JP3855323B2 - Method for producing 3-amino-2-oxo-1-halogenopropane derivative - Google Patents

Method for producing 3-amino-2-oxo-1-halogenopropane derivative Download PDF

Info

Publication number
JP3855323B2
JP3855323B2 JP30605196A JP30605196A JP3855323B2 JP 3855323 B2 JP3855323 B2 JP 3855323B2 JP 30605196 A JP30605196 A JP 30605196A JP 30605196 A JP30605196 A JP 30605196A JP 3855323 B2 JP3855323 B2 JP 3855323B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
formula
amino
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP30605196A
Other languages
Japanese (ja)
Other versions
JPH09194444A (en
Inventor
裕 本多
智 片山
邦輔 井澤
正和 中沢
孝之 鈴木
直子 菅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP30605196A priority Critical patent/JP3855323B2/en
Publication of JPH09194444A publication Critical patent/JPH09194444A/en
Application granted granted Critical
Publication of JP3855323B2 publication Critical patent/JP3855323B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Description

【0001】
【発明の属する技術分野】
HIVプロテアーゼ阻害剤あるいはある種の酵素阻害剤の中間体として重要なα−アミノアルコール誘導体の等価体であって光学活性3−置換−3−アミノ−1,2−エポキシプロパン誘導体に容易に変換可能な3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体の製造方法に関する。
【0002】
【従来の技術】
光学活性3−置換−3−アミノ−1,2−エポキシプロパン誘導体から容易に変換できるα−アミノアルコール誘導体はRo31−8959(Parkes,K.ら(Roche),J.Org.Chem.,1994,59,3656.)、SC−52151(Getman,D.P.ら(Monsanto),J.Med.Chem.,1993,36,288.)、VX478((Vertex)WO9405639)、AG1343((Lilly)WO9521164)等の多くのHIVプロテアーゼ阻害剤等の合成中間体として用いられている。
【0003】
3−アミノ−1,2−エポキシプロパン誘導体の製造法はいくつか知られているが、例えば、N保護された3−アミノ−2−オキソ−1−ハロゲノプロパンの2位を立体選択的に還元しアルコールに導いた後に脱ハロゲン化水素的にエポキシ化する方法(Getman,D.P.ら,J.Med.Chem.,1993,36,288.等)、N保護された3−アミノ−1−プロペンを酸化的に不斉エポキシ化する方法(Luly,J.R.ら,J.Org.Chem.,1987,52,1487.等)、N保護された3−アミノ−1−プロパナールにメチレンを挿入する方法(Searle,G.D.,WO93/23388.等)がある。
【0004】
1番目の方法においては鍵中間体であるN保護された3−アミノ−2−オキソ−1−ハロゲノプロパンまたはこの等価体をいかに工業的に安価に製造できるかが重要であるが、これまで知られている方法では副原料にきわめて爆発性が高く毒性の強いジアゾメタンを用いなければならないことから、これらの方法の工業化においては限界がある(例えばGetman,D.P.ら,J.Med.Chem.,1993,36,288., Okada,Yら,Chem.Pharm.Bull.,1988,36,4794., EP346867. Raddatz,Pら,J.Med.Chem.,1991,34,3267.)。その他、N保護されたアミノ酸のエステルにハロメチルアニオンを作用させる方法があるが、非常に不安定なハロメチルアニオンを用いることや、1−位に導入するハロゲンは化学に関する一般的な知見からは塩素またはフッ素と限定できると推測されるため、この方法の工業化には限界があった(Barluengaら,J.Chem.Soc.,Chem.Commun.,1994.)。さらに、本件に関連した既存技術として、N保護されたアミノ酸のC端を活性化した後にフルオロマロン酸ハーフエステルを反応させ脱カルボキシル化する方法(EP442754)を挙げることができるが、これはハロゲンがフッ素という特殊な元素に限定されており、塩素、臭素といった本目的を達成するための系には適用できない。
2番目の方法においては鍵中間体であるN保護された3−アミノ−1−プロペンを製造するために高価なアルデヒド(3−アミノ−1−プロパナール)のWittig反応を利用しているため非常に高コストな製造方法になる。さらに3番目の方法においては上記と同じ中間体であるN保護されたアルデヒドの製造方法が高コストであるばかりでなく、メチレンを挿入反応において低温でカルベンを発生させる必要があり、工業的に適した製造法とはならない。
【0005】
【発明が解決しようとする課題】
本発明の課題は、3−アミノ−1,2−エポキシプロパン誘導体に容易に変換可能な3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体の工業的な製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明者らは、前記の課題を解決すべく検討した結果、3−アミノ−1,2−エポキシプロパン誘導体またはその等価体が対応する3−アミノ−2−オキソ−1−ハロゲノプロパンから高収率で製造できることに着目し、その前駆体であるα−ハロゲノ−β−ケトエステル誘導体とそれらの製造方法を見出し、本発明を完成するに至った。
【0007】
すなわち、本発明は下記一般式(I)で示される化合物に、
【0008】
【化10】

