JP3854538B2 - Gas-liquid contact plate structure and gas-liquid contact device - Google Patents

Gas-liquid contact plate structure and gas-liquid contact device Download PDF

Info

Publication number
JP3854538B2
JP3854538B2 JP2002151852A JP2002151852A JP3854538B2 JP 3854538 B2 JP3854538 B2 JP 3854538B2 JP 2002151852 A JP2002151852 A JP 2002151852A JP 2002151852 A JP2002151852 A JP 2002151852A JP 3854538 B2 JP3854538 B2 JP 3854538B2
Authority
JP
Japan
Prior art keywords
gas
liquid contact
contact plate
liquid
plate structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002151852A
Other languages
Japanese (ja)
Other versions
JP2003340268A (en
Inventor
康浩 秋田
寿夫 荒井
隆士 吉山
克浩 橋爪
典生 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002151852A priority Critical patent/JP3854538B2/en
Publication of JP2003340268A publication Critical patent/JP2003340268A/en
Application granted granted Critical
Publication of JP3854538B2 publication Critical patent/JP3854538B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ガスを液体中に吸収させる目的で用いられる気液接触板及び気液接触装置に関する。さらに詳しくは、ガス及び液体の接触面積を増大させて効率的なガス吸収を実現する気液接触板及び気液接触装置に関する。
【0002】
【従来の技術】
有害または有益なガスを吸収するための装置として、吸収液を利用した気液接触装置が知られている。主に化学プラント等では、排出される二酸化炭素(CO2)等のガスの吸収効率を向上させるために、例えば円筒状や矩形塔状の吸収塔を用い、塔の内部に気液接触板を配設してガス及び吸収液の接触面積を増やすことが行われている。
一般に、気液接触性能は、液膜の総表面積に依存することが知られている。高い気液接触性能を得るためには、気液接触板の表面において、液ができるだけ濡れ広がることが好ましい。なお、液が広く濡れ広がることを、濡れ性能が良好であると表現する。その気液接触板の材料は、主として金属材料が使用されていた。
【0003】
【発明が解決しようとする課題】
気液接触板は、吸収塔の容器内に配設されノズルにより吸収液が噴霧されるが、吸収液を容器内に均等に噴霧することは困難であり、容器内に複数枚配設されている気液接触板の全表面に対して濡れ性能を均一化することが困難であった。
また、気液接触板を金属製にすると、気液接触塔全体としての重量が大きくなり、気液接触塔を支える構造部品も大型化してしまうといった問題がある。一方、金属に代わる気液接触板の材料としては、たとえば樹脂等の高分子材料が考えられる。高分子材料は軽量で、かつ加工性がよく、さらに安価であるが、工業用材料として用いられる高分子材料はほとんどが疎水性であり、前記した濡れ性能が得られにくいといった問題がある。
【0004】
最近では高分子材料でありながら親水性を有する、いわゆる親水性ポリマーも知られている。親水性ポリマーを気液接触板の材料として使用すれば、軽量で、かつ加工性がよく、しかも前記した濡れ性能が得やすい。
しかし、親水性ポリマーは、疎水性の高分子材料に比べて一般に高価であったり、フィルム等成形体の成形性が悪いといった問題がある。また、親水性ポリマーは水と接触すると水分を吸収して、強度の低下することが知られている点も問題である。
本発明はこのような事情に鑑みてなされたもので、軽量で、加工性に優れ、安価で、濡れ性能が気液接触板の幅方向に広がる気液接触板を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、上下方向に配置された気液接触板の表面に沿って処理水を流下させ、前記処理水に接触したガスが該処理水に吸収される気液接触板構造において、前記気液接触板の表面に、幅方向に延びる凹凸条を、上下方向に複数並設するとともに、前記凹凸条の頂部が撥水性を有し、前記凹凸条の底部が親水性を有するようにし、前記処理水が気液接触板表面で幅方向に広がるように構成した
【0006】
【発明の実施の形態】
以下、本発明の実施の形態による気液接触板及び気液接触装置について、図面を参照しながら詳細に説明する。
図1は、気液接触装置としての吸収塔1の概略図である。
吸収塔1は、例えば化学プラントの一設備として備えられ、プラント内で発生したガス中に含まれる二酸化炭素、ハロゲン化水素やアンモニアなどの水溶性ガス成分を水による吸収で浄化するための吸収塔、あるいは脱臭装置として有利に使用することができる。また、これらのガス成分を水中に溶かして水溶液を製品として得るための溶かし込み装置としても使用することができる。
【0007】
吸収塔1は、円柱状の容器1aの軸心が上下方向に向くように配置され、吸収塔1の内部では、図2に示す気液接触板2を容器1aの中間位置の高さに配置させている。
ガスは、吸収塔1の塔底に設置されたガス供給口4から導入されて、吸収塔1の内部を下から上に流れ、吸収塔1の塔頂に設置されたガス排出口5から塔外に排出されて、次行程で処理される。一方、液は、吸収塔1の上部に設置された液供給口6から容器1a内に導入されて、水平方向に伸びた供給管を通り、多数配設されているノズル7によって噴霧される。
気液接触板2は、ガス及び液体の流れ方向に沿って、すなわち板面が容器1aの軸方向に平行になるように、縦に複数枚並べて配置している。この気液接触板2は、気液接触板2の下部に配置されている円板状の支持体3によって固定されている。
