改善用粉末を鉄基粉末の表面に固着させる方法が好ましい。特定の有機化合物としては、高級脂肪酸、高級脂肪酸アミド、ワックスが好ましい。高級脂肪酸もしくは高級脂肪酸アミドとしては、ステアリン酸、オレイン酸アミド、ステアリン酸アミド、エチレンビスステアリン酸アミド、ステアリン酸アミドとエチレンビスステアリン酸アミドの溶融混合物、等が例示できる。
【0032】
【実施例】
(実施例1)
鉄基粉末としてミルケース還元鉄粉(商品名:川崎製鉄製KIP 255M)を用い該鉄基粉末100 kgに、合金用粉末として黒鉛粉末0.9 kg(平均粒径:5μm )、水アトマイズ銅粉(粒径45μm 以下を70質量%以上含む)1.5 kgと、さらに切削性改善用粉末として、表1に示す種類、配合量(質量%)の粉末と、さらに潤滑剤として、ステアリン酸亜鉛(平均粒径:20μm )を鉄基粉末と合金用粉末と切削性改善用粉末との合計量100 重量部に対し表1に示す量(重量部)と、をVブレンダに装入し、均一混合して、鉄基混合粉とした。なお、切削性改善用粒子としては、表1に示す量のβ−ピロリン酸カルシウムを含むβ−ピロリン酸カルシウム、フッ化カルシウム粉末、表1に示す結晶子サイズのヒドロキシアパタイト粉末の単独、あるいはそれらの複合とした。なお、ヒドロキシアパタイト粉末の結晶子サイズは、粉末にX線を照射して得られたヒドロキシアパタイト(002 )面の回折ピークの半価巾Bから(1)式を用いて算出した。測定条件は、加速電圧:48KV、加速電流:200mA として発生したCoK α線を使用して、発散スリット:1.0 °、散乱スリット:1.0 °、受光スリット:0.15mmとし、scan speedを0.5 °/min とした。
【0033】
これら鉄基混合粉を金型に挿入し、成形体の密度が6.8Mg/m3になるように面圧を624 〜655MPaの範囲内で調整して圧縮成形し、外径35mm×内径14mm×高さ10mmの圧環試験片用成形体および外径寸法変化率測定用のリング状試験片用成形体、および外径60mm×高さ10mmのドリル穿孔試験用円盤状試験片用成形体、10×10×55mmの直方体の成形体とした。なお、密度は、直方体の成形体を用いて、アルキメデス法により測定した。アルキメデス法とは、被測定物である成形体を水中に浸漬して体積を測定することにより密度を測定する方法である。
【0034】
ついで、これら試験片成形体を、RXガス雰囲気中でメッシュベルト炉を使用し1130℃×20min の条件で焼結し、焼結体とした。
これら焼結体(試験片)について、圧環強さ試験、外径寸法変化率測定試験、およびドリル穿孔試験を、それぞれ実施し、圧環強さ、外径寸法変化率および穿孔数(個)を求めた。
【0035】
なお、圧環強さは、JIS Z 2507の規定に準拠して求めた。
外径寸法変化率は、リング状試験片を用いて、金型の外径を基準として焼結後のリング状試験片外径を測定し、金型外径に対する変化率(=((焼結後のリング状試験片の平均外径−金型外径)/(金型外径))×100 %)を求め、外径寸法変化率とした。
【0036】
また、穿孔数(個)は、円盤状試験片を用いて、回転数10000rpm、送り:0.012 mm/rev の条件でドリル穿孔を行い、ドリル(ハイス製1.2 mmφ)が折損するまでに開いた穴の数とした。
また、焼結体について、目視による外観検査を実施した。
得られた結果を、表1に示す。
【0037】
【表1】

Figure 0003855899
【0038】
【表2】
Figure 0003855899
【0039】
本発明例はいずれも、焼結体の圧環強さも高く、また外径寸法変化率も小さいうえ、穿孔数も大きく切削性に優れた焼結体を形成でき、粉末冶金用鉄基混合粉として優れた特性を有している。なお、切削性改善用粒子の粒径が好適範囲を外れた本発明例(混合粉No.14)では一部欠けが生じ外観性状が低下していた。
一方、本発明の範囲を外れる比較例は、いずれも圧環強さが低いか、外径寸法率が大きいか、あるいは切削性が低下していた。
(実施例2)
鉄基粉末として水アトマイズ鉄粉(商品名:川崎製鉄製KIP 301A)を用い、該鉄基粉末100 kgに、合金用粉末として天然黒鉛粉末(平均粒径5μm )2kg、あるいはさらに電解銅粉(平均粒径35μm )0.8kg を、さらに切削性改善用粉末として、表2に示す種類、配合量(質量%)の粉末を、さらに結合剤としてステアリン酸亜鉛(融点:120 ℃)を、鉄基粉末と合金用粉末と切削性改善用粉末との合計量100 重量部に対し0.4 重量部添加して、一次混合したのち、120 ℃に加熱し結合材を加熱溶融しながら混合し冷却して、合金用粉末および/または切削性改善用粉末を鉄基粉末表面に固着させた偏析防止処理を施した粉末とした。ついで、このような偏析防止処理を施した粉末に、さらに潤滑剤として、ステアリン酸亜鉛(平均粒径:20μm )を鉄基粉末と合金用粉末と切削性改善用粉末との合計量100 重量部に対し表2に示す量(重量部)を添加して均一混合して、鉄基混合物とした。
【0040】
これら鉄基混合粉を、実施例1と同様に、金型に挿入し、面圧:590MPaで圧縮成形し、外径35mm×内径14mm×高さ10mmの圧環強さ試験用成形体および外径寸法変化率測定用のリング状試験片成形体、および外径60mm×高さ10mmのドリル穿孔試験用円盤状試験片成形体、および10×10×55mmの直方体の成形体とした。なお、直方体の成形体を用い、アルキメデス法により密度を測定した。
【0041】
ついで、これら試験片成形体をRXガス雰囲気中でメッシュベルト炉を使用し1130℃×15min で焼結し、焼結体とした。
これら焼結体(試験片)について、実施例1と同様に、圧環強さ試験、外径寸法変化率測定試験、およびドリル穿孔試験を、それぞれ実施し、圧環強さ、外径寸法変化率および穿孔数(個)を求めた。
【0042】
得られた結果を、表2に示す。
【0043】
【表3】
Figure 0003855899
【0044】
【表4】
Figure 0003855899
【0045】
本発明例は、いずれも、焼結体の圧環強さも高く、また外径寸法変化率も小さいうえ、穿孔数も大きく、切削性に優れた焼結体を形成でき、粉末冶金用鉄基混合粉として優れた特性を有している。