Figure 0003855323
【0009】
(式中のRsは水素、それぞれ置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基もしくは炭素数7〜20のアラルキル基、又はこれらの炭素骨格中にヘテロ原子を含む置換基を、P1、P2は互いに独立して水素もしくはアミノ保護基、又はP1及び P2は一体となって二官能性のアミノ保護基を、E1 はカルボキシ末端として、炭素数1〜10のアルコキシのエステル残基、それぞれ環上に置換基を有していてもよいフェノキシ基もしくはベンジルオキシ基、N−オキシコハク酸イミドもしくは1−オキシベンゾトリアゾールの活性エステル残基、活性チオエステル残基、イミダゾリル基、酸ハロゲン化物、酸無水物、又は酸アジドを形成しうる残基を表す。)
【0010】
酢酸のエステルのアルカリ金属エノラートを反応させて下記一般式(II)で示される化合物を得、
【0011】
【化11】
Figure 0003855323
【0012】
(式中のRS、P1、P2、は上記した意味を有し、R1は置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数4〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。)
【0013】
これに、ハロゲン化試剤を作用させ、2位をハロゲン化して下記一般式(III)で 示される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステル誘導体を製造するか、
【0014】
【化12】
Figure 0003855323
【0015】
(式中のRs、P1、P2、R1は上記した意味を有する。)
【0016】
または一般式(I)に下記一般式(IV)で示される化合物のアルカリ金属エノラート又はジアニオンを反応させて
【0017】
【化13】
Figure 0003855323
【0018】
(式中のR2は水素、置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数3〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。Xは上記した意味を有する。)
【0019】
下記一般式(III')で示される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステルまたは塩の誘導体を製造し、
【0020】
【化14】
Figure 0003855323
【0021】
(式中のRs、P1、P2は上記した意味を有し、
3はアルカリ金属、置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数3〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。Xは上記した意味を有する。)
【0022】
さらに得られた(III)または(III')の加水分解を行い、脱炭酸を行うことを特徴とする下記一 般式(V)で示される3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体またはその塩の製造方法、
【0023】
【化15】
Figure 0003855323
【0024】
(式中のRs、P1、P2、Xは上記した意味を有する。)
【0025】
【発明の実施の形態】
本発明に用いる式 (I) で示される化合物は、天然または非天然のα−アミノ酸のアミノ基が保護基により保護され、カルボキシル基が求核試剤と反応しうる官能基に変換されたある種の保護アミノ酸である。
【0026】
お、式(I)で示される化合物はアミノ基の根元の炭素原子の立体により光学活性を有し、例えば光学活性アミノ酸を出発原料に選ぶことにより光学活性を有する目的の化合物の合成に容易に適用できる。
【0027】
式(I)におけRsは水素または通常のアルキル、アリール、アラルキル等の置 換基を表し、例えばメチル基であればアラニン骨格、ベンジル基であればフェニルアラニン骨格を持つ化合物となる。P1、P2は通常用いられるアミノ保護基を表し、P1またはP2のどちらかが水素原子でもよく、P1とP2は一体となった2官能性のアミノ保護基でもよい。例としては、ベンジルオキシカルボニル、第3ブトキシカルボニル、アセチル、ホルミル、ベンゾイル、ジベンジル、フタロイル等何でもよく、後述するエステル基(R1)の加水分解、脱炭酸における官能 基選択性を考慮して決定すればよい。また、E1は求核試剤と反応しうるカルボ キシ末端の官能基を示し、低級エステル、活性エステル、酸ハロゲン化物、酸無水物等の残基がこれに含まれる。例としてはメトキシ、エトキシ、ベンゾキシ及び置換ベンゾキシ、フェノキシ及び置換フェノキシ、N−オキシコハク酸イミド、1−オキシベンゾトリアゾール、イミダゾリル、塩素、臭素、メトキシカルボキシ、イソブトキシカルボキシ、第3ブチルカルボキシ等がある。
式(I)で示される化合物を具体的に例示するならば、N−ベンジルオキシカル ボニル−L−フェニルアラニンメチルエステル、N−ベンジルオキシカルボニル−L−フェニルアラニン−N−オキシコハク酸イミドエステル、N,N−ジベンジル−L−フェニルアラニンp−ニトロフェニルエステル、N−ベンジルオキシカルボニル−S−フェニル−L−システインメチルエステル、等があげられる。
【0028】
式(I)で示される化合物は、天然または非天然のα−アミノ酸のアミノ基をペ プチド合成で通常用いられる方法で保護した後、カルボキシル基を同じくペプチド合成で通常用いられる方法でエステル化、もしくはハロゲン化することにより得ることができる。
【0029】
式(I)より式(II)への変換は、式(I)で示されるエステル、酸ハロゲン化物または酸無水物に酢酸エステルより誘導した酢酸エステルエノラートを反応させてβ−ケトエステルを生成させる反応である。酢酸エステルエノラートとしてはアルカリ金属塩をさし、リチウム塩が最も好ましい。これらのエノラートは、塩基、例えばリチウムアミド、リチウムジイソプロピルアミド、リチウム第3ブトキシド等の溶液中に酢酸エステルを加えることにより調製する。酢酸エステルのエステルは通常用いられるカルボン酸のエステルを表すが、例えばアルキルエステル、アラルキルエステル、シリルエステル等であり、具体的にはメチル、エチル、第3ブチル、ベンジル、トリエチルシリル等の加水分解可能なエステル基であれば何でもよい。
酢酸エノラートは基質(I)に対し1当量以上必要であるが、生成物のβ−ケト エステルのエノラート形成に1当量分の塩基が供せられることから通常2当量以上の酢酸エノラートを用いることにより反応が好収率で進行する。
この反応はマイナス100度より室温程度の温度で速やかに進行する。至適温度は化合物により異なるが、典型的な例としてはマイナス75度からマイナス30度程度で5分から60分で反応は完結する。反応溶媒は炭化水素、エーテル等が用いられ、テトラヒドロフラン、ヘキサン、トルエン及びこれらの混合溶媒が例として挙げられる。反応濃度は特に限定する必要はなく、反応物の溶解度に応じて決定すれば良い。
反応終了後、反応液を酸で処理することにより、生成物のアルキル金属塩をプロトン化して、一般式(II)で表されるβ−ケトエステルを与える。当化合物はシリカゲルクロマトグラフィーにより容易に精製可能であるが、未精製の状態で次反応の原料として供することもできる。
【0030】
式(II)より式(III)への変換は、各種ハロゲン化剤により式(II)で示されるβ −ケトエステルの活性メチレンの水素を酸化的にハロゲン化させ、式(III)で示 される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステル誘導体を得る反応である。反応はβ−ケトエステルとハロゲン化剤を溶媒中で混合するだけで容易に好収率で進行する。
ハロゲン化剤としては、臭素化の場合は、例としては、N−ブロモコハク酸イミド、臭化銅(II)、臭素等でよく、塩素化の場合は、例としては、N−クロロコハク酸イミド、塩化銅(II)、スルフリルクロリド、塩素等でよい。ハロゲン化剤はβ−ケトエステル(II)に対し理論当量以上必要であるが、副反応の進行を阻止する目的から理論当量ちょうどに設定することで最も好収率が得られることが多い。ここでの理論当量とは、化学方程式上必要とされる量をいい、例えばN−ブロモコハク酸イミドの場合はβ−ケトエステルに対し1当量、臭化銅(II)の場合は2当量を表す。
この反応の条件は反応物の構造や試剤に強く依存しそれぞれの化合物に応じ決定しなければならない。典型的な例としてRsがベンジル、P1がベンジルオキ シカルボニル、P2が水素、R1がt−ブチルで、反応試剤としてN−ブロモコハク酸イミドを用いた場合、マイナス20度から室温程度で10分から60分で反応は完結する。反応溶媒は塩化メチレンやクロロホルム等のハロゲン溶媒の他、酢酸エチルやエーテル、トルエンを用いることもできる。反応濃度は特に限定する必要はなく、反応物の溶解度に応じて決定すれば良い。
必要に応じ再結晶等の手段で精製可能であるが、反応生成物は未精製で次反応の原料として用いることができる。また、ハロゲン化の過程でその選択性によりジアステレオマーを生成し、これらは薄層クロマトグラフィーまたはシリカゲルカラム等により分離可能であるが、本製造プロセスの目的からはその分離は要求されない。
【0031】
一方、式(III)で示される化合物、そのトリメチルシリルエステル体、及びそのカルボン酸塩、すなわち式(III')で示される化合物は式(I)で示される化合物にハロゲノ酢酸エステルエノラートまたはハロゲノ酢酸のジアニオンを反応させることによっても変換可能である。すなわち、先に説明した様に式(III')で示される化合物を合成するに当たり、式(II)を経由する方法において用いた酢酸エステル類の代わりにクロロ酢酸エステル類またはブロモ酢酸エステル類(VI)を用いることにより1段階で目的とする化合を得ることができる。
また、この反応においてハロゲノ酢酸トリメチルシリルから調製されるエノラートまたはハロゲノ酢酸から調製されるジアニオンを反応させた場合には、生成する式(III')で示される化合物(R3はトリメチルシリルまたはアルカリ金属)は酸で処理すると容易に脱炭酸まで進行し、1段階で式(V)で示される化合物を得ることができる。
ハロゲノ酢酸エステルエノラートは一般式(II)を経由する方法においてエノラートを調整する方法に準じて合成することができ、このエノラートを一般式(I) に反応させる条件は先に説明した物と同様である。
但し、ハロゲノ酢酸エステルのエノラートの安定性は酢酸エステルのそれに比べ劣るため、マイナス60度以下の低温で反応を行うことが必要である。
【0032】
式(III)または(III')で示される化合物を合成するに当たり式(I)で示される化合物から直接変換するか、式(II)を経由して変換するかは式(I)で示される化合物の置換基や 保護基により収率が異なるので適宜選択して行えばよい。
【0033】
なお、式(III)または式(III')で示される化合物は新規であり、本発明において重要な中間体 となる化合物である。また、この化合物の構造は対応するエノール体を互変異性体として含むと解釈される。たとえば、互変異性体としては、下記一般式(VIII)で表される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステル誘導体があげられる。
【0034】
【化16】
Figure 0003855323
【0035】
(式中のRs、P1、P2、R1、R3、Xは上記した意味を有する。)
【0036】
式(III)または式(III')で示される化合物より式(V)への変換は、式(III)または式(III')で示される4−アミノ−3−オキソ− 2−ハロゲノブタン酸エステル誘導体を加水分解し、同時に脱炭酸させることにより行われる。
加水分解の方法としては、通常有機化学的に用いられる方法は何でも良く、低級アルキルエステルのアルカリ加水分解、3級アルキルエステルの酸加水分解、ベンジルエステルの接触水素添加、シリルエステルの弱酸性〜中性での加水分解等が適用できる。但し、これらの加水分解条件により導入したハロゲンが影響を受けないことが必要であり、最適条件は化合物の構造により異なるが、3級アルキルエステルまたはシリルエステルの系で好結果を示す場合が多い。
目的物は反応液中から有機溶媒に抽出単離することができ、必要に応じシリカゲルクロマトグラフィー、再結晶等の手段により精製可能である。
この反応の条件の典型的な例としてR1がt−ブチルの場合、ギ酸溶液中で室 温で数時間から数十時間で反応は完結するが、反応温度を上げることにより数分から1時間程度に反応時間を短縮することができる。反応濃度は特に限定する必要はなく、反応物の溶解度に応じて決定すれば良い。
【0037】
これらの方法により得られた式(V)で示される3−アミノ−2−オキソ−1− ハロゲノプロパン誘導体は文献に示されるように(例えばGetman,D.P.ら,J.Med.Chem.,1993,36,288., Okada,Yら,Chem.Pharm.Bull.,1988,36,4794., EP346867. Raddatz,Pら,J.Med.Chem.,1991,34,3267.)HIVプロテアーゼ阻害剤の中間体として有用な公知の化合物であり、例えば以下のような2段階の既存反応を経ることにより、より進んだ形の中間体に誘導されることが知られている。(Getman,D.P.ら,J.Med.Chem.,1993,36,288.等)
すなわち、式(V)で示される3−アミノ−2−オキソ−1−ハロゲノプロパン 誘導体はハロゲノメチルケトン骨格を持ちカルボニル基の還元反応により下記一般式(VI)で示されるハロヒドリンに導かれ、
【0038】
【化17】
Figure 0003855323
【0039】
(式中のRs、P1、P2、Xは上記した意味を有する。)
さらにアルカリ条件下で容易にエポキシ化され下記一般式(VII)で示される化合 物に誘導することができる。
【0040】
【化18】
Figure 0003855323
【0041】
(式中のRs、P1、P2は上記した意味を有する。)
【0042】
上記カルボニル基の還元反応においては、3位のRsで表される置換基の結合の立体に対して立体選択的な還元を行うことが可能であり、例えば水素化ホウ素ナトリウムで代表されるような通常の還元剤を用いることでもそれは達成できる。例えばRsはベンジル基であり、3位の立体はS体であり、アミノ保護基としてウレタン型保護基を選んだ化合物を水素化ホウ素ナトリウムで還元することにより水酸基の立体は2:1から20:1程度の比率でS体を優位に与え、さらに再結晶による精製も可能である。また得られるアルコールからは(2S,3S)のエポキシ体に導かれるが、この化合物はHIVプロテアーゼ阻害剤中間体として重要な化合物である。
【0043】
下記に、本発明の原料化合物(I)から目的化合物である(V)並びに上記エポキシ化合部(VII)までの流れを示した。
【0044】
【化19】
Figure 0003855323
【0045】
(式中のRs、R1、E1、X、P1、P2は上記した意味を有する。)
【0046】
【実施例】
以下、実施例により本発明をさらに詳しく説明するが、もとより本発明はこれらに限定されるものではない。特に断らない限り温度は摂氏で示される。プロトン核磁気共鳴(NMR)スペクトルはバリアン300MHzスペクトロメーター上に記録した;化学シフト(δ)はppmで示される。実施例中において使用された略語は、Boc:第3ブトキシカルボニル;Z:ベンジルオキシカルボニル;THF:テトラヒドロフラン;LDA:リチウムジイソプロピルアミド;NCS:N−クロロコハク酸イミド;NBS:N−ブロモコハク酸イミドを包含する。
【0047】
製造例1 N,N−ジベンジル−L−フェニルアラニンベンジルエステル (Ia) の製造
25.0g(151.3mmol)の(L)−フェニルアラニンおよび66.67g(482.4mmol)の炭酸カリウムを水100mlに溶解した後、塩化ベンジル57.51g(454.3mmol)を加え、95℃で19時間加熱攪拌した。室温まで冷却した後、n−ヘプタン67mlおよび水50mlを加え分層した。有機層を50mlのメタノール/水=1/2の溶液で2回洗浄した後、無水硫酸ナトリウムで乾燥した。これを濾過、濃縮し、表題化合物(Ia)を61.64g(90%,121.8mmol)を得た(収率84.7%)。
1H-NMR(300MHz、CDCl3) δ:3.00(dd,1H),3.14(dd,1H),3.53(d,2H),3.71(t,1H),3.92(d,2H),5.12(d,1H),5.23(d,1H),6.99-7.40(m,20H).
マススペクトル(FAB) 436(MH+)
【0048】
製造例2 N,N−ジベンジル−L−フェニルアラニンパラニトロフェニルエステル (Ib) の製造
クロロホルム(50ml)にN,N−ジベンジル−L−フェニルアラニン塩酸塩(7.64g,20.0mmol)を加え、その懸濁液に10%アンモニア水(20.0ml)を滴下して中和した。有機層を分離し、水(20ml)で洗浄後硫酸マグネシウムで乾燥、ろ過した。濾液を濃縮して得られた残渣をクロロホルム(50ml)に溶解し、氷冷下、パラニトロフェノール(2.89g,20.4mmol)及び、N,N’−ジシクロヘキシルカルボジイミド(4.13g,20.0mmol)を順次加え、一晩反応させた。反応液に酢酸エチル(30ml)を加え、析出したN,N’−ジシクロヘキシル尿素をろ過し、濾液を10%炭酸カリウム水溶液で洗浄した。有機層を分離し、濃縮して得られた残渣を再度酢酸エチル(30ml)に溶かし、析出した不溶物をろ過した。濾液を濃縮して得られた粗製物をシリカゲルカラムクロマトグラフィーにより精製して、表題化合物(Ib)(7.77g,16.65mmol)を得た。
1HNMR(300MHz,CDCl3) δ :3.13(dd,J=7.4,13.7Hz,1H),3.26(dd,J=8.2,13.9Hz,1H),3.72(d,J=14.0Hz,2H),3.96(dd,J=7.4,8.2Hz,1H),4.06(d,J=14.0Hz,2H),7.14(d,J=9.2Hz,2H),7.06-7.37(m,15H),8.26(d,J=9.3Hz,2H)
マススペクトル(FAB) 467(MH+)
【0049】
実施例1 (4S)−4−(N,N−ジベンジルアミノ)−4−ベンジル−3−オキソブタン酸t−ブチルエステル( IIa )の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(24ml,48mmol)を無水THF(64ml)に溶解し−53℃に冷却した。この溶液に対し、酢酸tert−ブチル(5.8g,50mmol)のTHF(12ml)溶液を約15分間で温度−45〜−50℃に維持しつつ滴下した。滴下後、−53℃で1時間攪拌した後、さらにこの溶液に対し、N,N−ジベンジル−L−フェニルアラニンベンジルエステル(Ia)(純度90%,7.2g,15mmol)のTHF(8ml)溶液を約15分間で温度−48〜−52℃に維持しつつ滴下した。滴下後、反応液を−5℃まで加温し、3時間後、クエン酸(16.5g)の水(50ml)溶液を反応液に加え、反応を停止した。酢酸エチルで2回(100ml,50ml)抽出し、有機層を10%クエン酸(20ml)、飽和食塩水(10ml)、5%炭酸水素ナトリウム水溶液(20ml×4)、飽和食塩水(10ml)の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮した。濃縮液をシリカゲルカラムクロマト(n−ヘキサン:酢酸エチル=4/1)で精製し、表題化合物(IIa)(6.09g,13.7mmol)を得た。
1HNMR(300MHz, CDCl3) δ: 1.25(s,9H),2.93(dd,J=3.9,13.5Hz,1H),3.20(dd,J=9.0,13.5,Hz,1H),3.40(d,J=15.6Hz,2H),3.55(m,2H),3.62(dd,J=3.9,9.0Hz,1H),3.82(d,J=13.5Hz,2H),7.107.38(m,15H)
マススペクトル(FAB) 444(MH+)
【0050】
実施例2 (4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソブタン酸t−ブチルエステル (IIb) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(14ml,28mmol)を無水THF(30ml)に溶解し−45℃に冷却した。この溶液に対し、酢酸tert−ブチル(3.7g,32mmol)のTHF(4ml)溶液を約15分間で温度−40〜−45℃に維持しつつ滴下した。滴下後、−50℃で30分間攪拌した後、さらにこの溶液に対し、N−ベンジルオキシカルボニル−L−フェニルアラニンメチルエステル(Ic)(2.5g,8mmol)のTHF(4ml)溶液を約10分間で温度−40〜−45℃に維持しつつ滴下した。滴下後、反応液を−40℃で30分攪拌した後、0℃まで加温し20分攪拌した。20%クエン酸水溶液(40ml)を反応液に加え反応を停止した。酢酸エチル(50ml×2)で抽出し、有機層を水(5ml)、5%炭酸水素ナトリウム水溶液(20ml)、水(10ml)の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮した。濃縮液をシリカゲルカラムクロマト(n−ヘキサン:酢酸エチル=4/1)で精製し、表題化合物(IIb)(3.08g,7.77mmol)を得た。
1HNMR(300MHz, CDCl3) δ: 1.44(s,9H),2.99(dd,J=7.1,14.1Hz,1H),3.17(dd,J=6.1,14.1Hz,1H),3.38(m,2H),4.68(bq,J=approx.7,1H),5.07(s,2H),5.38(bd,J=7.9Hz,1H),7.12-7.35(m,10H)
13CNMR(75MHz, CDCl3) δ: 28.0,37.1,48.2,60.7,67.0,82.4,127.1,128.1,128.2,128.5,128.7,129.2,135.8,137.9,165.8,182.0,201.7
マススペクトル(FAB) 398(MH+)
【0051】
実施例3 (4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソブタン酸エチルエステル (IIc) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(4ml,8mmol)を無水THF(8ml)に溶解し−50℃に冷却した。この溶液に対し、酢酸エチル(740mg,8mmol)のTHF(2ml)溶液を約5分間で温度−50〜−45℃に維持しつつ滴下した。滴下後、−50℃で30分間攪拌した後、さらにこの溶液に対し、N−ベンジルオキシカルボニル−L−フェニルアラニンメチルエステル(Ic)(626mg,2mmol)のTHF(2ml)溶液を約5分間で温度−50〜−45℃に維持しつつ滴下した。滴下後、反応液を−50℃で30分攪拌した後、室温まで加温し5分攪拌した。10%クエン酸水溶液(10ml)を反応液に加え反応を停止した。酢酸エチルで抽出し、有機層をシリカゲルカラムに通した後、濃縮し粗製の表題化合物(IIc)(826mg)を油状物として得た。
1HNMR(300MHz, CDCl3) δ: 1.22-1.30(m,3H),2.92-3.05(m,1H),3.05-3.22(m,1H),3.40-3.54(m,2H),4.10-4.19(m,2H),4.66(m,1H),5.07(bs,2H),5.55(bd,J=7.8Hz,1H),7.11-7.38(m,10H)
【0052】
実施例4 (4S)−4−(N−t−ブトキシカルボニルアミノ)−4−ベンジル−3−オキソブタン酸t−ブチルエステル (IId) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(27ml,54mmol)を無水THF(50ml)に溶解し−45℃に冷却した。 この溶液に対し、酢酸tert−ブチル(7.0g,60mmol)のTHF(5ml)溶液を約20分間で温度−40〜−45℃に維持しつつ滴下した。滴下後、−50℃で30分間攪拌した後、さらにこの溶液に対し、N−ブトキシカルボニル−L−フェニルアラニンメチルエステル(Id)(4.18g,15mmol)のTHF(5ml)溶液を約20分間で温度−40〜−45℃に維持しつつ滴下した。滴下後、反応液を−50℃で30分攪拌した後、25%クエン酸水溶液(40ml)を反応液に加え反応を停止した。反応液中の有機溶媒を減圧留去した後、酢酸エチル(100ml)で抽出し、有機層を水(20ml)で洗浄した。有機層を濃縮し、シリカゲルカラム(n−ヘキサン:酢酸エチル=4/1)を通し、結晶(5.92g)を得た。NMR分析の結果、15%の未反応原料(Id)を含む表題化合物(IId)であった。
1HNMR(300MHz, CDCl3) δ: 1.39(s,9H),1.46(s,9H),2.96(dd,J=7.4,14.0Hz,1H),3.16(dd,J=5.7,14.0Hz,1H),3.34-3.45(m,2H),4.57(bq,J=approx.6.Hz,1H),5.09(bd,J=7.7Hz,1H),7.11-7.30(m,5H)
13CNMR(75MHz, CDCl3) δ: 27.8,28.2,36.9,48.0,60.4,80.0,82.0,126.9,128.4,129.2,136.2,155.1,166.0,202.2
【0053】
実施例5 (4S)−4−(N,N−ジベンジルアミノ)−4−ベンジル−3−オキソ−2−ブロモブタン酸t−ブチルエステル (IIIa) の製造
(1) 細かくすりつぶした臭化銅(II)(0.45g,2.0mmol)を酢酸エチル(2ml)に溶解した。25℃で攪拌下、酢酸エチル(2ml)に実施例1で得た(IIa)(0.44g,1.0mmol)とトリエチルアミン(0. 14ml,1.0mmol)を溶解した液を一気に加えた。アルゴン雰囲気下、25℃で36時間反応させた後に、5%クエン酸水溶液(5ml)を加え、有機層を分離した。有機層を濃縮し表題化合物(IIIa)を異性体混合物(0.45g,0.86mmol)として褐色結晶を得た。
1HNMR(300MHz, CDCl3)(異性体混合物) δ: 0.90(s,9/2H),1.44(s,9/2H),2.99(dd,J=3.7,13.5Hz,1H),3.14-3.29(m,1H),3.50(dd,J=5.6,13.3,2H),3.83(dd,10.3,13.3,2H),3.82(dd,1/2H),4.03(dd,3.7,9.5,1/2H),5.42(s,1/2H),5.51(s,1/2H),7.14-7.34(m,15H)
マススペクトル(ESI) 522.3,524.3(MH+)
(2) 実施例1で得た(IIa)(0.89g,2.0mmol)をジエチルエー テル(10ml)に溶解した。氷冷下で攪拌しつつNBS(0.39g,2.0mmol)を加え、そのままさらに2時間攪拌した。室温でさらに13時間反応させた後に、水(5ml)を加え、有機層を分離した。有機層を濃縮し褐色結晶(1.23g)を得た。NMRで分析したところ、原料の(IIa)が約35%残存 しており、主生成物は表題化合物(IIIa)の異性体混合物であった。
【0054】
実施例6 (4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソ−2−クロロブタン酸t−ブチルエステル (IIIb) の製造
実施例2で得た(IIb)(0.8g,2.0mmol)をクロロホルム(5ml)に溶解した。氷冷下で攪拌しつつNCS(264mg,1.98mmol)を加え、氷冷下で3時間攪拌した。反応液に水(2ml)を加え、有機層を分離した。この有機層を濃縮し結晶(912mg)を得た。この結晶の一部(100mg)をシリカゲル薄層クロマト(n−ヘキサン:酢酸エチル=4/1)で展開し分取して表題化合物(IIIb)を異性体混合物(40mg)として得た。
1HNMR(300MHz, CDCl3)(異性体混合物)δ: 1.45-1.48(m,9H),2.95-3.05(m,1H),3.18-3.38(m,1H),4.85-5.10(m,4H),5.20-5.35(m,1H),7.14-7.35(m,10H)
【0055】
実施例7 (4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソ−2−ブロモブタン酸t−ブチルエステル (IIIc) の製造
実施例2で得た(IIb)(0.8g,2.0mmol)をクロロホルム(5ml)に溶解した。氷冷下で攪拌しつつNBS(338mg,1.9mmol)を加え、氷冷下で30分間攪拌した。反応液に水(3ml)を加え、有機層を分離した。この有機層を濃縮し粗製の表題化合物(IIIc)の異性体混合物(921mg)として淡茶結晶を得た。
1HNMR(300MHz, CDCl3)(異性体混合物)δ: 1.43-1.50(m,9H),3.00(dd,J=7.4,14.1Hz,1H),3.21(dd,J=5.7,14.1Hz,1H),4.82-5.03(m,1H),4.89(bs,1H),5.07(bs,2H),5.20(bd,J=6.0Hz,1H),7.17-7.35(m,10H)
マススペクトル(FAB) 476,478(MH+)
【0056】
実施例8 (3S)−3−(N,N−ジベンジルアミノ)−3−ベンジル−2−オキソ−1−ブロモプロパン (Va) の製造
実施例5で得た(IIIa)(41mg,0.078mmol)を4N−塩化水素(酢酸エチル溶液,1ml)に溶解した。室温で13時間攪拌し反応させた。反応液に酢酸エチル(3ml)を加え、飽和炭酸水素ナトリウム水溶液で中和した。この有機層を濃縮し粗製の(Va)(30mg)を得た。
1HNMR(300MHz, CDCl3) δ: 3.00(dd,J=3.9,13.5Hz,1H),3.25(dd,J=9.0,13.5,Hz,1H),3.55(d,J=15.6Hz,2H),3.67(dd,J=3.9,9.0Hz,1H),3.84(d,J=15.6Hz,2H),4.42(s,1H),4.48(s,1H),7.10-7.38(m,15H)
【0057】
実施例9 (3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−オキソ−1−クロロプロパン (Vb) の製造
実施例2で得られた(IIb)(35g,88mmol)を塩化メチレン(88m l)に溶解した。氷冷下で攪拌しつつ塩化スルフリル(7.23ml,90mmol)を加え、氷冷下で1時間攪拌した後、室温でさらに30分間攪拌した。反応液を濃縮したところ粗製の(IIIb)(37g)を結晶として得た。この結晶35gをギ酸(純度90%、80ml)に懸濁し、攪拌しつつ80度に加熱し30分間反応させた。反応液を冷却しギ酸を減圧留去し(Vb)の結晶を得た。さらにこの結晶をイソプロパノール(200ml)より再結晶し、結晶を乾燥し表題化合物(Vb)(19.55g)を得た。
1H-NMR(300MHz, CDCl3) δ: 3.05(dd,J=7.2,14.0Hz,1H),3.25(dd,J=7.1,14.0,Hz,1H),3.97(d,J=16.2Hz,1H),4.14(d,J=16.2Hz,1H),4.77(q,J=4.77Hz,2H),5.08(s,2H),5.29(d,J=7.2Hz,1H),7.12-7.35(m,10H)
13C-NMR(75MHz, CDCl3) δ: 37.8, 47.4, 58.7, 67.3, 127.5, 128.1, 128.3, 128.6, 129.0, 129.1, 135.2, 135.9, 155.7, 201.0
【0058】
実施例10 (3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−オキソ−1−ブロモプロパン (Vc) の製造
(1) 実施例7で得た(IIIc)(56mg,0.12mmol)を塩化メチレン(1ml)に溶解し、トリフルオロ酢酸(0.3ml)を加え60℃で17時間攪拌し反応させた。反応液を飽和炭酸水素ナトリウム水溶液で中和し、酢酸エチルを加え抽出した。有機層を濃縮した後、シリカゲル薄層クロマト(n−ヘキサン:酢酸エチル=4/1)で展開し分取して表題化合物(Vc)(20mg)を得た。
1HNMR(300MHz, CDCl3) δ: 3.06(dd,J=7.2,13.9Hz,1H),3.09(dd,J=6.9,13.9Hz,1H),3.81(d,J=13.7Hz,1H),3.93(d,J=13.7Hz,1H),4.82(bq,J=7.3Hz,1H),4.89(bs,1H),5.08(bs,2H),5.34(bd,J=7.2Hz,1H),7.13-7.39(m,10H)
13CNMR(75MHz, CDCl3) δ: 33.1,37.7,58.8,67.2,127.3,128.0,128.3,128.5,128.9,129.1,135.5,136.0,155.8,200.4
マススペクトル(ESI) 376(MH+)
(2) (IIIc)(360mg,0.756mmol)をギ酸(2ml)に溶解し、25℃で15時間攪拌し反応させた。議酸を減圧留去した後、濃縮液を5%炭酸水素ナトリウム水溶液で中和し、酢酸エチルを加え抽出した。有機層を濃縮し粗製のVc(296mg)を結晶として得た。さらに、この結晶をシリカゲル薄層クロマト(n−ヘキサン:酢酸エチル=4/1)で展開し分取して精製表題化合物(Vc)結晶(149mg)を得た。
【0059】
実施例11 (3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−ヒドロキシ−1−クロロプロパン (VIb) の製造
実施例9で得た(Vb)(136mg,0.4mmol)をメタノール(1.5 ml)に溶解した。この溶液に対し、0℃で水素化ホウ素ナトリウム(17mg,0.44mmol)を加え、さらに0℃で2時間攪拌し反応させた。反応液に1N塩酸を加え反応を停止させた後、メタノールを減圧留去した。この液に酢酸エチルを加え抽出し、有機層を濃縮して表題化合物(2S,3S)−(VIb)と( 2R,3S)−(VIb)の混合物(74:26,138mg)を淡黄色結晶として得た。
1HNMR(300MHz, CDCl3)(ジアステレオマー混合物)δ: 2.93(dd,J=8.4,14.0Hz,1H),3.00(dd,J=4.9,14.0Hz,1H),3.50-3.60(m,1H),3.65(dd,J=4.2,12.0Hz,1H),3.81-3.89(m,1H),3.92-4.03(m,1H),4.87(bd,J=approx.8Hz,1H),5.03(bs,2H),7.17-7.37(m,10H)
【0060】
実施例12 (3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−ヒドロキシ−1−ブロモプロパン (VIc) の製造
実施例10で得た(Vc)(142mg,0.37mmol)をメタノール(3ml)、THF(1ml)の混合溶媒に溶解した。この溶液に対し、0℃で水素化ホウ素ナトリウム(16mg,0.41mmol)を加え、さらに0〜5℃で2時間攪拌し反応させた。反応液に1N塩酸(2ml)を加え反応を停止させた後、メタノール、THFを減圧留去した。得られたスラリーに酢酸エチルを加え抽出し、有機層を濃縮して表題化合物の(2S,3S)−(VIc)と(2R,3S) −(VIc)の混合物(84:16,164mg)を淡黄色結晶として得た。
1HNMR(300MHz, CDCl3)(ジアステレオマー混合物)δ: 2.90(dd,J=9.7,14.0Hz,1H),2.99(dd,J=4.7,14.0Hz,1H),3.38-3.47(m,1H),3.53(dd,J=3.6,10.6Hz,1H),3.81-3.90(m,1H),3.93-4.03(m,1H),4.86(bd,J=approx.8Hz,1H),5.03(s,2H),7.16-7.35(m,10H)
【0061】
実施例13 (3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−1,2−エポキシプロパン (VIIb) の製造
(1) 実施例11で得た(2S,3S)−(VIb)と(2R,3S)−(VIc)の混合物(約3:1 ,100mg,0.3mmol)をTHF(2ml)に溶解し た。この溶液に対し、−10℃でカリウムtert−ブトキシド(40mg,0.27mmol)を加え、さらに−10℃で15分間攪拌し反応させた。反応液に水(3ml)と塩化メチレン(10ml)を加え抽出し有機層を分離し濃縮した。得られた結晶をシリカゲル薄層クロマト(n−ヘキサン:酢酸エチル=2/1)で展開し分取して表題化合物の(2S,3S)−(VIIb)と(2R,3S)−(VIIb)の混合物(約3:1)(20mg)を白色結晶として得た。
1HNMR(300MHz, CDCl3)(ジアステレオマー混合物)δ: 2.52-2.58(m,2/4H,(2R,3S)),2.71-2.80(m,6/4H,(2S,3S))2.83-2.95(m,1H),2.99(dd,J=5.0,14.2Hz,1H),3.69-3.72(m,1H,3/4H,(2S,3S)),4.12-4.25(m,1H,1/4H,(2R,3S)),4.67-4.80(m,1H),5.03(s,6/4H,(2S,3S)),5.05(s,2/4H,(2R,3S)),7.18-7.35(m,10H)
(2) 実施例12で得た(2S,3S)−(VIc)と(2R,3S)−(VIc)の混合物(約5:1,164mg)をメタノール(4.5ml)に溶解した。この溶液に対し、室温で炭酸カリウム(58mg,0.41mmol)を加え、さらに室温で1時間攪拌し反応させた。反応液に1N塩酸(3ml)と酢酸エチル(10ml)を加え抽出し有機層を分離し濃縮した。得られた結晶をシリカゲル薄層クロマト(n−ヘキサン:酢酸エチル=2/1)で展開し分取して表題化合物の(2S,3S)−(VIIb)と(2R,3S)−(VIIb)の混合物(約5:1)(79mg)を白色結晶として得た。
【0062】
実施例14 (4S)−4−(N,N−ジベンジルアミノ)−4−ベンジル−3−オキソ−2−クロロブタン酸t−ブチルエステル (IIId) の製造
アルゴン雰囲気下、無水THF(3.2ml)とLDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(0.39ml,0.78mmol)を混合し、−70℃に冷却した。この溶液に、クロロ酢酸tert−ブチル(IVa)(0. 13ml,0.85mmol)を滴下し30分間攪拌した後、(Ib)(154mg,0.34mmol)を無水THF(1.0ml)に溶かした溶液を滴下し、徐々に昇温しながら3時間攪拌した。この反応液を室温まで昇温した後、10%クエン酸水溶液(3.0ml)を加え、次いで酢酸エチル(10ml)を加えて抽出した。有機層を水(10ml)で洗浄し、硫酸マグネシウムで乾燥、ろ過した。濾液を濃縮して得られた粗製物をシリカゲル分取薄層クロマトグラフィーにて精製し、表題化合物の(2S,4S)−(IIId)および(2R,4S)−(IIId) の混合物(200.2mg)を得た。ジアステレオ比は1H−NMR積分比より約2:1であった。
1HNMR(300MHz,CDCl3)(ジアステレオマー混合物)δ:0.86(s,6H),1.44(s,3H),2.943.04(m,1H),3.17(dd,J=9.8,13.4Hz,1/3H),3.26(dd,J=9.8,13.3Hz,2/3H),3.50(d,J=13.2Hz,4/3H),3.51(d,J=13.2Hz,2/3H),3.81(d,J=13.2Hz,4/3H),3.85(d,J=13.1Hz,2/3H),3.87(dd,J=3.0,9.7Hz,2/3H),4.00(dd,J=3.0,9.7Hz,1/3H),5.37(s,1/3H),5.48(s,2/3H),7.08-7.39(m,15H)
マススペクトル(FAB) 478(MH+)
【0063】
実施例15 (4S)−4−(N−ベンジルオキシカルボニル)アミノ−4−ベンジル−3−オキソブタン酸t−ブチルエステル (IIb) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(231ml,462mmol)を無水THF(400ml)に溶解し−50℃に冷却した。この溶液に対し、酢酸tert−ブチル(58.1g,500mmol)のTHF(40ml)溶液を約40分間で温度−45〜−50℃に維持しつつ滴下した。滴下後、−45℃で30分間攪拌した後、さらにこの溶液に対し、N−ベンジルオキシカルボニル−L−フェニルアラニンメチルエステル(Ic)(39.4g,125mmol)のTHF(40ml)溶液を約30分間で温度−45〜−50℃に維持しつつ滴下した。滴下後、反応液を−45℃で60分攪拌した後、反応液を2N塩酸(500ml)と氷(150g)の混合物にあけて反応を停止した。 混合液を室温に戻し、有機層を分離した。水層をさらにトルエン(350ml)で抽出し2つの有機層をあわせ、5%炭酸水素ナトリウム水溶液(50ml)、25%食塩水(50ml)の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮して粗製の表題化合物(IIb)(58.1g,純度86.4%,126mmol)を得た。
【0064】
実施例16 (4S)−4−(N−ベンジルオキシカルボニル)アミノ−4−ベンジル−3−オキソ−2−クロロブタン酸t−ブチルエステル (IIIb) の製造
(4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソブタン酸t−ブチルエステル(IIb)(40.5g,純度86.4%,88mmol)を塩化メチレン(88ml)に溶解した。氷冷下で攪拌しつつ塩化スルフリル(7.23ml,90mmol)を加え、氷冷下で1時間攪拌した後、室温でさらに30分間攪拌した。反応液を30℃以下で濃縮したところ粗製の表記化合物(48.6g)を結晶として得た。
この結晶(2g)をトルエン(10ml)から再結晶し精製結晶を得た。
1H-NMR(300MHz,CDCl3)
(異性体混合物)δ:1.45-1.48(m,9H), 2.95-3.05(m,1H), 3.18-3.38(m,1H), 4.85-5.10(m,4H), 5.20-5.35(m,1H)7.14-7.35(m,10H)
(主異性体)δ:1.44(s,9H), 2.99(dd,J=7.5,14.1Hz,1H), 3.20(dd,J=6.1,14.1Hz,1H), 4.85(s,1H), 4.97(bq,J=8.4Hz,1H), 5.60(s,2H), 5.25(bd,J=8.4Hz,1H)7.14-7.35(m,10H)
13C-NMR(75MHz,CDCl3)
(主異性体)δ:27.5, 37.7, 59.5, 60.0, 67.2, 85.0, 127.3, 128.1, 128.3, 128.5, 128.9, 129.2, 135.3, 136.0, 155.6, 163.1, 197.4
マススペクトル(FAB) 432(MH+), 454(MNa+)
【0065】
実施例17 (3S)−3−(N−ベンジルオキシカルボニル)アミノ−3−ベンジル−2−オキソ−1−クロロプロパン (Vb) の製造
実施例16で得られた(4S)−4−(N−ベンジルオキシカルボニルアミノ)−4−ベンジル−3−オキソ−2−クロロブタン酸t−ブチルエステル(IIIb)の粗結晶(46.6g)をギ酸(純度90%,80ml)に懸濁し、攪拌しつつ80℃に加熱し20分間反応させた。反応液を冷却しギ酸を減圧留去し表題化合物の粗結晶を得た。
さらにこの結晶をイソプロパノール(200ml)に60℃で溶解し5℃に冷却再結晶し、結晶をイソプロパノール(50ml)で洗浄後、乾燥し表題化合物の結晶(20.1g,60mmol)を得た。
【0066】
実施例18 (2S,3S)−3−(N−ベンジルオキシカルボニル)アミノ−3−ベンジル−2−ヒドロキシ−I−クロロプロパン (VIb) の製造
(3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−オキソ−1−クロロプロパン(Vb)(17.0g,51.2mmol)を塩化メチレン(180ml)に溶解し、さらにメタノール(180ml)を加えた。この溶液に対し、0℃で水素化ホウ素ナトリウム(2.03g,53.8mmol)を約10分かけて加え、さらに0℃で30分間攪拌し反応させた。反応液に酢酸(12.9ml,226mmol)を加え反応を停止させた後、メタノールを減圧留去した。この液に水(50ml)を加え、塩化メチレンで2回(150ml+50ml)抽出した。有機層を濃縮して表題化合物とそのジアステレオマーである(2R,3S)体の混合物(84:16)を白色結晶として得た。
この結晶(1g)を酢酸エチル/n−ヘキサン(5/1,15ml)から再結晶し表題化合物の結晶(97%de,0.6g)を得た。
1H-NMR(300MHz,CDCl3)
((2S, 3S)体)δ:2.87(dd,J=9.0,14.1Hz, 1H), 3.00(dd,J=4.6,14.1Hz,1H), 3.55(dd,J=7.3,11.3Hz,1H), 3.60(bs,1H), 3.62(dd,J=4.3,11.3Hz,1H), 3.86(bq,J=approx5Hz,1H), 3.96-4.06(m,1H), 5.01(s,2H), 5.31(bd,J=approx.8.5Hz,1H), 7.18-7.33(m,10H)
13C-NMR(75MHz,CDCl3)
((2S, 3S)体)δ:35.3, 47.1, 54.6, 66.5, 73.2, 126.4, 127.8, 127.9, 128.3, 128.3, 129.3, 136.3, 137.5, 156.0
マススペクトル(ESI) 334.2(MH+), 356.2(MNa+), 689.3(2MNa+)
【0067】
実施例19 (2S,3S)−3−(N−ベンジルオキシカルボニル)アミノ−3−ベンジル−1,2−エポキシプロパン (VIIb) の製造
実施例18で得られた(2S,3S)−3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−2−ヒドロキシ−I−クロロプロパン(VIb)とそのジアステレオマー((2R,3S)体)の混合物(84:16)の粗結晶をメタノール(600ml)に溶解した。この溶液に対し、室温で炭酸カリウム(14.1g,102mmol)を加え、さらに室温で3時間攪拌し反応させた。反応液をろ過し塩を取り除きさらにメタノール(20ml)で洗浄し、ろ液を35℃以下で約100mlまで濃縮した。濃縮液に0.5N塩酸(100ml)を加え酸性にした後、塩化メチレンで2回(150ml+150ml)抽出した。有機層を40℃以下で濃縮し、表題化合物とそのジアステレオマー((2R,3S)体)の混合物(84:16)を白色結晶(14.0g,47.1mmol)として得た。
この結晶(1g)を酢酸エチル/n−ヘキサン(1/1,6ml)から再結晶し表題化合物の結晶(97%de,0.58g)を得た。
1H-NMR(300MHz,CDCl3)
((2S,3S)体)δ:2.71-2.80(m,2H), 2.85(dd,J=8.1, 14.1Hz,1H), 2.91(dd,J=2.7,6.4Hz,1H), 2.98(dd,J=5.1,14.1Hz,1H), 3.68-3.82(m,1H), 4.77(bd,J=5.9Hz,1H),5.03(s,2H), 7.17-7.33(m,10H)
13C-NMR(75MHz,CDCl3)
((2S,3S)体)δ:37.5, 46.7, 53.0, 53.2, 66.8, 126.8, 128.0, 128.1, 128.5, 128.6, 129.3, 136.2, 136.4, 155.7
マススペクトル(ESI) 298.2(MH+), 320.2(MNa+), 336.3(MK+), 617.5(2MNa+)
【0068】
実施例20 (2R,3S)−3−(N−ベンジルオキシカルボニル)アミノ−2−ヒドロキシ−1−(N−イソブチルアミノ)−4−フェニルブタン (IXa) の製造
3−(N−ベンジルオキシカルボニルアミノ)−3−ベンジル−1,2−エポキシプロパン(VIIb)((2S,3S)/(2R,3S)=84/16,4.47g,15.0mmol)をエタノール(29ml)に懸濁させ、イソブチルアミン(22.4ml,225mmol)に加えた。この溶液を70℃に加熱し60分間反応させた。反応液を濃縮して表題化合物とそのジアステレオマー((2S,3S)体)の混合物(84/16)を白色結晶として得た。