ノズル7は、塔内での各々の気液接触板2に対して液を散布するために設ける装置であり、供給間の軸方向に間隔をおいて互い違いに両側に配列されている。液は吸収塔1の内部を上から下に流れ、吸収塔1の塔底に設置された液溜め8に溜められたのち、液排出口9から塔外へ出る。液溜め8は、吸収塔1と同じ径を有する円盤や漏斗状の逆円錐形である。ここで、液は気液接触板2の表面及び裏面並びに吸収塔1の内面に沿って流下する。
【0008】
次に、気液接触板2について詳細に説明する。
気液接触板2は、長方形の板材であって樹脂等高分子材料で形成されている。特に、高分子材料に限定されるものではなく金属製のものであってもよいが、本実施の形態では、ポリプロピレン(以下、PPとも呼ぶ)またはアクリルニトリルブタジエンスチレン樹脂(以下、ABSとも呼ぶ)を使用している。
図3は、気液接触板2の表面の断面形状である。図に示すように、気液接触板2の表面は矩形の凹凸2a,2b形状であって、凹部高さがaであって、先端長がbであって、底面長がcであり、これらの凹凸2a,2b形状が水平方向に延在し、また凸部2bがピッチbで凹部2aがピッチcで、これらの凹凸が同様に連続して縦方向に形成されている。この凹凸2a,2bが気液接触板2の表裏両面の全表面に形成されている。
【0009】
図4の(a)〜(b)は、気液接触板2の凹凸2a,2bの断面形状の他の形態を示す。図4の(a)は、断面を三角形状に形成した凸部を有する凹凸2a,2bであり、図4の(b)は、断面を台形状に形成した凸部を有する凹凸2a,2bであり、図4の(c)は、断面をV字形状に形成した凹部を有する凹凸2a,2bであり、図4の(d)は、断面を湾曲状に形成した形状を有する凹凸2a,2bである。
【0010】
また、図5の(a)〜(b)は、気液接触板2の凹凸2a,2bの延在方向の他の形態を示す。図5の(a)は、気液接触板2の幅方向に対して凹凸2a,2bの延在方向が、気液接触板2の中心部から左右両側へいずれも低くなるように、凹凸2a,2bを傾斜させて、この凹凸2a,2bを上下方向に複数条併設している。
図5の(b)は、気液接触板2の幅方向に対して一方の側から他方の側へ、また他方の側から一方の側へ低くなるようにして凹凸2a,2bを傾斜させて、互い違いに凹凸2a,2bを形成し、上下方向に複数条併設している。
【0011】
図5の(c)は、気液接触板2の幅方向に対して一端側から他端側へ凹凸2a,2bを傾斜させて、他端側が低くなるように凹凸2a,2を形成し、これを上下方向に複数条併設している。
図5の(d)は、気液接触板2の幅方向に対して凹凸2a,2bの延在方向が、気液接触板2の中心部から左右両側へ、いずれも低くなるように凹凸部2a,2bを湾曲状に形成し、この凹凸部2a,2bを上下方向に複数条併設している。
【0012】
図6に示すように、気液接触板2は押出成形機21によって形成される。すなわち、樹脂製の気液接触板2を成形するのであれば、樹脂原料をホッパー22に投入し、押し出し成形機21により加熱して撹拌させて溶融し、押出成形機21の押出口から溶融樹脂24をロール25間に押し出して、樹脂板の表裏両面に凹凸2a,2bを連続的に形成する。そして、気液接触板2の表裏面を親水性処理するためプラズマ照射機26によりプラズマ接触処理する。
【0013】
このプラズマ接触処理は、低圧気体中の放電現象を利用する表面処理である。プラズマ接触処理としては、例えば低温プラズマ(low temperature plasma, LTP)が知られている。たとえば、ポリエチレンを酸素低温プラズマ接触処理すると水接触角が90度から43度に、アルゴン低温プラズマ接触処理すると水接触角が90度から60度に、ポリエチレンテレフタレートを酸素低温プラズマ接触処理すると水接触角が77度から32度に変化するなど、濡れ性能が向上する(高分子学会編、“高分子新素材便覧”、丸善(1989)、p.513)ことが知られている。このように、プラズマ接触処理によれば、高い濡れ性能を有する高分子材料が得られるので、気液接触板として好適となる。また、プラズマ接触処理は材料の表面を処理する技術であるので、材料全体としての機械的強度はほぼ保たれる。
高分子材料の種類には限定はなく、たとえばポリプロピレン、ナイロン、塩化ビニル、ポリエステル等が利用できる。
【0014】
次に、気液接触板の別の実施の形態を説明する。
図3の(b)は、図3の(a)と同様に気液接触板2の表面拡大図である。気液接触板2の材質については、高分子材料であっても金属製材料であってもよく、気液接触板2自体には、親水性処理はされていない。この気液接触板の凹部2aには、親水性材料2cを塗布し、凸部2bには撥水性材料2dを塗布している。
気液接触板2が樹脂製であるような場合は、通常は撥水性であるので、凸部2bはそのままの状態にしておいてもよい。また、親水性処理については、周知の物理的、化学的処理をすればよい。
このような構成により、ガス吸収液が気液接触板2面上を流れると、凸部2bに流れてきた処理水が撥水性材料2dに弾かれるようにして凹部2aに流れ込み、凹部2aには親水性材料2cが塗布されているので、凹部2aの溝内に処理水がしみ込むようにして入り込むことができる。こうして、気液接触板2の表面全体に処理水を広げることができる。
【0015】
次に、本実施の形態の実験例について説明する。
[実験例1]
次に、本発明の凹凸部に関する濡れ性評価試験の実験例を詳細に説明する。
図7は、実験室での試験に用いた評価試験装置の概略外観図である。アクリル製ダクト10は、吸収塔1の容器1aを模したものであり、形状は四角筒であって、天井面及び底面は開放されている。アクリル製ダクト10の中央部には、気液接触板2を垂直に一枚設置している。気液接触板2の直上には内径1mmのノズル7を下向きに設けている。液としては64℃の蒸留水を用い、ポンプ11を使用して2ml/minの速度で供給し、気液接触板2の表面および裏面を流下させた。また、ガスとして空気を使用し、アクリル製ダクト10の内部を線速度2.5m/sで下から上に向けて流すようにしている。
このような、試験装置により、図8に示す試験例1から試験例5のパターン形状を備えた気液接触板2を用い試験を行った。気液接触板2はポリプロピレン製であり、比較材として表面処理を行わないものと、実施例としてプラズマ表面処理を行ったものとを供試し、気液接触板2の幅方向における吸収液の広がり幅をみた。そして、蒸留水を流し始めてから10分後に、蒸留水の水平方向の流路幅を測定して、濡れ性の評価とした。表1に試験装置のシュミレーションデータを示し、表2に濡れ性評価試験の結果を示す。
【0016】
【表1】