これに対し、本発明の範囲を外れる比較例は、圧環強さが低く、切削性が低下していた。
【0046】
【発明の効果】
以上のように、本発明によれば、焼結体の機械的特性劣化を生じることなく切削性を向上できる。さらに、本発明によれば、切削性改善用粉末をSを含有しない粉末とすることができ、Sによる焼結時の炉内汚染や焼結体への悪影響もなく、焼結製品の製造ができ、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】ドリル穿孔試験における穿孔数とピロリン酸カルシウム含有量との関係を示すグラフである。
【図2】圧環強さ試験における圧環強さとピロリン酸カルシウム含有量との関係を示すグラフである。
【図3】ドリル穿孔試験における穿孔数とピロリン酸カルシウム粉中のβ−ピロリン酸カルシウム含有量との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an iron-based mixed powder for powder metallurgy, and in particular, powder metallurgy that can prevent contamination of a heating element, a conveying belt, and the like of a sintering furnace by S and can improve the machinability of the sintered body. Relates to iron-based mixed powder.
[0002]
[Prior art]
Advances in powder metallurgy technology make it possible to manufacture parts with complex shapes with high dimensional accuracy in a near net shape. Iron-based powder metallurgy products are obtained by filling a die with iron-based powder mixed with iron-based powder, alloy powder such as copper powder and graphite powder, and lubricant such as zinc stearate and lithium stearate. Then, after being pressure-molded and then subjected to a sintering process to obtain a sintered body, it is cut into a product as necessary to obtain a product.
[0003]
The sintered body manufactured in this way has a high content ratio of pores, and has a higher cutting resistance than a metal material obtained by a melting method. Therefore, for the purpose of improving the machinability of the sintered body, various machinability improving powders such as Pb, Se, Te, MnS, and S have been added to the iron-based mixed powder or alloyed with the iron powder. It has been done to add. However, since Pb has a low melting point of 330 ° C., it has a problem that it melts during the sintering process and is difficult to disperse uniformly in the matrix because it does not dissolve in iron. Moreover, since Se and Te embrittle the sintered body, there was a problem that the mechanical properties of the sintered body deteriorated remarkably. In addition to these powders, it has been proposed to use various powders as machinability improving powders.
[0004]
For example, Patent Document 1 discloses a free-cutting metal material manufactured by a powder metallurgy method in which BaSO 4 and BaS are added alone or in combination to iron or an iron-based alloy. According to this technology, the machinability such as cutting is improved by adding BaSO 4 and BaS alone or in combination.
Patent Document 2 proposes a method for producing free-cutting sintered steel, in which a mixed powder obtained by adding calcium sulfide CaS or calcium sulfate CaSO 4 to iron-based raw material powder is compressed and then sintered.
[0005]
However, when S or a compound containing S such as MnS, BaS, or CaS is mixed as a powder for improving machinability, H 2 S generated during sintering is refractory in the sintering furnace, mesh belt for conveyance, heating element. There is a problem that the life of these parts is shortened. In addition, there is a problem of poor appearance of the sintered body, and mixing of compound powder containing S with iron-based mixed powder as a machinability improving powder has been avoided. Further, if BaS, CaS, etc. remain in the sintered body, there is also a problem that the sintered body tends to rust due to the hygroscopicity of BaS, CaS.
[0006]
For such a problem, for example, Patent Document 3 discloses a steel powder for sintering which gives a sintered body having good machinability and containing Ca: 0.001 to 0.10% and O: 0.05 to 1.0%. Yes. However, in the sintered body manufactured with the sintering powder described in Patent Document 3, there is no problem of contamination of the sintering furnace because it does not contain S. However, since calcium oxide has hygroscopicity, There was a problem that the fluidity of the resin deteriorated and the molding became unstable.
[0007]
Patent Document 4 discloses a powder of CaO—Al 2 O 3 —SiO 2 composite oxide having an average particle size of 50 μm or less, mainly composed of iron powder and having an anolsite phase and / or gehlenite phase / 0.02 to 0.3 weight. % Containing iron-based mixed powder for powder metallurgy is disclosed. However, there is a problem in that powder characteristics and sintered body characteristics are deteriorated unless a CaO—Al 2 O 3 —SiO 2 composite oxide powder with few impurities and limited particle size is used.
[0008]
[Patent Document 1]
Japanese Patent Publication No.46-39654 [Patent Document 2]
JP 52-16684 [Patent Document 3]
JP-A-57-198201 [Patent Document 4]
JP-A-9-279204 [0009]
[Problem to be Solved by the Invention]
In recent years, there has been a strong demand for cost reduction of sintered parts themselves, and in particular, cutting costs that occupy a large percentage of the cost have been further reduced. For this reason, iron-based mixed powders that are capable of forming a sintered body that is further improved in machinability than the above-described prior art and that does not cause deterioration of the mechanical properties of the sintered body are desired.
[0010]
An object of the present invention is to solve the above-described problems of the prior art and to provide an iron-based mixed powder that can further improve machinability without causing deterioration of mechanical properties of a sintered body.
[0011]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied a machinability improving powder that can improve machinability without causing deterioration of mechanical properties of the sintered body. As a result, the present inventors have already disclosed in Japanese Patent Application No. 2001-259470 the powder for improving machinability as an iron-based mixed powder capable of improving machinability without causing deterioration of the mechanical properties of the sintered body. As an iron-based mixed powder containing calcium phosphate and / or hydroxyapatite in a total amount of 0.02 to 0.39% by mass in terms of Ca. In addition, in Japanese Patent Application No. 2002-24391, an iron-based mixed powder containing hydroxyapatite powder having a crystallite size exceeding 200 Å in terms of Ca in a total amount of 0.02 to 0.40 mass% was proposed as a machinability improving powder. did.
[0012]
In order to further improve the machinability, the present inventors paid attention to the calcium phosphate compound as the machinability improving powder to be added to the iron-based mixed powder, and intensively studied the relationship between the type of calcium phosphate compound and the machinability improvement. As a result, it was found that calcium pyrophosphate (Ca 2 P 2 O 7 ) among the calcium phosphate compounds further improves the machinability of the sintered body. Among them, it was found that the machinability was significantly improved as the content of β-calcium pyrophosphate (β-Ca 2 P 2 O 7 ), which is likely to grow into a plate-like shape and exhibit cleavage properties, increases. .
[0013]
First, basic experimental results conducted by the present inventors will be described.
As iron-based powder, water atomized copper powder containing about 70% of an average particle size of 45 μm or less as an alloy powder and graphite powder with an average particle size of 5 μm are used as β-pillo as a cutting property improving powder. Calcium pyrophosphate powder containing 5 to 80% by weight of calcium phosphate and having an average particle size of 20 μm (the balance is α-calcium pyrophosphate) is charged with zinc stearate as a lubricant and mixed so as to be uniform. A base mixed powder was obtained. The water atomized copper powder as the alloy powder is blended in an amount of 1.5% by mass with respect to the total amount of the iron base powder, the alloy powder and the machinability improving powder, and the graphite powder as the alloy powder is an iron base powder. 0.6 mass% was mix | blended with respect to the total amount of the powder, the powder for alloys, and the powder for machinability improvement. The calcium pyrophosphate powder as the machinability improving powder was blended in an amount of 0 to 0.6% by mass in terms of Ca with respect to the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. The lubricant was blended in an amount of 0.75 parts by weight with respect to 100 parts by weight of the total amount of the iron-based powder, the alloy powder, and the machinability improving powder.
[0014]
The obtained iron-based mixed powder is inserted into a mold, compression-molded so that the green density is 6.8 Mg / m 3 , and a ring shape for crushing strength test of outer diameter 35mm x inner diameter 14mm x height 10mm. A test piece and a disc-shaped test piece for drill drilling test having an outer diameter of 60 mm and a height of 10 mm were used. Subsequently, these test pieces were sintered in an RX gas atmosphere using a mesh belt furnace under the conditions of 1130 ° C. × 20 min.
[0015]
The obtained sintered compact test piece was subjected to a crushing strength test in accordance with the provisions of JIS Z 2507 and a drill drilling test under the conditions of a rotational speed of 1000 rpm and a feed: 0.012 mm / rev. The number of perforations was determined. The number of perforations was the number of holes (pieces) that were opened before the drill (1.2 mm φ made by Heiss) broke. These results are shown in FIGS. FIG. 3 shows the influence of the content of β-calcium pyrophosphate in the calcium pyrophosphate powder on the number of perforations for the iron-based mixed powder containing 0.10% by mass (calculated as Ca) of calcium pyrophosphate.
[0016]
The content of β-calcium pyrophosphate in the calcium pyrophosphate powder was determined by measuring the intensity ratio (I () of the (008) plane of β-calcium pyrophosphate and the (031) plane of α-calcium pyrophosphate measured by powder X-ray diffraction. β-calcium pyrophosphate) / (I (α-calcium pyrophosphate) + I (β-calcium pyrophosphate)) The measurement conditions used CoK α-rays generated at an acceleration voltage of 48 KV and an acceleration current of 200 mA. The scan speed was 0.5 ° / min.
[0017]
FIG. 1 shows that the number of perforations increases as the content of calcium pyrophosphate powder in the iron-based mixed powder increases, and the content of calcium pyrophosphate powder (calculated in terms of Ca) is saturated at 0.02 mass% or more. Moreover, from FIG. 2, when the content (Ca conversion) of the calcium pyrophosphate powder in the iron-based mixed powder exceeds 0.4% by mass, the crushing strength rapidly decreases. From these facts, the knowledge that the content of the calcium pyrophosphate powder in the iron-based mixed powder is in the range of 0.02 to 0.4 mass% can have both excellent machinability and high crushing strength. Obtained.
[0018]
Further, FIG. 3 shows that the number of perforations increases as the amount of β-calcium pyrophosphate in the calcium pyrophosphate powder increases. In particular, it has been found that when a calcium pyrophosphate powder containing 15% by mass or more of β-calcium pyrophosphate is applied as the machinability improving powder, the machinability of the sintered body is significantly improved.
[0019]
Further, the present inventors can improve the machinability without deteriorating the mechanical properties of the sintered body even when hydroxyapatite and calcium fluoride are added to the mixed powder in addition to calcium pyrophosphate. I got the knowledge that I can do it.
The present invention has been completed based on the above findings and further studies.
[0020]
That is, the gist of the present invention is as follows.
(1) Iron-base powder, alloy powder, machinability improving powder and lubricant mixed iron-base powder, wherein the machinability improving powder is calcium pyrophosphate, iron-base powder, alloy powder And iron-based mixed powder for powder metallurgy, characterized by containing 0.02 to 0.40 mass% in terms of Ca with respect to the total amount of powder for improving machinability.
(2) The iron-based mixed powder for powder metallurgy characterized in that, in (1), the calcium pyrophosphate contains 15% by mass or more of β-calcium pyrophosphate with respect to the total amount of calcium pyrophosphate.
(3) In (1) or (2), the machinability improving powder further contains calcium fluoride and / or hydroxyapatite in addition to calcium pyrophosphate, the machinability improving powder being iron-based powder, alloy Iron-based mixed powder for powder metallurgy, characterized in that it contains a total of 0.02 to 0.40% by mass in terms of Ca with respect to the total amount of powder for cutting and machinability improving powder.
(4) In any one of (1) to (3), a part or all of the iron-based powder is formed by adhering an alloy powder and / or a machinability improving powder to a surface with a binder. An iron-based mixed powder for powder metallurgy.
(5) In any one of (1) to (4), the content of the alloy powder is 5% by mass or less based on the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. Featuring iron-based mixed powder for powder metallurgy.
(6) In any one of (1) to (5), the content of the lubricant is 0.2 to 1.5 parts by weight based on 100 parts by weight of the total amount of the iron-based powder, the alloy powder, and the machinability improving powder. An iron-based mixed powder for powder metallurgy characterized by
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The iron-based mixed powder of the present invention is an iron-based mixed powder obtained by mixing an iron-based powder, an alloy powder, a machinability improving powder, and a lubricant, and the machinability improving powder is a calcium pyrophosphate powder. It is contained 0.02 to 0.40 mass% in terms of Ca with respect to the alloy amount of the powder, the alloy powder and the machinability improving powder.
[0022]
The iron-based mixed powder of the present invention is characterized by using calcium pyrophosphate powder as a machinability improving powder. By using calcium pyrophosphate powder as the machinability improving powder, the mechanical properties are hardly deteriorated and the machinability is remarkably improved.
The total content of calcium pyrophosphate in the iron-based mixed powder is 0.02 to 0.40 mass% in terms of Ca with respect to the alloy amounts of the iron-based powder, the alloy powder, and the machinability improving powder. When the content of calcium pyrophosphate is less than 0.02% by mass in terms of Ca, the improvement in machinability is not noticeable. On the other hand, when the total content exceeds 0.40% by mass in terms of Ca, the dimensional change increases, and the mechanical properties such as the reduction of the crushing strength decrease. For this reason, the content of calcium pyrophosphate in the iron-based mixed powder was set to 0.02 to 0.40% by mass in terms of Ca.
[0023]
In the present invention, the maximum particle size of the machinability improving powder is preferably 63 μm or less. Coarse particles cause the sintered body to fall off and chip and increase the appearance defect rate. Therefore, it is preferable to reduce the maximum particle size of the particles as much as possible, but in consideration of economy, the particle size is set to 63 μm or less. In the present invention, the particle diameter is a value measured by a microtrack method using a laser.
[0024]
In the present invention, the calcium pyrophosphate powder as the machinability improving powder may contain only α-calcium pyrophosphate, but preferably contains 15% by mass or more of β-calcium pyrophosphate. In this case, the balance other than β-calcium pyrophosphate in the calcium pyrophosphate powder is substantially α-calcium pyrophosphate.
If the β-calcium pyrophosphate content in the calcium pyrophosphate powder is less than 15% by weight, the allowance for improving machinability is small. Since β-calcium pyrophosphate exhibits cleaving properties, it is considered that the improvement of machinability is increased by the inclusion of β-calcium pyrophosphate compared to the case of only calcium α-pyrophosphate. The upper limit of the content of β-calcium pyrophosphate is 100% by mass with respect to the total amount of calcium pyrophosphate, but from the viewpoint of heat treatment temperature, it is economically problematic to make β-calcium pyrophosphate 100% because the raw material cost increases. It is preferably about 90% or less.
[0025]
In addition, the remainder of the calcium pyrophosphate powder other than the above-described α-calcium pyrophosphate and β-calcium pyrophosphate is an unavoidable impurity. There is no problem if tricalcium phosphate (Ca 3 (PO 4 ) 2 ) is mixed in an amount of 5% by mass or less as an inevitable impurity.
In the present invention, the powder for improving machinability may further contain hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) and / or calcium fluoride CaF 2 in addition to the above-described calcium pyrophosphate. In this case, the content of the machinability improving powder, that is, the total content of calcium pyrophosphate and hydroxyapatite and / or calcium fluoride is equal to the total amount of the iron-based powder, the alloy powder and the machinability improving powder. On the other hand, the total amount is preferably 0.02 to 0.40% by mass in terms of Ca. By combining calcium fluoride with hydroxyapatite, processability is improved as compared with the case of containing calcium fluoride alone. Moreover, even if calcium pyrophosphate and hydroxyapatite and / or calcium fluoride are used in combination, the effect is similar to or better than that of using calcium pyrophosphate alone.
[0026]
It is preferable to use a hydroxyapatite powder having a crystallite size exceeding 200 mm, preferably a crystallite size exceeding 600 mm from the viewpoint of improving machinability. The crystallite size of the hydroxyapatite powder can be adjusted by subjecting a commercially available powder to overheat treatment. In order to obtain a large crystal size, the temperature of the heat treatment is increased, and in the case of a small crystallite size, the heating temperature of the heat treatment is decreased.
[0027]
The crystallite size of the hydroxyapatite powder referred to in the present invention is measured using X-ray diffraction. The powder is irradiated with X-rays, the diffraction peak of the hydroxyapatite (002) plane is obtained, and the half width B is measured. The following formula (1) B = 0.9 λ / (tcos θ) (1)
Here, B: half width, λ: wavelength of incident X-ray (1.5417 mm), t: crystallite size (mm), 2θ: 25.8 (deg.)
The value t calculated using is used as the crystallite size (Å).
[0028]
Further, as the alloy powder contained in the iron-based mixed powder, graphite powder, copper powder and the like are selected and contained according to the characteristics required for desired product characteristics.
In the present invention, as the iron-based powder, pure iron powder such as atomized iron powder and reduced iron powder, or steel powder (pre-alloyed steel powder) obtained by pre-alloying an alloy element instead of pure iron powder, or a part of the alloy element Any alloyed steel powder (partially alloyed steel powder) can be preferably used. Needless to say, these may be used in combination.
[0029]
As the lubricant contained in the iron-based mixed powder, metal soap such as zinc stearate and lithium stearate, or wax is preferable.
The blending amount of the lubricant is preferably 0.2 to 1.5 parts by weight with respect to 100 parts by weight of the total amount of the iron base powder, the alloy powder and the machinability improving powder. When the blending amount of the lubricant is less than 0.2 parts by weight, the friction with the mold is remarkably increased and the punching output is increased, so that the mold life is shortened. On the other hand, when it exceeds 1.5 parts by weight, the density of the molded body is remarkably lowered, and the density of the sintered body is lowered.
[0030]
The iron-based mixed powder of the present invention is obtained by adding the above-described iron-based powder to the above-described machinability improving powder, alloy powder, and a lubricant, and using a generally known mixer such as a V blender or a double cone blender. Depending on the method used, they are mixed at once, or divided into two or more times to make an iron-based mixed powder, or the alloy powder and / or the machinability improving powder are fixed to the surface of the iron-based powder with a binder. It is good also as iron-based mixed powder which performed the segregation prevention process. By using such an iron-based powder, an iron-based mixed powder with less segregation and excellent fluidity can be obtained.
[0031]
As the segregation preventing treatment, for example, as shown in Japanese Patent No. 3004800, an iron-based powder, an alloy powder, and a machinability improving powder are mixed together with a specific organic compound having the function of a binder, Next, at least the minimum melting point of the specific organic compound + 10 ° C. is heated to melt one kind of the organic compound, and then solidify by cooling to obtain an alloy powder and / or a machinability improving powder. A method of fixing to the surface of the iron-based powder is preferred. As specific organic compounds, higher fatty acids, higher fatty acid amides and waxes are preferred. Examples of the higher fatty acid or higher fatty acid amide include stearic acid, oleic acid amide, stearic acid amide, ethylene bis stearic acid amide, a melt mixture of stearic acid amide and ethylene bis stearic acid amide, and the like.
[0032]
【Example】
Example 1
Mill case reduced iron powder (trade name: KIP 255M made by Kawasaki Steel Co., Ltd.) is used as the iron-based powder, 100 kg of the iron-based powder, 0.9 kg of graphite powder (average particle size: 5 μm) as the alloy powder, water atomized copper powder (grains) 1.5 kg with a diameter of 45 μm or less (including 70% by mass or more), and further as a machinability improving powder, the type and blending amount (% by mass) shown in Table 1, and further, as a lubricant, zinc stearate (average particle size) : 20 μm) was charged in a V blender with the amount (parts by weight) shown in Table 1 for 100 parts by weight of the total amount of iron-base powder, alloy powder and machinability improving powder, and mixed uniformly. An iron-based mixed powder was used. The particles for improving machinability include β-calcium pyrophosphate, calcium fluoride powder containing β-calcium pyrophosphate in the amount shown in Table 1, single crystallite size hydroxyapatite powder shown in Table 1, or a composite thereof. It was. The crystallite size of the hydroxyapatite powder was calculated using the formula (1) from the half-value width B of the diffraction peak of the hydroxyapatite (002) plane obtained by irradiating the powder with X-rays. Measurement conditions are CoK α ray generated with acceleration voltage: 48KV, acceleration current: 200mA, diverging slit: 1.0 °, scattering slit: 1.0 °, receiving slit: 0.15mm, scan speed: 0.5 ° / min It was.
[0033]
These iron-based mixed powders are inserted into a mold and compression molded by adjusting the surface pressure within the range of 624 to 655 MPa so that the density of the molded body is 6.8 Mg / m 3 , outer diameter 35 mm × inner diameter 14 mm × Molded body for pressure ring test piece with a height of 10 mm, molded body for a ring-shaped test piece for measuring the outer diameter dimensional change rate, and molded body for a disk-shaped test piece for drill drilling test with an outer diameter of 60 mm × height of 10 mm, 10 × A 10 × 55 mm cuboid compact was formed. The density was measured by the Archimedes method using a rectangular parallelepiped shaped body. The Archimedes method is a method of measuring the density by immersing a molded body, which is a measurement object, in water and measuring the volume.
[0034]
Subsequently, these test piece molded bodies were sintered in an RX gas atmosphere using a mesh belt furnace under the conditions of 1130 ° C. × 20 min to obtain sintered bodies.
For these sintered bodies (test pieces), a crushing strength test, an outer diameter dimensional change rate measurement test, and a drill drilling test are performed, respectively, to obtain the crushing strength, the outer diameter dimensional change rate, and the number of drillings (pieces). It was.
[0035]
In addition, the crushing strength was calculated | required based on the prescription | regulation of JISZ2507.
The outer diameter dimensional change rate is determined by measuring the outer diameter of the ring-shaped test piece after sintering using the ring-shaped test piece as a reference, and the change rate with respect to the outer diameter of the mold (= ((sintered The average outer diameter of the subsequent ring-shaped test piece—the outer diameter of the mold) / (the outer diameter of the mold)) × 100%) was determined and used as the outer diameter dimensional change rate.
[0036]
Also, the number of drill holes (pieces) was a hole that was drilled until a drill (Heiss 1.2 mmφ) was broken by drilling with a disk-shaped test piece under the conditions of 10,000 rpm and feed: 0.012 mm / rev. The number of
In addition, visual inspection was performed on the sintered body.
The obtained results are shown in Table 1.
[0037]
[Table 1]
Figure 0003855899
[0038]
[Table 2]
Figure 0003855899
[0039]
In any of the examples of the present invention, the sintered body has a high crushing strength and a small outer diameter dimensional change rate, and can form a sintered body having a large number of perforations and excellent machinability, as an iron-based mixed powder for powder metallurgy. It has excellent characteristics. In addition, in the present invention example (mixed powder No. 14) in which the particle size of the particles for improving machinability was out of the preferred range, some chipping occurred and the appearance properties were lowered.
On the other hand, all of the comparative examples outside the scope of the present invention had a low crushing strength, a large outer diameter dimensional ratio, or reduced machinability.
(Example 2)
Water atomized iron powder (trade name: KIP 301A made by Kawasaki Steel) is used as the iron-based powder, 100 kg of the iron-based powder, 2 kg of natural graphite powder (average particle size 5 μm) as an alloy powder, or electrolytic copper powder ( 0.8kg of the average particle size 35μm) as powder for improving machinability, powder of the type and blending amount (% by mass) shown in Table 2, and zinc stearate (melting point: 120 ° C) as a binder. Add 0.4 parts by weight to 100 parts by weight of the total amount of powder, alloy powder and machinability improving powder, and after first mixing, heat to 120 ° C, mix and cool while heating and melting the binder, It was set as the powder which performed the segregation prevention process which made the powder for alloys and / or the powder for machinability improvement adhere to the iron base powder surface. Subsequently, zinc stearate (average particle size: 20 μm) as a lubricant is further added to the powder subjected to such segregation prevention treatment, and the total amount of iron-based powder, alloy powder, and machinability improving powder is 100 parts by weight. The amount (parts by weight) shown in Table 2 was added and uniformly mixed to obtain an iron-based mixture.
[0040]
In the same manner as in Example 1, these iron-based mixed powders were inserted into a mold and compression-molded at a surface pressure of 590 MPa, and a molded body for crushing strength test having an outer diameter of 35 mm × inner diameter of 14 mm × height of 10 mm and an outer diameter. A ring-shaped test piece molded body for measuring a dimensional change rate, a disk-shaped test piece molded body for a drill drilling test having an outer diameter of 60 mm × a height of 10 mm, and a cuboid molded body of 10 × 10 × 55 mm. In addition, the density was measured by Archimedes method using a rectangular parallelepiped molded body.
[0041]
Subsequently, these test piece molded bodies were sintered at 1130 ° C. × 15 min using a mesh belt furnace in an RX gas atmosphere to obtain sintered bodies.
For these sintered bodies (test pieces), the crushing strength test, the outer diameter dimensional change rate measurement test, and the drill drilling test were carried out in the same manner as in Example 1, respectively, and the crushing strength, the outer diameter dimensional change rate, and The number of perforations (pieces) was determined.
[0042]
The results obtained are shown in Table 2.
[0043]
[Table 3]
Figure 0003855899
[0044]
[Table 4]
Figure 0003855899
[0045]
In each of the examples of the present invention, the crushing strength of the sintered body is high, the outer diameter dimensional change rate is small, the number of perforations is large, and a sintered body excellent in machinability can be formed. It has excellent properties as a powder.
On the other hand, the comparative example which deviates from the scope of the present invention has a low crushing strength and has reduced machinability.
[0046]
【The invention's effect】
As described above, according to the present invention, the machinability can be improved without causing deterioration of the mechanical properties of the sintered body. Furthermore, according to the present invention, the machinability improving powder can be made into a powder that does not contain S, and there is no adverse effect on the sintered body and the contamination of the sintered body during the sintering by S, so that a sintered product can be produced. Yes, and it has a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the number of perforations and calcium pyrophosphate content in a drill perforation test.
FIG. 2 is a graph showing the relationship between crush strength and calcium pyrophosphate content in a crush strength test.
FIG. 3 is a graph showing the relationship between the number of perforations and the β-calcium pyrophosphate content in calcium pyrophosphate powder in a drill perforation test.

Claims (4)

鉄基粉末、合金用粉末、切削性改善用粉末および潤滑剤を混合してなる鉄基混合粉であって、前記切削性改善用粉末をピロリン酸カルシウムとし、鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対しCa換算で0.02〜0.40質量%含有することを特徴とする粉末冶金用鉄基混合粉。Iron-base powder, alloy powder, machinability improving powder and lubricant mixed iron-base powder, wherein the machinability improving powder is calcium pyrophosphate, iron-base powder, alloy powder and machinability An iron-based mixed powder for powder metallurgy characterized by containing 0.02 to 0.40 mass% in terms of Ca with respect to the total amount of powder for improvement. 前記ピロリン酸カルシウムが、β−ピロリン酸カルシウムをピロリン酸カルシウム全量に対し15質量%以上含むことを特徴とする請求項1に記載の粉末冶金用鉄基混合粉。The iron-based mixed powder for powder metallurgy according to claim 1, wherein the calcium pyrophosphate contains 15 mass% or more of β-calcium pyrophosphate with respect to the total amount of calcium pyrophosphate. 前記切削性改善用粉末が、ピロリン酸カルシウムに加えてさらに、フッ化カルシウムおよび/またはヒドロキシアパタイトを含み、該切削性改善用粉末を鉄基粉末、合金用粉末および切削性改善用粉末の合計量に対しCa換算で合計0.02〜0.40質量%含有することを特徴とする請求項1または2に記載の粉末冶金用鉄基混合粉。The machinability improving powder further contains calcium fluoride and / or hydroxyapatite in addition to calcium pyrophosphate, and the machinability improving powder is added to the total amount of iron-based powder, alloy powder and machinability improving powder. The iron-based mixed powder for powder metallurgy according to claim 1 or 2, characterized by containing a total of 0.02 to 0.40 mass% in terms of Ca. 前記鉄基粉末の一部または全部が、表面に合金用粉末および/または切削性改善用粉末を結合材により固着してなることを特徴とする請求項1ないし3のいずれかに記載の粉末冶金用鉄基混合粉。4. The powder metallurgy according to claim 1, wherein a part or all of the iron-based powder is formed by bonding an alloy powder and / or a machinability improving powder to a surface with a binder. 5. Iron-based mixed powder.
JP2002278584A 2002-09-25 2002-09-25 Iron-based mixed powder for powder metallurgy Expired - Fee Related JP3855899B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002278584A JP3855899B2 (en) 2002-09-25 2002-09-25 Iron-based mixed powder for powder metallurgy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002278584A JP3855899B2 (en) 2002-09-25 2002-09-25 Iron-based mixed powder for powder metallurgy

Publications (2)

Publication Number Publication Date
JP2004115847A JP2004115847A (en) 2004-04-15
JP3855899B2 true JP3855899B2 (en) 2006-12-13

Family

ID=32273827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002278584A Expired - Fee Related JP3855899B2 (en) 2002-09-25 2002-09-25 Iron-based mixed powder for powder metallurgy

Country Status (1)

Country Link
JP (1) JP3855899B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0922422B1 (en) * 2008-12-22 2017-12-19 Höganäs Ab Publ The invention relates to a powder-based composition of iron, the use of a silicon compound in an additive improvedability, and methods of producing an iron-based powder composition and to produce a sintered layer of iron

Also Published As

Publication number Publication date
JP2004115847A (en) 2004-04-15

Similar Documents

Publication Publication Date Title
JP4412133B2 (en) Iron-based mixed powder for powder metallurgy
KR101101734B1 (en) Iron-base mixed powders and processes for production of iron-base powder compacts and sintered iron-base powder compacts
KR101776670B1 (en) Mixed powder for powder metallurgy, method of manufacturing same, and method of manufacturing iron-based powder sintered body
JP5696512B2 (en) Mixed powder for powder metallurgy, method for producing the same, iron-based powder sintered body having excellent machinability, and method for producing the same
JP3449110B2 (en) Iron-based mixed powder for powder metallurgy and method for producing sintered body using the same
JP5504963B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
EP0311369A1 (en) Method for the production of a composite metal powder and the powder produced thereby
JP5504971B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP4839275B2 (en) Mixed powder for powder metallurgy and sintered iron powder
EP3305439B1 (en) Mixed powder for iron-based powder metallurgy, method for producing same, and sintered body produced using same
JP4640162B2 (en) Iron-based mixed powder for powder metallurgy and iron-based sintered body
JP3855899B2 (en) Iron-based mixed powder for powder metallurgy
EP0151185B1 (en) Tin-containing iron powder and process for its production
JP2003221602A (en) Iron-base mixed powder for powder metallurgy
JPWO2019111834A1 (en) Partially diffused alloy steel powder
JP2003034803A (en) Iron-base mixed powder for powder metallurgy
JP2014025109A (en) Mixed powder for powder metallurgy
JP6760495B2 (en) Mixed powder for powder metallurgy
JP5504863B2 (en) Mixed powder for powder metallurgy and sintered metal powder with excellent machinability
JP2006348335A (en) Iron-based mixed powder for powder metallurgy
JP2004292861A (en) Iron-based powdery mixture for powder metallurgy, and its production method
JP2007211329A (en) Iron-based powdery mixture for powder metallurgy
JP2007291467A (en) Powdery mixture for producing iron based sintered compact, and iron based sintered compact
JPH0543775B2 (en)
JP2004083948A (en) Ferrous sintered alloy having excellent machinability and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120922

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees