JP3855203B2 - Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion - Google Patents

Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion Download PDF

Info

Publication number
JP3855203B2
JP3855203B2 JP2005091080A JP2005091080A JP3855203B2 JP 3855203 B2 JP3855203 B2 JP 3855203B2 JP 2005091080 A JP2005091080 A JP 2005091080A JP 2005091080 A JP2005091080 A JP 2005091080A JP 3855203 B2 JP3855203 B2 JP 3855203B2
Authority
JP
Japan
Prior art keywords
emulsifying
derivative
oil
emulsion
emulsifying dispersant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005091080A
Other languages
Japanese (ja)
Other versions
JP2006239666A (en
Inventor
和夫 田嶋
洋子 今井
照夫 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa University
Original Assignee
Kanagawa University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=37046582&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3855203(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kanagawa University filed Critical Kanagawa University
Priority to JP2005091080A priority Critical patent/JP3855203B2/en
Priority to US11/547,625 priority patent/US9506001B2/en
Priority to CA2563267A priority patent/CA2563267C/en
Priority to CN200580018350XA priority patent/CN1964778B/en
Priority to CA2708440A priority patent/CA2708440C/en
Priority to CA2708437A priority patent/CA2708437C/en
Priority to EP05727301.3A priority patent/EP1754532B1/en
Priority to CA2708434A priority patent/CA2708434C/en
Priority to KR1020067023183A priority patent/KR100854832B1/en
Priority to PCT/JP2005/005795 priority patent/WO2005096711A2/en
Priority to CN201110148918.7A priority patent/CN102258959B/en
Publication of JP2006239666A publication Critical patent/JP2006239666A/en
Publication of JP3855203B2 publication Critical patent/JP3855203B2/en
Application granted granted Critical
Priority to US15/360,183 priority patent/US11708538B2/en
Priority to US15/360,235 priority patent/US10202556B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • General Preparation And Processing Of Foods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Colloid Chemistry (AREA)

Description

本発明は、被乳化物の種類を問わない経時安定性に優れた乳化分散剤及びこれを用いた乳化分散法並びに乳化物に関する。   The present invention relates to an emulsifying dispersant excellent in stability over time regardless of the type of an emulsified product, an emulsifying dispersion method using the same, and an emulsified product.

従来、機能性油性基剤または機能性顆粒を水に乳化分散させる場合には、機能性油性基剤の所要HLBや顆粒表面の性質に応じて界面活性剤を選択し、乳化分散を行っていた。また、乳化剤として用いられる界面活性剤の所要HLB値は、O/W型エマルションを作る場合とW/O型エマルションを作る場合とのそれぞれに応じて使い分ける必要があり、しかも、熱安定性や経時安定性が十分でないため、多種多様な界面活性剤を混合して用いていた(非特許文献1〜4等参照)。   Conventionally, when emulsifying and dispersing a functional oil base or functional granule in water, a surfactant was selected according to the required HLB of the functional oil base and the properties of the granule surface, and emulsified and dispersed. . In addition, the required HLB value of the surfactant used as an emulsifier needs to be properly used depending on whether the O / W type emulsion is made or the W / O type emulsion, and further, the thermal stability and time Since the stability is not sufficient, a wide variety of surfactants are mixed and used (see Non-Patent Documents 1 to 4).

"Emulsion Science" Edited by P. Sherman, Academic Press Inc. (1969)"Emulsion Science" Edited by P. Sherman, Academic Press Inc. (1969) "MicroemulsionsーTheory and Practiceー Edited by Leon M. price, Academic Press Inc. (1977)"Microemulsions-Theory and Practice- Edited by Leon M. price, Academic Press Inc. (1977) 「乳化・可溶化の技術」 辻 薦, 工学図書出版 (1976)"Emulsification / Solubilization Technology" 辻 Recommended, Engineering Book Publishing (1976) 「機能性界面活性剤の開発技術」 シー・エム・シー出版 (1998)"Development Technology of Functional Surfactant" CM Publishing (1998)

しかしながら、界面活性剤は、生分解性が低く、泡立ちの原因となるので、環境汚染などの深刻な問題となっている。また、機能性油性基剤の乳化製剤の調製法として、HLB法、転相乳化法、転相温度乳化法、ゲル乳化法等の物理化学的な乳化方法が一般に行われているが、いずれも油/水界面の界面エネルギーを低下させ、熱力学的に系を安定化させる作用をエマルション調製の基本としているので、最適な乳化剤を選択するために非常に煩雑かつ多大な労力を有しており、まして、多種類の油が混在していると、安定に乳化させることは殆ど不可能であった。   However, since the surfactant has low biodegradability and causes foaming, it is a serious problem such as environmental pollution. In addition, as a method for preparing an emulsified preparation of a functional oil base, physicochemical emulsification methods such as an HLB method, a phase inversion emulsification method, a phase inversion temperature emulsification method, and a gel emulsification method are generally performed. Since the basis of emulsion preparation is to reduce the interfacial energy at the oil / water interface and to stabilize the system thermodynamically, it is very cumbersome and labor intensive to select the most suitable emulsifier In addition, when many kinds of oils are mixed, stable emulsification is almost impossible.

そこで、この発明においては、機能性油性基剤と水、または機能性顆粒と水などの界面に対して、熱安定性や経時安定性に優れた乳化分散系を形成すること、また、機能性油性基剤の所要HLB値又は機能性顆粒の表面状態に関わりなく、乳化分散させることが可能な乳化分散剤、及び、これを用いた乳化分散法並びに乳化物を提供することを主たる課題としている。   Therefore, in the present invention, an emulsion dispersion system having excellent thermal stability and stability over time is formed on the interface between the functional oil base and water or the functional granule and water. The main object is to provide an emulsifying dispersant that can be emulsified and dispersed regardless of the required HLB value of the oily base or the surface state of the functional granules, and an emulsifying dispersion method and emulsion using the same. .

従来の界面活性剤を用いた乳化法では、油と水との界面に界面活性剤が吸着し、その界面エネルギーを低下させることを乳化・分散法の基本としていたので、その界面張力を低下させるために多量の乳化剤を必要とするものであった。これに対して、本発明者らは、新規な乳化技術を開発するために鋭意研究を重ねた結果、油/両親媒性化合物/水系の中で独立相として存在する両親媒性化合物のナノ粒子をファンデルワールス力によって油性基剤表面に付着させることで乳化を行なう三相乳化法を見出し、また、このような乳化法によれば、油性成分の所要HLB値によらず、油性成分/水界面の界面張力の大きさが乳化剤のナノ粒子の付着に重要であることを知見した。さらに、本発明者らは、この三相乳化エマルションは通常のO/W型やW/O型などの二相乳化エマルションに比べて非常に高い安定性を示すことを見い出し、これらの知見に基づき本発明を完成したものである。   In the conventional emulsification method using a surfactant, the surfactant is adsorbed at the interface between oil and water, and the basic energy of the emulsification / dispersion method is to reduce the interfacial energy. Therefore, a large amount of emulsifier is required. On the other hand, the present inventors have conducted extensive research to develop a novel emulsification technique, and as a result, nanoparticles of amphiphilic compounds existing as independent phases in oil / amphiphile / water systems. Has been found to be emulsified by adhering to the surface of the oily base by van der Waals force. According to such an emulsification method, the oily component / water can be used regardless of the required HLB value of the oily component. It was found that the interfacial tension magnitude of the interface is important for the adhesion of emulsifier nanoparticles. Furthermore, the present inventors have found that this three-phase emulsion is very stable as compared with ordinary O / W type and W / O type two-phase emulsions, and based on these findings. The present invention has been completed.

即ち、前記課題を達成するために、この発明に係る乳化分散剤は、自発的に閉鎖小胞体を形成する両親媒性物質により形成されて油性基材表面に付着する閉鎖小胞体を主成分とすることを特徴としている。 That is, in order to achieve the above object, the emulsifying dispersant according to the present invention is mainly composed of closed vesicles formed by an amphiphilic substance that spontaneously forms closed vesicles and attached to the surface of an oily substrate. It is characterized by doing.

ここで、閉鎖小胞体は、平均粒子径を、エマルション形成時に8nm〜500nm、分散剤調製時に分散液中の濃度範囲5〜20wt%において200nm〜800nmであることが好ましい。また、上述のような自己組織能を有する両親媒性物質としては、例えば、下記の一般式(化1)で表されるポリオキシエチレン硬化ひまし油の誘導体のうちエチレンオキシドの平均付加モル数(E)が5〜15である誘導体や、一般式(化2)で表されるようなジアルキルアンモニウム誘導体、トリアルキルアンモニウム誘導体、テトラアルキルアンモニウム誘導体、ジアルケニルアンモニウム誘導体、トリアルケニルアンモニウム誘導体、又はテトラアルケニルアンモニウム誘導体のハロゲン塩の誘導体を採用するとよい。また、リン脂質並びにリン脂質誘導体から作成される粒子を用いてもよい。 Here, the closed endoplasmic reticulum preferably has an average particle size of 200 nm to 800 nm in the concentration range of 5 to 20 wt% in the dispersion when the emulsion is formed, and when the dispersion is prepared. Examples of the amphiphilic substance having the self-organizing ability as described above include, for example, an average added mole number (E) of ethylene oxide among polyoxyethylene hydrogenated castor oil derivatives represented by the following general formula (Formula 1). Or a dialkylammonium derivative, a trialkylammonium derivative, a tetraalkylammonium derivative, a dialkenylammonium derivative, a trialkenylammonium derivative, or a tetraalkenylammonium derivative represented by the general formula (Formula 2): It is recommended to use a derivative of a halogen salt of Alternatively, particles made from phospholipids and phospholipid derivatives may be used.

ここで、ポリオキシエチレン硬化ひまし油の誘導体にあっては、イオン性界面活性剤をモル分率で0.1≦Xs≦0.33の範囲でさらに付加し、閉鎖小胞体をイオン化(カチオン化又はアニオン化)してもよい。 Here, in the derivative of polyoxyethylene hydrogenated castor oil, an ionic surfactant is further added in the range of 0.1 ≦ Xs ≦ 0.33 in terms of molar fraction to ionize the closed endoplasmic reticulum ( cationization or Anionization ).

上述した乳化分散剤を用いた乳化分散方法としては、被乳化油性成分と前記乳化分散剤との比を1〜1000として接触、混和させることが好ましい。 As an emulsion dispersion method using the emulsification dispersant described above, arbitrary contact, be mixed like the ratio of the emulsifying and dispersing agent to be emulsified oil component as 1 to 1000.

また、上記課題を達成するために、この発明に係る乳化分散剤としては、単粒子化されたバイオポリマーを主成分とし、前記単粒子の平均粒子径がエマルション形成時に8nm〜500nm、分散剤調製時に分散液中の濃度範囲0.04〜20wt%において50nm〜800nmであるものを用いてもよい。 In order to achieve the above object, the emulsifying dispersant according to the present invention is mainly composed of a single particle biopolymer, and the average particle size of the single particles is 8 nm to 500 nm at the time of emulsion formation. You may use what is 50 nm-800 nm in the density | concentration range 0.04-20 wt% in a dispersion liquid at the time of preparation.

ここで、バイオポリマーとしては、微生物産生による多糖類、リン脂質、ポリエステル類や、生物由来の澱粉等の多糖類、キトサンよりなる群から選ばれた1又は2以上のものが考えられる。例えば微生物産生の多糖類として、リボース、キシロース、ラムノース、フコース、グルコース、マンノース、グルクロン酸、グルコン酸などの単糖類の中からいくつかの糖を構成要素として微生物が産生するものがあげられる。特定の構造の多糖類を産生する幾つかの微生物種が知られているが、いずれの多糖類でもまた混合物になっていてもよい。 Here, as the biopolymer, one or two or more selected from the group consisting of polysaccharides produced by microorganisms, phospholipids, polyesters, polysaccharides such as biologically derived starch, and chitosan can be considered . Examples of polysaccharides produced by microorganisms include those produced by microorganisms with several sugars as constituents from monosaccharides such as ribose, xylose, rhamnose, fucose, glucose, mannose, glucuronic acid, and gluconic acid. Several microbial species are known that produce polysaccharides of a specific structure, but any polysaccharide may also be a mixture.

更に 生物由来の澱粉としては、馬鈴薯、もち米粉、タピオカ粉、昆布粉等があるが、これに限定されるものではなく単体もしくは複合構造で両親媒性を示すものであればよい。   Furthermore, examples of biological starch include potato, glutinous rice flour, tapioca flour, kelp flour, and the like. However, the starch is not limited to this, and any starch may be used as long as it is amphiphilic in a simple substance or a composite structure.

このような乳化分散剤を用いた乳化分散方法としては、被乳化油性成分と前記乳化分散剤との比を50〜2000として接触、混和させることが好ましい。 Such emulsifying dispersant emulsion dispersion method using the contact ratio of the emulsifying and dispersing agent to be emulsified oil component as 50 to 2000, it is favorable preferable to mix.

尚、上述した乳化分散剤を製造する方法としては、自発的に閉鎖小胞体を形成する両親媒性物質により閉鎖小胞体を形成する工程、又は、自己組織能を有する両親媒性物質を単粒子化させる工程と、閉鎖小胞体又は単粒子化された両親媒性物質を所定温度以下の水に滴下し微細化する工程とを含むことが好ましい。自発的に閉鎖小胞体を形成する両親媒性物質により閉鎖小胞体を形成する工程、又は、単粒子化させる工程は、使用する材料によってさまざまな工夫が必要であるが、ひまし油誘導体では60℃以下の水に、攪拌しながら滴下することで達成される。 In addition, as a method for producing the above-described emulsifying dispersant, a step of forming closed vesicles with an amphiphilic substance that spontaneously forms closed vesicles , or a single particle of an amphiphilic substance having self-organizing ability It is preferable to include a step of reducing the size, and a step of dripping the closed vesicle or the unicellularized amphiphile into water having a predetermined temperature or less to make it finer . The process of forming a closed vesicle with an amphipathic substance that spontaneously forms a closed vesicle or the process of making it into single particles requires various devices depending on the material used. This is achieved by adding dropwise to the water with stirring.

上述した乳化分散剤と油脂とを接触し混和させて得られる乳化物は、油と水との界面に乳化分散剤相が形成されるので、合一が起こりにくく、油脂の種類に依存することなく、極めて熱安定性、経時安定性に優れている。 Emulsified product obtained by contacting the emulsifying dispersant and oil as described above blended, since interface emulsifying dispersant phase of oil and water is formed, coalescence less likely, it is dependent on the type of fat And extremely excellent thermal stability and stability over time.

以上述べたように、この発明に係る乳化分散剤を用いることで、機能性油性基剤と水、または機能性顆粒と水などの界面に対して、熱安定性や経時安定性に優れた乳化分散系を形成することが可能となる。このため、従来の炭化水素系界面活性剤では安定した乳化物を形成することが困難であったが、本発明の乳化分散剤を用いれば、長期間に亘り、幅広い温度領域で乳化安定化を図ることが可能となる。   As described above, by using the emulsifying dispersant according to the present invention, the emulsification excellent in thermal stability and temporal stability with respect to the interface of the functional oil base and water or the functional granule and water. A dispersion system can be formed. For this reason, it has been difficult to form stable emulsions with conventional hydrocarbon surfactants, but with the use of the emulsifying dispersant of the present invention, it is possible to stabilize the emulsion over a wide temperature range over a long period of time. It becomes possible to plan.

また、一種類の乳化分散剤を用いて、被乳化油剤の所要HLB値又は機能性顆粒の表面状態に関係なく、油脂成分を乳化分散させることが可能となるので、炭化水素系油剤やシリコン系油剤の乳化も可能となる。このため、乳化剤を選択する煩わしさや労力を最小限にすることができ、また、多種類の混在している油を同時に乳化させることも可能となる。   In addition, it is possible to emulsify and disperse oil components using a single type of emulsifying dispersant regardless of the required HLB value of the oil to be emulsified or the surface state of the functional granules. The oil can be emulsified. For this reason, the troublesomeness and labor which select an emulsifier can be minimized, and it becomes possible to emulsify many kinds of mixed oil simultaneously.

さらに、乳化に必要な乳化分散剤の濃度は、従来型の界面活性剤の1/10〜1/1000で済むので、環境に与える負荷を著しく低減できる。   Furthermore, since the concentration of the emulsifying dispersant necessary for emulsification is 1/10 to 1/1000 that of a conventional surfactant, the load on the environment can be significantly reduced.

以下、この発明の最良の実施形態を説明する。   The best mode of the present invention will be described below.

図1において、従来型の界面活性剤による乳化法と今回採用した三相乳化法の概念図が示されている。   In FIG. 1, the conceptual diagram of the emulsification method by the conventional surfactant and the three-phase emulsification method employ | adopted this time is shown.

従来の界面活性剤による乳化法においては、図1(a)に示されるように、界面活性剤は同一分子内に性質の異なる親水基と親油基を持つため、油の粒子に対しては、界面活性剤の親油基が油に相溶し、また、親水基は油粒子の外側に配向した状態で並んでいるので水になじみやすくなり、水媒体中に均一に混ざり合い、O/W型エマルションを生成する。また、水の粒子に対しては、界面活性剤の親水基が配向し、親油基が外側に向いた状態で並んで油になじみやすくなり、油媒体中に均一に混ざり合い、W/O型エマルションが生成する。   In the conventional emulsification method using a surfactant, as shown in FIG. 1 (a), a surfactant has a hydrophilic group and a lipophilic group having different properties in the same molecule. In addition, the lipophilic group of the surfactant is compatible with the oil, and the hydrophilic group is aligned in a state of being oriented to the outside of the oil particle, so that it is easy to become familiar with water, and it is uniformly mixed in the aqueous medium. A W-type emulsion is produced. In addition, with respect to water particles, the hydrophilic groups of the surfactant are oriented, and the lipophilic groups are lined up outward, making them easy to become familiar with the oil, and evenly mixed in the oil medium. A mold emulsion is formed.

しかしながら、従来型のこのような乳化法によると、界面活性剤が油表面に吸着し、単分子膜状の乳化膜を形成しているために、界面活性剤の種類により界面の物性が変化する不都合がある。また、図2(a)に示されるように、油滴の熱衝突による合一によって油滴のサイズは次第に大きくなり、遂には油と界面活性剤水溶液とに分離する。これを防ぐためには、マイクロエマルションを形成させる必要があり、これには、多量の界面活性剤を用いなければならない不都合がある。   However, according to such a conventional emulsification method, the surfactant is adsorbed on the oil surface and forms a monomolecular emulsion, so the physical properties of the interface change depending on the type of surfactant. There is an inconvenience. Further, as shown in FIG. 2 (a), the size of the oil droplets gradually increases due to coalescence due to thermal collision of the oil droplets, and finally, the oil droplets are separated into oil and a surfactant aqueous solution. In order to prevent this, it is necessary to form a microemulsion, which has the disadvantage that a large amount of surfactant must be used.

そこで、本件においては、図1(b)に示されるように、油や水の粒子に対して乳化剤相のナノ粒子を付着させ、これにより、水相―乳化分散剤相―油相の三相構造を形成し、従来の界面活性剤と異なって相溶性による界面エネルギーの低下をさせることなく、図2(b)に示されるように、熱衝突による合一を起こりにくくして乳化物の長期安定化を図っている。また、このような機構に基づき、少量の乳化分散剤によってエマルションを形成することが可能な新規な乳化法(三相乳化法)を採用するようにしている。   Therefore, in this case, as shown in FIG. 1 (b), the nanoparticles of the emulsifier phase are attached to the oil and water particles, so that the three phases of the water phase, the emulsifying dispersant phase, and the oil phase are obtained. As shown in FIG. 2 (b), it is difficult to cause coalescence due to thermal collisions without causing a decrease in interfacial energy due to compatibility, unlike the conventional surfactants. Stabilization is planned. Further, based on such a mechanism, a new emulsification method (three-phase emulsification method) capable of forming an emulsion with a small amount of an emulsifying dispersant is adopted.

このような三相乳化を実現するための乳化分散剤としては、自発的に閉鎖小胞体を形成する両親媒性物質により形成されて油性基材表面に付着する閉鎖小胞体(ベシクル)を主成分とする乳化分散剤や、単粒子化されたバイオポリマーを主成分とする乳化分散剤が考えられている。 The emulsifying and dispersing agent for realizing such three-phase emulsification is mainly composed of closed vesicles (vesicles) that are formed of amphiphilic substances that spontaneously form closed vesicles and adhere to the surface of the oily substrate. And emulsifying dispersants mainly composed of single-particle biopolymers are considered.

ここで、両親媒性物質により形成される閉鎖小胞体は、平均粒子径を、エマルション形成時に8nm〜500nmとすることが好ましい。粒子径を8nmより小さくすると、ファンデルワールス力に起因する吸引作用が小さくなり、閉鎖小胞体が油滴の表面に付着しにくくなるからであり、また、粒子径を500nmよりも大きくすると、安定したエマルションを維持できなくなるためである。図3に粒子径8nmを表すTEMの写真を示す。また、粒子径が500nmより大きくなると、針状粒子が生じるようになり、安定したエマルションを形成できなくなる。図4に平均粒子径390.0nmの場合(500nm以下の場合:図中(A)側)と平均粒子径2087.8nmの場合(500nmより大きい場合:図中(B)側)の散乱強度分布とTEMの写真を示す。 Here, the closed vesicle formed of the amphiphilic substance preferably has an average particle size of 8 nm to 500 nm when the emulsion is formed . This is because if the particle size is smaller than 8 nm, the suction action caused by van der Waals force is reduced, and the closed endoplasmic reticulum hardly adheres to the surface of the oil droplet, and if the particle size is larger than 500 nm, it is stable. It is because it becomes impossible to maintain the obtained emulsion. FIG. 3 shows a TEM photograph showing a particle diameter of 8 nm. On the other hand, when the particle diameter is larger than 500 nm, acicular particles are generated and a stable emulsion cannot be formed. FIG. 4 shows the scattering intensity distribution when the average particle diameter is 390.0 nm (in the case of 500 nm or less: (A) side in the figure) and in the case of the average particle diameter 2087.8 nm (when larger than 500 nm: in the figure (B) side). And TEM pictures.

閉鎖小胞体の粒子径をエマルション形成時にこの範囲にするには分散剤の調整時には分散液中の濃度範囲5〜20wt%において200nm〜800nmにあってもよい。これはエマルション形成の工程で閉鎖小胞体が細粒化されるためである。この工程で閉鎖小胞体が破壊されていないことは図5のXRDピークを観察することで確認できる。図中、Xは乳化剤に対する油相のモル分率を示す。
In order to make the particle size of the closed vesicle within this range at the time of emulsion formation, it may be 200 nm to 800 nm in the concentration range of 5 to 20 wt% in the dispersion when adjusting the dispersant . This is because the closed endoplasmic reticulum is refined in the emulsion formation process. It can be confirmed by observing the XRD peak in FIG. 5 that the closed endoplasmic reticulum has not been destroyed in this step. In the figure, X H denote mole fractions of the oil phase to the emulsifier.

このような閉鎖小胞体を形成する両親媒性物質としては、下記の一般式(化3)で表されるポリオキシエチレン硬化ひまし油の誘導体もしくは一般式(化4)で表されるようなジアルキルアンモニウム誘導体、トリアルキルアンモニウム誘導体、テトラアルキルアンモニウム誘導体、ジアルケニルアンモニウム誘導体、トリアルケニルアンモニウム誘導体、又はテトラアルケニルアンモニウム誘導体のハロゲン塩の誘導体を採用するとよい。   Examples of the amphiphilic substance that forms such a closed endoplasmic reticulum include a polyoxyethylene hydrogenated castor oil derivative represented by the following general formula (Formula 3) or a dialkylammonium represented by the general formula (Formula 4). A derivative, a trialkylammonium derivative, a tetraalkylammonium derivative, a dialkenylammonium derivative, a trialkenylammonium derivative, or a derivative of a halogen salt of a tetraalkenylammonium derivative may be employed.

硬化ひまし油の誘導体としては、エチレンオキシドの平均付加モル数(E)が5〜15である誘導体が使用可能である。エチレンオキシドの平均付加モル数を5〜20に変動させた例を表1に示す。5〜15の範囲は安定しているが、20では短時間のエマルション形成は可能だが、安定に保つことができない。付着力を高めるために、これによって得られる閉鎖小胞体をイオン化してもよい。このようなイオン化ベシクルを形成するにあたり、イオン性界面活性剤として、カチオン化のためにはアルキルまたはアルケニルトリメチルアンモニウム塩(炭素鎖長12〜22)、好ましくは、炭素鎖長16のヘキサデシルトリメチルアンモニウムブロミド(Hexadecyltrimethylammonium Bromide:以下、CTABという)、アニオン化のためにはアルキル硫酸エステル塩(CnSO4 - M+ 炭素鎖長8〜22、M:アルカリ金属、アルカリ土族、アンモニウム塩など)、アルキルスルホン酸塩(CnSO3 - M+ 炭素鎖長8〜22、M:アルカリ金属、アルカリ土族、アンモニウム塩など)などを用いると良い。イオン化の方法は、例えばHCO−10とCTABとをエタノール溶媒を用いて混合し、しかる後にエタノールを除去してHCO−10とCTABとの混合物質を形成し、その後、この混合物質にHCO−10が10wt%になるように蒸留水を加えて攪拌し、恒温槽で熟成させるとよい。HCO−10とCTABとの混合ベシクル中のCTABのモル分率(Xs)は、Xs<0.1にすると、混合ベシクルのカチオン性が一定に保てなくなり、0.33<Xsにすると、安定した混合ベシクルを得られなくなるので、カチオン化するためには、0.1≦Xs≦0.33の範囲にすることが好ましい。 As a derivative of hydrogenated castor oil, a derivative having an average added mole number (E) of ethylene oxide of 5 to 15 can be used. Table 1 shows an example in which the average added mole number of ethylene oxide was varied from 5 to 20. The range of 5 to 15 is stable, but with 20 it is possible to form an emulsion for a short time, but it cannot be kept stable. In order to increase adhesion, the resulting closed endoplasmic reticulum may be ionized. In forming such an ionized vesicle, as an ionic surfactant, an alkyl or alkenyltrimethylammonium salt (carbon chain length of 12 to 22) for cationization, preferably hexadecyltrimethylammonium having a carbon chain length of 16 is used. bromide (Hexadecyltrimethylammonium bromide: hereinafter referred CTAB), for the anion of the alkyl sulfate (CnSO 4 - M + carbon chain length 8 to 22, M: alkali metals, alkaline earth group and ammonium salts), alkyl sulfonic acid salt (CnSO 3 - M + carbon chain length 8 to 22, M: alkali metals, alkaline earth group, ammonium salts) may be used and the like. In the ionization method, for example, HCO-10 and CTAB are mixed using an ethanol solvent, and then ethanol is removed to form a mixed material of HCO-10 and CTAB. Thereafter, HCO-10 is added to the mixed material. It is good to add distilled water and stir so that it may become 10 wt%, and to age | cure | ripen in a thermostat. The molar fraction (Xs) of CTAB in the mixed vesicle of HCO-10 and CTAB cannot be kept constant when Xs <0.1, and stable when 0.33 <Xs. Therefore, in order to cationize, it is preferable that 0.1 ≦ Xs ≦ 0.33.

また、閉鎖小胞体を形成する両親媒性物質としては、リン脂質やリン脂質誘導体等を採用してもよい。リン脂質としては、下記の一般式(化5)で示される構成のうち、炭素鎖長12のDLPC (1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-choline)、炭素鎖長14のDMPC (1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-choline)、炭素鎖長16のDPPC(1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-1-choline )が採用可能である。   Moreover, as an amphipathic substance that forms a closed endoplasmic reticulum, a phospholipid, a phospholipid derivative, or the like may be employed. Among phospholipids, among the structures represented by the following general formula (Formula 5), carbon chain length of 12 DLPC (1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-choline), carbon chain DMPC with a length of 14 (1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-choline), DPPC with a carbon chain length of 16 (1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-1 -choline) can be used.

また、下記の一般式(化6)で示される構成のうち、炭素鎖長12のDLPG(1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-glycerol) のNa塩又はNH4塩、炭素鎖長14のDMPG(1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-glycerol)のNa塩又はNH4塩、炭素鎖長16のDPPG(1,2-Dipalmitoyl-sn-glycero-3-phospho-rac-1-glycerol) のNa塩又はNH4塩を採用してもよい。 Further, among the structures represented by the following general formula (Formula 6), a sodium salt or NH 4 of DLPG (1,2-Dilauroyl-sn-glycero-3-phospho-rac-1-glycerol) having a carbon chain length of 12 Salt, Na or NH 4 salt of DMPG (1,2-Dimyristoyl-sn-glycero-3-phospho-rac-1-glycerol) having a carbon chain length of 14, DPPG (1,2-Dipalmitoyl-carbon chain length of 16) sn-glycero-3-phospho-rac-1-glycerol) Na salt or NH 4 salt may be employed.

さらに、リン脂質として卵黄レシチンまたは大豆レシチンなどを採用してもよい。
尚、被乳化油性成分を上記閉鎖小胞体により形成される乳化分散剤を用いて乳化分散する場合には、被乳化油性成分と前記乳化分散剤との重量比を4〜200として接触、混和させるとよい。
Furthermore, egg yolk lecithin or soybean lecithin may be employed as the phospholipid.
In addition, when emulsifying and dispersing the emulsified oil component using the emulsifying dispersant formed by the closed vesicles, the weight ratio of the emulsified oil component and the emulsifying dispersant is set to 4 to 200 and mixed. Good.

これに対して、単粒子化されたバイオポリマーとしては、リボース、キシロース、ラムノース、フコース、グルコース、マンノース、グルクロン酸、グルコン酸などの単糖類の中からいくつかの糖を構成要素として微生物が産生するものがあげられる。特定の構造の多糖類を産生する微生物種としてはアルカリゲネス属、キサントモナス属、アースロバクター属、バチルス属、ハンゼヌラ属やブルナリア属が知られており、いずれの多糖類を用いても、また混合物になっていてもよい。バイオポリマーに代えてゼラチンやブロックコポリマーを用いてもよい。   On the other hand, as biopolymers made into single particles, microorganisms produce several sugars as constituents from monosaccharides such as ribose, xylose, rhamnose, fucose, glucose, mannose, glucuronic acid, and gluconic acid. What to do. Known species of microorganisms that produce polysaccharides of a specific structure include the genus Alkagenes, Xanthomonas, Arthrobacter, Bacillus, Hansenula and Brunaria, and any polysaccharide can be used in a mixture. It may be. Gelatin or a block copolymer may be used in place of the biopolymer.

単粒子化されたバイオポリマーを主成分とする乳化分散剤を用いて被乳化油性成分を乳化分散する場合には、被乳化油性成分と前記乳化分散剤との重量比を50〜2000として接触、混和させるとよい。   In the case of emulsifying and dispersing the emulsified oil-based component using an emulsifying dispersant mainly composed of a single particle biopolymer, the weight ratio of the emulsified oil-based component and the emulsified dispersant is 50 to 2000, Mix well.

尚、上述した乳化分散剤を製造する方法としては、自己組織能を有する両親媒性物質を閉鎖小胞体に分散させる(ベシクル化する)工程、あるいは単粒子化させる工程(ステップI)が必要である。これは、使用する材料によってさまざまな工夫が必要であるが、単粒子化又はベシクル化するためには、図6に示されるように、両親媒性物質を水分散及び/又は水膨潤させる工程(ステップI−1)、80℃程度に加温調整する工程(ステップI−2)、水素結合を破壊するために尿素などの切断剤を添加する工程(ステップI−3)、pHを5以下迄に調整する工程(ステップI−4)のいずれか、又は、組み合わせによって達成される。特に、ひまし油誘導体においては、60℃以下の水に、攪拌しながら滴下することで達成される。   In addition, as a method for producing the above-described emulsifying dispersant, a step of dispersing (vesicles) an amphiphilic substance having self-organization ability into closed vesicles or a step of making it into single particles (Step I) is necessary. is there. This requires various devices depending on the material to be used. In order to make particles or vesicles, as shown in FIG. 6, a process of dispersing and / or swelling the amphiphile with water ( Step I-1), the step of adjusting the temperature to about 80 ° C. (Step I-2), the step of adding a cleaving agent such as urea to break the hydrogen bond (Step I-3), the pH up to 5 or less It is achieved by any one or a combination of the steps of adjusting to (step I-4). Particularly, in the case of castor oil derivative, it is achieved by adding dropwise to water at 60 ° C. or lower while stirring.

その後、所定の温度以下(60℃以下)の水中に滴下して設定濃度に調整する工程(ステップII)、粒子を微細化するために攪拌する工程(ステップIII)を経て乳化分散剤を生成する。攪拌は、高速攪拌(〜16000rpm)であることが望ましいが、実験装置であれば1,200rpmぐらい迄の攪拌で短時間に処理できる。また、水中滴下と粒子の微細化の工程は、同時に実施した方がよい。バイオポリマーなどは網目構造を壊して単粒子化させるために工程が複雑になるが、これらはそれぞれの実施例の中で個別に記載する(実施例6、実施例8、実施例9、実施例10)。   Thereafter, an emulsifying dispersant is produced through a step (Step II) of dropping into water at a predetermined temperature or lower (60 ° C. or lower) to adjust to a set concentration (Step II) and a step of stirring to make the particles fine (Step III). . The stirring is desirably high-speed stirring (up to 16000 rpm), but if it is an experimental apparatus, it can be processed in a short time with stirring up to about 1,200 rpm. Moreover, it is better to carry out the steps of dropping in water and refining the particles at the same time. The process for biopolymers and the like is complicated in order to break the network structure into single particles, but these are individually described in each example (Example 6, Example 8, Example 9, Example). Ten).

以下において、両親媒性物質により形成される閉鎖小胞体を主成分とする乳化分散剤の実施例と、単粒子化されたバイオポリマーを主成分とする乳化分散剤の実施例を示す。   In the following, an example of an emulsifying dispersant mainly composed of closed vesicles formed of an amphiphilic substance and an example of an emulsifying dispersant mainly composed of a single particle biopolymer will be shown.

(乳化分散剤として硬化ひまし油によるベシクルを用いた場合)
硬化ひまし油によるベシクルとして、ポリオキシエチレン硬化ひまし油の誘導体のうち、エチレンオキシド(EO)の平均付加モル数(E)が10である誘導体(以下、HCO−10という;分子量1380g/mol)を使用した。
(When using vesicles with hardened castor oil as an emulsifying dispersant)
Of the derivatives of polyoxyethylene hydrogenated castor oil, a derivative having an average added mole number (E) of ethylene oxide (EO) of 10 (hereinafter referred to as HCO-10; molecular weight 1380 g / mol) was used as a vesicle with hydrogenated castor oil.

このHCO―10は、水への溶解性がほとんどなく、水中で自己組織化して閉鎖小胞体を形成することが判っており(「ポリ(オキシエチレン)硬化ひまし油系非イオン界面活性剤のベシクル形成性について」 油化学, 41巻, 第12号, P1191-1196, (1992)、 「ポリ(オキシエチレン)硬化ひまし油ベシクル分散溶液の熱的性質」 油化学, 41巻,第12号, P1197-1202, (1992) 参照)、平均粒子径は表2に示すように濃度によるが、水分散液の段階で200nm〜800nmである。分散液中での安定性を考慮して5〜20wt%の濃度範囲に設定した。   This HCO-10 has little solubility in water and is known to self-assemble in water to form closed vesicles ("Vesicle formation of poly (oxyethylene) hardened castor oil-based nonionic surfactant" On the properties of oil, Chem. 41, No. 12, P1191-1196, (1992), "Thermal properties of poly (oxyethylene) hardened castor oil vesicle dispersion" Yuka Kagaku, 41, 12, P1197-1202 , (1992)), the average particle size depends on the concentration as shown in Table 2, but is 200 nm to 800 nm in the aqueous dispersion stage. Considering the stability in the dispersion, the concentration range was set to 5 to 20 wt%.

このような乳化分散剤を用いて通常の界面活性剤と同等以上の乳化能があるかどうかを調べるために、A−重油と水の系を用い、HCO−10の水に対する濃度を10wt%とし、水には水道水を用い、室温でホモミキサーを用いて、8000 rpmで約5分間攪拌して乳化した。その乳化状態を、A−重油の重量比を変化させて調べた。エマルションに乳化した後の硬化ひまし油(HCO-10)〜水〜A重油の各組成割合と乳化状態の結果を表3に示す。   In order to examine whether such an emulsifying dispersant has an emulsifying capacity equivalent to or higher than that of a normal surfactant, a system of A-heavy oil and water is used, and the concentration of HCO-10 in water is set to 10 wt%. The water was tap water and emulsified by stirring at 8000 rpm for about 5 minutes using a homomixer at room temperature. The emulsified state was examined by changing the weight ratio of A-heavy oil. Table 3 shows the composition ratios of the hardened castor oil (HCO-10) to water-A heavy oil after emulsification in the emulsion, and the results of the emulsified state.

この結果から分かるように、少量のHCO−10で70wt%までのA重油を乳化させることが可能であった。ここで、A重油と水の割合を変化させた場合の乳化状態の変化を模式的に表すと、図7に示されるように、水に対するA重油の割合を多くしていくと、(a)の希薄O/W型エマルション状態から(b)の濃厚O/W型エマルション状態となり、(c)の遷移状態を経て、(d)の沈降W/Oエマルション状態なり、A重油の割合が多くなりすぎると、(e)の逆マイクロエマルション状態と分離水相が形成される。上記No.1〜No.5は(a)ないし(b)の状態であり、No.6とNo.7は(d)の状態であり、No.8〜No.10は(e)の状態に対応する。また、特徴的なことはNo.6, 7は外観上一部重力によるコアセルベーション(クリーミング)が観察されたが、弱く撹拌することで再分散した。また、クリーミング化したものは界面活性剤で乳化したもののクリーミング状態と異なり、長期間放置しても油滴の合一は観察されなかった。 As can be seen from this result, it was possible to emulsify A heavy oil up to 70 wt% with a small amount of HCO-10. Here, when the change of the emulsified state when the ratio of A heavy oil and water is changed is schematically represented, as shown in FIG. 7, when the ratio of A heavy oil to water is increased, (a) From the diluted O / W emulsion state of (b) to the concentrated O / W emulsion state of (b), through the transition state of (c), to the precipitated W / O emulsion state of (d), the ratio of heavy oil A increases. When too much, the reverse microemulsion state and separated water phase of (e) are formed. The above No. 1 to No. 5 are the states of (a) to (b), No. 6 and No. 7 are the states of (d), and No. 8 to No. 10 are the states of (e). Corresponding to In addition, No. 6 and 7 were characteristically observed to have some coacervation (creaming) due to gravity in appearance, but they were redispersed by weak stirring. In addition, the creamed product was emulsified with a surfactant and, unlike the creamed state, coalescence of oil droplets was not observed even after standing for a long time.

また、流動パラフィンなどの各種油剤と水の系に対し、HCO−10による乳化状態を調べるために、乳化分散剤であるHCO−10の水に対する濃度を10wt%、系全体に対する濃度を7%で固定し、水には水道水を用い、室温で通常の攪拌機により約5分間攪拌した後の乳化状態を各油剤で調べると、表4に示される結果が得られた。   Also, in order to investigate the emulsified state by HCO-10 for various oils such as liquid paraffin and water, the concentration of HCO-10 as an emulsifying dispersant in water is 10 wt%, and the concentration in the entire system is 7%. The results shown in Table 4 were obtained by examining the emulsified state after fixing with water and using tap water for about 5 minutes with a normal stirrer at room temperature.

この結果からわかるように、油剤の種類に依存せず、良好な乳化状態が得られた。しかも、この乳化状態は、室温で1ヶ月経ても変化せず、優れた乳化物を得ることができた。   As can be seen from this result, a good emulsified state was obtained without depending on the type of oil. Moreover, this emulsified state did not change even after one month at room temperature, and an excellent emulsion could be obtained.

(乳化分散剤としてジステアリルジメチルアンモニウムクロライドを用いた場合)
次に、乳化分散剤としてジステアリルジメチルアンモニウムクロライドを用いた実施例について説明する。この乳化分散剤を用いて流動パラフィンの乳化状態を調べると、表5に示されるようになった。およそ0.5wt% 以上で良好な乳化状態を得ることができた。また、シリコン油においても、表6に示されるように、良好な乳化状態を得ることができた。
(When distearyldimethylammonium chloride is used as an emulsifying dispersant)
Next, examples using distearyldimethylammonium chloride as an emulsifying dispersant will be described. When the emulsified state of liquid paraffin was investigated using this emulsifying dispersant, it was as shown in Table 5. A good emulsified state could be obtained at about 0.5 wt% or more. Moreover, also in silicon oil, as shown in Table 6, a good emulsified state could be obtained.

(乳化分散剤としてリン脂質を用いた場合)
次に、乳化分散剤としてリン脂質を用いた実施例について説明する。
前記リン脂質(DMPC、DMPG、DPPC)を用いて油剤の種類を変化させて乳化状態を調べると、表7に示されるようになった。それぞれの油剤において、油分は0.1〜35wt%の範囲で設定し、水には水道水を用い、室温で通常の攪拌機により約5分間攪拌した。また、リン脂質の濃度は0.005〜0.5wt%の範囲で設定した。
(When phospholipid is used as emulsifying dispersant)
Next, examples using phospholipids as an emulsifying dispersant will be described.
When the phospholipid (DMPC, DMPG, DPPC) was used and the type of oil was changed to examine the emulsified state, it was as shown in Table 7. In each oil agent, the oil content was set in the range of 0.1 to 35 wt%, tap water was used as water, and the mixture was stirred at room temperature for about 5 minutes with a normal stirrer. The phospholipid concentration was set in the range of 0.005 to 0.5 wt%.

この結果から、リン脂質(DMPC、DMPG、DPPC)による乳化の場合も油剤の種類に依存せず、少量のリン脂質で良好な乳化状態が得られた。しかも、得られた乳化物は、熱安定性に優れ、室温で1ヶ月経ても乳化状態が変化しない経時安定性に優れたものであった。   From this result, even in the case of emulsification with phospholipid (DMPC, DMPG, DPPC), a good emulsification state was obtained with a small amount of phospholipid irrespective of the type of oil. Moreover, the obtained emulsion was excellent in thermal stability and excellent in temporal stability in which the emulsified state did not change even after one month at room temperature.

また、リン脂質として卵黄レシチンを用い、卵黄レシチンとシリコン油、卵黄レシチンとヘキサデカンについて、乳化状態を調べた。結果を表8に示す。表中、(1)は水素添加した場合、(2)は水素添加していない場合である。この場合にも、熱安定性、経時安定性に優れた乳化物を得ることができた。   Furthermore, egg yolk lecithin was used as a phospholipid, and the emulsion state of egg yolk lecithin and silicon oil, egg yolk lecithin and hexadecane was examined. The results are shown in Table 8. In the table, (1) is when hydrogenation is performed, and (2) is when hydrogenation is not performed. Also in this case, an emulsion excellent in thermal stability and stability over time could be obtained.

(乳化分散剤として単粒子化されたバイオポリマーを用いた場合)
次に、単粒子化されたバイオポリマーを主成分とする乳化分散剤の実施例を示す。
バイオポリマーとしては、前述した微生物産生の内、アルカリゲネス属の産生する多糖類を用いた。この多糖類は水に分散させると網目構造を形成し、粘稠な液体となるので、網目構造を単粒子化する必要がある。そこで、バイオポリマー水溶液をバイオポリマーの粉体を所定量の水に分散させ、一日放置して膨潤させた後、80℃で30分加熱して調製し、これに尿素を添加してバイオポリマーの水素結合を破壊し、単粒子化を図った。0.1wt%までのバイオポリマーは、4mol/dm3尿素水溶液によって単粒子化させることができた。
(When using single-particle biopolymer as emulsifying dispersant)
Next, an example of an emulsifying dispersant having a biopolymer made into a single particle as a main component will be shown.
As the biopolymer, among the microorganisms described above, polysaccharides produced by Alkaligenes were used. When this polysaccharide is dispersed in water, it forms a network structure and becomes a viscous liquid. Therefore, it is necessary to make the network structure into single particles. Therefore, a biopolymer aqueous solution is prepared by dispersing biopolymer powder in a predetermined amount of water and allowing it to stand for one day to swell, then heating it at 80 ° C. for 30 minutes, and adding urea thereto to add biopolymer. The hydrogen bond was broken to make a single particle. Biopolymers up to 0.1 wt% could be made into single particles by 4 mol / dm 3 urea aqueous solution.

単粒子化されたバイオポリマーの水分散液が油剤に対して通常の界面活性剤と同様の乳化能があるかどうかを調べるために、炭化水素油のひとつである流動パラフィンを用いてバイオポリマーの分散濃度による乳化能を調べると、表9に示されるようになり、バイオポリマー0.05wt% 水分散液で流動パラフィンを70wt%(水30wt%)まで乳化させることができた。しかも、経日させたところ、溶液の状態に変化は見られず、極めて安定だった。また、バイオポリマー0.04wt%、流動パラフィン30%一定とし、乳化するときの温度を25〜75℃まで変化させたが、調製された乳化状態は、どの温度でも安定であった。   In order to investigate whether the aqueous dispersion of a monoparticulated biopolymer has the same emulsifying ability as an ordinary surfactant for an oil agent, liquid paraffin, which is one of hydrocarbon oils, is used. When the emulsifying ability by the dispersion concentration was examined, it was as shown in Table 9, and liquid paraffin could be emulsified to 70 wt% (water 30 wt%) with a biopolymer 0.05 wt% aqueous dispersion. Moreover, after aging, there was no change in the state of the solution and it was extremely stable. In addition, biopolymer 0.04 wt%, liquid paraffin 30% constant, and the temperature during emulsification was changed from 25 to 75 ° C, but the prepared emulsified state was stable at any temperature.

さらに、油剤の流動パラフィン濃度を30%で一定とし、バイオポリマーの濃度を変化させてバイオポリマーの乳化能を調べると、0.04wt%から乳化できることがわかった。   Furthermore, when the liquid paraffin concentration of the oil was kept constant at 30% and the biopolymer emulsification ability was examined by changing the biopolymer concentration, it was found that emulsification was possible from 0.04 wt%.

次に、バイオポリマーの濃度を0.04wt%、油剤の濃度を30%で一定とし、油剤の種類を変化させて乳化状態を調べた。結果を表10に示す。ここで用いた油剤は、ヘキサデカン、シリコーン、ミリスチン酸イソプロピル、スクアラン、オリーブオイル、ホホバオイル、セトステアリルアルコール、オレイルアルコール、オレイン酸である。オレイン酸は経日後分離したが、他の油剤は乳化することができた。   Next, the biopolymer concentration was 0.04 wt% and the oil agent concentration was constant at 30%, and the type of oil agent was changed to examine the emulsified state. The results are shown in Table 10. The oil agents used here are hexadecane, silicone, isopropyl myristate, squalane, olive oil, jojoba oil, cetostearyl alcohol, oleyl alcohol, and oleic acid. Oleic acid separated after aging, but other oils could be emulsified.

以上の結果から、バイオポリマーには優れた乳化能があり、0.04wt%という低濃度においても乳液は安定であることが明らかとなり、バイオポリマーの単粒子が油滴の周りに付着して乳化分散剤相をつくり、エマルション表面で水相〜乳化分散剤相〜油相の三相を形成したことによるものと考えられる。   From the above results, it is clear that the biopolymer has excellent emulsifying ability, and the emulsion is stable even at a low concentration of 0.04 wt%, and the biopolymer single particles adhere around the oil droplets and emulsify. It is considered that a dispersant phase was formed and three phases of an aqueous phase, an emulsified dispersant phase, and an oil phase were formed on the emulsion surface.

バイオポリマーとして、生物由来の澱粉を用いた場合の例を以下に示す。
澱粉種としては、馬鈴薯澱粉、餅米紛、タピオカ紛(キャッサバ芋紛)を用い、油としては、流動パラフィン、ヘキサデカンを用いた。
乳化剤の調製にあたっては、澱粉を単粒子にするために、水に澱粉を分散させ、攪拌しながら90℃まで加熱した後、室温まで冷却して良好な分散状態とし、この操作により得られた糖ポリマー分散液を用いて乳化剤とした。
また、エマルションの調製にあたっては、室温下にて、単粒子化操作後の澱粉水分散液に対して、油相を添加して攪拌によりエマルションを調製した。
結果を表11乃至13に示す。
An example of using bio-derived starch as a biopolymer is shown below.
As the starch species, potato starch, glutinous rice powder and tapioca powder (cassava powder) were used, and as the oil, liquid paraffin and hexadecane were used.
In preparing the emulsifier, in order to make the starch into single particles, the starch was dispersed in water, heated to 90 ° C. with stirring, and then cooled to room temperature to obtain a good dispersion state. The polymer dispersion was used as an emulsifier.
In preparing the emulsion, an emulsion was prepared by adding an oil phase and stirring the aqueous starch dispersion after the single particle operation at room temperature.
The results are shown in Tables 11 to 13.

バイオポリマーとして、キトサンを用いた場合の例を以下に示す。
油としては、流動パラフィンを用いた。
乳化剤の調製にあたっては、キトサンを単粒子にするために、水にキトサンを分散させ、pH5以下の酸性に調整した。この操作により目視的には透明になり、キトサンは単粒子化され、良好な分散液が得られた。pHを変えてエマルションを調製する場合は、此の後pH調整を行った。
また、エマルションの調製にあたっては、単粒子化操作後のキトサン分散液に対して油相を添加し、攪拌によりエマルションを調製した。
結果を表14に示す。また、pHを4,7,10に調整した結果を表15に示す。
An example of using chitosan as a biopolymer is shown below.
As the oil, liquid paraffin was used.
In preparing the emulsifier, in order to make chitosan into single particles, chitosan was dispersed in water and adjusted to an acidity of pH 5 or lower. By this operation, it became transparent visually, chitosan was made into single particles, and a good dispersion was obtained. When the emulsion was prepared by changing the pH, the pH was adjusted after this.
In preparing the emulsion, an oil phase was added to the chitosan dispersion after the single particle operation, and the emulsion was prepared by stirring.
The results are shown in Table 14. Table 15 shows the results of adjusting the pH to 4, 7, and 10.

バイオポリマーとして、生物由来の多糖類である昆布粉を用いた場合の例を以下に示す。
糖ポリマー成分としては昆布粉に含まれるフコイダンを用いた。
乳化剤の調製にあたっては、フコイダンを単粒子化するために、水に昆布の粉を分散させ、pH5以下の酸性に調整した。
また、エマルションの調製にあたっては、単粒子化操作後の昆布粉分散液に対して油相を添加し、攪拌によりエマルションを調製した。
結果を表16に示す。
An example in which kelp powder, which is a biological polysaccharide, is used as a biopolymer is shown below.
Fucoidan contained in kelp powder was used as the sugar polymer component.
In preparing the emulsifier, in order to make fucoidan into single particles, kelp powder was dispersed in water and adjusted to an acidity of pH 5 or lower.
In preparing the emulsion, an oil phase was added to the kelp powder dispersion after the single particle operation, and the emulsion was prepared by stirring.
The results are shown in Table 16.

以上に示した、両親媒性物質により形成される閉鎖小胞体や単粒子化されたバイオポリマーを主成分とする乳化分散剤を用いた乳化法(三相乳化法)を従来の界面活性剤による乳化法と比較すると、共通して次のような特徴が認められた。   The above-described emulsification method (three-phase emulsification method) using an emulsifying dispersant mainly composed of closed vesicles formed from amphiphilic substances and single-particle biopolymers is used with conventional surfactants. In comparison with the emulsification method, the following characteristics were commonly observed.

まず、従来の乳化法においては、オイルと水との界面に界面活性剤が吸着し、油/水界面の界面エネルギーを低下させることで乳化させることを基本としたが、三相乳化法においては、ナノ粒子がオイルと水との界面にファンデルワールス力により付着して乳化分散剤相を形成することを特徴とするので、被乳化油性基剤の所要HLB値に関わらず、界面エネルギーを変化させずに乳化させることが可能である。   First, in the conventional emulsification method, the surfactant is adsorbed at the interface between oil and water, and the emulsification is performed by lowering the interface energy of the oil / water interface. , Because nanoparticles adhere to the interface between oil and water by van der Waals force to form an emulsified dispersant phase, the interfacial energy changes regardless of the required HLB value of the emulsified oil base It is possible to emulsify without making it.

その結果、従来の界面活性剤による乳化では、油滴の熱衝突により合一を誘起させるが、三相乳化による場合には、油滴の表面に乳化剤相としてのナノ粒子が付着しているので、衝突しても合一が極めて起こりにくく、熱的にも経時的にも安定化させることが可能であった。 As a result, in emulsification with a conventional surfactant, coalescence is induced by thermal collision of oil droplets, but in the case of three-phase emulsification, nanoparticles as an emulsifier phase are attached to the surface of the oil droplets. , Even if it collides, unification hardly occurs, and it was possible to stabilize both thermally and over time.

また、従来の界面活性剤による乳化では、油滴の性質に応じて適切な界面活性剤を随時選択する必要があったが、三相乳化法による乳化では、一旦ナノ粒子を選定すれば、油滴の種類に関わらず同じ乳化剤を利用できるので、異種油剤エマルションの共存、混合も可能となる。   In addition, in the conventional emulsification with a surfactant, it was necessary to select an appropriate surfactant as needed depending on the properties of the oil droplets. However, in the emulsification by the three-phase emulsification method, once nanoparticles are selected, Since the same emulsifier can be used regardless of the type of droplets, different oil emulsions can coexist and be mixed.

さらに、従来の乳化法では、油滴がマイクロエマルションを形成するために、多量の界面活性剤が必要であったが、三相乳化法では、僅かな濃度の乳化分散剤で乳化が可能であった。   Furthermore, in the conventional emulsification method, a large amount of surfactant is required for oil droplets to form a microemulsion, but in the three-phase emulsification method, emulsification can be performed with a slight concentration of an emulsifying dispersant. It was.

さらにまた、上述した三相エマルションは、1)イクラ状の巨大油滴を安定に形成することも可能であり、2)クリーミングは比重の違いによる偏りで、連続の外相を取り除いても乳化状態に変化はなかった。また、3)水相または油相に添加物を加えても三相乳化型エマルションを形成することが可能であった。   Furthermore, the above-mentioned three-phase emulsion is capable of 1) forming stable oil-like giant oil droplets, and 2) creaming is biased due to the difference in specific gravity. Even if the continuous outer phase is removed, it remains emulsified. There was no change. 3) It was possible to form a three-phase emulsion by adding an additive to the water phase or oil phase.

香粧品、医薬品、食品、農薬、ペイント、燃料エマルション、土壌改良剤など機能性油性基剤や顆粒微粒子を乳化分散させた乳化製剤ならびに分散液などを利用する用途にも適用可能である。   It can also be applied to applications that use functional oily bases such as cosmetics, pharmaceuticals, foods, agricultural chemicals, paints, fuel emulsions, soil improvers, and emulsified preparations and dispersions in which fine particulate particles are emulsified and dispersed.

図1は、乳化メカニズムを説明する図であり、図1(a)は従来の界面活性剤の単分子膜吸着メカニズムを説明する図、図1(b)はナノ粒子の付着メカニズムを説明する図である。FIG. 1 is a diagram illustrating an emulsification mechanism, FIG. 1 (a) is a diagram illustrating a conventional monomolecular film adsorption mechanism of a surfactant, and FIG. 1 (b) is a diagram illustrating a nanoparticle adhesion mechanism. It is. 図2(a)は従来の吸着分子型での熱衝突による現象を説明する図であり、図2(b)は乳化剤相付着型での熱衝突による現象を説明する図である。FIG. 2A is a diagram for explaining a phenomenon due to thermal collision in the conventional adsorption molecular type, and FIG. 2B is a diagram for explaining a phenomenon due to thermal collision in the emulsifier phase adhesion type. 図3は、DMPC−C14TAB系乳化剤粒子のTEM写真( Xs=0.5、等モル混合)である。FIG. 3 is a TEM photograph (Xs = 0.5, equimolar mixture) of DMPC-C14TAB emulsifier particles. 図4は、DMPC−C14TAB系乳化剤粒子の平均粒子径が390.0nmの場合(A)と2097.8nmの場合(B)の散乱強度分布とTEM写真である。FIG. 4 is a TEM photograph showing the scattering intensity distribution when the average particle size of DMPC-C14TAB emulsifier particles is 390.0 nm (A) and 2097.8 nm (B). 図5は、水に対して0.5wt%のDMPC−TTAB混合液晶に油を添加して乳化した場合のXRDピークを観測した結果を示す図である。FIG. 5 is a diagram showing a result of observing an XRD peak when oil is added and emulsified in a 0.5 wt% DMPC-TTAB mixed liquid crystal with respect to water. 図6は、乳化分散剤の製造方法を説明するブロック図である。FIG. 6 is a block diagram illustrating a method for producing an emulsifying dispersant. 図7は、油相分量による乳化状態の相違を模式的に書いた図である。FIG. 7 is a diagram schematically showing the difference in the emulsified state depending on the oil phase content.

Claims (10)

自発的に閉鎖小胞体を形成する両親媒性物質により形成されて油性基材表面に付着する閉鎖小胞体を主成分とし、前記閉鎖小胞体の平均粒子径がエマルション形成時に8nm〜500nm、分散剤調製時に分散液中の濃度範囲5〜20wt%において200nm〜800nmであることを特徴とする乳化分散剤。 The main component is a closed vesicle that is formed of an amphiphilic substance that spontaneously forms a closed vesicle and adheres to the surface of the oily substrate. The average particle size of the closed vesicle is 8 nm to 500 nm when the emulsion is formed. An emulsifying dispersant characterized by being 200 nm to 800 nm in a concentration range of 5 to 20 wt% in the dispersion at the time of preparation. 前記両親媒性物質は、下記の一般式(化1)で表されるポリオキシエチレン硬化ひまし油の誘導体のうちエチレンオキシドの平均付加モル数(E)が5〜15である誘導体である請求項1記載の乳化分散剤。
The amphiphilic substance is a derivative having an average added mole number (E) of ethylene oxide of 5 to 15 among derivatives of polyoxyethylene hydrogenated castor oil represented by the following general formula (Formula 1). Emulsifying dispersant.
前記ポリオキシエチレン硬化ひまし油の誘導体に界面活性剤をモル分率で0.1≦Xs≦0.33の範囲でさらに付加することを特徴とする請求項2記載の乳化分散剤。 3. The emulsifying dispersant according to claim 2, wherein a surfactant is further added to the polyoxyethylene hydrogenated castor oil derivative in a range of 0.1 ≦ Xs ≦ 0.33 in terms of molar fraction. 前記両親媒性物質は、下記の一般式(化2)で表されるジアルキルアンモニウム誘導体、トリアルキルアンモニウム誘導体、テトラアルキルアンモニウム誘導体、ジアルケニルアンモニウム誘導体、トリアルケニルアンモニウム誘導体、又はテトラアルケニルアンモニウム誘導体のハロゲン塩である請求項1記載の乳化分散剤。
The amphiphile is a dialkylammonium derivative, a trialkylammonium derivative, a tetraalkylammonium derivative, a dialkenylammonium derivative, a trialkenylammonium derivative, or a halogen of a tetraalkenylammonium derivative represented by the following general formula (Formula 2). The emulsifying dispersant according to claim 1, which is a salt.
前記両親媒性物質は、リン脂質並びにリン脂質誘導体から作成される粒子である請求項1記載の乳化分散剤。 The emulsifying dispersant according to claim 1, wherein the amphiphilic substance is a particle prepared from a phospholipid and a phospholipid derivative. 請求項1記載の乳化分散剤を用いた乳化分散方法において、被乳化油性成分と前記乳化分散剤との比を1〜1000として接触、混和させることを特徴とする乳化分散方法。 2. An emulsifying dispersion method using the emulsifying dispersant according to claim 1, wherein the ratio of the emulsified oil-based component and the emulsifying dispersant is set to 1 to 1000 and contacted and mixed. 微生物産生による多糖類、リン脂質、ポリエステル類や、生物由来の澱粉等の多糖類、キトサンよりなる群から選ばれた1又は2以上の単粒子化されたバイオポリマーを主成分とし、前記単粒子の平均粒子径がエマルション形成時に8nm〜500nm、分散剤調製時に分散液中の濃度範囲0.04〜20wt%において50nm〜800nmであることを特徴とする乳化分散剤。 Polysaccharides by microbial, phospholipids, and polyesters, as a main component polysaccharide, one or more single particles of biopolymer selected from the group consisting of chitosan, such as starch from biological, the single An emulsifying dispersant having an average particle size of 8 nm to 500 nm at the time of forming an emulsion and 50 nm to 800 nm in a concentration range of 0.04 to 20 wt% in the dispersion at the time of preparing the dispersant. 請求項7記載の乳化分散剤を用いた乳化分散方法において、被乳化油性成分と前記乳化分散剤との比を50〜2000として接触、混和させることを特徴とする乳化分散方法。 8. An emulsifying and dispersing method using the emulsifying and dispersing agent according to claim 7, wherein the ratio of the emulsified oil component and the emulsifying and dispersing agent is 50 to 2000, and the mixture is contacted and mixed. 自発的に閉鎖小胞体を形成する両親媒性物質により閉鎖小胞体を形成する工程、又は、微生物産生による多糖類、リン脂質、ポリエステル類や、生物由来の澱粉等の多糖類、キトサンよりなる群から選ばれた1又は2以上のバイオポリマーを単粒子化させる工程と、閉鎖小胞体又は単粒子化された両親媒性物質を所定温度以下の水に滴下し微細化する工程とを含むことを特徴とする乳化分散剤の製造方法。 The process of forming a closed vesicle with an amphiphilic substance that spontaneously forms a closed vesicle, or a group consisting of polysaccharides, phospholipids, polyesters produced by microorganisms, polysaccharides such as starch derived from living organisms, and chitosan Comprising a step of making one or two or more biopolymers selected from the above into a single particle, and a step of dripping a closed endoplasmic reticulum or a monoparticulated amphiphile into water at a predetermined temperature or less to make it finer. A method for producing an emulsifying dispersant. 請求項1〜5、及び、請求項7のいずれかに記載の乳化分散剤と被乳化油性成分とを接触し混和させてなることを特徴とする乳化物。 An emulsion comprising the emulsifying dispersant according to any one of claims 1 to 5 and claim 7 and an emulsified oily component in contact with each other.
JP2005091080A 2004-04-05 2005-03-28 Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion Active JP3855203B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP2005091080A JP3855203B2 (en) 2004-04-05 2005-03-28 Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion
KR1020067023183A KR100854832B1 (en) 2004-04-05 2005-03-29 Emulsifying dispersants, method for emulsification and dispersion with the same, emulsions, and emulsion fuels
CN201110148918.7A CN102258959B (en) 2004-04-05 2005-03-29 Emulsifying dispersant and use its emulsion dispersion method, emulsion and emulsion fuel
CN200580018350XA CN1964778B (en) 2004-04-05 2005-03-29 Emulsifying dispersant, method for emulsification and dispersion using it, and emulsion and emulsion fuel
CA2708440A CA2708440C (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
CA2708437A CA2708437C (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
EP05727301.3A EP1754532B1 (en) 2004-04-05 2005-03-29 Emulsifying dispersants, method for emusification and dispersion with the same, emulsions, and emulsion fuels
CA2708434A CA2708434C (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US11/547,625 US9506001B2 (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
PCT/JP2005/005795 WO2005096711A2 (en) 2004-04-05 2005-03-29 Emulsifying dispersants, method for emusification and dispersion with the same, emulsions, and emulsion fuels
CA2563267A CA2563267C (en) 2004-04-05 2005-03-29 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,183 US11708538B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
US15/360,235 US10202556B2 (en) 2004-04-05 2016-11-23 Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2004110915 2004-04-05
JP2004110915 2004-04-05
JP2004254384 2004-09-01
JP2004254384 2004-09-01
JP2005024792 2005-02-01
JP2005024792 2005-02-01
JP2005091080A JP3855203B2 (en) 2004-04-05 2005-03-28 Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion

Publications (2)

Publication Number Publication Date
JP2006239666A JP2006239666A (en) 2006-09-14
JP3855203B2 true JP3855203B2 (en) 2006-12-06

Family

ID=37046582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005091080A Active JP3855203B2 (en) 2004-04-05 2005-03-28 Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion

Country Status (1)

Country Link
JP (1) JP3855203B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110685A (en) * 2008-11-05 2010-05-20 Kanagawa Univ Mixed emulsion composition
WO2010064678A1 (en) 2008-12-03 2010-06-10 株式会社 資生堂 Oil-in-water cosmetic
WO2011162094A1 (en) 2010-06-23 2011-12-29 学校法人神奈川大学 Process for producing emulsifier-producing material, process for producing emulsifier, emulsifier for orally administered composition, and orally administered composition
WO2012035978A1 (en) 2010-09-14 2012-03-22 学校法人神奈川大学 Emulsifier and production method therefor, and production method for emulsion
WO2012081722A1 (en) 2010-12-17 2012-06-21 学校法人神奈川大学 Protective structure of substance to be protected, method of protecting substance to be protected, enzymatic reaction method, method of producing reaction product, method for adjusting the speed of enzymatic reaction, and enzyme material use kit
JP2012130856A (en) * 2010-12-21 2012-07-12 Kanagawa Univ Method for producing emulsifier production material, emulsifier production material, and method for producing emulsifier
WO2013146387A1 (en) 2012-03-28 2013-10-03 味の素株式会社 Emulsified dispersant and emulsified composition
JP2013230466A (en) * 2013-06-03 2013-11-14 Kanagawa Univ Method for stabilizing mixed emulsion composition
JP2014051490A (en) * 2012-08-07 2014-03-20 Univ Kanagawa Bathing agent
JP2014221043A (en) * 2014-06-04 2014-11-27 学校法人神奈川大学 W/o/w type emulsion, enzyme preservation liquid of w/o/w type emulsion, and enzyme preservation method
JP2015007014A (en) * 2013-06-25 2015-01-15 学校法人神奈川大学 Cosmetics
JP5656272B1 (en) * 2014-02-21 2015-01-21 学校法人神奈川大学 Cleansing composition and cleansing article
JP2015172044A (en) * 2014-02-21 2015-10-01 学校法人神奈川大学 Cleansing composition and cleansing article
JP5817083B1 (en) * 2014-09-17 2015-11-18 学校法人神奈川大学 Antiperspirant or deodorant
WO2016056350A1 (en) 2014-10-10 2016-04-14 学校法人神奈川大学 Emulsion composition for aerosol preparation, and aerosol agent
JP2018062498A (en) * 2016-10-11 2018-04-19 フマキラー株式会社 Herbicide
JP2018080137A (en) * 2016-11-18 2018-05-24 フマキラー株式会社 Pest control composition
JP2019131498A (en) * 2018-01-30 2019-08-08 学校法人神奈川大学 Makeup cosmetic
JP2020165045A (en) * 2019-03-29 2020-10-08 学校法人神奈川大学 Softener and washing method of fiber

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5344277B2 (en) * 2008-05-26 2013-11-20 学校法人神奈川大学 Waste glycerin-added emulsion fuel and method for producing the same
JP5181354B2 (en) * 2009-03-31 2013-04-10 学校法人神奈川大学 Antiseptic / antifungal emulsion
JP4836013B2 (en) * 2009-06-30 2011-12-14 学校法人神奈川大学 Decontamination method
JP5794764B2 (en) * 2010-05-18 2015-10-14 花王株式会社 Method for producing oil / vesicle / water emulsion composition
WO2011162093A1 (en) * 2010-06-23 2011-12-29 学校法人神奈川大学 Process for producing emulsion-producing hydrophilic nanoparticles
JP5618269B2 (en) * 2010-06-28 2014-11-05 学校法人神奈川大学 Cosmetics and raw materials for manufacturing cosmetics
CN103402370B (en) * 2010-12-15 2015-07-15 斯博西莫公司 New particle stabilized emulsions and foams
JP2013006822A (en) * 2011-05-24 2013-01-10 Kanagawa Univ Emulsified product, and method for producing the same
ES2704061T3 (en) 2011-08-02 2019-03-14 Shiseido Co Ltd Cosmetic product in the form of an oil-in-water emulsion
JP6222642B2 (en) * 2012-04-06 2017-11-01 学校法人神奈川大学 Emulsifier, emulsion, method for producing emulsifier, and raw material for producing emulsifier
JP6337364B2 (en) * 2012-05-29 2018-06-06 学校法人神奈川大学 Dressing and manufacturing method thereof
JP6061594B2 (en) * 2012-09-28 2017-01-18 株式会社 資生堂 Oil-in-water emulsion composition
JP6099127B2 (en) * 2012-12-27 2017-03-22 学校法人神奈川大学 External agent for hair growth
JP2014141479A (en) * 2012-12-27 2014-08-07 Univ Kanagawa Method for improving percutaneous absorption of active ingredient, and cosmetic
JP2014141478A (en) * 2012-12-27 2014-08-07 Univ Kanagawa Irritation mitigating agent of external preparation for skin or cosmetic preparation, and method for mitigating irritation
JP2014210925A (en) * 2014-06-04 2014-11-13 学校法人神奈川大学 Mixed emulsion composition
JP5817085B1 (en) * 2015-01-09 2015-11-18 学校法人神奈川大学 Hair dye composition
JP6002816B2 (en) * 2015-06-10 2016-10-05 花王株式会社 Oil / vesicle / water emulsion composition and cosmetics containing the same
JP6792822B2 (en) * 2016-03-30 2020-12-02 学校法人神奈川大学 How to reduce the content of emulsified compositions, products, organic solvents, and how to select emulsifiers
JP6976543B2 (en) * 2016-08-30 2021-12-08 学校法人神奈川大学 Foaming emulsifying composition, foaming composition, foaming material, method for improving foaming property, foaming property improving agent, and method for adjusting foam hardness.
KR102558076B1 (en) 2016-12-08 2023-07-20 미쯔비시 케미컬 주식회사 Oil-in-water emulsion composition and method for producing the oil-in-water emulsion composition
JP7017731B2 (en) * 2016-12-08 2022-02-09 学校法人神奈川大学 Compositions for capsules and capsules
JP6807577B2 (en) * 2016-12-09 2021-01-06 アース製薬株式会社 Pest control spray for fabrics
US20190367739A1 (en) * 2017-01-17 2019-12-05 Kanagawa University Particulate composition, liquid composition, method for producing particulate composition, surface modifying agent, and method for improving water dispersibility
JP6515422B2 (en) * 2017-02-08 2019-05-22 アース製薬株式会社 Insect control spray
US20200288759A1 (en) 2017-11-02 2020-09-17 San-Ei Gen F.F.I., Inc. Method for producing water-soluble or water-dispersible microparticles, use or method for use as substitute having emulsifying function, method for producing emulsion, method for producing food and food containing emulsion
JP6557871B1 (en) * 2018-06-12 2019-08-14 株式会社Okutec Fluid mixing apparatus and emulsion preparation method
JP6898622B2 (en) * 2019-01-30 2021-07-07 学校法人神奈川大学 External preparations for skin or mucous membranes and their manufacturing methods, and bases for external preparations for skin or mucous membranes
JP6725137B1 (en) * 2019-02-28 2020-07-15 学校法人神奈川大学 Skin or hair cleaning agent and method for producing the same
JP6883809B2 (en) * 2019-06-28 2021-06-09 学校法人神奈川大学 Detergents and cleaning methods for emulsion production equipment

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010110685A (en) * 2008-11-05 2010-05-20 Kanagawa Univ Mixed emulsion composition
KR101321252B1 (en) * 2008-12-03 2013-10-28 가부시키가이샤 시세이도 Oil―in―water cosmetic
WO2010064678A1 (en) 2008-12-03 2010-06-10 株式会社 資生堂 Oil-in-water cosmetic
US8926996B2 (en) 2008-12-03 2015-01-06 Shiseido Company, Ltd. Oil-in-water cosmetics
WO2011162094A1 (en) 2010-06-23 2011-12-29 学校法人神奈川大学 Process for producing emulsifier-producing material, process for producing emulsifier, emulsifier for orally administered composition, and orally administered composition
JP5652920B2 (en) * 2010-06-23 2015-01-14 学校法人神奈川大学 Method for producing emulsifier production material, method for producing emulsifier, emulsifier for oral administration composition, and oral administration composition
JPWO2011162094A1 (en) * 2010-06-23 2013-08-19 学校法人神奈川大学 Method for producing emulsifier production material, method for producing emulsifier, emulsifier for oral administration composition, and oral administration composition
WO2012035978A1 (en) 2010-09-14 2012-03-22 学校法人神奈川大学 Emulsifier and production method therefor, and production method for emulsion
US10253307B2 (en) 2010-12-17 2019-04-09 Kanagawa University Protective structure of substance to be protected, method of protecting substance to be protected, enzymatic reaction method, method of producing reaction product, method for adjusting the speed of enzymatic reaction, and enzyme material use kit
WO2012081722A1 (en) 2010-12-17 2012-06-21 学校法人神奈川大学 Protective structure of substance to be protected, method of protecting substance to be protected, enzymatic reaction method, method of producing reaction product, method for adjusting the speed of enzymatic reaction, and enzyme material use kit
JP2012130856A (en) * 2010-12-21 2012-07-12 Kanagawa Univ Method for producing emulsifier production material, emulsifier production material, and method for producing emulsifier
JPWO2013146387A1 (en) * 2012-03-28 2015-12-10 味の素株式会社 Emulsifying dispersant and emulsifying composition
WO2013146387A1 (en) 2012-03-28 2013-10-03 味の素株式会社 Emulsified dispersant and emulsified composition
JP2014051490A (en) * 2012-08-07 2014-03-20 Univ Kanagawa Bathing agent
JP2013230466A (en) * 2013-06-03 2013-11-14 Kanagawa Univ Method for stabilizing mixed emulsion composition
JP2015007014A (en) * 2013-06-25 2015-01-15 学校法人神奈川大学 Cosmetics
JP5656272B1 (en) * 2014-02-21 2015-01-21 学校法人神奈川大学 Cleansing composition and cleansing article
JP2015172044A (en) * 2014-02-21 2015-10-01 学校法人神奈川大学 Cleansing composition and cleansing article
JP2015172026A (en) * 2014-02-21 2015-10-01 学校法人神奈川大学 Cleansing composition and cleansing article
JP2014221043A (en) * 2014-06-04 2014-11-27 学校法人神奈川大学 W/o/w type emulsion, enzyme preservation liquid of w/o/w type emulsion, and enzyme preservation method
JP5817083B1 (en) * 2014-09-17 2015-11-18 学校法人神奈川大学 Antiperspirant or deodorant
JP2016104713A (en) * 2014-09-17 2016-06-09 学校法人神奈川大学 Antiperspirant or deodorant agent
JP2019112304A (en) * 2014-09-17 2019-07-11 学校法人神奈川大学 Antiperspirant or deodorant agent
WO2016056350A1 (en) 2014-10-10 2016-04-14 学校法人神奈川大学 Emulsion composition for aerosol preparation, and aerosol agent
JP2018062498A (en) * 2016-10-11 2018-04-19 フマキラー株式会社 Herbicide
JP7249566B2 (en) 2016-10-11 2023-03-31 フマキラー株式会社 herbicide
JP2018080137A (en) * 2016-11-18 2018-05-24 フマキラー株式会社 Pest control composition
JP7017725B2 (en) 2016-11-18 2022-02-09 フマキラー株式会社 Pest control composition
JP2019131498A (en) * 2018-01-30 2019-08-08 学校法人神奈川大学 Makeup cosmetic
JP7057938B2 (en) 2018-01-30 2022-04-21 学校法人神奈川大学 Makeup cosmetics
JP2020165045A (en) * 2019-03-29 2020-10-08 学校法人神奈川大学 Softener and washing method of fiber
JP7359365B2 (en) 2019-03-29 2023-10-11 学校法人神奈川大学 Softener and fiber cleaning method

Also Published As

Publication number Publication date
JP2006239666A (en) 2006-09-14

Similar Documents

Publication Publication Date Title
JP3855203B2 (en) Emulsifying dispersant, emulsifying dispersion method using the same, and emulsion
US11708538B2 (en) Emulsification dispersants, a method for emulsification and dispersion using the emulsification dispersants, emulsions, and emulsion fuels
CN101410172A (en) Oil-in-water emulsion for creating new product consistencies
CN103788402B (en) A kind of carbon quantum dot/hectorite emulsion-stabilizing system and prepare the method for paraffin wax emulsions
Zhang et al. Efficient emulsifying properties of glycerol-based surfactant
JP2007077178A (en) Silicone type emulsion and its manufacturing method
JP2007161683A (en) Method for producing emulsified liquid
JP3952108B2 (en) Method for producing O / W emulsion
JPS641173B2 (en)
CN115428934A (en) Bicontinuous emulsion applied to food and medicine fields and preparation method thereof
RU2331464C1 (en) Emulsifying dispersant, method of emulsification and dispersion with use of emulsifying dispersant, emulsion and emulsion fuels
CA2803770C (en) Process for producing emulsifier-producing material, process for producing emulsifier, emulsifier for orally administered composition, and orally administered composition
JP5881042B2 (en) Method for producing hydrophilic nanoparticles for producing emulsion
JP5831828B2 (en) Method for producing W / O emulsion and emulsion
JP6274477B2 (en) Manufacturing method of emulsifier manufacturing material, emulsifying material, and manufacturing method of emulsifier
JPH1118696A (en) Oil-containing gel-like composition and oil-in-water type emulsified composition

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3855203

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 5

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130922

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250