Figure 0003854538
【0017】
【表2】
Figure 0003854538
試験例1〜3は矩形パターンものを用い、試験例4及び試験例5は菱形パターンのものを用いた。その結果、全ての試験例でプラズマ処理したものが吸収液の広がり幅が大きいという結果がでた。また、形状では試験例4及び試験例5のような菱形パターン形状のほうが矩形のものより広がり幅が大きい結果が得られた。また、菱形パターン形状では、一辺が大きいものの方が広がり幅が大きい結果が得られた。
【0018】
[実験例2]
上記評価試験装置を用いて、図3の(a)に示す凹凸2a,2bの寸法がa〜cを有する矩形断面の気液接触板2により、上記実験例1と同様の条件で濡れ性評価試験を行った。実施例としてプラズマ処理を行った気液接触板2を用い、比較例としてプラズマ処理を行なっていない気液接触板2を用いた。また、試験例6〜試験例10としてABSを用い、試験例11としてPPを用いた。なお、試験例6は凹凸を形成しない気液接触板2を用いた。各々の試験結果を表3に示す。
【0019】
【表3】
Figure 0003854538
表3に示すように、全てについてプラズマ処理した方が吸収液の広がり幅が大きくなった。溝の幅cについては、狭い方が広がり幅を大きい結果が得られた。
【0020】
[実験例3]
上記評価試験装置を用いて、図3の(a)に示す凹凸2a,2bの寸法がa〜cを有する矩形断面の気液接触板2により、上記実験例1と同様の条件で濡れ性評価試験を行った。実施例としてプラズマ処理を行った気液接触板2を用い、今回は、凹凸2a,2bの矩形形状についてさらに詳しく、吸収液の広がり幅を考察してみた。各々の試験結果を表4に示す。
【0021】
【表4】
Figure 0003854538
図9は、表4の結果を考察したものであり、気液接触板2の5cmの上下長さに対する凹凸2a,2bの段数[(b+c)/5]と吸収液の広がり幅を示している。グラフの縦線は吸収液の広がり幅を表し、横線は凹凸2a,2bの段数を表している。結果として段数が大きい方が吸収液の広がり率が大きい結果を得た。
図10は、同じく表4の結果を考察したものであり、気液接触板2の底面長cに対する吸収液の広がり幅を考察した。グラフの縦線は吸収液の広がり幅を表し、横線は底面長の長さである。結果として底面長cの間隔の小さいものが吸収液の広がり率が大きい結果を得た。
【0022】
以上の試験例より、凹部高さaの影響に依存することなく、底面長cの寸法を極小化することが、吸収液を気液接触板2の幅方向に広げるために最も有効であると考えられる。底面長cが小さい方が液拡散幅が拡大する要因として、毛細管現象と連動した凹部2aを形成する各辺(3辺)の親水性効果によるものと考えられる。
凹部2aの溝が保持できる液量について考察すると、表4のV1の試験例14に示すように、凹部高さaが0.2mm、先端長bが0.2mm、底面長cが1mmであるときが最適であり、底面長cが1mmのときが最適である。
また、気液接触板2の全体に焦点をあてると、すなわち、気液接触板2の単位長さあたりの液保持量を考察すると表4のV2の試験例14に示すように、凹部高さaが0.2mm、先端長bが0.2mm、底面長cが1mmであるときが最適であり、底面長cが1mmのときが最適である。
【0023】
本発明のプラズマ処理した樹脂製の気液接触板2の板厚は、例えば自重やガスの圧力変動に耐える程度の適度な剛性を確保するためには一定の厚みが必要である一方で、厚すぎる板は充填物の単位重量あたりの表面積が少なくなって不利である。これらを考慮した好ましい板厚は0.5mm以上2.0mm以下であり、さらに好ましくは0.5mm以上1.0mm以下である。これらの板厚で製造された気液接触板の単位表面積あたりの質量はたとえば1kg/m2以下となる。従来の金属製の気液接触板では同じく2ないし4kg/m2程度であったので、半分以下あるいは4分の1以下の軽量化を達成できる。
なお、気液接触板2を作成するにあたり、プラズマ処理の代わりにグロー放電処理やコロナ放電処理を行って、気液接触板2の表面に親水性を保持するようにしてもよい。グロー放電処理は、プラズマをつくるのにグローを利用するものであり、その効果はプラズマ接触処理と同様である。また、コロナ放電処理は、プラズマを作るのにコロナを利用するものであり、その効果はプラズマ接触処理と同様である。
【0024】
以上、本発明の実施の形態について説明したが、勿論、本発明は上記実施の形態に限らず本発明の技術的思想に基づいて、種々の変形及び変更が可能である。
例えば、上記実施の形態では気液接触板2の表裏両面の全体に凹凸2a,2bを形成したが、凹凸2a,2bを形成する部位は部分的であってもよく、気液接触板2aの上部のみに形成しても効果がある。
気液接触板2の形状、大きさ及び枚数は特に限定されるものではなく、組み合わせる吸収塔1の形状、大きさ及び設置箇所等を考慮して好ましく定められるものである。
気液接触板2の材質は高分子材料の他、アルミニウムやステンレスであっても上記した凹凸2a,2bを設ければ、濡れ性能が向上する。
【0025】
【発明の効果】
以上説明したように、本発明によれば、気液接触板の幅方全体にガス吸収液が広がりながら流下するので、気液が接触する界面を広く確保でき、効果的な気液接触が行われる。
本発明によれば、高分子材料を用いることで、軽量かつ加工が簡単な気液接触板の提供でき、この気液接触板を用いた気液接触装置の製造を安価にすることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態による気液接触板を配設した吸収塔の概略斜視図である。
【図2】図1の吸収塔に配設した気液接触板の正面図(左側)と断面図(右側)である。
【図3】(a)は、図2の気液接触板の拡大断面図である。(b)は変形例による気液接触板の拡大断面図である。
【図4】(a)〜(d)は、図2における気液接触板の凹凸形状の変形例による各断面図である。
【図5】(a)〜(d)は、図2における気液接触板の凹凸形状の延在方向を示す正面図である。
【図6】図2の気液接触板の成形方法を示すための押出成形設備の概略図である。
【図7】気液接触板の濡れ性能を試験する濡れ評価装置の概略斜視図である。
【図8】本実施の形態の試験例1〜試験例5の気液接触板の表面パターンを示す図である。図中の単位は(mm)である。
【図9】気液接触板の凹凸の50mm当たりの段数に対する吸収液の広がり幅を示すグラフである。
【図10】気液接触板の凹凸の底面長にたいする吸収液の広がり幅を示すグラフである。
【符号の説明】
1 吸収塔
2 気液接触板
3 支持体
4 ガス供給口
5 ガス排出口
6 液供給口
7 ノズル
8 液溜め
9 液排出口
10 アクリル製ダクト
11 ポンプ
a 凹部高さ
b 先端長
c 底面長[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-liquid contact plate and a gas-liquid contact device used for the purpose of absorbing a gas into a liquid. More specifically, the present invention relates to a gas-liquid contact plate and a gas-liquid contact device that realize efficient gas absorption by increasing the contact area between gas and liquid.
[0002]
[Prior art]
As a device for absorbing harmful or beneficial gas, a gas-liquid contact device using an absorbing liquid is known. Mainly in chemical plants, in order to improve the absorption efficiency of gas such as carbon dioxide (CO2), for example, a cylindrical or rectangular tower is used, and a gas-liquid contact plate is arranged inside the tower. Increasing the contact area of the gas and the absorbing liquid is performed.
In general, it is known that the gas-liquid contact performance depends on the total surface area of the liquid film. In order to obtain high gas-liquid contact performance, it is preferable that the liquid spreads as much as possible on the surface of the gas-liquid contact plate. In addition, it expresses that wetting performance is favorable when a liquid spreads widely. As the material of the gas-liquid contact plate, a metal material is mainly used.
[0003]
[Problems to be solved by the invention]
The gas-liquid contact plate is disposed in the container of the absorption tower and the absorbing liquid is sprayed by the nozzle. However, it is difficult to spray the absorbing liquid evenly in the container, and a plurality of gas-liquid contact plates are disposed in the container. It was difficult to make the wetting performance uniform over the entire surface of the gas-liquid contact plate.
Further, if the gas-liquid contact plate is made of metal, there is a problem that the weight of the gas-liquid contact tower as a whole is increased, and the structural parts that support the gas-liquid contact tower are also increased in size. On the other hand, a polymer material such as a resin can be considered as a material for the gas-liquid contact plate instead of metal. Although the polymer material is light and has good processability and is inexpensive, most of the polymer materials used as industrial materials are hydrophobic, and there is a problem that the above-described wetting performance is difficult to obtain.
[0004]
Recently, so-called hydrophilic polymers having a hydrophilic property while being a polymer material are also known. If a hydrophilic polymer is used as a material for the gas-liquid contact plate, it is lightweight and has good workability, and the above-described wetting performance is easily obtained.
However, hydrophilic polymers are generally more expensive than hydrophobic polymer materials, and have problems such as poor moldability of molded articles such as films. Another problem is that hydrophilic polymers are known to absorb water and reduce strength when in contact with water.
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a gas-liquid contact plate that is lightweight, excellent in workability, inexpensive, and whose wetting performance extends in the width direction of the gas-liquid contact plate. .
[0005]
[Means for Solving the Problems]
The present invention provides a gas-liquid contact plate structure in which treated water is allowed to flow down along the surface of a gas-liquid contact plate arranged in the vertical direction, and the gas in contact with the treated water is absorbed by the treated water. The surface of the contact plate is provided with a plurality of concavo-convex strips extending in the vertical direction, the top of the concavo-convex strip has water repellency, and the bottom of the concave and convex strip has hydrophilicity, and the treatment Water was configured to spread in the width direction on the gas-liquid contact plate surface .
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a gas-liquid contact plate and a gas-liquid contact device according to embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic view of an absorption tower 1 as a gas-liquid contact device.
The absorption tower 1 is provided as one facility of a chemical plant, for example, and is an absorption tower for purifying water-soluble gas components such as carbon dioxide, hydrogen halide and ammonia contained in gas generated in the plant by absorption with water. Alternatively, it can be advantageously used as a deodorizing device. It can also be used as a device for dissolving these gas components in water to obtain an aqueous solution as a product.
[0007]
The absorption tower 1 is arranged so that the axis of the cylindrical container 1a is directed in the vertical direction, and inside the absorption tower 1, the gas-liquid contact plate 2 shown in FIG. 2 is arranged at the height of the intermediate position of the container 1a. I am letting.
The gas is introduced from the gas supply port 4 installed at the bottom of the absorption tower 1, flows from the bottom to the inside of the absorption tower 1, and flows from the gas discharge port 5 installed at the top of the absorption tower 1 to the tower. It is discharged outside and processed in the next process. On the other hand, the liquid is introduced into the container 1a from a liquid supply port 6 installed in the upper part of the absorption tower 1, passes through a supply pipe extending in the horizontal direction, and is sprayed by a plurality of nozzles 7 arranged.
A plurality of gas-liquid contact plates 2 are arranged side by side along the gas and liquid flow directions, that is, so that the plate surfaces are parallel to the axial direction of the container 1a. The gas-liquid contact plate 2 is fixed by a disk-like support 3 disposed at the lower part of the gas-liquid contact plate 2.
The nozzles 7 are devices provided for spraying the liquid on the gas-liquid contact plates 2 in the tower, and are alternately arranged on both sides at intervals in the axial direction between the supplies. The liquid flows from the top to the bottom of the absorption tower 1, is stored in a liquid reservoir 8 installed at the bottom of the absorption tower 1, and then exits from the liquid outlet 9. The liquid reservoir 8 is a disk or funnel-shaped inverted cone having the same diameter as the absorption tower 1. Here, the liquid flows down along the front and back surfaces of the gas-liquid contact plate 2 and the inner surface of the absorption tower 1.
[0008]
Next, the gas-liquid contact plate 2 will be described in detail.
The gas-liquid contact plate 2 is a rectangular plate material and is formed of a polymer material such as a resin. In particular, the present invention is not limited to a polymer material and may be made of metal, but in the present embodiment, polypropylene (hereinafter also referred to as PP) or acrylonitrile butadiene styrene resin (hereinafter also referred to as ABS). Is used.
FIG. 3 shows a cross-sectional shape of the surface of the gas-liquid contact plate 2. As shown in the figure, the surface of the gas-liquid contact plate 2 has a rectangular unevenness 2a, 2b shape, the recess height is a, the tip length is b, and the bottom length is c. The concave and convex portions 2a and 2b extend in the horizontal direction, the convex portions 2b are pitch b and the concave portions 2a are pitch c, and these concave and convex portions are continuously formed in the vertical direction. The irregularities 2a and 2b are formed on the entire front and back surfaces of the gas-liquid contact plate 2.
[0009]
4A to 4B show other forms of the cross-sectional shapes of the irregularities 2a and 2b of the gas-liquid contact plate 2. FIG. FIG. 4 (a) shows irregularities 2a and 2b having convex portions with a triangular cross section, and FIG. 4 (b) shows irregularities 2a and 2b with convex portions having a trapezoidal cross section. 4 (c) shows irregularities 2a and 2b having recesses having a V-shaped cross section, and FIG. 4 (d) shows irregularities 2a and 2b having a shape having a curved cross section. It is.
[0010]
5A and 5B show other forms of the extending direction of the projections 2a and 2b of the gas-liquid contact plate 2. FIG. (A) of FIG. 5 shows the unevenness 2a so that the extending direction of the unevenness 2a, 2b is lower from the center of the gas-liquid contact plate 2 to the left and right sides with respect to the width direction of the gas-liquid contact plate 2. , 2b are inclined, and a plurality of the concaves and convexes 2a, 2b are provided in the vertical direction.
FIG. 5B is a plan view in which the concaves and convexes 2a and 2b are inclined so as to be lowered from one side to the other side and from the other side to the one side with respect to the width direction of the gas-liquid contact plate 2. The projections and recesses 2a and 2b are alternately formed, and a plurality of strips are provided in the vertical direction.
[0011]
(C) of FIG. 5 forms the unevenness | corrugations 2a and 2 so that the unevenness | corrugation 2a and 2b may be inclined from the one end side to the other end side with respect to the width direction of the gas-liquid contact plate 2, and the other end side may become low, A plurality of these are installed in the vertical direction.
FIG. 5D shows an uneven portion so that the extending direction of the unevenness 2a, 2b is lower from the center of the gas-liquid contact plate 2 to the left and right sides with respect to the width direction of the gas-liquid contact plate 2. 2a and 2b are formed in a curved shape, and a plurality of concave and convex portions 2a and 2b are provided in the vertical direction.
[0012]
As shown in FIG. 6, the gas-liquid contact plate 2 is formed by an extruder 21. That is, if the resin-made gas-liquid contact plate 2 is to be molded, the resin raw material is charged into the hopper 22, heated and stirred by the extrusion molding machine 21, melted, and melted from the extrusion port of the extrusion molding machine 21. 24 is extruded between the rolls 25 to continuously form the irregularities 2a and 2b on both the front and back surfaces of the resin plate. Then, plasma contact treatment is performed by the plasma irradiator 26 in order to hydrophilically treat the front and back surfaces of the gas-liquid contact plate 2.
[0013]
This plasma contact treatment is a surface treatment using a discharge phenomenon in a low-pressure gas. As the plasma contact treatment, for example, low temperature plasma (LTP) is known. For example, when oxygen is subjected to oxygen low temperature plasma contact treatment, the water contact angle is 90 to 43 degrees, when argon low temperature plasma contact treatment is performed, the water contact angle is 90 degrees to 60 degrees, and when polyethylene terephthalate is subjected to oxygen low temperature plasma contact treatment, the water contact angle is It is known that the wetting performance is improved, such as a change from 77 degrees to 32 degrees (edited by the Society of Polymer Science, “New Polymer Handbook”, Maruzen (1989), p. 513). Thus, according to the plasma contact treatment, a polymer material having high wettability can be obtained, which is suitable as a gas-liquid contact plate. Moreover, since the plasma contact process is a technique for processing the surface of the material, the mechanical strength of the entire material is substantially maintained.
There are no limitations on the type of polymer material, and for example, polypropylene, nylon, vinyl chloride, polyester, and the like can be used.
[0014]
Next, another embodiment of the gas-liquid contact plate will be described.
FIG. 3B is an enlarged view of the surface of the gas-liquid contact plate 2 in the same manner as FIG. The material of the gas-liquid contact plate 2 may be a polymer material or a metal material, and the gas-liquid contact plate 2 itself is not subjected to hydrophilic treatment. A hydrophilic material 2c is applied to the concave portion 2a of the gas-liquid contact plate, and a water repellent material 2d is applied to the convex portion 2b.
When the gas-liquid contact plate 2 is made of resin, it is usually water-repellent, so the convex portion 2b may be left as it is. Moreover, what is necessary is just to perform a well-known physical and chemical process about a hydrophilic process.
With such a configuration, when the gas absorbing liquid flows on the gas-liquid contact plate 2 surface, the treated water that has flowed to the convex portion 2b flows into the concave portion 2a so as to be repelled by the water repellent material 2d, and into the concave portion 2a. Since the hydrophilic material 2c is applied, the treated water can penetrate into the groove of the recess 2a. In this way, treated water can be spread over the entire surface of the gas-liquid contact plate 2.
[0015]
Next, an experimental example of the present embodiment will be described.
[Experimental Example 1]
Next, an experimental example of the wettability evaluation test regarding the uneven portion of the present invention will be described in detail.
FIG. 7 is a schematic external view of an evaluation test apparatus used for a test in a laboratory. The acrylic duct 10 imitates the container 1a of the absorption tower 1, has a square cylinder shape, and has a ceiling surface and a bottom surface that are open. A gas-liquid contact plate 2 is vertically installed at the center of the acrylic duct 10. A nozzle 7 having an inner diameter of 1 mm is provided directly above the gas-liquid contact plate 2. Distilled water at 64 ° C. was used as the liquid, and was supplied at a rate of 2 ml / min using the pump 11, and the front and back surfaces of the gas-liquid contact plate 2 were caused to flow down. Further, air is used as gas, and the inside of the acrylic duct 10 is caused to flow from the bottom to the top at a linear velocity of 2.5 m / s.
With such a test apparatus, the test was performed using the gas-liquid contact plate 2 having the pattern shapes of Test Example 1 to Test Example 5 shown in FIG. The gas-liquid contact plate 2 is made of polypropylene, and a sample that was not subjected to surface treatment as a comparative material and a sample that was subjected to plasma surface treatment as an example were tested, and the absorption liquid spreads in the width direction of the gas-liquid contact plate 2. I saw the width. And 10 minutes after starting to flow distilled water, the horizontal flow path width of distilled water was measured and it was set as wettability evaluation. Table 1 shows the simulation data of the test apparatus, and Table 2 shows the results of the wettability evaluation test.
[0016]
[Table 1]
Figure 0003854538
[0017]
[Table 2]
Figure 0003854538
Test Examples 1 to 3 used rectangular patterns, and Test Examples 4 and 5 used diamond patterns. As a result, the results of the plasma treatment in all the test examples showed a large spread width of the absorbing solution. Further, in the shape, the results were obtained in which the rhombus pattern shape as in Test Example 4 and Test Example 5 was wider than the rectangular shape. Moreover, in the rhombus pattern shape, the result that the width of one having a larger side was larger and the width was larger was obtained.
[0018]
[Experiment 2]
Using the above-described evaluation test apparatus, the wettability evaluation is performed under the same conditions as in Experimental Example 1 with the gas-liquid contact plate 2 having a rectangular cross section with the dimensions of the irregularities 2a and 2b shown in FIG. A test was conducted. The gas-liquid contact plate 2 subjected to plasma treatment was used as an example, and the gas-liquid contact plate 2 not subjected to plasma treatment was used as a comparative example. Further, ABS was used as Test Examples 6 to 10, and PP was used as Test Example 11. In Test Example 6, the gas-liquid contact plate 2 that does not form irregularities was used. The test results are shown in Table 3.
[0019]
[Table 3]
Figure 0003854538
As shown in Table 3, the spread width of the absorbing solution was larger when the plasma treatment was applied to all of them. As for the width c of the groove, the narrower the result, the wider the width.
[0020]
[Experiment 3]
Using the above-described evaluation test apparatus, the wettability evaluation is performed under the same conditions as in Experimental Example 1 with the gas-liquid contact plate 2 having a rectangular cross section with the dimensions of the irregularities 2a and 2b shown in FIG. A test was conducted. As an example, the gas-liquid contact plate 2 subjected to plasma treatment was used, and this time, the rectangular shape of the irregularities 2a and 2b was examined in more detail, and the spreading width of the absorbing liquid was considered. The test results are shown in Table 4.
[0021]
[Table 4]
Figure 0003854538
FIG. 9 considers the results of Table 4, and shows the number of steps [(b + c) / 5] of the irregularities 2a and 2b with respect to the vertical length of 5 cm of the gas-liquid contact plate 2 and the spread width of the absorbing liquid. . The vertical line of the graph represents the spreading width of the absorbing liquid, and the horizontal line represents the number of steps of the irregularities 2a and 2b. As a result, the larger the number of steps, the greater the spreading rate of the absorbing solution.
FIG. 10 also considers the results of Table 4, and the spread width of the absorbing liquid with respect to the bottom length c of the gas-liquid contact plate 2 was considered. The vertical line of the graph represents the spreading width of the absorbing liquid, and the horizontal line is the length of the bottom surface. As a result, a result with a large spread rate of the absorbing solution was obtained when the distance between the bottom surface lengths c was small.
[0022]
From the above test examples, minimizing the dimension of the bottom surface length c without depending on the influence of the recess height a is most effective for spreading the absorbing liquid in the width direction of the gas-liquid contact plate 2. Conceivable. It is considered that the smaller the bottom surface length c, the larger the liquid diffusion width, is due to the hydrophilic effect of each side (three sides) forming the recess 2a linked to the capillary phenomenon.
Considering the amount of liquid that the groove of the recess 2a can hold, as shown in Test Example 14 of V1 in Table 4, the recess height a is 0.2 mm, the tip length b is 0.2 mm, and the bottom length c is 1 mm. Time is optimal, and when the bottom length c is 1 mm is optimal.
Further, when focusing on the entire gas-liquid contact plate 2, that is, when the amount of liquid retained per unit length of the gas-liquid contact plate 2 is considered, as shown in Test Example 14 of V2 in Table 4, the height of the recess The optimum is when a is 0.2 mm, the tip length b is 0.2 mm, and the bottom length c is 1 mm, and the bottom length c is 1 mm.
[0023]
The thickness of the plasma-treated resin gas-liquid contact plate 2 according to the present invention needs to be constant in order to secure an appropriate rigidity enough to withstand, for example, its own weight or gas pressure fluctuation. Too much a plate is disadvantageous because it reduces the surface area per unit weight of the packing. A preferable plate thickness considering these is 0.5 mm or more and 2.0 mm or less, more preferably 0.5 mm or more and 1.0 mm or less. The mass per unit surface area of the gas-liquid contact plate manufactured with these plate thicknesses is, for example, 1 kg / m 2 or less. Since the conventional metal-liquid gas-liquid contact plate is also about 2 to 4 kg / m @ 2, the weight can be reduced by less than half or less than one quarter.
In preparing the gas-liquid contact plate 2, the surface of the gas-liquid contact plate 2 may be kept hydrophilic by performing glow discharge treatment or corona discharge treatment instead of plasma treatment. The glow discharge treatment uses glow to create plasma, and the effect is similar to that of the plasma contact treatment. Corona discharge treatment uses corona to produce plasma, and the effect is the same as plasma contact treatment.
[0024]
The embodiment of the present invention has been described above. Of course, the present invention is not limited to the above embodiment, and various modifications and changes can be made based on the technical idea of the present invention.
For example, in the above embodiment, the irregularities 2a and 2b are formed on the entire front and back surfaces of the gas-liquid contact plate 2, but the portions where the irregularities 2a and 2b are formed may be partial, and the gas-liquid contact plate 2a Even if it is formed only on the top, it is effective.
The shape, size, and number of the gas-liquid contact plates 2 are not particularly limited, and are preferably determined in consideration of the shape, size, installation location, and the like of the absorption tower 1 to be combined.
Even if the material of the gas-liquid contact plate 2 is not only a polymer material but also aluminum or stainless steel, the wettability is improved by providing the above-described irregularities 2a and 2b.
[0025]
【The invention's effect】
As described above, according to the present invention, since the gas absorption liquid flows down over the entire width of the gas-liquid contact plate, it is possible to ensure a wide interface where the gas-liquid contacts and to perform effective gas-liquid contact. Is called.
According to the present invention, a gas-liquid contact plate that is lightweight and easy to process can be provided by using a polymer material, and the production of a gas-liquid contact device using the gas-liquid contact plate can be made inexpensive.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view of an absorption tower provided with a gas-liquid contact plate according to an embodiment of the present invention.
2 is a front view (left side) and a cross-sectional view (right side) of a gas-liquid contact plate disposed in the absorption tower of FIG. 1. FIG.
3A is an enlarged cross-sectional view of the gas-liquid contact plate of FIG. 2. FIG. (B) is an expanded sectional view of the gas-liquid contact plate by a modification.
4A to 4D are cross-sectional views of modified examples of the uneven shape of the gas-liquid contact plate in FIG.
FIGS. 5A to 5D are front views showing the extending direction of the concavo-convex shape of the gas-liquid contact plate in FIG. 2;
6 is a schematic view of an extrusion molding equipment for illustrating a method for forming the gas-liquid contact plate of FIG. 2. FIG.
FIG. 7 is a schematic perspective view of a wetting evaluation device for testing the wetting performance of a gas-liquid contact plate.
FIG. 8 is a diagram showing a surface pattern of gas-liquid contact plates of Test Example 1 to Test Example 5 of the present embodiment. The unit in the figure is (mm).
FIG. 9 is a graph showing the spread width of the absorbing liquid with respect to the number of steps per 50 mm of the unevenness of the gas-liquid contact plate.
FIG. 10 is a graph showing the spread width of the absorbing liquid with respect to the bottom surface length of the irregularities of the gas-liquid contact plate.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Absorption tower 2 Gas-liquid contact plate 3 Support body 4 Gas supply port 5 Gas discharge port 6 Liquid supply port 7 Nozzle 8 Liquid reservoir 9 Liquid discharge port 10 Acrylic duct 11 Pump a Recess height b Tip length c Bottom length

Claims (5)

上下方向に配置された気液接触板の表面に沿って処理水を流下させ、前記処理水に接触したガスが該処理水に吸収される気液接触板構造において、前記気液接触板の表面に幅方向に延びる凹凸条上下方向に複数並設するとともに、前記凹凸条の頂部が撥水性を有し、前記凹凸条の底部が親水性を有するようにし、前記処理水が気液接触板表面幅方向に広がるように構成したことを特徴とする気液接触板構造。 Vertically along the arrangement surface of the gas-liquid contact plate passed down the process water, in the gas-liquid contact plate structure gas in contact with the treated water is absorbed in the treated water, the surface of the gas-liquid contact plate , the irregularities strip extending in the width direction, with a plurality of juxtaposed in the vertical direction, the a top portion of the concave-convex is a water repellent, a bottom portion of the concave-convex is to have a hydrophilic, the treated water is liquid A gas-liquid contact plate structure configured to spread in the width direction on the contact plate surface. 前記凹凸条は、前記気液接触板の幅方向の一端部から他端部に亘って連続的に形成されていることを特徴とする請求項1に記載の気液接触板構造。The concave ridges, gas-liquid contact plate structure according to claim 1, characterized in that over the other end portion is continuously formed from one end portion in the width direction of the gas-liquid contact plate. 前記凹凸条断面矩形の凹凸であことを特徴とする請求項1または2に記載の気液接触板構造。Gas-liquid contact plate structure according to claim 1 or 2, wherein the concave ridge is Ru irregularities strip der rectangular in cross section. 前記気液接触板の表面の材質がポリプロピレンまたはアクリルニトリルブタジエンスチレン樹脂であることを特徴とする請求項1〜3のいずれか1項に記載の気液接触板構造。  The gas-liquid contact plate structure according to any one of claims 1 to 3, wherein a material of a surface of the gas-liquid contact plate is polypropylene or acrylonitrile butadiene styrene resin. 請求項1〜4のいずれか1項に記載された構造を有する気液接触板を内部に配設した筒状体と、該筒状体内部の前記気液接触板の上方に設けられた液供給手段と、前記筒状体の底部に設けられた液排出手段と、前記気液接触板の下方であって前記液排出手段の上方に設けられたガス供給手段と、前記筒状体の頂部に設けられたガス排出手段とを備えたことを特徴とする気液接触装置。The cylindrical body which has arrange | positioned the gas-liquid contact plate which has the structure described in any one of Claims 1-4 inside, and the liquid provided above the said gas-liquid contact plate inside this cylindrical body A supply means; a liquid discharge means provided at the bottom of the cylindrical body; a gas supply means provided below the gas-liquid contact plate and above the liquid discharge means; and a top of the cylindrical body A gas-liquid contact device comprising: a gas discharge means provided in the device.
JP2002151852A 2002-05-27 2002-05-27 Gas-liquid contact plate structure and gas-liquid contact device Expired - Lifetime JP3854538B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002151852A JP3854538B2 (en) 2002-05-27 2002-05-27 Gas-liquid contact plate structure and gas-liquid contact device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002151852A JP3854538B2 (en) 2002-05-27 2002-05-27 Gas-liquid contact plate structure and gas-liquid contact device

Publications (2)

Publication Number Publication Date
JP2003340268A JP2003340268A (en) 2003-12-02
JP3854538B2 true JP3854538B2 (en) 2006-12-06

Family

ID=29769317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002151852A Expired - Lifetime JP3854538B2 (en) 2002-05-27 2002-05-27 Gas-liquid contact plate structure and gas-liquid contact device

Country Status (1)

Country Link
JP (1) JP3854538B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084961B2 (en) 2010-12-09 2015-07-21 Mitsubishi Heavy Industries, Ltd. Gas-liquid contacting plate, gas-liquid contacting laminated block body, gas-liquid contacting laminated structure and gas purification device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846240B2 (en) * 2008-10-02 2010-12-07 Alstom Technology Ltd Chilled ammonia based CO2 capture system with water wash system
KR101166231B1 (en) * 2009-04-01 2012-07-17 양사헌 Gas-liquid contact plate
JP5533118B2 (en) * 2010-03-25 2014-06-25 宇部興産株式会社 Temperature reduction tower
JP5747844B2 (en) * 2012-03-07 2015-07-15 清水建設株式会社 Filler, filler unit, and air purifier
CA2944133C (en) 2014-04-01 2019-04-30 Ihi Corporation Method of manufacturing packing and packing
CN116688718B (en) * 2023-06-20 2024-01-19 南通星球石墨股份有限公司 Potassium sulfate tail gas treatment system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9084961B2 (en) 2010-12-09 2015-07-21 Mitsubishi Heavy Industries, Ltd. Gas-liquid contacting plate, gas-liquid contacting laminated block body, gas-liquid contacting laminated structure and gas purification device

Also Published As

Publication number Publication date
JP2003340268A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
JP3854538B2 (en) Gas-liquid contact plate structure and gas-liquid contact device
JP5794775B2 (en) Gas-liquid contact plate, gas-liquid contact laminate block body, gas-liquid contact laminate structure, and gas purification device
CN1048416C (en) Apparatus for gas-liquid contact
EP0554402A1 (en) Gas-liquid contact column with improved mist eliminator and method
Kim et al. Enhanced water collection of bio-inspired functional surfaces in high-speed flow for high performance demister
JPWO2015151912A1 (en) Filler manufacturing method and filler
KR900005523B1 (en) Gas liquid contacting apparatus
KR101424241B1 (en) Matrix arrangement
CN213266047U (en) Ammonia nitrogen stripping device based on ultrasonic atomization
RU2211424C2 (en) Cooling tower sprinkler
US11014065B2 (en) Hydrophilized material, hydrophilized member, and gas-liquid contact apparatus in which same is used
CN206121501U (en) Desulfurization absorption tower of containing distributed double -deck porosity distributor
JP5867878B2 (en) Flue gas diffuser object
CN206240294U (en) A kind of spiral-flow type desulfurizing tower
JP2003170041A (en) Filler made of polymer material for gas-liquid contact and gas-liquid contact apparatus
TWI359707B (en)
US3561735A (en) Fluid-bell-sheet forming apparatus
CN208771180U (en) A kind of cross-flow exhaust gas washing tower
CN204034562U (en) Purification of air photocatalyst photocatalyst
Ioannou et al. Antifouling Plasma-Treated Membranes with Stable Superhydrophobic Properties for Membrane Distillation
CN218530947U (en) Novel material polyhedral hollow ball
JP6198660B2 (en) humidifier
CN107596870B (en) Seawater flue gas desulfurization absorption tower
RU2243468C1 (en) Sprinkle of a water cooling tower
SU965483A1 (en) Gas cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

R151 Written notification of patent or utility model registration

Ref document number: 3854538

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term