また、(2S,3S)体の結晶を用いて同様に反応させ、表題化合物を得た。
1H-NMR(300MHz,CDCl3)
((2R,3S)体)δ:0.90(d,J=6.6Hz,6H), 1.60-1.80(m,1H), 2.38(d,J=6.8Hz,2H), 2.65(dd,J=6.8,12.4Hz,1H), 2.70(dd,J=4.0,12.4Hz,1H), 2.70(bs,1H), 2.86(ddJ=8.1,14.1Hz,1H), 2.99(dd,J=4.8,14.1Hz,1H), 3.49(bq,J=approx4.5Hz,1H), 3.80-3.95(m,1H), 5.02(s,2H), 5.11(bd,J=9.0Hz,1H), 7.19-7.32(m,10H)
13C-NMR(75MHz,CDCl3)
((2R,3S)体)δ: 20.5, 28.3, 36.6, 51.4, 55.0, 57.9, 66.5, 70.4, 126.4, 127.8, 128.0, 128.4, 128.4, 129.5, 136.6, 137.7, 156.3
マススペクトル(ESI) 371.2(MH+)
【0069】
実施例21 4−ニトロ−N−((2’R(syn),3’S)−3’−(N−ベンジルオキシカルボニル)アミノ−2’−ヒドロキシ−4’−フェニルブチル)−N−イソブチル−ベンゼンスルホンアミド (IXb) の製造
(2R,3S)−3−(N−ベンジルオキシカルボニルアミノ)−2−ヒドロキシ−1−(N−イソブチルアミノ)−4−フェニルブタン(IXa)((2R,3S)/(2S,3S)=84/16,6.08g,15.0mmol)を塩化メチレン(40ml)に溶解した。炭酸ソーダ(2.55g,24.1mmol)を水(20ml)溶液を上記の溶液に加え2層系の液を調製した。この溶液に対し、氷冷下、4-ニトロベンゼンスルホニルクロライド(4.0g,18.0mmol)の塩化メチレン(5ml)溶液を約10分間で加え、反応液を室温に戻しさらに3時間反応させた。有機層を分離、濃縮し表題化合物とそのジアステレオマー(2’S,3’S)の混合物(84:16)を白色結晶として得た。この結晶をエタノール(100ml)より再結晶した。再結晶は70℃で溶解し、約55℃で起晶後、その温度で1時間熟成し、最終的には20℃まで冷却した。分離結晶をエタノール(30ml)で洗浄し乾燥し表題化合物(6.07g,10.9mmol,96.4%de)を白色結晶として得た。
1H-NMR(300MHz,CDCl3)
((2'R(syn),3'S)体)δ:0.84(d,J=6.1Hz,3H), 0.86(d,J=6.3Hz,3H), 1.75-1.95(m,1H), 2.88(dd,J=7.5,14.1Hz,2H), 2.96(d,J=6.8Hz,2H), 3.00(dd,J=4.7,14.1Hz,1H),2.90(bs,1H), 3.12-3.26(m,2H), 3.80-3.91(m,2H), 4.99(bd,J=8.7Hz,1H),5.01(s,2H), 7.21-7.32(m,10H), 7.92(d,J=8.7Hz,2H), 8.29(d,J=8.7Hz,2H)
13C-NMR(75MHz,CDCl3)
((2'R(syn),3S)体)δ:19.8, 19.9, 35.5, 52.4, 57.7, 66.9, 72.1, 124.3, 126.7, 127.8, 128.2, 128.5, 128.5, 128.6, 129.3, 136.1, 137.2, 144.6, 150.0, 156.5
【0070】
実施例22 4−ニトロ−N−((2’R(syn),3’S)−3’−(N−t−ブチルオキシカルボニル)アミノ−2’−ヒドロキシ−4’−フェニルブ チル)−N−イソブチル−ベンゼンスルホンアミド (IXc) の製造
4−ニトロ−N−((2’R(syn),3’S)−3’−(N−ベンジルオキシカルボニルアミノ)−2’−ヒドロキシ−4’−フェニルブチル)−N−イソブチル−ベンゼンスルホンアミド(IXb)(13.0g,23.4mmol,96%de)を塩化メチレン(77ml)に溶解しメタノール(2ml,46.8mmol)を加えた。氷冷下、この溶液30%臭化水素酸/酢酸溶液(19.3ml,HBr 93.6mmol)を加えた後、室温に戻し3時間攪拌した。反応液に10%炭酸ナトリウム水溶液(300ml)を加えアルカリ性にし、さらに塩化メチレン(100ml)を加えた。有機層を分離し、ここにジ炭酸ジ−tert−ブチル(5.62g,25.7mmol)の塩化メチレン(50ml)を加え室温で2時間反応させた。反応液を約100mlになるまで濃縮しここにメタノール(100ml)と炭酸カリウム(3.23g,23.4mmol)を加え、室温で攪拌した。途中HPLCで反応を追い3時間後、2位のAc化体が消失したところで、酢酸(1.34ml,23.4mmol)を加え反応を停止させた。反応液を濃縮し、水(50ml)を加え、塩化メチレン(200ml)で抽出した。有機層を濃縮して表題化合物の粗結晶を得た。この結晶をエタノール(550ml)から再結晶した。再結晶は55℃で溶解し、約40℃で起晶後、最終的には5℃まで冷却した。分離結晶をエタノール(100ml)で洗浄し乾燥し表題化合物(8.71g,16.7mmol,100%de)を白色結晶として得た。
1H-NMR(300MHz,CDCl3)
((2R'(syn),3'S)体)δ:0.87(d,J=6.6Hz,3H), 0.88(d,J=6.6Hz,3H), 1.36(s,9H), 1.81-1.96(m,1H), 2.83-2.2.96(m,2H), 2.99(d,J=7.5Hz,2H), 3.20(d,J=5.3Hz,2H), 3.70-3.85(m,2H), 3.82(bs,1H), 4.64(bd,J=7.6Hz,1H), 7.21-7.33(m,10H),7.96(d,J=8.8Hz,2H), 8.33(d,J=8.8Hz,2H)
13C-NMR(75MHz,CDCl3)
((2R'(syn),3S)体)δ:19.8, 20.0, 26.9, 28.2, 35.6, 52.5, 55.2, 57.5, 72.2, 80.1, 124.3, 126.6, 128.5, 128.6, 129.4, 137.5, 144.8, 150.0, 156.3
マススペクトル(ESI) 522.3(MH+), 544.5(MNa+), 560.4(MK+)
【0071】
実施例23 N−(S)−テトラヒドロフラン−3−イルオキシカルボニル−L−フェニルアラニンメチルエステル (Ie) の製造
(S)−3−ヒドロキシテトラヒドロフラン(0.881g,10mmol)を塩化メチレン(10ml)に溶解し、トリホスゲン(1.34g,4.5mmol)を加え溶解した。この液を−40℃に冷却し、ピリジン(1.04ml,13.5mmol)の塩化メチレン(5ml)溶液を約15分かけて滴下した。滴下後、室温で3.5時間反応させクロロギ酸エステルを調製した。
上記に得られた反応液を氷冷し、L−フェニルアラニンメチルエステル塩酸塩(1.94g,9mmol)を塩化メチレン(5ml)に溶解した液を添加した。さらに氷冷下で、炭酸ソーダ(2.12g,20mmol)を溶かした水溶液(20ml)を約15分かけて滴下した。滴下後、室温で2.5時間反応させた。反応後の反応液の水層のpHを測定したところアルカリ性であった。この水層を分離し、有機層を1N塩酸(10ml)で2回洗浄し、さらに水(10ml)で洗浄した。溶媒を留去し、表題化合物(2.10g,7.2mmol)を黄色オイルとして得た。
1H-NMR(300MHz,CDCl3)
δ:1.96-2.15(m,2H), 3.05(dd,J=5.6,13.9Hz,1H), 3.13(dd,J=6.4,13.9Hz,1H), 3.72(s,3H), 3.75-3.91(m,4H), 4.62(bq,J=approx.6Hz,1H), 5.19-5.23(m,1H), 5.26(bq,J=8.7Hz,1H), 7.10-7.29(m,5H)
13C-NMR(75MHz,CDCl3)
δ:32.7, 38.2, 52.3, 54.7, 66.9, 73.2, 75.5, 127.1, 128.6, 129.2, 135.7, 155.3, 172.0
マススペクトル(FAB) 294(MH+)
【0072】
実施例24 (4S)−4−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニル)アミノ−5−フェニル−3−オキソ−ペンタン酸tert−ブチル (IIe) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(9ml,18mmol)を無水THF(20ml)に溶解し−50℃に冷却した。この溶液に対し、酢酸tert-ブチル(2.3g,20mmol)のTHF(3ml)溶液を約10分間で温度−45〜−50℃に維持しつつ滴下した。滴下後、−45℃で30分間攪拌した後、さらにこの溶液に対し、N−(S)−テトラヒドロフラン−3’−イルオキシカルボニル−L−フェニルアラニンメチルエステル(Ie)(1.75g,5.3mmol)のTHF(3ml)溶液を約10分間で温度−40〜−45℃に維持しつつ滴下した。滴下後、反応液を−45℃で60分攪拌した後、酢酸(2.3ml,40mmol)を反応液に加え反応を停止した。 反応液に水(20ml)とトルエン(50ml)を加え抽出し、5%炭酸水素ナトリウム水溶液(10ml)、水(10ml)の順で洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮して粗製の表題化合物(1.95g,5.2mmol)を得た。
1H-NMR(300MHz,CDCl3)
δ:1.46(s,9H), 1.96-2.17(m,2H), 2.97(dd,J=7.3,14.2Hz,1H), 3.17(dd,J=6.2,14.2Hz,1H), 3.39(bs,2H), 3.70-3.90(m,4H), 4.66(bq,J=approx.6.5Hz,1H), 5.15-5.23(m,1H), 5.34(bd,J=7.8Hz,1H), 7.15-7.31(m,5H)
13C-NMR(75MHz,CDCl3)
δ:27.9, 32.7, 37.1, 48.2, 60.6, 66.9, 73.2, 75.6, 82.3, 127.1, 128.7, 129.2, 135.7, 155.4, 165.8, 201.6
【0073】
実施例25 (4S)−4−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニル)アミノ−2−クロロ−5−フェニル−3−オキソ−ペンタン酸tert−ブチル (IIIe) の製造
(4S)−4−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニル)アミノ−5−フェニル−3−オキソ−ペンタン酸tert−ブチル(IIe)(1.8g,4.7mmol)を塩化メチレン(5ml)に溶解した。氷冷下で攪拌しつつ塩化スルフリル(0.39mmol,4.7mmol)を加え、室温で60分間攪拌した。反応液を30℃以下で濃縮したところ粗製の表題化合物を得た。
1H-NMR(300MHz,CDCl3)
δ:1.40(s,9H), 1.95-2.17(m,2H), 2.92-3.02(m,1H), 3.17-3.25(m,1H), 3.67-3.90(m,4H), 4.90(d,J=13.5Hz,1H), 4.98(bq,J=approx.6.0Hz,1H), 5.15-5.19(m,1H), 5.27(bd,J=8.3Hz,1H), 7.18-7.30(m,5H)
13C-NMR(75MHz,CDCl3)
δ:27.7, 32.7, 37.6, 59.1, 60.9, 66.9, 73.0, 75.9, 84.8, 127.3, 128.8, 129.3, 135.3, 155.3, 163.3, 197.4
【0074】
実施例26 (3S)−1−クロロ−2−オキソ−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニル)アミノ−4−フェニルブタン (Vd) の製造
実施例25で得られた固体(IIIe)にギ酸(5ml)を加え、80℃で15分攪拌した。ギ酸を留去し得られた残渣にイソプロパノール(10ml)を加えたところ結晶化した。60℃で溶解し室温で2時間、5℃で30分晶析し、結晶を分離した。イソプロパノール(2ml)で結晶を洗浄、乾燥して表題化合物(0.854g,2.7mmol)を白色結晶として得た。
1H-NMR(300MHz,CDCl3)
δ:1.93-2.03(m,1H), 2.08-2.20(m,1H), 3.00(dd,J=7.1,13.8Hz,1H), 3.10(dd,J=6.8,13.8Hz,1H), 3.75-3.92(m,4H), 3.98(d,J=16.2Hz,1H), 4.16(d,J=16.2Hz,1H), 4.75(bq,J=approx.7.5Hz,1H), 5.17-5.22(m,1H), 5.36(bd,J=7.14Hz,1H), 5.15-5.21(m,1H), 7.20-7.34(m,5H)
13C-NMR(75MHz,CDCl3)
δ:32.7, 37.7, 47.3, 58.5, 66.9, 73.1, 75.9, 127.5, 129.0, 129.0, 135.2, 155.4, 201.0
【0075】
実施例27 (2S,3S)−1−クロロ−2−ヒドロキシ−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニルアミノ)−4−フェニルブタン (VId) の製造
(3S)−1−クロロ−2−オキソ−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニルアミノ)−4−フェニルブタン(Vd)(0.706g,2.26mmol)を塩化メチレン(8ml)に溶解し、さらにメタノール(80ml)を加えた。この溶液に対し、−3℃で水素化ホウ素ナトリウム(60mg,1.6mmol)を約5分かけて加え、さらに−3℃で60分間攪拌し反応させた。反応液に酢酸(0.385ml,6.72mmol)を加え反応を停止させた後、メタノールを減圧留去した。この液に水(5ml)を加え、塩化メチレンで2回(20ml+10ml)抽出した。有機層を濃縮して表題化合物とそのジアステレオマー((2R,3S)体)の混合物(83:17)を白色結晶として得た。
1H-NMR(300MHz,CDCl3)
δ:(2S,3S): 1.90-2.00(m,1H), 2.05-2.18(m,1H), 2.80(dd,J=9.3,14.0Hz,1H), 3.01(dd,J=4.3,14.0Hz,1H), 3.54(bs,1H), 3.52-3.66(m,2H), 3.67-3.90(m,5H), 3.94-4.03(m,1H), 5.08-5.16(m,1H), 5.64(bd,J=9.4Hz,1H), 7.20-7.30(m,5H)
13C-NMR(75MHz,CDCl3)
δ:(2S,3S): 32.4, 35.1, 46.8, 54.2, 66.5, 72.9, 73.0, 74.7, 126.0, 128.0, 129.1, 137.6, 155.5
マススペクトル(ESI) 314.3(MH+)
【0076】
実施例28 (2S,3S)−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニルアミノ)−4−フェニルブタン−1,2−エポキシド (VIIc) の製造
実施例27で得られた結晶(VId)をメタノール(20ml)に懸濁し、室温で炭酸カリウム(624mg,4.52mmol)を加え、室温で2時間攪拌し反応させた。反応液をろ過し塩を取り除いた後、ろ液を35℃以下で濃縮した。 濃縮液に0.5N塩酸(10ml)を加え酸性にした後、塩化メチレンで2回(10ml+10ml)で抽出した。有機層を40℃以下で濃縮し、表題化合物とそのジアステレオマー((2R,3S)体)の混合物(83:17)を白色結晶(0.58g,2.1mmol)として得た。
1H-NMR(300MHz, CDCl3)
δ:(1S,1'S): 2.72-2.78(m, 2H), 2.78-2.83(m, 1H), 2.86-3.02(m, 2H), 3.70-3.90(m, 5H), 4.65-4.68(b, 1H), 5.15-5.21(m, 1H), 7.20-7.34(m, 5H)
13C-NMR(75MHz, CDCl3)
δ:(1S,1'S): 32.7, 37.5, 46.7, 53.0, 53.0, 66.9, 73.2, 75.4, 126.9, 128.7, 129.4, 136.3, 155.5
マススペクトル(ESI) 278.2(MH+)
【0077】
実施例29 (2R,3S)−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニルアミノ)−2−ヒドロキシ−1−N−イソブチルアミノ−4−フェニルブタン (IXd) の製造
(2S,3S)−3−(N−(S)−テトラヒドロフラン−3’−イルオキシカルボニルアミノ)−4−フェニルブタン−1,2−エポキシド(VIIc)((2S,3S):(2R,3S)=83:17,0.58g,2.1mmol)をエタノール(4ml)に懸濁させ、イソブチルアミン(3.4ml,33.9mmol)に加えた。この溶液を70℃に加熱し60分間反応させた。反応液を濃縮し表題化合物とそのジアステレオマー((2S,3S)体)の混合物(83:17)を白色結晶として得た。
1H-NMR(300MHz, CDCl3)
δ:(2R,3S): 0.91(d, J=6.6Hz, 6H), 1.72(hep, J=6.6Hz, 1H), 1.80-1.95(m, 1H), 2.02-2.14(m, 1H), 2.37-2.44(m, 2H), 2.64-2.99(m, 5H), 3.55-3.86(m, 5H), 5.11(b, 1H), 5.43(bd, J=8.7Hz, 1H), 7.19-7.28(m, 5H)
13C-NMR(75MHz, CDCl3)
δ:(2R,3S): 20.4, 28.2, 32.7, 36.6, 51.4, 55.2, 57.7, 66.8, 70.3, 73.2, 75.0, 126.3, 128.3, 129.3, 137.7, 155.9
マススペクトル(ESI) 351.3(MH+)
【0078】
実施例30 4−ニトロ−N−((2’R(syn),3’S)−2’−ヒドロキシ−4’−フェニル−3’−(N−(S)−テトラヒドロフラン−3”−イルオキシカルボニル)アミノ−ブチル)−N−イソブチル−ベンゼンスルホンア ミド (IXe) の製造
実施例29で得られた結晶(IXd)を塩化メチレン(2ml)に溶解した。炭酸ソーダ(0.233g,2.2mmol)を水(2ml)溶液を上記の溶液に加え2層系の液を調製した。この溶液に対し、氷冷下、4−ニトロベンゼンスルホニルクロライド(0.488g,2.2mmol)の塩化メチレン(1ml)溶液を約2分間で加え、反応液を室温に戻しさらに3時間反応させた。反応途中、結晶が析出し攪拌が困難になったので塩化メチレン(6ml)と水(2ml)を足した。有機層を分離、濃縮し表題化合物とそのジアステレオマー((2S(anti),3S)体)の混合物(83:17,0.974g)を白色結晶として得た。この結晶をエタノール(60ml)より再結晶した。再結晶は70℃で溶解し、約55℃で起晶後、5℃まで冷却し晶析した。分離結晶をエタノール(5ml)で洗浄、乾燥し表題化合物(0.642g,96.4%de)を白色結晶として得た。
この結晶をさらにエタノール(50ml)より再結晶、乾燥し、表題化合物(0.583g,100de)を得た。
1H-NMR(300MHz, CDCl3)
(2R'(syn),3S体)δ: 0.87(d, J=7.0Hz, 3H), 0.89(d, J=7.0Hz, 3H), 1.89(hep, J=6.8Hz, 1H), 1.90-1.94(m, 1H), 2.08-2.15(m, 1H), 2.86-3.04(m, 4H), 3.11-3.24(m, 2H), 3.58(bs, 6H), 3.65-3.87(m, 6H), 4.85(bd, J=5.2Hz, 1H), 5.10-5.18(m, 1H), 7.20-7.37(m, 5H), 7.95(d, J=8.9Hz, 2H), 8.34(d, J=8.9Hz, 2H)
13C-NMR(75MHz, CDCl3)
(2R'(syn),3S体)δ: 19.8, 19.9, 27.0, 32.7, 35.4, 52.7, 55.3, 57.8, 66.8, 72.1, 73.1, 75.6, 124.3,126.7, 128.5, 128.6, 129.3, 137.2, 144.7, 150.0, 156.2
マススペクトル(FAB) 536(MH+)
【0079】
実施例31 (4R)−4−(N−ベンジルオキシカルボニル)アミノ−3−オキソ−5−フェニルチオペンタン酸t−ブチル (IIf) の製造
アルゴン雰囲気下、テトラヒドロフラン800mlにリチウムジイソプロピルアミドの2.0Mヘプタン、テトラヒドロフラン、エチルベンゼン溶液420ml(840mmol)を加え−66℃に冷却した。この溶液中に酢酸t−ブチル99.54g(856.9mmol)のテトラヒドロフラン53ml溶液を−66℃から−71℃に保ちながら45分かけて滴下した後、−69℃〜−74℃で1時間攪拌した。この溶液にN−ベンジルオキシカルボニル−(S−フェニル)−L−システインメチルエステル(If)80.00g(231.6mmol)のテトラヒドロフラン135ml溶液を−69℃〜−74℃に保ちながら45分かけて滴下した。−69℃〜−73℃で2時間30分攪拌した後、この反応液を36%塩酸150mlの水750ml溶液中に注いだ。酢酸エチル80mlを加えて分層した後、水層より酢酸エチル550mlで抽出した。有機層を合わせて1N塩酸300mlで洗浄後、飽和炭酸水素ナトリウム水溶液に続けて飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥した後、ろ過、濃縮し、上記表題化合物108.04g(純度79.9%、86.33g)を得た(収率86.8%)。
1H−NMR(300MHz,CDCl3
δ:3.28(dd,1H),3.36−3.52(m,3H),4.60(dd,1H),5.07(d,1H),5.10(d,1H),5.58(bd.d,1H),7.19−7.40(m,10H).
マススペクトル(ESI) 452(M+Na+
【0080】
実施例32 (3R)−3−(N−ベンジルオキシカルボニル)アミノ−1−クロロ−2−オキソ−4−フェニルチオブタン (Ve) の製造
実施例31により得られた(4R)−4−(N−ベンジルオキシカルボニル)アミノ−3−オキソ−5−フェニルチオペンタン酸t−ブチル(IIf)108.04g(純度79.9%,86.33g,201.0mmol)をジクロロメタン320mlに溶解し、−32℃に冷却した。この溶液に塩化スルフリル34.38g(254.7mmol)のジクロロメタン22ml溶液を−32℃〜−31℃に保ちながら1時間20分かけて滴下した。−32℃〜−31℃で1時間20分攪拌した後、水300mlを加えて分層した。有機層を飽和炭酸水素ナトリウム水溶液で洗浄し、さらに飽和塩化ナトリウム水溶液で洗浄した後、無水硫酸ナトリウムで乾燥した。ろ過、濃縮し、得られた残渣にギ酸192mlを加え50℃〜52℃で4時間攪拌した。得られた反応液を濃縮し、イソプロピルアルコール200mlを加えさらに濃縮した。イソプロピルアルコール400mlを加え52℃に加熱して、固体を溶解させた後、5℃まで冷却して、生じた結晶を濾取し、これをイソプロピルアルコール150mlで洗浄した。結晶を真空乾燥し、上記表題化合物51.5g(純度98.0%,50.47g)を得た(収率59.9%)。1H−NMR(300MHz,CDCl3
δ:3.32(dd,1H),3.42(dd,1H),4.13(d,1H),4.72(d,1H),4.73(dd,1H),5.00(s,2H),5.57(br.d,1H),7.22−7.40(m,10H).
マススペクトル(ESI) 364(MH+
【0081】
実施例33 (2S,3R)−3−(N−ベンジルオキシカルボニル)アミノ−1−クロロ−2−ヒドロキシ−4−フェニルチオブタン (VIe) の製造
(3R)−3−(N−ベンジルオキシカルボニル)アミノ−1−クロロ−2−オキソ−4−フェニルチオブタン(Ve)51.5g(純度98.0%,50.47g,138.7mmol)をジクロロメタン300mlおよびメタノール187mlに溶解し、−10℃に冷却した。これに水素化ほう素ナトリウム3.64g(96.2mmol)を−11℃〜−9℃に保ちながら1時間かけて添加した。−12℃〜−9℃で40分攪拌した後、2N塩酸48mlを加え、反応液を濃縮した。濃縮残渣にジクロロメタン500mlおよび水300mlを加え分層した後、有機層を飽和食塩水300mlで洗浄した。無水硫酸ナトリウムで乾燥した後、これをろ過濃縮した。得られた化合物はHPLC分析の結果、(2S,3R):(2R:3R)=83:17のジアステレオ混合物であった。この混合物に酢酸エチル200mlおよびヘキサン300mlを加え、60℃に加熱して溶解し、5℃まで徐冷した。得られた結晶をろ取し、酢酸エチル/ヘキサン=1/2の溶液170mlで洗浄した。この結晶を真空乾燥し、上記表題化合物38.77g((2S,3R):(2R,3R)=99.3:0.7)を得た(収率76.4%)。
1H−NMR(300MHz,CDCl3
δ:3.29(d,2H),3.60(dd,1H),3.68(dd,1H),3.88−3.96(m,2H),5.07(s,2H),5.15(br.,2H),7.18−7.39(m,10H).
【0082】
実施例34 (3S)−3−(N−ベンジルオキシカルボニル)アミノ−3−ベンジル−2−オキソ−1−クロロプロパン (Vb) の製造
アルゴン雰囲気下、N−ベンジルオキシカルボニル−L−フェニルアラニンp−ニトロフェニルエステルエステル(Ig)(1.00g,2.38mmol)およびクロロ酢酸トリメチルシリル(IVb)(1.45ml,9.38mmol)を無水THF(10ml)に溶解し、−70℃に冷却した。この溶液に対し、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(4.52ml,9.04mmol)を無水THF(4ml)に溶解したものを約1時間15分間で温度−72〜−65℃に維持しつつ滴下した。滴下後、−72℃で3時間攪拌した後、10%クエン酸水溶液(35ml)を加えて反応を停止した。混合液を室温に戻し、酢酸エチル(20ml)を加えた後、有機層を分離し、水(10ml)で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮して粗製の表題化合物(Vb)を得た。HPLC分析の結果、この粗製物は表題化合物(Vb)316.6mg(0.954mmol,収率40.1%)および出発物質であるN−ベンジルルオキシカルボニル−L−フェニルアラニンp−ニトロフェニルエステルエステル(Ig)398.8mg(0.949mmol,39.9%)含有していた。
【0083】
実施例35 (3S)−3−(N−tert−ブチルオキシカルボニル)アミノ−3−ベンジル−2−オキソ−1−クロロプロパン (Vf) の製造
アルゴン雰囲気下、N−tert−ブチルオキシカルボニル−L−フェニルアラニンp−ニトロフェニルエステルエステル(Ih)(1.002g,2.594mmol)およびクロロ酢酸トリメチルシリル(IVb)(2.04ml,12.96mmol)を無水THF(10ml)に溶解し、−70℃に冷却した。この溶液に対し、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(6.47ml,12.95mmol)を無水THF(9ml)に溶解したものを約1時間10分間で温度−70〜−68℃に維持しつつ滴下した。滴下後、−70℃で3時間攪拌した後、10%クエン酸水溶液(54ml)を加えて反応を停止した。混合液を室温に戻し、酢酸エチル(20ml)を加え、有機層を分離し、水(10ml)で2回洗浄した。有機層を無水硫酸マグネシウムで乾燥し、ろ液を濃縮して粗製の表題化合物(Vf)を得た。HPLC分析の結果、この粗製物は表題化合物(Vf)413.5mg(1.389mmol,収率53.5%)および出発物質であるN−tert−ブチルオキシカルボニル−L−フェニルアラニンp−ニトロフェニルエステルエステル(Ih)164mg(0.425mmol,16.4%)含有していた。
【0084】
実施例36 (3S)−3−(N−tert−ブチルオキシカルボニル)アミノ−3−ベンジル−2−オキソ−1−クロロプロパン (Vf) の製造
アルゴン雰囲気下、LDAのヘプタン、THF、エチルベンゼン溶液(2.0M)(4.9ml,9.8mmol)を無水THF(10ml)に溶解し−75℃に冷却した。この溶液に対し、クロロ酢酸(IVc)(463mg,4.9mmol)のTHF(3.5ml)溶液を約20分間で温度−75〜−70℃に維持しつつ滴下した。滴下後、−75〜−70℃で30分間攪拌した後、さらにこの溶液に対し、N−tert−ブチルオキシカルボニル−L−フェニルアラニンp−ニトロフェニルエステルエステル(Ih)(500mg,1.29mmol)のTHF(4ml)溶液を約15分間で温度−75〜−70℃に維持しつつ滴下した。滴下後、反応液を−75〜−70℃で3時間攪拌した後、10%クエン酸水溶液(20ml)を加えて反応を停止した。混合液を室温に戻し、酢酸エチル(20ml)を加え、有機層を分離し、飽和炭酸水素ナトリウム水溶液(20ml、10ml)、飽和食塩水(20ml)の順で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、ろ液を濃縮して粗製の表題化合物(Vf)を得た。HPLC分析の結果、この粗製物は表題化合物(Vf)を186mg(0.625mmol)含有していた(収率48.4%)。
【0085】
上記製造例および実施例で用いたか、合成した化合物を下記に示す。
【0086】
【化20】
Figure 0003855323
【0087】
【発明の効果】
本発明により、各種HIVプロテアーゼ阻害剤あるいはある種の酵素阻害剤を始めとする医薬品の中間体として重要なユニットである3−アミノ−1,2−エポキシプロパン類に容易に変換可能な3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体を工業的に短工程で高収率、しかも安全なプロセスで製造することが可能となった。[0001]
BACKGROUND OF THE INVENTION
An equivalent of an α-aminoalcohol derivative that is important as an intermediate for HIV protease inhibitors or certain enzyme inhibitors and can be easily converted to an optically active 3-substituted-3-amino-1,2-epoxypropane derivative The present invention relates to a method for producing a 3-amino-2-oxo-1-halogenopropane derivative.
[0002]
[Prior art]
An α-amino alcohol derivative that can be easily converted from an optically active 3-substituted-3-amino-1,2-epoxypropane derivative is Ro31-8959 (Parkes, K. et al. (Roche), J. Org. Chem., 1994, 59, 3656.), SC-52151 (Getman, DP et al. (Monsanto), J. Med. Chem., 1993, 36, 288.), VX478 ((Vertex) WO9405639), AG1343 ((Lilly) WO9521164 ) And other synthetic intermediates such as HIV protease inhibitors.
[0003]
Several methods for producing 3-amino-1,2-epoxypropane derivatives are known. For example, the 2-position of N-protected 3-amino-2-oxo-1-halogenopropane is stereoselectively reduced. And dehydrohalogenated epoxidation after being led to alcohol (Getman, DP et al., J. Med. Chem., 1993, 36, 288., etc.), N-protected 3-amino-1 -Oxidative asymmetric epoxidation of propene (Lury, JR, et al., J. Org. Chem., 1987, 52, 1487., etc.), N-protected 3-amino-1-propanal There is a method of inserting methylene (Seale, GD, WO93 / 23388. Etc.).
[0004]
In the first method, it is important how N-protected 3-amino-2-oxo-1-halogenopropane, which is a key intermediate, or an equivalent thereof can be produced industrially at low cost. In the conventional method, diazomethane which is extremely explosive and highly toxic must be used as an auxiliary raw material, so there is a limit in the industrialization of these methods (for example, Getman, DP et al., J. Med. Chem). , 1993, 36, 288., Okada, Y et al., Chem. Pharm. Bull., 1988, 36, 4794., EP 346867. Raddazz, P et al., J. Med. Chem., 1991, 34, 3267.). In addition, there is a method in which a halomethyl anion is allowed to act on an N-protected amino acid ester. However, the use of a very unstable halomethyl anion and the introduction of a halogen at the 1-position are based on general knowledge about chemistry. There was a limit to the industrialization of this method because it could be limited to chlorine or fluorine (Barluenga et al., J. Chem. Soc., Chem. Commun., 1994). Furthermore, as an existing technique related to the present case, there can be mentioned a method (EP442754) in which a fluoromalonic acid half ester is reacted and decarboxylated after activating the C-terminus of an N-protected amino acid. It is limited to a special element called fluorine, and cannot be applied to a system for achieving this purpose such as chlorine and bromine.
The second method uses a Wittig reaction of an expensive aldehyde (3-amino-1-propanal) to produce N-protected 3-amino-1-propene, which is a key intermediate. It becomes a high-cost manufacturing method. Furthermore, in the third method, not only is the production method of the N-protected aldehyde, which is the same intermediate as described above, expensive, but also it is necessary to generate carbene at a low temperature in the methylene insertion reaction, which is industrially suitable. It is not a manufacturing method.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide an industrial production method of a 3-amino-2-oxo-1-halogenopropane derivative that can be easily converted into a 3-amino-1,2-epoxypropane derivative.
[0006]
[Means for Solving the Problems]
  As a result of investigations to solve the above-mentioned problems, the present inventors have obtained a high yield from 3-amino-2-oxo-1-halogenopropane corresponding to the 3-amino-1,2-epoxypropane derivative or its equivalent. Is a precursor of theΑThe inventors have found halogeno-β-ketoester derivatives and production methods thereof, and have completed the present invention.
[0007]
That is, the present invention relates to a compound represented by the following general formula (I):
[0008]
[Chemical Formula 10]
Figure 0003855323
[0009]
(In the formula, Rs is hydrogen, an alkyl group having 1 to 10 carbon atoms which may have a substituent, an aryl group having 6 to 15 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, or a carbon skeleton thereof. Substituents containing heteroatoms in the P1, P2Are independently of each other hydrogen or amino protecting groups, or P1And P2Together form a bifunctional amino protecting group, E1 IsRuboxyTerminalAs an alkoxy ester residue having 1 to 10 carbon atoms, an active ester residue of a phenoxy group or benzyloxy group, N-oxysuccinimide or 1-oxybenzotriazole, each optionally having a substituent on the ring Represents an active thioester residue, an imidazolyl group, an acid halide, an acid anhydride, or a residue that can form an acid azide. )
[0010]
A compound represented by the following general formula (II) is obtained by reacting an alkali metal enolate of an ester of acetic acid,
[0011]
Embedded image
Figure 0003855323
[0012]
(R in the formulaS, P1, P2, Has the meaning described above and R1Is an optionally substituted alkyl group having 1 to 10 carbon atoms, aryl group having 6 to 15 carbon atoms, aralkyl group having 7 to 20 carbon atoms, trialkylsilyl group having 4 to 10 carbon atoms, carbon number It represents an 8-10 phenyldialkylsilyl group or a C13-15 diphenylalkylsilyl group. )
[0013]
A halogenated reagent is allowed to act on this to produce a 4-amino-3-oxo-2-halogenobutanoic acid ester derivative represented by the following general formula (III) by halogenating the 2-position,
[0014]
Embedded image
Figure 0003855323
[0015]
(Rs in the formula, P1, P2, R1Has the above-mentioned meaning. )
[0016]
Alternatively, the alkali metal enolate or dianion of the compound represented by the following general formula (IV) is reacted with the general formula (I).
[0017]
Embedded image
Figure 0003855323
[0018]
(R in the formula2Is hydrogen, an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, A phenyl dialkylsilyl group having 8 to 10 carbon atoms or a diphenylalkylsilyl group having 13 to 15 carbon atoms is represented. X has the above-mentioned meaning. )
[0019]
A 4-amino-3-oxo-2-halogenobutanoic acid ester or salt derivative represented by the following general formula (III ′):
[0020]
Embedded image
Figure 0003855323
[0021]
(Rs in the formula, P1, P2Has the meaning described above,
RThreeIs an alkali metal, an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or a trialkylsilyl group having 3 to 10 carbon atoms. Represents a phenyldialkylsilyl group having 8 to 10 carbon atoms or a diphenylalkylsilyl group having 13 to 15 carbon atoms. X has the above-mentioned meaning. )
[0022]
The 3-amino-2-oxo-1-halogenopropane derivative represented by the following general formula (V) is characterized in that the obtained (III) or (III ′) is hydrolyzed and decarboxylated. Or a method for producing the salt thereof,
[0023]
Embedded image
Figure 0003855323
[0024]
(Rs in the formula, P1, P2, X has the meaning described above. )
[0025]
DETAILED DESCRIPTION OF THE INVENTION
Formula used in the present invention (I) The compound represented by is a kind of protected amino acid in which the amino group of a natural or non-natural α-amino acid is protected by a protecting group and the carboxyl group is converted to a functional group capable of reacting with a nucleophilic reagent.
[0026]
  NaThe compound represented by the formula (I) has optical activity due to the stereo of the carbon atom at the base of the amino group.For example, by selecting an optically active amino acid as a starting material, it is easy to synthesize a target compound having optical activity. Applicable.
[0027]
In the formula (I), Rs represents hydrogen or an ordinary alkyl, aryl, aralkyl, or other substituent. For example, a methyl group is an alanine skeleton, and a benzyl group is a compound having a phenylalanine skeleton. P1, P2Represents a commonly used amino protecting group, P1Or P2Either of them may be a hydrogen atom, and P1And P2May be an integral bifunctional amino protecting group. Examples include benzyloxycarbonyl, tertiary butoxycarbonyl, acetyl, formyl, benzoyl, dibenzyl, phthaloyl and the like, and an ester group (R1It may be determined in consideration of the functional group selectivity in hydrolysis and decarboxylation. E1Represents a carboxyl-terminated functional group capable of reacting with a nucleophilic reagent, and includes residues such as lower esters, active esters, acid halides, and acid anhydrides. Examples include methoxy, ethoxy, benzoxy and substituted benzoxy, phenoxy and substituted phenoxy, N-oxysuccinimide, 1-oxybenzotriazole, imidazolyl, chlorine, bromine, methoxycarboxy, isobutoxycarboxy, tertiary butylcarboxy and the like.
Specific examples of the compound represented by the formula (I) include N-benzyloxycarbonyl-L-phenylalanine methyl ester, N-benzyloxycarbonyl-L-phenylalanine-N-oxysuccinimide ester, N, N -Dibenzyl-L-phenylalanine p-nitrophenyl ester, N-benzyloxycarbonyl-S-phenyl-L-cysteine methyl ester, and the like.
[0028]
In the compound represented by the formula (I), the amino group of a natural or non-natural α-amino acid is protected by a method usually used in peptide synthesis, and then the carboxyl group is esterified by a method commonly used in peptide synthesis. Alternatively, it can be obtained by halogenation.
[0029]
Conversion from formula (I) to formula (II) is a reaction in which an ester, acid halide or acid anhydride represented by formula (I) is reacted with an acetate enolate derived from acetate to produce a β-keto ester. It is. As the acetate ester enolate, an alkali metal salt is used, and a lithium salt is most preferable. These enolates are prepared by adding acetate to a solution of a base such as lithium amide, lithium diisopropylamide, lithium tert-butoxide and the like. The ester of acetate represents a commonly used ester of carboxylic acid, for example, alkyl ester, aralkyl ester, silyl ester, etc., specifically, hydrolyzable methyl, ethyl, tertiary butyl, benzyl, triethylsilyl, etc. Any ester group can be used.
Acetic acid enolate is required to be 1 equivalent or more relative to substrate (I). However, since 1 equivalent of base is used for enolate formation of the product β-keto ester, usually 2 equivalents or more of acetate enolate is used. The reaction proceeds in good yield.
This reaction proceeds promptly at temperatures from minus 100 degrees to room temperature. The optimum temperature varies depending on the compound, but as a typical example, the reaction is completed at about minus 75 to minus 30 degrees for 5 to 60 minutes. As the reaction solvent, hydrocarbon, ether or the like is used, and tetrahydrofuran, hexane, toluene and a mixed solvent thereof are exemplified. The reaction concentration is not particularly limited, and may be determined according to the solubility of the reactant.
After completion of the reaction, the reaction solution is treated with an acid to protonate the alkyl metal salt of the product to give a β-ketoester represented by the general formula (II). The compound can be easily purified by silica gel chromatography, but can also be used as a raw material for the next reaction in an unpurified state.
[0030]
The conversion from formula (II) to formula (III) is represented by formula (III) by oxidatively halogenating the active methylene hydrogen of the β-ketoester represented by formula (II) with various halogenating agents. This is a reaction for obtaining a 4-amino-3-oxo-2-halogenotanate derivative. The reaction proceeds easily in a good yield simply by mixing the β-ketoester and the halogenating agent in a solvent.
As the halogenating agent, in the case of bromination, examples include N-bromosuccinimide, copper (II) bromide, bromine and the like. In the case of chlorination, examples include N-chlorosuccinimide, Copper (II) chloride, sulfuryl chloride, chlorine or the like may be used. The halogenating agent is required to have a theoretical equivalent or more with respect to the β-ketoester (II), but the best yield is often obtained by setting it to just the theoretical equivalent for the purpose of preventing the side reaction from proceeding. The theoretical equivalent here means an amount required in the chemical equation, for example, 1 equivalent to β-ketoester in the case of N-bromosuccinimide, and 2 equivalent in the case of copper (II) bromide.
The conditions for this reaction are strongly dependent on the structure of the reactants and the reagents and must be determined for each compound. As a typical example, Rs is benzyl, P1Is benzyloxycarbonyl, P2Is hydrogen, R1When t-butyl is used and N-bromosuccinimide is used as a reaction reagent, the reaction is completed at minus 20 degrees to room temperature for 10 to 60 minutes. As the reaction solvent, in addition to halogen solvents such as methylene chloride and chloroform, ethyl acetate, ether, and toluene can also be used. The reaction concentration is not particularly limited, and may be determined according to the solubility of the reactant.
Although it can be purified by means such as recrystallization as required, the reaction product can be used as a raw material for the next reaction without purification. In addition, diastereomers are generated by the selectivity in the course of halogenation, and these can be separated by thin layer chromatography or silica gel column, but the separation is not required for the purpose of this production process.
[0031]
On the other hand, a compound represented by the formula (III), a trimethylsilyl ester thereof, and a carboxylate salt thereof, that is, a compound represented by the formula (III ′) is a compound represented by the formula (I), which is a halogenoacetate enolate or halogenoacetate. It can also be converted by reacting a dianion. That is, as described above, in synthesizing the compound represented by the formula (III ′), chloroacetic acid esters or bromoacetic acid esters (VI ) Can be used to obtain the desired compound in one step.
In addition, in this reaction, when an enolate prepared from trimethylsilyl halogenoacetate or a dianion prepared from halogenoacetic acid is reacted, the compound represented by the formula (III ′) (RThreeIs trimethylsilyl or an alkali metal), when treated with an acid, it easily proceeds to decarboxylation, and a compound represented by the formula (V) can be obtained in one step.
The halogenoacetate enolate can be synthesized according to the method of adjusting the enolate in the method via the general formula (II), and the conditions for reacting this enolate with the general formula (I) are the same as those described above. is there.
However, since the stability of the enolate of the halogenoacetate is inferior to that of the acetate, it is necessary to perform the reaction at a low temperature of minus 60 degrees or less.
[0032]
Whether to convert directly from the compound represented by formula (I) or via formula (II) in the synthesis of the compound represented by formula (III) or (III ′) is represented by formula (I) Since the yield varies depending on the substituent or protecting group of the compound, it may be selected appropriately.
[0033]
The compound represented by the formula (III) or the formula (III ′) is novel and is an important intermediate in the present invention. Also, the structure of this compound is interpreted to include the corresponding enol form as a tautomer. For example, the tautomer includes a 4-amino-3-oxo-2-halogenobutanoic acid ester derivative represented by the following general formula (VIII).
[0034]
Embedded image
Figure 0003855323
[0035]
(Rs in the formula, P1, P2, R1, RThree, X has the meaning described above. )
[0036]
The conversion from the compound represented by the formula (III) or the formula (III ′) to the formula (V) is performed by converting a 4-amino-3-oxo-2-halogenobutanoic acid ester represented by the formula (III) or the formula (III ′). This is done by hydrolyzing the derivative and simultaneously decarboxylating.
As the method of hydrolysis, any method usually used in organic chemistry may be used. Alkaline hydrolysis of lower alkyl ester, acid hydrolysis of tertiary alkyl ester, catalytic hydrogenation of benzyl ester, weak acidity of silyl ester to medium Hydrolysis by nature can be applied. However, it is necessary for the halogen introduced by these hydrolysis conditions to be unaffected, and the optimum conditions vary depending on the structure of the compound, but in many cases, a tertiary alkyl ester or silyl ester system shows good results.
The target product can be extracted and isolated from the reaction solution into an organic solvent, and can be purified by means such as silica gel chromatography and recrystallization as necessary.
A typical example of the reaction conditions is R1When t is butyl, the reaction is completed in a formic acid solution at room temperature for several hours to several tens of hours, but the reaction time can be shortened from several minutes to about one hour by raising the reaction temperature. The reaction concentration is not particularly limited, and may be determined according to the solubility of the reactant.
[0037]
The 3-amino-2-oxo-1-halogenopropane derivative represented by the formula (V) obtained by these methods is shown in the literature (for example, Getman, DP et al., J. Med. Chem. 1993, 36, 288., Okada, Y et al., Chem. Pharm. Bull., 1988, 36, 4794., EP 346867. Raddazz, P et al., J. Med. Chem., 1991, 34, 3267.) HIV protease. It is a known compound useful as an intermediate of an inhibitor, and is known to be derived into a more advanced intermediate through, for example, the following two-step existing reaction. (Getman, DP, et al., J. Med. Chem., 1993, 36, 288, etc.)
That is, the 3-amino-2-oxo-1-halogenopropane derivative represented by the formula (V) has a halogenomethyl ketone skeleton and is led to a halohydrin represented by the following general formula (VI) by a reduction reaction of the carbonyl group.
[0038]
Embedded image
Figure 0003855323
[0039]
(Rs in the formula, P1, P2, X has the meaning described above. )
Furthermore, it can be easily epoxidized under alkaline conditions and derived into a compound represented by the following general formula (VII).
[0040]
Embedded image
Figure 0003855323
[0041]
(Rs in the formula, P1, P2Has the above-mentioned meaning. )
[0042]
In the reduction reaction of the carbonyl group, it is possible to perform a stereoselective reduction with respect to the stereo bond of the substituent represented by Rs at the 3-position, for example, as represented by sodium borohydride. This can also be achieved by using a normal reducing agent. For example, Rs is a benzyl group, the 3-position stereo is S-form, and the hydroxyl group is 2: 1 to 20: 3 by reducing a compound in which a urethane type protective group is selected as an amino protecting group with sodium borohydride. The S form is preferentially given at a ratio of about 1, and further purification by recrystallization is possible. The resulting alcohol leads to the (2S, 3S) epoxy compound, which is an important compound as an intermediate for HIV protease inhibitors.
[0043]
The flow from the raw material compound (I) of the present invention to the target compound (V) and the epoxy compound part (VII) is shown below.
[0044]
Embedded image
Figure 0003855323
[0045]
(Rs in the formula, R1, E1, X, P1, P2Has the above-mentioned meaning. )
[0046]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these from the first. Temperatures are given in degrees Celsius unless otherwise noted. Proton nuclear magnetic resonance (NMR) spectra were recorded on a Varian 300 MHz spectrometer; chemical shifts (δ) are given in ppm. Abbreviations used in the examples include Boc: tertiary butoxycarbonyl; Z: benzyloxycarbonyl; THF: tetrahydrofuran; LDA: lithium diisopropylamide; NCS: N-chlorosuccinimide; NBS: N-bromosuccinimide. To do.
[0047]
Production Example 1N, N-dibenzyl-L-phenylalanine benzyl ester (Ia) Manufacturing of
25.0 g (151.3 mmol) of (L) -phenylalanine and 66.67 g (482.4 mmol) of potassium carbonate were dissolved in 100 ml of water, and then 57.51 g (454.3 mmol) of benzyl chloride was added at 95 ° C. The mixture was heated and stirred for 19 hours. After cooling to room temperature, 67 ml of n-heptane and 50 ml of water were added to separate the layers. The organic layer was washed twice with 50 ml of methanol / water = 1/2 solution and then dried over anhydrous sodium sulfate. This was filtered and concentrated to obtain 61.64 g (90%, 121.8 mmol) of the title compound (Ia) (yield 84.7%).
1H-NMR (300 MHz, CDCl3) δ: 3.00 (dd, 1H), 3.14 (dd, 1H), 3.53 (d, 2H), 3.71 (t, 1H), 3.92 (d, 2H), 5.12 (d, 1H ), 5.23 (d, 1H), 6.99-7.40 (m, 20H).
Mass spectrum (FAB) 436 (MH +)
[0048]
Production Example 2N, N-dibenzyl-L-phenylalanine paranitrophenyl ester (Ib) Manufacturing of
N, N-Dibenzyl-L-phenylalanine hydrochloride (7.64 g, 20.0 mmol) was added to chloroform (50 ml), and 10% aqueous ammonia (20.0 ml) was added dropwise to the suspension for neutralization. The organic layer was separated, washed with water (20 ml), dried over magnesium sulfate and filtered. The residue obtained by concentrating the filtrate was dissolved in chloroform (50 ml). Under ice cooling, paranitrophenol (2.89 g, 20.4 mmol) and N, N′-dicyclohexylcarbodiimide (4.13 g, 20. 0 mmol) was sequentially added and allowed to react overnight. Ethyl acetate (30 ml) was added to the reaction solution, the precipitated N, N′-dicyclohexylurea was filtered, and the filtrate was washed with a 10% aqueous potassium carbonate solution. The residue obtained by separating and concentrating the organic layer was dissolved again in ethyl acetate (30 ml), and the precipitated insoluble matter was filtered. The crude product obtained by concentrating the filtrate was purified by silica gel column chromatography to obtain the title compound (Ib) (7.77 g, 16.65 mmol).
1HNMR (300MHz, CDCl3) δ: 3.13 (dd, J = 7.4, 13.7Hz, 1H), 3.26 (dd, J = 8.2, 13.9Hz, 1H), 3.72 (d, J = 14.0Hz, 2H), 3.96 ( dd, J = 7.4,8.2Hz, 1H), 4.06 (d, J = 14.0Hz, 2H), 7.14 (d, J = 9.2Hz, 2H), 7.06-7.37 (m, 15H), 8.26 (d, J = 9.3Hz, 2H)
Mass spectrum (FAB) 467 (MH +)
[0049]
Example 1(4S) -4- (N, N-dibenzylamino) -4-benzyl-3-oxobutanoic acid t-butyl ester ( IIa )Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (24 ml, 48 mmol) was dissolved in anhydrous THF (64 ml) and cooled to −53 ° C. To this solution, a solution of tert-butyl acetate (5.8 g, 50 mmol) in THF (12 ml) was added dropwise over about 15 minutes while maintaining the temperature at −45 to −50 ° C. After dropwise addition, the mixture was stirred at −53 ° C. for 1 hour, and further, a THF (8 ml) solution of N, N-dibenzyl-L-phenylalanine benzyl ester (Ia) (purity 90%, 7.2 g, 15 mmol) was added to this solution. Was added dropwise over about 15 minutes while maintaining the temperature at -48 to -52 ° C. After the dropwise addition, the reaction solution was heated to −5 ° C., and after 3 hours, a solution of citric acid (16.5 g) in water (50 ml) was added to the reaction solution to stop the reaction. Extracted twice with ethyl acetate (100 ml, 50 ml), and the organic layer was made of 10% citric acid (20 ml), saturated brine (10 ml), 5% aqueous sodium hydrogen carbonate solution (20 ml × 4), and saturated brine (10 ml). Washed in order. The organic layer was dried over anhydrous magnesium sulfate and the filtrate was concentrated. The concentrated solution was purified by silica gel column chromatography (n-hexane: ethyl acetate = 4/1) to obtain the title compound (IIa) (6.09 g, 13.7 mmol).
1HNMR (300MHz, CDCl3) δ: 1.25 (s, 9H), 2.93 (dd, J = 3.9, 13.5Hz, 1H), 3.20 (dd, J = 9.0, 13.5, Hz, 1H), 3.40 (d, J = 15.6Hz, 2H), 3.55 (m, 2H), 3.62 (dd, J = 3.9,9.0Hz, 1H), 3.82 (d, J = 13.5Hz, 2H), 7.107.38 (m, 15H)
Mass spectrum (FAB) 444 (MH +)
[0050]
Example 2(4S) -4- (N-Benzyloxycarbonylamino) -4-benzyl-3-oxobutanoic acid t-butyl ester (IIb) Manufacturing of
Under an argon atmosphere, LDA in heptane, THF, and an ethylbenzene solution (2.0 M) (14 ml, 28 mmol) were dissolved in anhydrous THF (30 ml) and cooled to −45 ° C. To this solution, a solution of tert-butyl acetate (3.7 g, 32 mmol) in THF (4 ml) was added dropwise over about 15 minutes while maintaining the temperature at −40 to −45 ° C. After dropping, the mixture was stirred at −50 ° C. for 30 minutes, and then a solution of N-benzyloxycarbonyl-L-phenylalanine methyl ester (Ic) (2.5 g, 8 mmol) in THF (4 ml) was further added to this solution for about 10 minutes. The solution was added dropwise while maintaining the temperature at -40 to -45 ° C. After dropping, the reaction solution was stirred at −40 ° C. for 30 minutes, then warmed to 0 ° C. and stirred for 20 minutes. A 20% aqueous citric acid solution (40 ml) was added to the reaction solution to stop the reaction. Extraction was performed with ethyl acetate (50 ml × 2), and the organic layer was washed with water (5 ml), 5% aqueous sodium hydrogen carbonate solution (20 ml) and water (10 ml) in this order. The organic layer was dried over anhydrous magnesium sulfate and the filtrate was concentrated. The concentrated solution was purified by silica gel column chromatography (n-hexane: ethyl acetate = 4/1) to obtain the title compound (IIb) (3.08 g, 7.77 mmol).
1HNMR (300MHz, CDCl3) δ: 1.44 (s, 9H), 2.99 (dd, J = 7.1, 14.1Hz, 1H), 3.17 (dd, J = 6.1, 14.1Hz, 1H), 3.38 (m, 2H), 4.68 (bq, J = approx.7,1H), 5.07 (s, 2H), 5.38 (bd, J = 7.9Hz, 1H), 7.12-7.35 (m, 10H)
13C NMR (75MHz, CDCl3) δ: 28.0,37.1,48.2,60.7,67.0,82.4,127.1,128.1,128.2,128.5,128.7,129.2,135.8,137.9,165.8,182.0,201.7
Mass spectrum (FAB) 398 (MH +)
[0051]
Example 3(4S) -4- (N-Benzyloxycarbonylamino) -4-benzyl-3-oxobutanoic acid ethyl ester (IIc) Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (4 ml, 8 mmol) was dissolved in anhydrous THF (8 ml) and cooled to −50 ° C. To this solution, a solution of ethyl acetate (740 mg, 8 mmol) in THF (2 ml) was added dropwise over about 5 minutes while maintaining the temperature at −50 to −45 ° C. After dropping, the mixture was stirred at −50 ° C. for 30 minutes, and then a solution of N-benzyloxycarbonyl-L-phenylalanine methyl ester (Ic) (626 mg, 2 mmol) in THF (2 ml) was further added to the solution in about 5 minutes. The solution was added dropwise while maintaining at -50 to -45 ° C. After dropping, the reaction solution was stirred at −50 ° C. for 30 minutes, then warmed to room temperature and stirred for 5 minutes. A 10% aqueous citric acid solution (10 ml) was added to the reaction solution to stop the reaction. The mixture was extracted with ethyl acetate, and the organic layer was passed through a silica gel column and then concentrated to obtain the crude title compound (IIc) (826 mg) as an oil.
1HNMR (300MHz, CDCl3) δ: 1.22-1.30 (m, 3H), 2.92-3.05 (m, 1H), 3.05-3.22 (m, 1H), 3.40-3.54 (m, 2H), 4.10-4.19 (m, 2H), 4.66 (m, 1H), 5.07 (bs, 2H), 5.55 (bd, J = 7.8Hz, 1H), 7.11-7.38 (m, 10H)
[0052]
Example 4(4S) -4- (Nt-butoxycarbonylamino) -4-benzyl-3-oxobutanoic acid t-butyl ester (IId) Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (27 ml, 54 mmol) was dissolved in anhydrous THF (50 ml) and cooled to −45 ° C. To this solution, a solution of tert-butyl acetate (7.0 g, 60 mmol) in THF (5 ml) was added dropwise over about 20 minutes while maintaining the temperature at −40 to −45 ° C. After dropping, the mixture was stirred at −50 ° C. for 30 minutes, and then a solution of N-butoxycarbonyl-L-phenylalanine methyl ester (Id) (4.18 g, 15 mmol) in THF (5 ml) was added to the solution in about 20 minutes. The solution was added dropwise while maintaining the temperature at -40 to -45 ° C. After dropping, the reaction solution was stirred at −50 ° C. for 30 minutes, and then 25% aqueous citric acid solution (40 ml) was added to the reaction solution to stop the reaction. The organic solvent in the reaction solution was distilled off under reduced pressure, followed by extraction with ethyl acetate (100 ml), and the organic layer was washed with water (20 ml). The organic layer was concentrated and passed through a silica gel column (n-hexane: ethyl acetate = 4/1) to obtain crystals (5.92 g). As a result of NMR analysis, it was the title compound (IId) containing 15% of unreacted raw material (Id).
1HNMR (300MHz, CDCl3) δ: 1.39 (s, 9H), 1.46 (s, 9H), 2.96 (dd, J = 7.4, 14.0Hz, 1H), 3.16 (dd, J = 5.7, 14.0Hz, 1H), 3.34-3.45 (m, 2H), 4.57 (bq, J = approx.6.Hz, 1H), 5.09 (bd, J = 7.7Hz, 1H), 7.11-7.30 (m, 5H)
13C NMR (75MHz, CDCl3) δ: 27.8, 28.2, 36.9, 48.0, 60.4, 80.0, 82.0, 126.9, 128.4, 129.2, 136.2, 155.1, 166.0, 202.2
[0053]
Example 5(4S) -4- (N, N-dibenzylamino) -4-benzyl-3-oxo-2-bromobutanoic acid t-butyl ester (IIIa) Manufacturing of
(1) Finely ground copper (II) bromide (0.45 g, 2.0 mmol) was dissolved in ethyl acetate (2 ml). While stirring at 25 ° C., a solution in which (IIa) (0.44 g, 1.0 mmol) obtained in Example 1 and triethylamine (0.14 ml, 1.0 mmol) were dissolved in ethyl acetate (2 ml) was added all at once. After reacting at 25 ° C. for 36 hours under an argon atmosphere, 5% aqueous citric acid solution (5 ml) was added, and the organic layer was separated. The organic layer was concentrated to give brown crystals as the isomer mixture (0.45 g, 0.86 mmol) of the title compound (IIIa).
1HNMR (300MHz, CDCl3) (isomer mixture) δ: 0.90 (s, 9 / 2H), 1.44 (s, 9 / 2H), 2.99 (dd, J = 3.7,13.5Hz, 1H), 3.14-3.29 (m , 1H), 3.50 (dd, J = 5.6,13.3,2H), 3.83 (dd, 10.3,13.3,2H), 3.82 (dd, 1 / 2H), 4.03 (dd, 3.7,9.5,1 / 2H), 5.42 (s, 1 / 2H), 5.51 (s, 1 / 2H), 7.14-7.34 (m, 15H)
Mass spectrum (ESI) 522.3, 524.3 (MH +)
(2) (IIa) (0.89 g, 2.0 mmol) obtained in Example 1 was dissolved in diethyl ether (10 ml). NBS (0.39 g, 2.0 mmol) was added while stirring under ice cooling, and the mixture was further stirred for 2 hours. After further reaction at room temperature for 13 hours, water (5 ml) was added and the organic layer was separated. The organic layer was concentrated to obtain brown crystals (1.23 g). As a result of NMR analysis, about 35% of the starting material (IIa) remained, and the main product was an isomer mixture of the title compound (IIIa).
[0054]
Example 6(4S) -4- (N-Benzyloxycarbonylamino) -4-benzyl-3-oxo-2-chlorobutanoic acid t-butyl ester (IIIb) Manufacturing of
(IIb) (0.8 g, 2.0 mmol) obtained in Example 2 was dissolved in chloroform (5 ml). NCS (264 mg, 1.98 mmol) was added while stirring under ice cooling, and the mixture was stirred under ice cooling for 3 hours. Water (2 ml) was added to the reaction solution, and the organic layer was separated. The organic layer was concentrated to obtain crystals (912 mg). A part of this crystal (100 mg) was developed by silica gel thin layer chromatography (n-hexane: ethyl acetate = 4/1) and fractionated to obtain the title compound (IIIb) as an isomer mixture (40 mg).
1HNMR (300MHz, CDCl3) (mixture of isomers) δ: 1.45-1.48 (m, 9H), 2.95-3.05 (m, 1H), 3.18-3.38 (m, 1H), 4.85-5.10 (m, 4H), 5.20 -5.35 (m, 1H), 7.14-7.35 (m, 10H)
[0055]
Example 7(4S) -4- (N-Benzyloxycarbonylamino) -4-benzyl-3-oxo-2-bromobutanoic acid t-butyl ester (IIIc) Manufacturing of
(IIb) (0.8 g, 2.0 mmol) obtained in Example 2 was dissolved in chloroform (5 ml). NBS (338 mg, 1.9 mmol) was added while stirring under ice cooling, and the mixture was stirred for 30 minutes under ice cooling. Water (3 ml) was added to the reaction solution, and the organic layer was separated. The organic layer was concentrated to obtain pale brown crystals as a crude isomer mixture (921 mg) of the title compound (IIIc).
1HNMR (300MHz, CDCl3) (isomer mixture) δ: 1.43-1.50 (m, 9H), 3.00 (dd, J = 7.4, 14.1Hz, 1H), 3.21 (dd, J = 5.7, 14.1Hz, 1H), 4.82-5.03 (m, 1H), 4.89 (bs, 1H), 5.07 (bs, 2H), 5.20 (bd, J = 6.0Hz, 1H), 7.17-7.35 (m, 10H)
Mass spectrum (FAB) 476,478 (MH +)
[0056]
Example 8(3S) -3- (N, N-dibenzylamino) -3-benzyl-2-oxo-1-bromopropane (Va) Manufacturing of
(IIIa) (41 mg, 0.078 mmol) obtained in Example 5 was dissolved in 4N-hydrogen chloride (ethyl acetate solution, 1 ml). The reaction was stirred for 13 hours at room temperature. Ethyl acetate (3 ml) was added to the reaction solution, and neutralized with a saturated aqueous sodium hydrogen carbonate solution. The organic layer was concentrated to obtain crude (Va) (30 mg).
1HNMR (300MHz, CDCl3) δ: 3.00 (dd, J = 3.9, 13.5Hz, 1H), 3.25 (dd, J = 9.0, 13.5, Hz, 1H), 3.55 (d, J = 15.6Hz, 2H), 3.67 (dd, J = 3.9,9.0Hz, 1H), 3.84 (d, J = 15.6Hz, 2H), 4.42 (s, 1H), 4.48 (s, 1H), 7.10-7.38 (m, 15H)
[0057]
Example 9(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-oxo-1-chloropropane (Vb) Manufacturing of
(IIb) (35 g, 88 mmol) obtained in Example 2 was dissolved in methylene chloride (88 ml). Sulfuryl chloride (7.23 ml, 90 mmol) was added while stirring under ice-cooling, followed by stirring for 1 hour under ice-cooling, and further stirring at room temperature for 30 minutes. The reaction solution was concentrated to obtain crude (IIIb) (37 g) as crystals. 35 g of these crystals were suspended in formic acid (purity 90%, 80 ml), heated at 80 ° C. with stirring and reacted for 30 minutes. The reaction solution was cooled and formic acid was distilled off under reduced pressure to obtain (Vb) crystals. Further, the crystals were recrystallized from isopropanol (200 ml), and the crystals were dried to obtain the title compound (Vb) (19.55 g).
1H-NMR (300MHz, CDCl3) δ: 3.05 (dd, J = 7.2, 14.0Hz, 1H), 3.25 (dd, J = 7.1, 14.0, Hz, 1H), 3.97 (d, J = 16.2Hz, 1H) , 4.14 (d, J = 16.2Hz, 1H), 4.77 (q, J = 4.77Hz, 2H), 5.08 (s, 2H), 5.29 (d, J = 7.2Hz, 1H), 7.12-7.35 (m, 10H)
13C-NMR (75MHz, CDCl3) δ: 37.8, 47.4, 58.7, 67.3, 127.5, 128.1, 128.3, 128.6, 129.0, 129.1, 135.2, 135.9, 155.7, 201.0
[0058]
Example 10(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-oxo-1-bromopropane (Vc) Manufacturing of
(1) (IIIc) (56 mg, 0.12 mmol) obtained in Example 7 was dissolved in methylene chloride (1 ml), trifluoroacetic acid (0.3 ml) was added, and the mixture was stirred at 60 ° C. for 17 hours to be reacted. The reaction solution was neutralized with saturated aqueous sodium hydrogen carbonate solution, and extracted with ethyl acetate. The organic layer was concentrated, developed with silica gel thin layer chromatography (n-hexane: ethyl acetate = 4/1) and fractionated to obtain the title compound (Vc) (20 mg).
1HNMR (300MHz, CDCl3) δ: 3.06 (dd, J = 7.2, 13.9Hz, 1H), 3.09 (dd, J = 6.9, 13.9Hz, 1H), 3.81 (d, J = 13.7Hz, 1H), 3.93 ( d, J = 13.7Hz, 1H), 4.82 (bq, J = 7.3Hz, 1H), 4.89 (bs, 1H), 5.08 (bs, 2H), 5.34 (bd, J = 7.2Hz, 1H), 7.13- 7.39 (m, 10H)
13C NMR (75MHz, CDCl3) δ: 33.1, 37.7, 58.8, 67.2, 127.3, 128.0, 128.3, 128.5, 128.9, 129.1, 135.5, 136.0, 155.8, 200.4
Mass spectrum (ESI) 376 (MH +)
(2) (IIIc) (360 mg, 0.756 mmol) was dissolved in formic acid (2 ml) and stirred at 25 ° C. for 15 hours for reaction. After depressurizingly distilling the deuterated acid, the concentrate was neutralized with 5% aqueous sodium hydrogen carbonate solution, and extracted with ethyl acetate. The organic layer was concentrated to obtain crude Vc (296 mg) as crystals. Further, this crystal was developed and separated by silica gel thin layer chromatography (n-hexane: ethyl acetate = 4/1) to obtain a purified title compound (Vc) crystal (149 mg).
[0059]
Example 11(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-hydroxy-1-chloropropane (VIb) Manufacturing of
(Vb) (136 mg, 0.4 mmol) obtained in Example 9 was dissolved in methanol (1.5 ml). To this solution, sodium borohydride (17 mg, 0.44 mmol) was added at 0 ° C., and the mixture was further stirred at 0 ° C. for 2 hours to be reacted. After 1N hydrochloric acid was added to the reaction solution to stop the reaction, methanol was distilled off under reduced pressure. Ethyl acetate was added to this solution for extraction, and the organic layer was concentrated to give a mixture of the title compounds (2S, 3S)-(VIb) and (2R, 3S)-(VIb) (74: 26,138 mg) as pale yellow crystals. Got as.
1HNMR (300 MHz, CDCl3) (diastereomeric mixture) δ: 2.93 (dd, J = 8.4, 14.0 Hz, 1H), 3.00 (dd, J = 4.9, 14.0 Hz, 1H), 3.50-3.60 (m, 1H) , 3.65 (dd, J = 4.2,12.0Hz, 1H), 3.81-3.89 (m, 1H), 3.92-4.03 (m, 1H), 4.87 (bd, J = approx.8Hz, 1H), 5.03 (bs, 2H), 7.17-7.37 (m, 10H)
[0060]
Example 12(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-hydroxy-1-bromopropane (VIc) Manufacturing of
(Vc) (142 mg, 0.37 mmol) obtained in Example 10 was dissolved in a mixed solvent of methanol (3 ml) and THF (1 ml). To this solution, sodium borohydride (16 mg, 0.41 mmol) was added at 0 ° C., and the mixture was further stirred at 0-5 ° C. for 2 hours to be reacted. 1N Hydrochloric acid (2 ml) was added to the reaction solution to stop the reaction, and methanol and THF were distilled off under reduced pressure. Ethyl acetate was added to the resulting slurry for extraction, and the organic layer was concentrated to give a mixture of the title compound (2S, 3S)-(VIc) and (2R, 3S)-(VIc) (84: 16,164 mg). Obtained as pale yellow crystals.
1HNMR (300 MHz, CDCl3) (diastereomeric mixture) δ: 2.90 (dd, J = 9.7, 14.0 Hz, 1H), 2.99 (dd, J = 4.7, 14.0 Hz, 1H), 3.38-3.47 (m, 1H) , 3.53 (dd, J = 3.6,10.6Hz, 1H), 3.81-3.90 (m, 1H), 3.93-4.03 (m, 1H), 4.86 (bd, J = approx.8Hz, 1H), 5.03 (s, 2H), 7.16-7.35 (m, 10H)
[0061]
Example 13(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-1,2-epoxypropane (VIIb) Manufacturing of
(1) A mixture (about 3: 1, 100 mg, 0.3 mmol) of (2S, 3S)-(VIb) and (2R, 3S)-(VIc) obtained in Example 11 was dissolved in THF (2 ml). It was. To this solution, potassium tert-butoxide (40 mg, 0.27 mmol) was added at −10 ° C., and the mixture was further reacted by stirring at −10 ° C. for 15 minutes. Water (3 ml) and methylene chloride (10 ml) were added to the reaction solution for extraction, and the organic layer was separated and concentrated. The obtained crystals were developed by silica gel thin layer chromatography (n-hexane: ethyl acetate = 2/1) and fractionated to obtain (2S, 3S)-(VIIb) and (2R, 3S)-(VIIb) of the title compounds. Of (3: 1) (20 mg) as white crystals.
1HNMR (300 MHz, CDCl3) (diastereomeric mixture) δ: 2.52-2.58 (m, 2 / 4H, (2R, 3S)), 2.71-2.80 (m, 6 / 4H, (2S, 3S)) 2.83-2.95 (m, 1H), 2.99 (dd, J = 5.0, 14.2Hz, 1H), 3.69-3.72 (m, 1H, 3 / 4H, (2S, 3S)), 4.12-4.25 (m, 1H, 1 / 4H , (2R, 3S)), 4.67-4.80 (m, 1H), 5.03 (s, 6 / 4H, (2S, 3S)), 5.05 (s, 2 / 4H, (2R, 3S)), 7.18-7.35 (m, 10H)
(2) The mixture (about 5: 1, 164 mg) of (2S, 3S)-(VIc) and (2R, 3S)-(VIc) obtained in Example 12 was dissolved in methanol (4.5 ml). To this solution, potassium carbonate (58 mg, 0.41 mmol) was added at room temperature, and the mixture was further stirred at room temperature for 1 hour to be reacted. The reaction mixture was extracted with 1N hydrochloric acid (3 ml) and ethyl acetate (10 ml), and the organic layer was separated and concentrated. The obtained crystals were developed by silica gel thin layer chromatography (n-hexane: ethyl acetate = 2/1) and fractionated to obtain (2S, 3S)-(VIIb) and (2R, 3S)-(VIIb) of the title compounds. Of white (about 5: 1) (79 mg) was obtained as white crystals.
[0062]
Example 14(4S) -4- (N, N-dibenzylamino) -4-benzyl-3-oxo-2-chlorobutanoic acid t-butyl ester (IIId) Manufacturing of
Under an argon atmosphere, anhydrous THF (3.2 ml), LDA heptane, THF, and an ethylbenzene solution (2.0 M) (0.39 ml, 0.78 mmol) were mixed and cooled to -70 ° C. To this solution, tert-butyl chloroacetate (IVa) (0.13 ml, 0.85 mmol) was added dropwise and stirred for 30 minutes, and then (Ib) (154 mg, 0.34 mmol) was dissolved in anhydrous THF (1.0 ml). The solution was added dropwise and stirred for 3 hours while gradually raising the temperature. The reaction mixture was warmed to room temperature, 10% aqueous citric acid solution (3.0 ml) was added, and then ethyl acetate (10 ml) was added for extraction. The organic layer was washed with water (10 ml), dried over magnesium sulfate and filtered. The crude product obtained by concentrating the filtrate was purified by silica gel preparative thin layer chromatography, and the mixture of the title compounds (2S, 4S)-(IIId) and (2R, 4S)-(IIId) (200. 2 mg) was obtained. The diastereo ratio was about 2: 1 from the 1H-NMR integration ratio.
1HNMR (300 MHz, CDCl3) (diastereomeric mixture) δ: 0.86 (s, 6H), 1.44 (s, 3H), 2.943.04 (m, 1H), 3.17 (dd, J = 9.8, 13.4 Hz, 1 / 3H), 3.26 (dd, J = 9.8, 13.3Hz, 2 / 3H), 3.50 (d, J = 13.2Hz, 4 / 3H), 3.51 (d, J = 13.2Hz, 2 / 3H), 3.81 (d , J = 13.2Hz, 4 / 3H), 3.85 (d, J = 13.1Hz, 2 / 3H), 3.87 (dd, J = 3.0,9.7Hz, 2 / 3H), 4.00 (dd, J = 3.0,9.7 Hz, 1 / 3H), 5.37 (s, 1 / 3H), 5.48 (s, 2 / 3H), 7.08-7.39 (m, 15H)
Mass spectrum (FAB) 478 (MH +)
[0063]
Example 15(4S) -4- (N-Benzyloxycarbonyl) amino-4-benzyl-3-oxobutanoic acid t-butyl ester (IIb) Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (231 ml, 462 mmol) was dissolved in anhydrous THF (400 ml) and cooled to −50 ° C. To this solution, a solution of tert-butyl acetate (58.1 g, 500 mmol) in THF (40 ml) was added dropwise over about 40 minutes while maintaining the temperature at −45 to −50 ° C. After dropping, the mixture was stirred at −45 ° C. for 30 minutes, and then a solution of N-benzyloxycarbonyl-L-phenylalanine methyl ester (Ic) (39.4 g, 125 mmol) in THF (40 ml) was further added to this solution for about 30 minutes. The solution was added dropwise while maintaining the temperature at -45 to -50 ° C. After the dropwise addition, the reaction solution was stirred at −45 ° C. for 60 minutes, and then the reaction solution was poured into a mixture of 2N hydrochloric acid (500 ml) and ice (150 g) to stop the reaction. The mixture was returned to room temperature and the organic layer was separated. The aqueous layer was further extracted with toluene (350 ml), and the two organic layers were combined and washed with 5% aqueous sodium hydrogen carbonate solution (50 ml) and 25% brine (50 ml) in this order. The organic layer was dried over anhydrous magnesium sulfate, and the filtrate was concentrated to obtain the crude title compound (IIb) (58.1 g, purity 86.4%, 126 mmol).
[0064]
Example 16(4S) -4- (N-Benzyloxycarbonyl) amino-4-benzyl-3-oxo-2-chlorobutanoic acid t-butyl ester (IIIb) Manufacturing of
(4S) -4- (N-benzyloxycarbonylamino) -4-benzyl-3-oxobutanoic acid t-butyl ester (IIb) (40.5 g, purity 86.4%, 88 mmol) was added to methylene chloride (88 ml). Dissolved. Sulfuryl chloride (7.23 ml, 90 mmol) was added while stirring under ice-cooling, followed by stirring for 1 hour under ice-cooling, and further stirring at room temperature for 30 minutes. When the reaction solution was concentrated at 30 ° C. or lower, the crude title compound (48.6 g) was obtained as crystals.
The crystals (2 g) were recrystallized from toluene (10 ml) to obtain purified crystals.
1H-NMR (300MHz, CDCl3)
(Isomer mixture) δ: 1.45-1.48 (m, 9H), 2.95-3.05 (m, 1H), 3.18-3.38 (m, 1H), 4.85-5.10 (m, 4H), 5.20-5.35 (m, 1H 7.14-7.35 (m, 10H)
(Main isomer) δ: 1.44 (s, 9H), 2.99 (dd, J = 7.5, 14.1Hz, 1H), 3.20 (dd, J = 6.1, 14.1Hz, 1H), 4.85 (s, 1H), 4.97 (bq, J = 8.4Hz, 1H), 5.60 (s, 2H), 5.25 (bd, J = 8.4Hz, 1H) 7.14-7.35 (m, 10H)
13C-NMR (75MHz, CDCl3)
(Main isomer) δ: 27.5, 37.7, 59.5, 60.0, 67.2, 85.0, 127.3, 128.1, 128.3, 128.5, 128.9, 129.2, 135.3, 136.0, 155.6, 163.1, 197.4
Mass spectrum (FAB) 432 (MH +), 454 (MNa +)
[0065]
Example 17(3S) -3- (N-benzyloxycarbonyl) amino-3-benzyl-2-oxo-1-chloropropane (Vb) Manufacturing of
Crude crystals (46.6 g) of (4S) -4- (N-benzyloxycarbonylamino) -4-benzyl-3-oxo-2-chlorobutanoic acid t-butyl ester (IIIb) obtained in Example 16 were obtained. It was suspended in formic acid (purity 90%, 80 ml), heated to 80 ° C. with stirring and allowed to react for 20 minutes. The reaction solution was cooled and formic acid was distilled off under reduced pressure to obtain crude crystals of the title compound.
Further, the crystals were dissolved in isopropanol (200 ml) at 60 ° C., cooled to 5 ° C. and recrystallized. The crystals were washed with isopropanol (50 ml) and dried to obtain crystals of the title compound (20.1 g, 60 mmol).
[0066]
Example 18(2S, 3S) -3- (N-benzyloxycarbonyl) amino-3-benzyl-2-hydroxy-I-chloropropane (VIb) Manufacturing of
(3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-oxo-1-chloropropane (Vb) (17.0 g, 51.2 mmol) was dissolved in methylene chloride (180 ml) and methanol was added. (180 ml) was added. To this solution, sodium borohydride (2.03 g, 53.8 mmol) was added at 0 ° C. over about 10 minutes, and the mixture was further reacted at 0 ° C. for 30 minutes. Acetic acid (12.9 ml, 226 mmol) was added to the reaction solution to stop the reaction, and then methanol was distilled off under reduced pressure. Water (50 ml) was added to this solution and extracted twice with methylene chloride (150 ml + 50 ml). The organic layer was concentrated to give a mixture (84:16) of the title compound and its diastereomer (2R, 3S) as white crystals.
The crystals (1 g) were recrystallized from ethyl acetate / n-hexane (5/1, 15 ml) to obtain crystals of the title compound (97% de, 0.6 g).
1H-NMR (300MHz, CDCl3)
((2S, 3S) body) δ: 2.87 (dd, J = 9.0, 14.1Hz, 1H), 3.00 (dd, J = 4.6, 14.1Hz, 1H), 3.55 (dd, J = 7.3, 11.3Hz, 1H ), 3.60 (bs, 1H), 3.62 (dd, J = 4.3,11.3Hz, 1H), 3.86 (bq, J = approx5Hz, 1H), 3.96-4.06 (m, 1H), 5.01 (s, 2H), 5.31 (bd, J = approx.8.5Hz, 1H), 7.18-7.33 (m, 10H)
13C-NMR (75MHz, CDCl3)
((2S, 3S)) δ: 35.3, 47.1, 54.6, 66.5, 73.2, 126.4, 127.8, 127.9, 128.3, 128.3, 129.3, 136.3, 137.5, 156.0
Mass spectrum (ESI) 334.2 (MH +), 356.2 (MNa +), 689.3 (2MNa +)
[0067]
Example 19(2S, 3S) -3- (N-benzyloxycarbonyl) amino-3-benzyl-1,2-epoxypropane (VIIb) Manufacturing of
(2S, 3S) -3- (N-benzyloxycarbonylamino) -3-benzyl-2-hydroxy-I-chloropropane (VIb) and its diastereomer ((2R, 3S) form obtained in Example 18 ) Crude crystals of the mixture (84:16) were dissolved in methanol (600 ml). To this solution, potassium carbonate (14.1 g, 102 mmol) was added at room temperature, and the mixture was further reacted by stirring at room temperature for 3 hours. The reaction solution was filtered to remove salts and further washed with methanol (20 ml), and the filtrate was concentrated to about 100 ml at 35 ° C. or lower. The concentrate was acidified with 0.5N hydrochloric acid (100 ml), and then extracted twice with methylene chloride (150 ml + 150 ml). The organic layer was concentrated at 40 ° C. or lower to obtain a mixture (84:16) of the title compound and its diastereomer ((2R, 3S) form) as white crystals (14.0 g, 47.1 mmol).
The crystals (1 g) were recrystallized from ethyl acetate / n-hexane (1/1, 6 ml) to obtain crystals of the title compound (97% de, 0.58 g).
1H-NMR (300MHz, CDCl3)
((2S, 3S) body) δ: 2.71-2.80 (m, 2H), 2.85 (dd, J = 8.1, 14.1Hz, 1H), 2.91 (dd, J = 2.7,6.4Hz, 1H), 2.98 (dd , J = 5.1,14.1Hz, 1H), 3.68-3.82 (m, 1H), 4.77 (bd, J = 5.9Hz, 1H), 5.03 (s, 2H), 7.17-7.33 (m, 10H)
13C-NMR (75MHz, CDCl3)
((2S, 3S)) δ: 37.5, 46.7, 53.0, 53.2, 66.8, 126.8, 128.0, 128.1, 128.5, 128.6, 129.3, 136.2, 136.4, 155.7
Mass spectrum (ESI) 298.2 (MH +), 320.2 (MNa +), 336.3 (MK +), 617.5 (2MNa +)
[0068]
Example 20(2R, 3S) -3- (N-benzyloxycarbonyl) amino-2-hydroxy-1- (N-isobutylamino) -4-phenylbutane (IXa) Manufacturing of
3- (N-benzyloxycarbonylamino) -3-benzyl-1,2-epoxypropane (VIIb) ((2S, 3S) / (2R, 3S) = 84/16, 4.47 g, 15.0 mmol) Suspended in ethanol (29 ml) and added to isobutylamine (22.4 ml, 225 mmol). This solution was heated to 70 ° C. and reacted for 60 minutes. The reaction mixture was concentrated to give a mixture (84/16) of the title compound and its diastereomer ((2S, 3S) form) as white crystals.
In addition, the title compound was obtained by reacting in the same manner using the (2S, 3S) form crystals.
1H-NMR (300MHz, CDCl3)
((2R, 3S) body) δ: 0.90 (d, J = 6.6Hz, 6H), 1.60-1.80 (m, 1H), 2.38 (d, J = 6.8Hz, 2H), 2.65 (dd, J = 6.8 , 12.4Hz, 1H), 2.70 (dd, J = 4.0,12.4Hz, 1H), 2.70 (bs, 1H), 2.86 (ddJ = 8.1,14.1Hz, 1H), 2.99 (dd, J = 4.8,14.1Hz , 1H), 3.49 (bq, J = approx4.5Hz, 1H), 3.80-3.95 (m, 1H), 5.02 (s, 2H), 5.11 (bd, J = 9.0Hz, 1H), 7.19-7.32 (m , 10H)
13C-NMR (75MHz, CDCl3)
((2R, 3S)) δ: 20.5, 28.3, 36.6, 51.4, 55.0, 57.9, 66.5, 70.4, 126.4, 127.8, 128.0, 128.4, 128.4, 129.5, 136.6, 137.7, 156.3
Mass spectrum (ESI) 371.2 (MH +)
[0069]
Example 214-Nitro-N-((2′R (syn), 3 ′S) -3 ′-(N-benzyloxycarbonyl) amino-2′-hydroxy-4′-phenylbutyl) -N-isobutyl-benzenesulfone Amide (IXb) Manufacturing of
(2R, 3S) -3- (N-benzyloxycarbonylamino) -2-hydroxy-1- (N-isobutylamino) -4-phenylbutane (IXa) ((2R, 3S) / (2S, 3S) = 84/16, 6.08 g, 15.0 mmol) was dissolved in methylene chloride (40 ml). A solution of sodium carbonate (2.55 g, 24.1 mmol) in water (20 ml) was added to the above solution to prepare a two-layered solution. To this solution, a solution of 4-nitrobenzenesulfonyl chloride (4.0 g, 18.0 mmol) in methylene chloride (5 ml) was added over about 10 minutes under ice-cooling, and the reaction solution was returned to room temperature and reacted for another 3 hours. The organic layer was separated and concentrated to give a mixture (84:16) of the title compound and its diastereomer (2'S, 3'S) as white crystals. The crystals were recrystallized from ethanol (100 ml). The recrystallization melted at 70 ° C., crystallized at about 55 ° C., aged at that temperature for 1 hour, and finally cooled to 20 ° C. The separated crystals were washed with ethanol (30 ml) and dried to give the title compound (6.07 g, 10.9 mmol, 96.4% de) as white crystals.
1H-NMR (300MHz, CDCl3)
((2'R (syn), 3'S) body) δ: 0.84 (d, J = 6.1Hz, 3H), 0.86 (d, J = 6.3Hz, 3H), 1.75-1.95 (m, 1H), 2.88 ( dd, J = 7.5,14.1Hz, 2H), 2.96 (d, J = 6.8Hz, 2H), 3.00 (dd, J = 4.7,14.1Hz, 1H), 2.90 (bs, 1H), 3.12-3.26 (m , 2H), 3.80-3.91 (m, 2H), 4.99 (bd, J = 8.7Hz, 1H), 5.01 (s, 2H), 7.21-7.32 (m, 10H), 7.92 (d, J = 8.7Hz, 2H), 8.29 (d, J = 8.7Hz, 2H)
13C-NMR (75MHz, CDCl3)
((2'R (syn), 3S)) δ: 19.8, 19.9, 35.5, 52.4, 57.7, 66.9, 72.1, 124.3, 126.7, 127.8, 128.2, 128.5, 128.5, 128.6, 129.3, 136.1, 137.2, 144.6 , 150.0, 156.5
[0070]
Example 224-nitro-N-((2′R (syn), 3 ′S) -3 ′-(Nt-butyloxycarbonyl) amino-2′-hydroxy-4′-phenyl Chill) -N-isobutyl-benzenesulfonamide (IXc) Manufacturing of
4-Nitro-N-((2′R (syn), 3 ′S) -3 ′-(N-benzyloxycarbonylamino) -2′-hydroxy-4′-phenylbutyl) -N-isobutyl-benzenesulfone Amide (IXb) (13.0 g, 23.4 mmol, 96% de) was dissolved in methylene chloride (77 ml) and methanol (2 ml, 46.8 mmol) was added. Under ice cooling, a 30% hydrobromic acid / acetic acid solution (19.3 ml, HBr 93.6 mmol) was added, and the mixture was returned to room temperature and stirred for 3 hours. A 10% aqueous sodium carbonate solution (300 ml) was added to the reaction solution to make it alkaline, and further methylene chloride (100 ml) was added. The organic layer was separated, and di-tert-butyl dicarbonate (5.62 g, 25.7 mmol) in methylene chloride (50 ml) was added thereto and reacted at room temperature for 2 hours. The reaction mixture was concentrated to about 100 ml, methanol (100 ml) and potassium carbonate (3.23 g, 23.4 mmol) were added thereto, and the mixture was stirred at room temperature. In the middle of the reaction, the reaction was followed by HPLC. After 3 hours, when the Ac compound at the 2-position disappeared, acetic acid (1.34 ml, 23.4 mmol) was added to stop the reaction. The reaction mixture was concentrated, water (50 ml) was added, and the mixture was extracted with methylene chloride (200 ml). The organic layer was concentrated to obtain crude crystals of the title compound. The crystals were recrystallized from ethanol (550 ml). The recrystallization melted at 55 ° C., crystallized at about 40 ° C., and finally cooled to 5 ° C. The separated crystals were washed with ethanol (100 ml) and dried to give the title compound (8.71 g, 16.7 mmol, 100% de) as white crystals.
1H-NMR (300MHz, CDCl3)
((2R '(syn), 3'S) body) δ: 0.87 (d, J = 6.6Hz, 3H), 0.88 (d, J = 6.6Hz, 3H), 1.36 (s, 9H), 1.81-1.96 (m , 1H), 2.83-2.2.96 (m, 2H), 2.99 (d, J = 7.5Hz, 2H), 3.20 (d, J = 5.3Hz, 2H), 3.70-3.85 (m, 2H), 3.82 ( bs, 1H), 4.64 (bd, J = 7.6Hz, 1H), 7.21-7.33 (m, 10H), 7.96 (d, J = 8.8Hz, 2H), 8.33 (d, J = 8.8Hz, 2H)
13C-NMR (75MHz, CDCl3)
((2R '(syn), 3S)) δ: 19.8, 20.0, 26.9, 28.2, 35.6, 52.5, 55.2, 57.5, 72.2, 80.1, 124.3, 126.6, 128.5, 128.6, 129.4, 137.5, 144.8, 150.0, 156.3
Mass spectrum (ESI) 522.3 (MH +), 544.5 (MNa +), 560.4 (MK +)
[0071]
Example 23N- (S) -tetrahydrofuran-3-yloxycarbonyl-L-phenylalanine methyl ester (Ie) Manufacturing of
(S) -3-hydroxytetrahydrofuran (0.881 g, 10 mmol) was dissolved in methylene chloride (10 ml), and triphosgene (1.34 g, 4.5 mmol) was added and dissolved. The solution was cooled to −40 ° C., and a solution of pyridine (1.04 ml, 13.5 mmol) in methylene chloride (5 ml) was added dropwise over about 15 minutes. After the dropwise addition, the mixture was reacted at room temperature for 3.5 hours to prepare a chloroformate.
The reaction solution obtained above was ice-cooled, and a solution obtained by dissolving L-phenylalanine methyl ester hydrochloride (1.94 g, 9 mmol) in methylene chloride (5 ml) was added. Further, an aqueous solution (20 ml) in which sodium carbonate (2.12 g, 20 mmol) was dissolved was added dropwise over about 15 minutes under ice cooling. After dropping, the reaction was allowed to proceed at room temperature for 2.5 hours. When the pH of the aqueous layer of the reaction solution after the reaction was measured, it was alkaline. The aqueous layer was separated, and the organic layer was washed twice with 1N hydrochloric acid (10 ml) and further washed with water (10 ml). The solvent was distilled off to give the title compound (2.10 g, 7.2 mmol) as a yellow oil.
1H-NMR (300MHz, CDCl3)
δ: 1.96-2.15 (m, 2H), 3.05 (dd, J = 5.6,13.9Hz, 1H), 3.13 (dd, J = 6.4,13.9Hz, 1H), 3.72 (s, 3H), 3.75-3.91 ( m, 4H), 4.62 (bq, J = approx.6Hz, 1H), 5.19-5.23 (m, 1H), 5.26 (bq, J = 8.7Hz, 1H), 7.10-7.29 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: 32.7, 38.2, 52.3, 54.7, 66.9, 73.2, 75.5, 127.1, 128.6, 129.2, 135.7, 155.3, 172.0
Mass spectrum (FAB) 294 (MH +)
[0072]
Example 24(4S) -4- (N- (S) -Tetrahydrofuran-3'-yloxycarbonyl) amino-5-phenyl-3-oxo-pentanoic acid tert-butyl (IIe) Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (9 ml, 18 mmol) was dissolved in anhydrous THF (20 ml) and cooled to −50 ° C. To this solution, a solution of tert-butyl acetate (2.3 g, 20 mmol) in THF (3 ml) was added dropwise over about 10 minutes while maintaining the temperature at −45 to −50 ° C. After dropping, the mixture was stirred at −45 ° C. for 30 minutes, and then N— (S) -tetrahydrofuran-3′-yloxycarbonyl-L-phenylalanine methyl ester (Ie) (1.75 g, 5.3 mmol) was added to this solution. ) In THF (3 ml) was added dropwise in about 10 minutes while maintaining the temperature at -40 to -45 ° C. After dropping, the reaction solution was stirred at −45 ° C. for 60 minutes, and then acetic acid (2.3 ml, 40 mmol) was added to the reaction solution to stop the reaction. Water (20 ml) and toluene (50 ml) were added to the reaction solution for extraction, and the mixture was washed with a 5% aqueous sodium hydrogen carbonate solution (10 ml) and water (10 ml) in this order. The organic layer was dried over anhydrous magnesium sulfate and the filtrate was concentrated to give the crude title compound (1.95 g, 5.2 mmol).
1H-NMR (300MHz, CDCl3)
δ: 1.46 (s, 9H), 1.96-2.17 (m, 2H), 2.97 (dd, J = 7.3,14.2Hz, 1H), 3.17 (dd, J = 6.2,14.2Hz, 1H), 3.39 (bs, 2H), 3.70-3.90 (m, 4H), 4.66 (bq, J = approx.6.5Hz, 1H), 5.15-5.23 (m, 1H), 5.34 (bd, J = 7.8Hz, 1H), 7.15-7.31 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: 27.9, 32.7, 37.1, 48.2, 60.6, 66.9, 73.2, 75.6, 82.3, 127.1, 128.7, 129.2, 135.7, 155.4, 165.8, 201.6
[0073]
Example 25(4S) -4- (N- (S) -Tetrahydrofuran-3'-yloxycarbonyl) amino-2-chloro-5-phenyl-3-oxo-pentanoic acid tert-butyl (IIIe) Manufacturing of
(4S) -4- (N- (S) -Tetrahydrofuran-3'-yloxycarbonyl) amino-5-phenyl-3-oxo-pentanoic acid tert-butyl (IIe) (1.8 g, 4.7 mmol) Dissolved in methylene chloride (5 ml). Sulfuryl chloride (0.39 mmol, 4.7 mmol) was added while stirring under ice cooling, and the mixture was stirred at room temperature for 60 minutes. The reaction solution was concentrated at 30 ° C. or lower to obtain a crude title compound.
1H-NMR (300MHz, CDCl3)
δ: 1.40 (s, 9H), 1.95-2.17 (m, 2H), 2.92-3.02 (m, 1H), 3.17-3.25 (m, 1H), 3.67-3.90 (m, 4H), 4.90 (d, J = 13.5Hz, 1H), 4.98 (bq, J = approx.6.0Hz, 1H), 5.15-5.19 (m, 1H), 5.27 (bd, J = 8.3Hz, 1H), 7.18-7.30 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: 27.7, 32.7, 37.6, 59.1, 60.9, 66.9, 73.0, 75.9, 84.8, 127.3, 128.8, 129.3, 135.3, 155.3, 163.3, 197.4
[0074]
Example 26(3S) -1-Chloro-2-oxo-3- (N- (S) -tetrahydrofuran-3'-yloxycarbonyl) amino-4-phenylbutane (Vd) Manufacturing of
Formic acid (5 ml) was added to the solid (IIIe) obtained in Example 25 and stirred at 80 ° C. for 15 minutes. When formic acid was distilled off and isopropanol (10 ml) was added to the resulting residue, crystallization occurred. The crystals were dissolved at 60 ° C. and crystallized at room temperature for 2 hours and at 5 ° C. for 30 minutes to separate crystals. The crystals were washed with isopropanol (2 ml) and dried to give the title compound (0.854 g, 2.7 mmol) as white crystals.
1H-NMR (300MHz, CDCl3)
δ: 1.93-2.03 (m, 1H), 2.08-2.20 (m, 1H), 3.00 (dd, J = 7.1, 13.8Hz, 1H), 3.10 (dd, J = 6.8, 13.8Hz, 1H), 3.75- 3.92 (m, 4H), 3.98 (d, J = 16.2Hz, 1H), 4.16 (d, J = 16.2Hz, 1H), 4.75 (bq, J = approx.7.5Hz, 1H), 5.17-5.22 (m , 1H), 5.36 (bd, J = 7.14Hz, 1H), 5.15-5.21 (m, 1H), 7.20-7.34 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: 32.7, 37.7, 47.3, 58.5, 66.9, 73.1, 75.9, 127.5, 129.0, 129.0, 135.2, 155.4, 201.0
[0075]
Example 27(2S, 3S) -1-Chloro-2-hydroxy-3- (N- (S) -tetrahydrofuran-3'-yloxycarbonylamino) -4-phenylbutane (VId) Manufacturing of
(3S) -1-chloro-2-oxo-3- (N- (S) -tetrahydrofuran-3′-yloxycarbonylamino) -4-phenylbutane (Vd) (0.706 g, 2.26 mmol) was salified. Dissolved in methylene (8 ml) and further methanol (80 ml) was added. To this solution, sodium borohydride (60 mg, 1.6 mmol) was added at −3 ° C. over about 5 minutes, and the mixture was further stirred at −3 ° C. for 60 minutes for reaction. Acetic acid (0.385 ml, 6.72 mmol) was added to the reaction solution to stop the reaction, and then methanol was distilled off under reduced pressure. Water (5 ml) was added to this solution, and extracted twice with methylene chloride (20 ml + 10 ml). The organic layer was concentrated to give a mixture (83:17) of the title compound and its diastereomer ((2R, 3S) form) as white crystals.
1H-NMR (300MHz, CDCl3)
δ: (2S, 3S): 1.90-2.00 (m, 1H), 2.05-2.18 (m, 1H), 2.80 (dd, J = 9.3,14.0Hz, 1H), 3.01 (dd, J = 4.3,14.0Hz , 1H), 3.54 (bs, 1H), 3.52-3.66 (m, 2H), 3.67-3.90 (m, 5H), 3.94-4.03 (m, 1H), 5.08-5.16 (m, 1H), 5.64 (bd , J = 9.4Hz, 1H), 7.20-7.30 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: (2S, 3S): 32.4, 35.1, 46.8, 54.2, 66.5, 72.9, 73.0, 74.7, 126.0, 128.0, 129.1, 137.6, 155.5
Mass spectrum (ESI) 314.3 (MH +)
[0076]
Example 28(2S, 3S) -3- (N- (S) -Tetrahydrofuran-3'-yloxycarbonylamino) -4-phenylbutane-1,2-epoxide (VIIc) Manufacturing of
The crystal (VId) obtained in Example 27 was suspended in methanol (20 ml), potassium carbonate (624 mg, 4.52 mmol) was added at room temperature, and the mixture was stirred at room temperature for 2 hours to be reacted. The reaction solution was filtered to remove salts, and then the filtrate was concentrated at 35 ° C. or lower. The concentrate was acidified with 0.5N hydrochloric acid (10 ml), and extracted twice with methylene chloride (10 ml + 10 ml). The organic layer was concentrated at 40 ° C. or lower to obtain a mixture (83:17) of the title compound and its diastereomer ((2R, 3S) form) as white crystals (0.58 g, 2.1 mmol).
1H-NMR (300MHz, CDCl3)
δ: (1S, 1'S): 2.72-2.78 (m, 2H), 2.78-2.83 (m, 1H), 2.86-3.02 (m, 2H), 3.70-3.90 (m, 5H), 4.65-4.68 (b, 1H), 5.15-5.21 (m, 1H), 7.20-7.34 (m, 5H)
13C-NMR (75MHz, CDCl3)
δ: (1S, 1'S): 32.7, 37.5, 46.7, 53.0, 53.0, 66.9, 73.2, 75.4, 126.9, 128.7, 129.4, 136.3, 155.5
Mass spectrum (ESI) 278.2 (MH +)
[0077]
Example 29(2R, 3S) -3- (N- (S) -Tetrahydrofuran-3'-yloxycarbonylamino) -2-hydroxy-1-N-isobutylamino-4-phenylbutane (IXd) Manufacturing of
(2S, 3S) -3- (N- (S) -Tetrahydrofuran-3′-yloxycarbonylamino) -4-phenylbutane-1,2-epoxide (VIIc) ((2S, 3S): (2R, 3S ) = 83: 17, 0.58 g, 2.1 mmol) was suspended in ethanol (4 ml) and added to isobutylamine (3.4 ml, 33.9 mmol). This solution was heated to 70 ° C. and reacted for 60 minutes. The reaction mixture was concentrated to give a mixture (83:17) of the title compound and its diastereomer ((2S, 3S) form) as white crystals.
1H-NMR (300MHz, CDCl3)
δ: (2R, 3S): 0.91 (d, J = 6.6Hz, 6H), 1.72 (hep, J = 6.6Hz, 1H), 1.80-1.95 (m, 1H), 2.02-2.14 (m, 1H), 2.37-2.44 (m, 2H), 2.64-2.99 (m, 5H), 3.55-3.86 (m, 5H), 5.11 (b, 1H), 5.43 (bd, J = 8.7Hz, 1H), 7.19-7.28 ( m, 5H)
13C-NMR (75MHz, CDCl3)
δ: (2R, 3S): 20.4, 28.2, 32.7, 36.6, 51.4, 55.2, 57.7, 66.8, 70.3, 73.2, 75.0, 126.3, 128.3, 129.3, 137.7, 155.9
Mass spectrum (ESI) 351.3 (MH +)
[0078]
Example 304-Nitro-N-((2'R (syn), 3'S) -2'-hydroxy-4'-phenyl-3 '-(N- (S) -tetrahydrofuran-3 "-yloxycarbonyl) amino -Butyl) -N-isobutyl-benzenesulfone Mid (IXe) Manufacturing of
The crystal (IXd) obtained in Example 29 was dissolved in methylene chloride (2 ml). A solution of sodium carbonate (0.233 g, 2.2 mmol) in water (2 ml) was added to the above solution to prepare a two-layered solution. To this solution, a solution of 4-nitrobenzenesulfonyl chloride (0.488 g, 2.2 mmol) in methylene chloride (1 ml) was added over about 2 minutes under ice-cooling, and the reaction solution was returned to room temperature and reacted for another 3 hours. During the reaction, crystals precipitated and stirring became difficult, so methylene chloride (6 ml) and water (2 ml) were added. The organic layer was separated and concentrated to give a mixture (83:17, 0.974 g) of the title compound and its diastereomer ((2S (anti), 3S) form) as white crystals. The crystals were recrystallized from ethanol (60 ml). The recrystallization was dissolved at 70 ° C., crystallized at about 55 ° C., cooled to 5 ° C. and crystallized. The separated crystals were washed with ethanol (5 ml) and dried to give the title compound (0.642 g, 96.4% de) as white crystals.
The crystals were further recrystallized from ethanol (50 ml) and dried to give the title compound (0.583 g, 100 de).
1H-NMR (300MHz, CDCl3)
(2R '(syn), 3S body) δ: 0.87 (d, J = 7.0Hz, 3H), 0.89 (d, J = 7.0Hz, 3H), 1.89 (hep, J = 6.8Hz, 1H), 1.90- 1.94 (m, 1H), 2.08-2.15 (m, 1H), 2.86-3.04 (m, 4H), 3.11-3.24 (m, 2H), 3.58 (bs, 6H), 3.65-3.87 (m, 6H), 4.85 (bd, J = 5.2Hz, 1H), 5.10-5.18 (m, 1H), 7.20-7.37 (m, 5H), 7.95 (d, J = 8.9Hz, 2H), 8.34 (d, J = 8.9Hz , 2H)
13C-NMR (75MHz, CDCl3)
(2R '(syn), 3S form) δ: 19.8, 19.9, 27.0, 32.7, 35.4, 52.7, 55.3, 57.8, 66.8, 72.1, 73.1, 75.6, 124.3, 126.7, 128.5, 128.6, 129.3, 137.2, 144.7, 150.0, 156.2
Mass spectrum (FAB) 536 (MH +)
[0079]
Example 31(4R) -4- (N-benzyloxycarbonyl) amino-3-oxo-5-phenylthiopentanoic acid t-butyl (IIf) Manufacturing of
Under argon atmosphere, 420 ml (840 mmol) of 2.0 M heptane of lithium diisopropylamide, tetrahydrofuran and ethylbenzene was added to 800 ml of tetrahydrofuran, and the mixture was cooled to -66 ° C. To this solution, a solution of 99.54 g (856.9 mmol) of t-butyl acetate in 53 ml of tetrahydrofuran was dropped over 45 minutes while maintaining at -66 ° C to -71 ° C, and then stirred at -69 ° C to -74 ° C for 1 hour. did. To this solution was added a solution of 80.00 g (231.6 mmol) of N-benzyloxycarbonyl- (S-phenyl) -L-cysteine methyl ester (If) in 135 ml of tetrahydrofuran over 45 minutes while maintaining at -69 ° C to -74 ° C. It was dripped. After stirring at −69 ° C. to −73 ° C. for 2 hours and 30 minutes, the reaction solution was poured into a solution of 36% hydrochloric acid 150 ml of water 750 ml. After adding 80 ml of ethyl acetate and separating the layers, the aqueous layer was extracted with 550 ml of ethyl acetate. The organic layers were combined and washed with 300 ml of 1N hydrochloric acid, and then washed with a saturated aqueous sodium hydrogen carbonate solution and then with saturated brine. After drying over anhydrous sodium sulfate, filtration and concentration were performed to obtain 108.04 g (purity 79.9%, 86.33 g) of the title compound (yield 86.8%).
1H-NMR (300 MHz, CDClThree)
δ: 3.28 (dd, 1H), 3.36-3.52 (m, 3H), 4.60 (dd, 1H), 5.07 (d, 1H), 5.10 (d, 1H) , 5.58 (bd.d, 1H), 7.19-7.40 (m, 10H).
Mass spectrum (ESI) 452 (M + Na+)
[0080]
Example 32(3R) -3- (N-benzyloxycarbonyl) amino-1-chloro-2-oxo-4-phenylthiobutane (Ve) Manufacturing of
108.04 g of t-butyl (IIf) (4R) -4- (N-benzyloxycarbonyl) amino-3-oxo-5-phenylthiopentanoate (IIf) obtained according to Example 31 (purity 79.9%, 86. 33 g, 201.0 mmol) was dissolved in 320 ml of dichloromethane and cooled to -32 ° C. To this solution, a solution of 34.38 g (254.7 mmol) of sulfuryl chloride in 22 ml of dichloromethane was added dropwise over 1 hour and 20 minutes while maintaining the temperature at -32 ° C to -31 ° C. After stirring at -32 ° C to -31 ° C for 1 hour and 20 minutes, 300 ml of water was added and the layers were separated. The organic layer was washed with a saturated aqueous sodium bicarbonate solution, further washed with a saturated aqueous sodium chloride solution, and then dried over anhydrous sodium sulfate. After filtration and concentration, 192 ml of formic acid was added to the resulting residue, and the mixture was stirred at 50 to 52 ° C. for 4 hours. The obtained reaction liquid was concentrated, and 200 ml of isopropyl alcohol was added and further concentrated. 400 ml of isopropyl alcohol was added and heated to 52 ° C. to dissolve the solid, then cooled to 5 ° C., and the resulting crystals were collected by filtration and washed with 150 ml of isopropyl alcohol. The crystals were vacuum-dried to obtain 51.5 g (purity 98.0%, 50.47 g) of the title compound (yield 59.9%). 1H-NMR (300 MHz, CDClThree)
δ: 3.32 (dd, 1H), 3.42 (dd, 1H), 4.13 (d, 1H), 4.72 (d, 1H), 4.73 (dd, 1H), 5.00 (S, 2H), 5.57 (br.d, 1H), 7.22-7.40 (m, 10H).
Mass spectrum (ESI) 364 (MH+)
[0081]
Example 33(2S, 3R) -3- (N-benzyloxycarbonyl) amino-1-chloro-2-hydroxy-4-phenylthiobutane (VIe) Manufacturing of
51.5 g (purity 98.0%, 50.47 g, 138.7 mmol) of (3R) -3- (N-benzyloxycarbonyl) amino-1-chloro-2-oxo-4-phenylthiobutane (Ve) Dissolved in 300 ml dichloromethane and 187 ml methanol and cooled to -10 ° C. To this, 3.64 g (96.2 mmol) of sodium borohydride was added over 1 hour while maintaining at -11 ° C to -9 ° C. After stirring at −12 ° C. to −9 ° C. for 40 minutes, 48 ml of 2N hydrochloric acid was added, and the reaction solution was concentrated. To the concentrated residue were added 500 ml of dichloromethane and 300 ml of water, and the layers were separated. The organic layer was washed with 300 ml of saturated brine. After drying over anhydrous sodium sulfate, this was concentrated by filtration. As a result of HPLC analysis, the obtained compound was a diastereo mixture of (2S, 3R) :( 2R: 3R) = 83: 17. To this mixture, 200 ml of ethyl acetate and 300 ml of hexane were added, dissolved by heating to 60 ° C., and gradually cooled to 5 ° C. The obtained crystals were collected by filtration and washed with 170 ml of a solution of ethyl acetate / hexane = 1/2. The crystals were vacuum-dried to obtain 38.77 g ((2S, 3R) :( 2R, 3R) = 99.3: 0.7) of the title compound (yield 76.4%).
1H-NMR (300 MHz, CDClThree)
δ: 3.29 (d, 2H), 3.60 (dd, 1H), 3.68 (dd, 1H), 3.88-3.96 (m, 2H), 5.07 (s, 2H) 5.15 (br., 2H), 7.18-7.39 (m, 10H).
[0082]
Example 34(3S) -3- (N-benzyloxycarbonyl) amino-3-benzyl-2-oxo-1-chloropropane (Vb) Manufacturing of
Under an argon atmosphere, N-benzyloxycarbonyl-L-phenylalanine p-nitrophenyl ester ester (Ig) (1.00 g, 2.38 mmol) and trimethylsilyl chloroacetate (IVb) (1.45 ml, 9.38 mmol) were dissolved in anhydrous THF. (10 ml) and cooled to -70 ° C. To this solution, a solution of LDA in heptane, THF, ethylbenzene (2.0 M) (4.52 ml, 9.04 mmol) dissolved in anhydrous THF (4 ml) was heated at a temperature of −72 to −65 in about 1 hour and 15 minutes. The solution was added dropwise while maintaining at ° C. After dropping, the mixture was stirred at −72 ° C. for 3 hours, and 10% aqueous citric acid solution (35 ml) was added to stop the reaction. The mixture was returned to room temperature and ethyl acetate (20 ml) was added, and then the organic layer was separated and washed twice with water (10 ml). The organic layer was dried over anhydrous magnesium sulfate and the filtrate was concentrated to obtain the crude title compound (Vb). As a result of HPLC analysis, this crude product was found to contain 316.6 mg (0.954 mmol, 40.1% yield) of the title compound (Vb) and the starting material N-benzylloxycarbonyl-L-phenylalanine p-nitrophenyl ester ester. (Ig) It contained 398.8 mg (0.949 mmol, 39.9%).
[0083]
Example 35(3S) -3- (N-tert-butyloxycarbonyl) amino-3-benzyl-2-oxo-1-chloropropane (Vf) Manufacturing of
Under an argon atmosphere, N-tert-butyloxycarbonyl-L-phenylalanine p-nitrophenyl ester ester (Ih) (1.002 g, 2.594 mmol) and trimethylsilyl chloroacetate (IVb) (2.04 ml, 12.96 mmol) were added. Dissolved in anhydrous THF (10 ml) and cooled to -70 ° C. To this solution, a solution of LDA in heptane, THF, ethylbenzene (2.0 M) (6.47 ml, 12.95 mmol) in anhydrous THF (9 ml) was dissolved in anhydrous THF (9 ml) at a temperature of −70 to −68 in about 1 hour and 10 minutes. The solution was added dropwise while maintaining at ° C. After dropping, the mixture was stirred at −70 ° C. for 3 hours, and 10% aqueous citric acid solution (54 ml) was added to stop the reaction. The mixture was returned to room temperature, ethyl acetate (20 ml) was added, the organic layer was separated, and washed twice with water (10 ml). The organic layer was dried over anhydrous magnesium sulfate and the filtrate was concentrated to give the crude title compound (Vf). As a result of HPLC analysis, this crude product was found to contain 413.5 mg (1.389 mmol, yield 53.5%) of the title compound (Vf) and N-tert-butyloxycarbonyl-L-phenylalanine p-nitrophenyl ester as starting materials. It contained 164 mg (0.425 mmol, 16.4%) of ester (Ih).
[0084]
Example 36(3S) -3- (N-tert-butyloxycarbonyl) amino-3-benzyl-2-oxo-1-chloropropane (Vf) Manufacturing of
Under an argon atmosphere, a solution of LDA in heptane, THF, and ethylbenzene (2.0 M) (4.9 ml, 9.8 mmol) was dissolved in anhydrous THF (10 ml) and cooled to -75 ° C. To this solution, a solution of chloroacetic acid (IVc) (463 mg, 4.9 mmol) in THF (3.5 ml) was added dropwise while maintaining the temperature at −75 to −70 ° C. over about 20 minutes. After the dropwise addition, the mixture was stirred at -75 to -70 ° C for 30 minutes, and then N-tert-butyloxycarbonyl-L-phenylalanine p-nitrophenyl ester ester (Ih) (500 mg, 1.29 mmol) was added to this solution. A THF (4 ml) solution was added dropwise over about 15 minutes while maintaining the temperature at -75 to -70 ° C. After the dropwise addition, the reaction solution was stirred at −75 to −70 ° C. for 3 hours, and 10% aqueous citric acid solution (20 ml) was added to stop the reaction. The mixture was returned to room temperature, ethyl acetate (20 ml) was added, the organic layer was separated, and washed with saturated aqueous sodium hydrogencarbonate (20 ml, 10 ml) and saturated brine (20 ml) in this order. The organic layer was dried over anhydrous sodium sulfate and the filtrate was concentrated to give the crude title compound (Vf). As a result of HPLC analysis, this crude product contained 186 mg (0.625 mmol) of the title compound (Vf) (yield 48.4%).
[0085]
The compounds used or synthesized in the above production examples and examples are shown below.
[0086]
Embedded image
Figure 0003855323
[0087]
【The invention's effect】
According to the present invention, 3-amino which can be easily converted into 3-amino-1,2-epoxypropanes which are important units as pharmaceutical intermediates including various HIV protease inhibitors or certain enzyme inhibitors A 2-oxo-1-halogenopropane derivative can be industrially produced in a short process with a high yield and a safe process.

Claims (9)

下記一般式(I)で示される化合物に、
Figure 0003855323
(式中のRsは水素、それぞれ置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基もしくは炭素数7〜20のアラルキル基、又はこれらの炭素骨格中にヘテロ原子を含む置換基を、P1、P2は互いに独立して水素もしくはアミノ保護基、又はP1及び P2は一体となって二官能性のアミノ保護基を、E1 はカルボキシ末端として、炭素数1〜10のアルコキシのエステル残基、それぞれ環上に置換基を有していてもよいフェノキシ基もしくはベンジルオキシ基、N−オキシコハク酸イミドもしくは1−オキシベンゾトリアゾールの活性エステル残基、活性チオエステル残基、イミダゾリル基、酸ハロゲン化物、酸無水物、又は酸アジドを形成しうる残基を表す。)
酢酸のエステルのアルカリ金属エノラートを反応させて下記一般式(II)で示される化合物を得、
Figure 0003855323
(式中のRs、P1、P2、は上記した意味を有し、R1は置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数4〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。)
これに、ハロゲン化試剤を作用させ、2位をハロゲン化して下記一般式(III)で 示される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステル誘導体を製造し、
Figure 0003855323
(式中のRs、P1、P2、R1は上記した意味を有し、Xはフッ素以外のハロゲン原子を表す。)
さらに得られた(III)の加水分解を行い、脱炭酸を行うことを特徴とする下記一般式(V)で示される3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体またはその塩の製造方法、
Figure 0003855323
(式中のRs、P1、P2、Xは上記した意味を有する。)
In the compound represented by the following general formula (I),
Figure 0003855323
(In the formula, Rs is hydrogen, an alkyl group having 1 to 10 carbon atoms which may have a substituent, an aryl group having 6 to 15 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, or a carbon skeleton thereof. P 1 and P 2 are independently of each other hydrogen or an amino protecting group, or P 1 and P 2 are combined to form a bifunctional amino protecting group, and E 1 is a carboxyl group. As ruruboxy terminal , an alkoxy ester residue having 1 to 10 carbon atoms, an active ester of phenoxy group or benzyloxy group, N-oxysuccinimide or 1-oxybenzotriazole each optionally having a substituent on the ring Represents a residue that can form a residue, an active thioester residue, an imidazolyl group, an acid halide, an acid anhydride, or an acid azide.)
A compound represented by the following general formula (II) is obtained by reacting an alkali metal enolate of an ester of acetic acid,
Figure 0003855323
(In the formula, Rs, P 1 and P 2 have the above-mentioned meanings, and R 1 is an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, A aralkyl group having 7 to 20 carbon atoms, a trialkylsilyl group having 4 to 10 carbon atoms, a phenyldialkylsilyl group having 8 to 10 carbon atoms, or a diphenylalkylsilyl group having 13 to 15 carbon atoms.)
A halogenated reagent is allowed to act on this to produce a 4-amino-3-oxo-2-halogenobutanoic acid ester derivative represented by the following general formula (III) by halogenating the 2-position,
Figure 0003855323
(In the formula, Rs, P 1 , P 2 and R 1 have the above-mentioned meanings, and X represents a halogen atom other than fluorine.)
The method for producing a 3-amino-2-oxo-1-halogenopropane derivative represented by the following general formula (V) or a salt thereof, wherein the obtained (III) is further hydrolyzed and decarboxylated ,
Figure 0003855323
(Rs, P 1 , P 2 and X in the formula have the above-mentioned meanings.)
下記一般式(I)で示される化合物に、
Figure 0003855323
(式中のRsは水素、それぞれ置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基もしくは炭素数7〜20のアラルキル基、又はこれらの炭素骨格中にヘテロ原子を含む置換基を、P1、P2は互いに独立して水素もしくはアミノ保護基、又はP1及び P2は一体となって二官能性のアミノ保護基を、E1 はカルボキシ末端として、炭素数1〜10のアルコキシのエステル残基、それぞれ環上に置換基を有していてもよいフェノキシ基もしくはベンジルオキシ基、N−オキシコハク酸イミドもしくは1−オキシベンゾトリアゾールの活性エステル残基、活性チオエステル残基、イミダゾリル基、酸ハロゲン化物、酸無水物、又は酸アジドを形成しうる残基を表す。)
下記一般式(IV)で示される化合物のアルカリ金属エノラート又はジアニオンを反応させて、
Figure 0003855323
(式中のR2は水素、置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数3〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を、Xはフッ素以外のハロゲン原子を表す。)
下記一般式(III')で示される4−アミノ−3−オキソ−2−ハロゲノブタン酸エステルまたは塩の誘導体を製造し、
Figure 0003855323
(式中のRs、P1、P2は上記した意味を有し、R3はアルカリ金属、置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数3〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。Xは上記した意味を有する。)
さらに得られた(III')の加水分解を行い、脱炭酸を行うことを特徴とする下記一般式(V)で示される3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体またはその塩の製造方法、
Figure 0003855323
(式中のRs、P1、P2、Xは上記した意味を有する。)
In the compound represented by the following general formula (I),
Figure 0003855323
(In the formula, Rs is hydrogen, an alkyl group having 1 to 10 carbon atoms which may have a substituent, an aryl group having 6 to 15 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, or a carbon skeleton thereof. P 1 and P 2 are independently of each other hydrogen or an amino protecting group, or P 1 and P 2 are combined to form a bifunctional amino protecting group, and E 1 is a carboxyl group. As ruruboxy terminal , an alkoxy ester residue having 1 to 10 carbon atoms, an active ester of phenoxy group or benzyloxy group, N-oxysuccinimide or 1-oxybenzotriazole each optionally having a substituent on the ring Represents a residue that can form a residue, an active thioester residue, an imidazolyl group, an acid halide, an acid anhydride, or an acid azide.)
Reaction with an alkali metal enolate or dianion of a compound represented by the following general formula (IV),
Figure 0003855323
(In the formula, R 2 is hydrogen, an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, or 3 to 10 carbon atoms. X represents a halogen atom other than fluorine.) A trialkylsilyl group, a phenyldialkylsilyl group having 8 to 10 carbon atoms or a diphenylalkylsilyl group having 13 to 15 carbon atoms.
A 4-amino-3-oxo-2-halogenobutanoic acid ester or salt derivative represented by the following general formula (III ′):
Figure 0003855323
(In the formula, Rs, P 1 and P 2 have the above-mentioned meanings, R 3 is an alkali metal, an optionally substituted alkyl group having 1 to 10 carbon atoms, and an aryl group having 6 to 15 carbon atoms. Group, an aralkyl group having 7 to 20 carbon atoms, a trialkylsilyl group having 3 to 10 carbon atoms, a phenyldialkylsilyl group having 8 to 10 carbon atoms, or a diphenylalkylsilyl group having 13 to 15 carbon atoms, X is as described above. Has meaning.)
Furthermore, the obtained (III ′) is hydrolyzed and decarboxylated to produce a 3-amino-2-oxo-1-halogenopropane derivative represented by the following general formula (V) or a salt thereof Method,
Figure 0003855323
(Rs, P 1 , P 2 and X in the formula have the above-mentioned meanings.)
一般式(I)で示される化合物のアミノ基の根元の炭素原子がS配置である請求項1または2に記載の方法、但し、(I)式中のRsが水素である場合を除く。  The method according to claim 1 or 2, wherein the carbon atom at the base of the amino group of the compound represented by the general formula (I) is in S configuration, except that Rs in the formula (I) is hydrogen. 一般式(I)で示される化合物のアミノ基の根元の炭素原子がR配置である請求項1または2に記載の方法、但し、(I)式中のRsが水素である場合を除く。  The method according to claim 1 or 2, wherein the carbon atom at the base of the amino group of the compound represented by formula (I) is in the R configuration, except that Rs in formula (I) is hydrogen. 請求項1乃至4の製造方法に従って、一般式According to the manufacturing method of claims 1 to 4, the general formula (V)(V) で示される3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体またはその塩を得た後、該誘導体またはその塩を還元反応によりハロヒドリンとすることを特徴とする下記一般式A 3-amino-2-oxo-1-halogenopropane derivative represented by the following formula or a salt thereof, and then the derivative or the salt thereof is converted into a halohydrin by a reduction reaction: (VI)(VI) で示されるハロヒドリンの製造方法。The manufacturing method of halohydrin shown by these.
Figure 0003855323
Figure 0003855323
(式中のRs、P(Rs in the formula, P 11 、P, P 22 、Xは上記した意味を有する。), X has the meaning described above. )
請求項1乃至4の製造方法に従って、一般式(V)で示される3−アミノ−2−オキソ−1−ハロゲノプロパン誘導体またはその塩を得た後、該誘導体またはその塩を還元反応により下記一般式(VI)で示されるハロヒドリンとし、
Figure 0003855323
(式中のRs、P1、P2、Xは上記した意味を有する。)
さらに該ハロヒドリンをエポキシ化することを特徴とする下記一般式(VII)で示される化合物の製造方法。
Figure 0003855323
(式中のRs、P1、P2は上記した意味を有する。)
After obtaining the 3-amino-2-oxo-1-halogenopropane derivative represented by the general formula (V) or a salt thereof according to the production method of claims 1 to 4, the derivative or the salt thereof is reduced by the following general reaction. A halohydrin represented by formula (VI),
Figure 0003855323
(Rs, P 1 , P 2 and X in the formula have the above-mentioned meanings.)
Furthermore, the method for producing a compound represented by the following general formula (VII), wherein the halohydrin is epoxidized.
Figure 0003855323
(Rs, P 1 and P 2 in the formula have the above-mentioned meanings.)
下記一般式(I)で示される化合物に、
Figure 0003855323
(式中のRsは水素、それぞれ置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基もしくは炭素数7〜20のアラルキル基、又はこれらの炭素骨格中にヘテロ原子を含む置換基を、P1、P2は互いに独立して水素もしくはアミノ保護基、又はP1及び P2は一体となって二官能性のアミノ保護基を、E1ルボキシ末端として、メトキシ又はエトキシのエステル残基を表す。)
酢酸のエステルのアルカリ金属エノラートを反応させることを特徴とする下記一般式(II)で示される化合物の製造方法。
Figure 0003855323
(式中のRs、P1、P2、は上記した意味を有し、R1は置換基を有していてもよい炭素数1〜10のアルキル基、炭素数6〜15のアリール基、炭素数7〜20のアラルキル基、炭素数4〜10のトリアルキルシリル基、炭素数8〜10のフェニルジアルキルシリル基または炭素数13〜15のジフェニルアルキルシリル基を表す。)
In the compound represented by the following general formula (I),
Figure 0003855323
(In the formula, Rs is hydrogen, an alkyl group having 1 to 10 carbon atoms which may have a substituent, an aryl group having 6 to 15 carbon atoms or an aralkyl group having 7 to 20 carbon atoms, or a carbon skeleton thereof. a substituent containing a hetero atom in the P 1, P 2 independently of one another are hydrogen or an amino protecting group, or P 1 and P 2 are amino protecting groups of the bifunctional together, E 1 is Ca Represents a methoxy or ethoxy ester residue as the ruboxy end .)
A method for producing a compound represented by the following general formula (II), wherein an alkali metal enolate of an ester of acetic acid is reacted.
Figure 0003855323
(In the formula, Rs, P 1 and P 2 have the above-mentioned meanings, and R 1 is an optionally substituted alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 15 carbon atoms, A aralkyl group having 7 to 20 carbon atoms, a trialkylsilyl group having 4 to 10 carbon atoms, a phenyldialkylsilyl group having 8 to 10 carbon atoms, or a diphenylalkylsilyl group having 13 to 15 carbon atoms.)
一般式(I)で示される化合物のアミノ基の根元の炭素原子がS配置である請求項9に記載の方法、但し、(I)式中のRsが水素である場合を除く。  The method according to claim 9, wherein the carbon atom at the base of the amino group of the compound represented by the general formula (I) is in S configuration, except that Rs in the formula (I) is hydrogen. 一般式(I)で示される化合物のアミノ基の根元の炭素原子がR配置である請求項9に記載の方法、但し、(I)式中のRsが水素である場合を除く。  The method according to claim 9, wherein the base carbon atom of the amino group of the compound represented by the general formula (I) is in the R configuration, except that Rs in the formula (I) is hydrogen.
JP30605196A 1995-11-17 1996-11-18 Method for producing 3-amino-2-oxo-1-halogenopropane derivative Expired - Fee Related JP3855323B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30605196A JP3855323B2 (en) 1995-11-17 1996-11-18 Method for producing 3-amino-2-oxo-1-halogenopropane derivative

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP7-299827 1995-11-17
JP29982795 1995-11-17
JP30605196A JP3855323B2 (en) 1995-11-17 1996-11-18 Method for producing 3-amino-2-oxo-1-halogenopropane derivative

Publications (2)

Publication Number Publication Date
JPH09194444A JPH09194444A (en) 1997-07-29
JP3855323B2 true JP3855323B2 (en) 2006-12-06

Family

ID=26562090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30605196A Expired - Fee Related JP3855323B2 (en) 1995-11-17 1996-11-18 Method for producing 3-amino-2-oxo-1-halogenopropane derivative

Country Status (1)

Country Link
JP (1) JP3855323B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IN184319B (en) * 1997-06-03 2000-08-05 Kaneka Corp

Also Published As

Publication number Publication date
JPH09194444A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
US5902887A (en) Process for producing 3-amino-2-oxo-1-halogenopropane derivatives
JP2778103B2 (en) Method for producing optically active threodihydroxyphenylserine derivative
JP3855323B2 (en) Method for producing 3-amino-2-oxo-1-halogenopropane derivative
US6639094B2 (en) Process for producing α-aminoketone derivatives
JPH06184069A (en) Production of alpha-hydroxy-beta-aminocarboxylic acid
WO2000053571A1 (en) PROCESSES FOR THE PREPARATION OF α-AMINOKETONES
EP1078919B1 (en) Synthesis of alpha-amino-alpha',alpha'-dihaloketones and process for the preparation of beta)-amino acid derivatives by the use of the same
JP2001039940A (en) PREPARATION OF alpha-AMINOHALOMETHYLKETONE DERIVATIVE
WO2017122822A1 (en) Production intermediate of depsipeptide compound, and method for producing same
JPH069515A (en) Production of optically active homo-beta-amino acid
US7122696B2 (en) Processes for preparation of N-protected-β-amino alcohols and N-protected-β-amino epoxides
JP3855317B2 (en) Process for producing α-hydroxy-β-aminocarboxylic acid
US5106970A (en) Optically active 4-morpholino-2-(1-naphthylmethyl)-4-oxobutyric acid 2'-hydroxy-1,1'binaphthalen-2-yl
JPH09323960A (en) Production of 3-amino-1,2-oxirane
JP3011784B2 (en) New pyridinesulfonic acid ester
JPH08259519A (en) Production of alpha-aminoglycol and intermediate thereof
JP2005041854A (en) Optically active n-(2-substituted-3-halopropionyl)amino acid, method for producing the same, and method for producing optically active n-(2-substituted-3-acylthiopropionyl)amino acid using the same
HU207711B (en) Process for producing glutaric acid derivatives
JP2005298337A (en) METHOD FOR PRODUCING beta-HYDROXYAMINO ACID DERIVATIVE AND INTERMEDIATE OF THE SAME
JP3832919B2 (en) Method for producing optically active cyanohydrin
JPH10231280A (en) Production of 3-amino-2-hydroxy-4-phenylbutylonitrile derivatives
JPH09169744A (en) New production of (4,5)-trans-oxazolidine
JPH09143131A (en) Production of 3-amino-2-oxo-1-hydroxypropane derivative
KR100445781B1 (en) Process for preparing (S)-1-acetyl-2-pyrrolidinecarboxamide
JP2000319235A (en) PRODUCTION OF alpha-AMINOKETONE COMPOUND

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060720

TRDD Decision of grant or rejection written
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060904

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees