JP3854530B2 - Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion - Google Patents

Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion Download PDF

Info

Publication number
JP3854530B2
JP3854530B2 JP2002113980A JP2002113980A JP3854530B2 JP 3854530 B2 JP3854530 B2 JP 3854530B2 JP 2002113980 A JP2002113980 A JP 2002113980A JP 2002113980 A JP2002113980 A JP 2002113980A JP 3854530 B2 JP3854530 B2 JP 3854530B2
Authority
JP
Japan
Prior art keywords
corrosion resistance
sulfuric acid
corrosion
stainless steel
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002113980A
Other languages
Japanese (ja)
Other versions
JP2003311472A (en
Inventor
裕滋 井上
亮 松橋
和広 末次
学 水本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel and Sumikin Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Stainless Steel Corp filed Critical Nippon Steel and Sumikin Stainless Steel Corp
Priority to JP2002113980A priority Critical patent/JP3854530B2/en
Publication of JP2003311472A publication Critical patent/JP2003311472A/en
Application granted granted Critical
Publication of JP3854530B2 publication Critical patent/JP3854530B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オーステナイト系ステンレス鋼の溶接ワイヤに関し、特に粗製硫酸を貯蔵・輸送するケミカルタンカーなどのタンク類の製造に用いられる耐硫酸腐食性および塩化物環境下での耐孔食性に優れたオーステナイト系ステンレス鋼溶接用ワイヤに関する。
【0002】
【従来の技術】
一般に、耐食性の要求される環境で使用されるオーステナイト系ステンレス鋼は、Ni、Cr、Mo、Nbなどの添加量の違いによりJISに規定される一般的な耐食鋼であるSUS304、特に非酸化性酸に対する耐食性を向上させた高Ni、高MoのSUS316、SUS317、特に耐粒界腐食性を向上させた低CのSUS304L、SUS316L、SUS317Lなどがあり、腐食環境の種類に応じてこれらの鋼種が選択されている。そして、これらの溶接に用いられる溶接ワイヤとしては、一般に、JIS Z 3321に規定されている溶接用ステンレス鋼ワイヤやJIS Z 3323に規定されているステンレス鋼フラックス入りワイヤ、さらには、特開昭58−205696号公報、特開昭62−68696号公報に開示されているような308、316、308L、316L系のオーステナイト系ステンレス鋼用フラックス入りワイヤも用いられている。
【0003】
さらに、近年では、製鋼および圧延技術の進歩により、従来よりも多量のMoおよびNを添加してより耐孔食性と耐隙間腐食性を向上させ、さらに、硫酸腐食環境下での耐食性を向上させるためにCuを適量添加した高耐食ステンレス鋼が開発され、その溶接ワイヤとして、特開平1−95895号公報にはMo:6.0〜7.0%、Ni:17.5〜20%、Cu:0.5〜1.0%を含有したステンレス鋼のTIG溶接用およびプラズマ溶接用ワイヤ、特開平3−86392号公報にはMo:2.4〜6.7%、Ni:12.7〜27.3%、Cu:0.8〜2.4%を含有した高耐食ステンレス鋼溶接用フラックス入りワイヤがそれぞれ提案されている。
【0004】
また、これらのような高耐食ステンレス鋼の共金系ワイヤを用いずに、インコネル625(60Ni−22Cr−9Mo−3.5Nb)のような高Cr−高Mo含有高Ni合金溶接ワイヤがしばしば用いられることもある。
【0005】
近年、ケミカルタンカーのうちで、特に、薬品原料、食品原料および油脂類、有機溶媒などを積載するためのケミカルタンカーなどのタンク類に用いられる鋼材としては、耐食性の観点から従来のメッキ鋼板に変わってSUS316L、SUS316LNなどのオーステナイト系ステンレス鋼や二相ステンレス鋼が多く用いられている。
【0006】
しかしながら、ケミカルタンカーのうちでも、主に粗製硫酸を貯蔵・輸送するためのケミカルタンカーなどのタンク類では、硫酸濃度が高い環境下で使用するため、このようなSUS316L、SUS316LNおよび二相ステンレス鋼では、耐硫酸腐食性に乏しく硫酸腐食による全面腐食損傷が問題が生じる。
【0007】
また、主に粗製硫酸を貯蔵・輸送するケミカルタンカーなどのタンク類では、積み荷を搬出後、通常、タンク内を海水により洗浄するため、その後の水洗・乾燥が不完全な場合には、タンク表面に残留した海水成分(塩化物イオン)に起因する孔食の腐食損傷も問題となるため、上記耐硫酸腐食性とともに塩化物による耐孔食性の向上も要求される。
【0008】
このような粗製硫酸を貯蔵・輸送するケミカルタンカーなどのタンク類の硫酸濃度が高い腐食環境下において、特に、母材に比べて腐食頻度が大きい溶接金属の耐食性を向上するためには、上記特開平1−95895号公報や特開平3−86392号公報などの高Mo、高N、Cu添加系の高耐食ステンレス鋼溶接用ワイヤでは不十分である。
【0009】
また、インコネル625(60Ni−22Cr−9Mo−3.5Nb)のような共金系でない高Cr−高Mo含有の高Ni合金溶接ワイヤでは、溶接金属の耐食性は確保されるが、溶接時の高温割れやシグマ相析出による溶接金属の靱性低下が問題となり実用上用いられない。
【0010】
したがって、主に粗製硫酸を貯蔵・輸送するためのケミカルタンカーなどのタンク類を製造する際に用いられる溶接ワイヤとして、溶接時の高温割れやシグマ相析出による溶接金属の靱性低下の問題がない共金系ワイヤであって、硫酸濃度の高い腐食環境下での耐硫酸腐食性とともに、塩化物環境下での耐孔食性の両方の特性を十分満足する溶接金属が得られる新たな高耐食性ステンレス鋼溶接用溶接ワイヤの開発が望まれている。
【0011】
【発明が解決しようとする課題】
本発明は、上記の従来技術の問題点に鑑みて、主に粗製硫酸を貯蔵・輸送するためのケミカルタンカーなどのタンク類を製造する際に用いられる溶接ワイヤであって、硫酸濃度の高い硫酸腐食環境下での耐全面腐食性および(塩化物)腐食環境下での耐孔食性の両方の耐食性を十分満足する溶接金属が高能率で得られ、よって当該タンク類の安全性、耐久性およびメンテナンス性を確保するためのオーステナイト系ステンレス鋼溶接用ワイヤを提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明は、上記課題を解決するものであって、その要旨とするところは以下の通りである。
【0013】
(1) 質量%で、
C:0.001〜0.05%、
Si:0.01〜1.5%、
Mn:0.01〜2.0%、
Cr:21.5〜28.9%、
Ni:7.9〜13.5%、
Mo:2.5〜4.5%、
Cu:2.5〜4.5%、
N:0.08〜0.15%を含有し、
さらに、P:0.03%以下、
S:0.01%以下に制限し、
かつ、以下の(1)〜(3)式を満足し、残部が鉄および不可避的不純物からなることを特徴とする耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用ソリッドワイヤ。

Figure 0003854530
但し、Cr当量=Cr+1.37×Mo+1.5×Si、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、Nは、それぞれ元素の含有量(質量%)を示す。
【0014】
(2) 質量%で、さらに、
Ti:0.01〜0.5%、および、Nb:0.01〜0.5%
のうちの1種または2種を含有することを特徴とする上記(1)項に記載の耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用ソリッドワイヤ。
但し、Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、N、Ti、Nbは、それぞれ元素の含有量(質量%)を示す。
【0015】
(3) 外皮または外皮とフラックス中に、ワイヤ全重量に対する質量%で、C:0.001〜0.05%、
Si:0.01〜1.5%、
Mn:0.01〜2.0%、
Cr:21.5〜28.9%、
Ni:7.9〜13.5%、
Mo:2.5〜4.5%、
Cu:2.5〜4.5%、
N:0.08〜0.15%を含有し、
さらに、P:0.03%以下、
S:0.01%以下に制限し、
かつ、以下の(1)〜(3)式を満足し、残部が鉄および不可避的不純物からなることを特徴とする耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用フラックス入りワイヤ。
Figure 0003854530
但し、Cr当量=Cr+1.37×Mo+1.5×Si、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、Nは、それぞれ元素の含有量(質量%)を示す。
【0016】
(4) 前記外皮または外皮とフラックス中に、ワイヤ全重量に対する質量%で、さらに、
Ti:0.01〜0.5%、および、Nb:0.01〜0.5%
のうちの1種または2種を含有することを特徴とする上記(1)項に記載の耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用フラックス入りワイヤ。
但し、Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、N、Ti、Nbは、それぞれ元素の含有量(質量%)を示す。
【0017】
【発明の実施の形態】
本発明者らは、種々の化学成分を添加したオーステナイト系ステンレス鋼用ソリッドワイヤおよびフラックス入りワイヤを用いてガスシールドアーク溶接するにあたって、高濃度の硫酸腐食環境および海水腐食環境の両腐食環境下において優れた耐食性を有する溶接金属が高能率で得られる溶接方法を見いだすために、鋭意調査、検討を行った。その結果、溶接用ワイヤの成分系として、C含有量を低く抑え、フェライト単相で凝固が完了し、かつ硫酸腐食環境および海水腐食環境下での腐食性の観点からCr、Ni、Mo、Cu、およびN含有量の関係を規定することが有効であることが判った。
【0018】
本発明について、以下に詳細に説明する。
【0019】
先ずはじめに、本発明において高濃度の硫酸腐食環境下および海水腐食環境下で溶接金属の耐食性を向上させるための技術思想および成分規定式について説明する。
【0020】
本発明者らの調査、実験から、オーステナイト系ステンレス鋼を共金系ワイヤを用いて溶接して得られた溶接金属は、その成分系により初晶凝固相がフェライト相もしくはオーステナイト相となり、さらに、これらの相がそれぞれ単独で凝固を完了するものと、フェライト相+オーステナイト相の二相で凝固が完了するものに分類されることが判った。
【0021】
通常、溶接継ぎ手に形成された溶接金属は凝固のままの状態で使用されるが、凝固時に溶接金属中にミクロ偏析が残存し、耐食性に寄与する元素が負偏析した領域は局部腐食が発生しやすくなる。また、溶接金属の凝固形態の違いにより、各元素の凝固時の偏析の程度(分配係数)が異なるため、溶接金属の凝固形態の違いによりその腐食挙動も異なることが予想される。
【0022】
一般に初晶凝固相がオーステナイト相の場合、その初期凝固域において耐食性に有効なCr、Ni、Moが減少し、硫酸腐食環境および海水腐食環境ともに局部腐食が発生しやすくなることが知られている。さらに、その最終凝固域においてはCr、Mo等が濃化し、シグマ相などの脆い金属間化合物が生成するため、靱性も著しく低下する。
【0023】
一方、初晶凝固相がフェライト相の場合、その初期凝固域において耐食性に有効なNi、Moは同様に減少するものの、その減少量は、初晶凝固相がオーステナイト相の場合に比べて小さい。また、耐食性に有効なCrは、ほぼ均一に分配して偏析はほとんどないため、初期凝固域におけるCrの減少は見られない。
しかし、初晶凝固相がフェライト相の場合でも、フェライト相+オーステナイト相の二相で凝固が完了する場合は、凝固後の冷却過程において、オーステナイト相がフェライト相中へ成長することにより、フェライト量が少なくなり、フェライト相中にはCr、Moなどフェライト生成元素が凝固時よりも濃化する。その結果、フェライト相中にシグマ相などの脆い金属間化合物が析出して靱性が低下する。また、この成分系におけるオーステナイト相は凝固時に晶出したものを起源としているため、フェライト相とオーステナイト相との界面の整合性は悪く、界面にCr炭化物等が析出しやすく、その結果として、Cr欠乏層に起因した局部腐食が発生しやすい。
【0024】
一方、初晶凝固相がフェライト相の場合で、かつフェライト単相で凝固が完了する場合は、凝固後の冷却過程でフェライト相中にオーステナイト相が析出するが、その析出形態が針状のため、残留フェライト相中のCr、Moの濃化は二相凝固の場合に比べてかなり少なく、シグマ相析出に起因した靱性低下もほとんど起こらない。また、この場合のオーステナイト相は固相析出したものであるため、フェライト相とオーステナイト相間の整合性は良好で炭化物等も析出しにくく、耐食性の劣化も小さい。
【0025】
したがって、本発明では、溶接金属の凝固時のミクロ偏析を低減し、耐食性および靱性を向上させるためには、溶接金属の成分系を初晶凝固相がフェライト相で、かつフェライト単相で凝固が完了する成分系に限定する必要がある。
図1に、溶接金属の成分(Cr当量、Ni当量)とその凝固形態との関係を示す。ここで、Cr当量およびNi当量は、以下の(4)または(4)’式、および(5)式でそれぞれ規定されるものである。
Figure 0003854530
【0026】
図1においてCr当量/Ni当量が1.52以下では、溶接金属の初晶凝固相はオーステナイト相となり、Cr当量/Ni当量が1.52を超すとその初晶凝固相はフェライト相となる。さらに、Cr当量/Ni当量が1.52超、1.90未満では、初晶フェライト相の凝固後、さらに、オーステナイト相も晶出して、フェライト相+オーステナイト相の二相で凝固が完了し、Cr当量/Ni当量が1.90以上では、初晶フェライト相の凝固後、フェライト単相で凝固が完了する。
【0027】
したがって、本発明では、上述の通り溶接金属の初期凝固域での耐食性に有効なNi、Mo、Crの減少を抑制し、かつ、最終凝固域でのCr、Mo等の濃化による靱性に有害なシグマ相などの脆い金属間化合物の生成を抑制するために、溶接金属の初晶凝固相がフェライト相で、かつフェライト単相で凝固が完了する成分系にする必要があり、溶接に用いるワイヤの成分系を以下の(1)の関係式を満足するものに規定する。
Cr当量/Ni当量≧1.90 ・ ・ ・(1)
【0028】
また、本発明者らの調査、実験から、粗製硫酸の腐食環境下では、硫酸が空気中の水分を吸収して希薄化し、その希薄化した硫酸によって鋼材が著しく腐食が進行し、最も腐食が激しい硫酸濃度は50%であることが判明した。
図2は、40℃の50%硫酸溶液中での腐食減量試験を実施した結果から、溶接金属の(6)式で求められる成分指標:GIとその腐食減量との関係を示すものである。
Figure 0003854530
【0029】
図2において成分指標:GI(=−Cr+3.6×Ni+4.7×Mo+11.5×Cu)が65以上で、硫酸濃度が50%での腐食減量は低減し、硫酸耐食性が向上する。
【0030】
したがって、本発明では、粗製硫酸の腐食環境下での耐食性を向上させるために、溶接に用いるワイヤの成分系を以下の(2)の関係式を満足するものに規定する。
Figure 0003854530
【0031】
さらに、本発明者らの調査、実験から、海水(塩化物)腐食環境下では、オーステナイト系ステンレス鋼を海水中から引き上げ後、水分の蒸発によって塩が濃縮し、その近傍から赤さびが発銹して孔食に至ることが判明した。
【0032】
図3は、40℃の3.5%NaCl溶液中にて孔食電位を測定した結果から、溶接金属の(7)式で求められる成分指標:PIと孔食電位との関係を示すものである。
PI=Cr+3.3×Mo+16×N ・ ・ ・(7)
【0033】
図3において、成分指標:PI(=Cr+3.3×Mo+16×N)が35以上で、孔食電位が0.73以上となり孔食は全く発生しなくなる。
【0034】
したがって、本発明では、海水(塩化物)腐食環境下での孔食性を向上させるために、溶接に用いるワイヤの成分系を以下の(1)の関係式を満足するものに規定する。
PI=Cr+3.3×Mo+16×N≧35 ・ ・ ・(1)
【0035】
次に本発明のオーステナイト系ステンレス鋼溶接用ワイヤの成分の限定理由を以下に述べる。
【0036】
なお、以下の説明における「%」とは、特に説明がない限り質量%を意味するものとする。
【0037】
本発明のワイヤは、ソリッドワイヤおよびフラックス入りワイヤを対象とする。フラックス入りワイヤの場合は、以下の成分を外皮または外皮とフラックス中に含有するが、この場合の外皮または外皮とフラックス中における「%」は、ワイヤ全重量に対する外皮または外皮とフラックスに含有される成分含有量の割合としての「質量%」を意味し、以下の算出式で定義される。
=(1−R)×M+R×M ・ ・ ・(8)
但し、Mc:ワイヤ外皮金属中の各成分の質量%、
:充填フラックス中の各成分の質量%、
R:ワイヤ中の充填フラックスの割合(質量比)
:フラックス入りワイヤの各成分の質量%
【0038】
C:Cは耐食性に有害であるが、強度の観点からある程度の含有が必要であるため、0.001%以上添加する。また、その含有量が0.05%超では溶接のままの状態および再熱を受けるとCはCrと結合してCr炭化物を析出し、耐粒界腐食性および耐孔食性が著しく劣化するとともに、溶接金属の靱性、延性が著しく低下するため、その含有量を0.001〜0.05%に限定した。
【0039】
Si:Siは脱酸元素として添加されるが、0.01%未満ではその効果が十分でなく、一方、その含有量が1.5%超ではフェライト相の延性低下に伴い、靱性が大きく低下するとともに、溶接時の溶融溶込みも減少し、実用溶接上の問題になる。したがって、その含有量を0.01〜1.5%に限定した。
【0040】
Mn:Mnは脱酸元素として添加するが、その含有量が0.01%未満では効果が十分でなく、一方、2.0%を超えて添加すると延性が低下するのでその含有量を0.01〜2.0%に限定した。
【0041】
Cr:Crはフェライト生成元素であるとともにオーステナイト系ステンレス鋼の主要元素として不働態皮膜を形成し耐食性の向上に寄与する。Ni、Mo、Cu、Nを含有した場合に、Crはフェライト相で単相凝固し、かつ、硫酸腐食環境下および海水(塩化物)腐食環境下の両方で優れた耐食性を得るには21.5%以上必要である。一方、Cr含有量が多いほど海水(塩化物)腐食環境下での耐孔食性は向上し、フェライト相は安定になるが、過度に多くなると硫酸環境下での耐食性を保つためにNi、Mo、Cuも増量させる必要があり、ワイヤ製造性が低下するとともに製造コストも高くなるため、その含有量の上限を28.9%をとした。
【0042】
Ni:Niは中性塩化物腐食環境や非酸化性の硫酸腐食環境での腐食に対し、顕著な抵抗性を与え、かつ、不働態皮膜を強化するため、Ni含有量は多いほど耐食性に有効である。また、Niはオーステナイト生成元素でありオーステナイト系ステンレス鋼の主要元素として、オーステナイト相を生成・安定にする。本発明では、フェライト相単相で凝固し、かつ、凝固後の変態により溶接金属組織がオーステナイト相を主要組織とする必要があるため、フェライト形成元素であるCrを21.5〜28.9%添加した場合の凝固形態および相バランスの観点から、Ni含有量を7.9%〜13.5%とした。なお、Ni含有量の上限13.5%の限定理由は、Crのようなワイヤ製造性の低下は少ないが、製造コストも高くなるためである。
【0043】
Mo:Moは不働態皮膜を安定化して高い耐食性を得るのに極めて有効な元素である。特に塩化物腐食環境での耐孔食性向上は顕著であるが、2.5%未満ではその効果は不十分である。また、その含有量が4.5%を超えるとシグマ相など脆い金属間化合物を生成して溶接金属の靱性が低下するため、2.5〜4.5%に制限する。
【0044】
Cu:Cuは強度と耐食性を高めるのに顕著な効果があり、特にCr、Ni、Moと共存して硫酸腐食環境下で優れた耐食性を示し、その効果は2.5%以上で著しいが、4.5%を超えて添加してもその効果は飽和するので、Cu含有量は2.5〜4.5%とする。
【0045】
N:Nは強力なオーステナイト生成元素であり、塩化物腐食環境下での耐孔食性を向上させる。0.08%以上で耐孔食性および耐隙間腐食性を向上させ、含有量が多いほどその効果は大きい。一方、N含有量を多くすると、フェライト相で単相凝固させるには、Cr、Moなどのフェライト生成元素を増量させる必要があり、製造コストが高くなる。さらに、0.15%を越得ると溶接中にブローホールが発生しやすい。したがって、N含有量は0.08〜0.15%に制限する。
【0046】
P、Sは溶接金属において不可避成分であり、以下の理由で少なく制限する。
【0047】
P:Pは多量に存在すると凝固時の耐高温溶接割れ性および靱性を低下させるので少ない方が望ましく、その含有量の上限を0.03%とした。
【0048】
S:Sも多量に存在すると耐高温割れ性、延性および耐食性を低下させるので少ない方が望ましく、0.01%を上限とした。
【0049】
以上を本発明のワイヤの基本成分とするが、以下の成分を選択的に添加できる。
【0050】
Ti:TiはCと結合してCr炭化物の析出を抑え、溶接金属の耐食性を向上させる作用を有する。その効果を得るために0.01%以上の添加が有効であるが、0.5%超の添加は延性、靱性を低下させるので、添加する場合は、その含有量を0.01〜0.5%とする。
【0051】
Nb:NbもCと結合してCr炭化物の析出を抑え、溶接金属の耐食性を向上させる作用を有する。その効果を得るために0.01%以上の添加が有効であるが、0.5%超の添加は延性、靱性を低下させるので、添加する場合は、その含有量を0.01〜0.5%とする。
【0052】
本発明では、オーステナイト系ステンレス鋼溶接用ワイヤとして、上述のように成分含有量を規定したソリッドワイヤまたはフラックス入りワイヤを用いてオーステナイト系ステンレス鋼を溶接することにより、硫酸腐食環境下および海水(塩化物)腐食環境下の両方で優れた耐食性を有する溶接金属が得られる。
【0053】
なお、本発明のオーステナイト系ステンレス鋼溶接用ワイヤは、溶接方法として、TIG溶接、MIG溶接、プラズマ溶接、サブマージアーク溶接の際に使用される他、被覆アーク溶接棒の芯線、あるいはフラックス入りワイヤの外皮としても使用することができる。
【0054】
さらに、当該溶接ワイヤは、溶接構造物の製作に適用するとともに、それら構造物の補修溶接あるいは肉盛りなどにも適用できる。
【0055】
【実施例】
以下、実施例にて本発明を説明する。
【0056】
表1に作製した溶接用ソリッドワイヤの組成を示す。なお、ワイヤ径は1.2mmφである。また、表1に示す組成の残部は鉄と不可避的不純物であり、凝固モードは、フェライト単相で凝固が完了するものをF、初晶フェライト+オーステナイトの二相で凝固が完了するものをFAで示す。次に、板厚:10mmのSUS304ステンレス鋼板上に、上記溶接用ソリッドワイヤを用いて、溶接電流:150〜200A、アーク電圧:23〜31V、溶接速度:30〜40cm/min、98%Ar+2%Oシールドガス流量:20リットル/minのガスシールド溶接法で10層の肉盛り溶接を行った。
【0057】
【表1】
Figure 0003854530
【0058】
さらに、表2に示す組成をワイヤ全重量に対する質量%として有するワイヤ径:1.2mmφのフラックス入りワイヤを作製した。なお、表2に示す組成の残部も鉄と不可避的不純物であり、凝固モードは、フェライト単相で凝固が完了するものをF、初晶フェライト+オーステナイトの二相で凝固が完了するものをFAで示す。次に、板厚:10mmのSUS304ステンレス鋼板上に、上記フラックス入りワイヤを用いて、溶接電流:150〜200A、アーク電圧:23〜31V、溶接速度:30〜40cm/min、100%COシールドガス流量:20リットル/minで10層の肉盛り溶接を行った。
【0059】
それぞれの肉盛り溶接金属の表層より腐食試験片を採取し、各種腐食試験を実施した。硫酸腐食性試験では、厚さ:3mm、幅:20mm、長さ:30mmの試験片の全面を600番エメリー紙で湿式研磨、脱脂後、40℃の50%硫酸溶液中に6時間浸漬し、浸漬前後の重量を測定して腐食減量を評価した。孔食試験では、40℃の3.5%NaCl溶液中にて孔食電位の測定をJIS G 0577に規定される方法に準拠して実施した。
【0060】
【表2】
Figure 0003854530
【0061】
表3にソリッドワイヤを用いた場合の腐食試験結果を、表4にフラックス入りワイヤを用いた場合の腐食試験結果を示す。表3および表4中の硫酸腐食試験結果は、浸漬前後の試験片重量より算出した単位面積・単位時間あたりの腐食減量を示している。また、孔食試験結果は、電流密度:100A/cmの時の孔食電位を示し、○印は、孔食は発生せず水の電気分解により酸素が発生したものを示している。
【0062】
表3および表4において、記号kおよび記号Kの比較例はCおよびCrが範囲外で、かつ、フェライト相+オーステナイト相の二相で凝固が完了するため、硫酸腐食と孔食の両方が発生している。記号lおよび記号LはNiが13.5%を超えたために、フェライト相+オーステナイト相の二相凝固となり、PI値およびGI値はともに範囲内であるにもかかわらず、凝固偏析の影響で硫酸腐食と孔食が発生している。記号mおよび記号MはMoが2.5%未満で、かつ、PI値およびGI値も低いため、著しい硫酸腐食と孔食が発生している。記号nおよび記号NはCuが2.5%未満で、かつ、GI値が低いため、孔食は発生していないが、著しい硫酸腐食が発生している。記号oおよび記号OはNが0.08%未満で、かつ、PI値が低いため、硫酸腐食は僅かであるが、孔食が発生している。記号p、Pおよび記号q、Qは、各成分は範囲内であるが、それぞれ、PI値およびGI値が低いため、記号pおよび記号Pでは孔食が、記号qおよび記号Qでは硫酸腐食が発生している。記号rおよび記号Rも各成分は範囲内であるが、Cr当量/Ni当量が低いため、フェライト相+オーステナイト相の二相凝固となり、凝固偏析の影響で硫酸腐食と孔食が発生している。
一方、記号a〜jおよび記号A〜Jの本発明例は、成分含有量および各成分の関係が本発明の範囲内であるため、比較例に比べ、硫酸腐食量は僅かであり、かつ、孔食も発生していない。
【0063】
【表3】
Figure 0003854530
【0064】
【表4】
Figure 0003854530
【0065】
【発明の効果】
以上述べたように、本発明の溶接用ワイヤは、優れた耐硫酸腐食性と耐孔食性を有する溶接金属を得ることを可能にしたものであり、粗製硫酸の貯蔵・輸送による腐食と海水洗浄による腐食が問題となっているケミカルタンカーのタンク類の溶接部の安全性を長期にわたって確保できる。この観点から、溶接部のメンテナンスを極力少なして経済性を上げるとともに、溶接構造物の健全性を大きく向上させるものであり、本発明の適用により産業の発展に貢献するところが極めて大である。
【図面の簡単な説明】
【図1】溶接金属のCr当量、Ni当量とその凝固形態との関係を示す図である。
【図2】溶接金属のGI値(=−Cr+3.6×Ni+4.7×Mo+11.5×Cu)と40℃の50%硫酸溶液中での腐食減量との関係を示す図である。
【図3】溶接金属のPI値(=Cr+3.3×Mo+16×N)と40℃の3.5%NaCl溶液中での孔食電位との関係を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an austenitic stainless steel welding wire, and in particular, austenite which is excellent in sulfuric acid corrosion resistance and pitting corrosion resistance in a chloride environment used for manufacturing tanks such as chemical tankers for storing and transporting crude sulfuric acid. The present invention relates to a stainless steel welding wire.
[0002]
[Prior art]
In general, austenitic stainless steel used in an environment where corrosion resistance is required is SUS304, which is a general corrosion resistant steel specified by JIS due to the difference in the amount of addition of Ni, Cr, Mo, Nb, etc., particularly non-oxidizing There are high Ni, high Mo SUS316, SUS317 with improved corrosion resistance against acids, especially low C SUS304L, SUS316L, SUS317L with improved intergranular corrosion resistance, and these steel types are available depending on the type of corrosive environment. Is selected. As welding wires used for these welding, generally, a welding stainless steel wire specified in JIS Z 3321, a stainless steel flux-cored wire specified in JIS Z 3323, and further, Japanese Patent Laid-Open No. 58 Also used are flux-cored wires for 308, 316, 308L, and 316L austenitic stainless steel as disclosed in JP-A-205696 and JP-A-62-68696.
[0003]
Furthermore, in recent years, due to advances in steelmaking and rolling technology, a larger amount of Mo and N is added to improve pitting corrosion resistance and crevice corrosion resistance, and further improve corrosion resistance in a sulfuric acid corrosion environment. Therefore, a high corrosion resistance stainless steel to which an appropriate amount of Cu is added has been developed. As a welding wire, Japanese Patent Laid-Open No. 1-95895 discloses Mo: 6.0 to 7.0%, Ni: 17.5 to 20%, Cu : 0.5 to 1.0% stainless steel wire for TIG welding and plasma welding, Japanese Patent Laid-Open No. 3-86392 discloses Mo: 2.4 to 6.7%, Ni: 12.7 to Highly corrosion resistant stainless steel welding flux cored wires containing 27.3% and Cu: 0.8 to 2.4% have been proposed.
[0004]
In addition, a high Cr-high Mo-containing high Ni alloy welding wire such as Inconel 625 (60Ni-22Cr-9Mo-3.5Nb) is often used without using a high-corrosion-resistant stainless steel co-metallic wire. Sometimes.
[0005]
In recent years, steel materials used in chemical tankers such as chemical tankers for loading chemical raw materials, food raw materials, oils and fats, organic solvents, etc. have changed to conventional plated steel sheets from the viewpoint of corrosion resistance. Austenitic stainless steel and duplex stainless steel such as SUS316L and SUS316LN are often used.
[0006]
However, among chemical tankers, mainly tanks such as chemical tankers for storing and transporting crude sulfuric acid are used in an environment where the sulfuric acid concentration is high. In such SUS316L, SUS316LN and duplex stainless steel, In addition, it is poor in sulfuric acid corrosion resistance, and there is a problem of overall corrosion damage due to sulfuric acid corrosion.
[0007]
In addition, in tanks such as chemical tankers that mainly store and transport crude sulfuric acid, the tank interior is usually washed with seawater after unloading the cargo. Since corrosion damage due to pitting caused by seawater components (chloride ions) remaining in the seawater is also a problem, improvement of pitting corrosion resistance due to chloride is required in addition to the above-mentioned sulfuric acid corrosion resistance.
[0008]
In the corrosive environment where the sulfuric acid concentration of the tanks such as chemical tankers for storing and transporting crude sulfuric acid is high, especially in order to improve the corrosion resistance of the weld metal having a higher corrosion frequency than the base metal, High Mo, high N, and Cu-added high corrosion resistance stainless steel welding wires such as Kaihei 1-95895 and JP-A-3-86392 are insufficient.
[0009]
Further, a high Ni alloy welding wire containing a high Cr-high Mo content such as Inconel 625 (60Ni-22Cr-9Mo-3.5Nb) does not have a high Cr-high Mo content, but the corrosion resistance of the weld metal is ensured. The toughness degradation of the weld metal due to cracking and sigma phase precipitation is a problem and is not practically used.
[0010]
Therefore, as a welding wire used mainly for manufacturing tanks such as chemical tankers for storing and transporting crude sulfuric acid, there is no problem of hot metal cracking during welding or deterioration of the toughness of the weld metal due to sigma phase precipitation. New high-corrosion-resistant stainless steel that can produce welded metal that is both gold-based wire and sufficiently satisfies the characteristics of both sulfuric acid corrosion resistance in corrosive environments with high sulfuric acid concentration and pitting corrosion resistance in chloride environments Development of a welding wire for welding is desired.
[0011]
[Problems to be solved by the invention]
In view of the above-mentioned problems of the prior art, the present invention is a welding wire mainly used in manufacturing tanks such as chemical tankers for storing and transporting crude sulfuric acid, and has a high sulfuric acid concentration. A weld metal that sufficiently satisfies the corrosion resistance of both corrosion resistance in a corrosive environment and pitting corrosion resistance in a (chloride) corrosive environment can be obtained with high efficiency. Therefore, the safety, durability, and An object is to provide an austenitic stainless steel welding wire for ensuring maintainability.
[0012]
[Means for Solving the Problems]
The present invention solves the above-mentioned problems, and the gist thereof is as follows.
[0013]
(1) In mass%,
C: 0.001 to 0.05%,
Si: 0.01 to 1.5%,
Mn: 0.01 to 2.0%,
Cr: 21.5-28.9%,
Ni: 7.9 to 13.5%,
Mo: 2.5-4.5%,
Cu: 2.5-4.5%,
N: 0.08 to 0.15% is contained,
Furthermore, P: 0.03% or less,
S: limited to 0.01% or less,
And the solid wire for austenitic stainless steel welding excellent in sulfuric acid corrosion resistance and pitting corrosion resistance characterized by satisfying the following formulas (1) to (3), the balance being iron and inevitable impurities.
Figure 0003854530
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, and N represent the content (mass%) of each element.
[0014]
(2) In mass%,
Ti: 0.01-0.5% and Nb: 0.01-0.5%
A solid wire for welding austenitic stainless steel excellent in sulfuric acid corrosion resistance and pitting corrosion resistance as described in the above item (1), characterized by containing one or two of them.
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, N, Ti, and Nb each represent the content (% by mass) of the element.
[0015]
(3) In the outer skin or outer skin and flux, in mass% with respect to the total weight of the wire, C: 0.001 to 0.05%,
Si: 0.01 to 1.5%,
Mn: 0.01 to 2.0%,
Cr: 21.5-28.9%,
Ni: 7.9 to 13.5%,
Mo: 2.5-4.5%,
Cu: 2.5-4.5%,
N: 0.08 to 0.15% is contained,
Furthermore, P: 0.03% or less,
S: limited to 0.01% or less,
A flux cored wire for welding austenitic stainless steel excellent in sulfuric acid corrosion resistance and pitting corrosion resistance, characterized in that the following formulas (1) to (3) are satisfied, and the balance consists of iron and inevitable impurities .
Figure 0003854530
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, and N represent the content (mass%) of each element.
[0016]
(4) In the outer skin or the outer skin and the flux, in mass% with respect to the total weight of the wire,
Ti: 0.01-0.5% and Nb: 0.01-0.5%
A flux cored wire for welding austenitic stainless steel excellent in sulfuric acid corrosion resistance and pitting corrosion resistance as described in the above item (1), comprising one or two of the above.
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, N, Ti, and Nb each represent the content (% by mass) of the element.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
In the gas shielded arc welding using the austenitic stainless steel solid wire and flux-cored wire to which various chemical components are added, the present inventors have performed both in a high concentration sulfuric acid corrosion environment and a seawater corrosion environment. In order to find a welding method with which a weld metal having excellent corrosion resistance can be obtained with high efficiency, an extensive investigation and examination were conducted. As a result, as a component system of the welding wire, the content of C is kept low, solidification is completed with a single phase of ferrite, and Cr, Ni, Mo, Cu from the viewpoint of corrosiveness in a sulfuric acid corrosive environment and a seawater corrosive environment. It has been found effective to define the relationship between the N content and the N content.
[0018]
The present invention will be described in detail below.
[0019]
First, a technical idea and a component defining formula for improving the corrosion resistance of a weld metal in a high concentration sulfuric acid corrosion environment and a seawater corrosion environment in the present invention will be described.
[0020]
From the investigations and experiments of the present inventors, the weld metal obtained by welding austenitic stainless steel using a co-metal wire, the primary crystal solidification phase becomes a ferrite phase or austenite phase depending on its component system, It was found that each of these phases is classified into one that completes solidification alone and one that completes solidification in two phases of ferrite phase + austenite phase.
[0021]
Normally, the weld metal formed on the welded joint is used in a solidified state, but microsegregation remains in the weld metal during solidification, and local corrosion occurs in areas where elements contributing to corrosion resistance are negatively segregated. It becomes easy. In addition, since the degree of segregation (distribution coefficient) during solidification of each element varies depending on the solidification form of the weld metal, it is expected that the corrosion behavior varies depending on the solidification form of the weld metal.
[0022]
Generally, when the primary crystal solidification phase is an austenite phase, it is known that Cr, Ni, and Mo effective for corrosion resistance decrease in the initial solidification region, and local corrosion is likely to occur in both sulfuric acid and seawater corrosion environments. . Further, in the final solidification zone, Cr, Mo and the like are concentrated, and brittle intermetallic compounds such as a sigma phase are generated, so that the toughness is significantly lowered.
[0023]
On the other hand, when the primary crystal solidification phase is a ferrite phase, Ni and Mo effective for corrosion resistance in the initial solidification region similarly decrease, but the amount of decrease is smaller than that in the case where the primary crystal solidification phase is an austenite phase. Further, since Cr effective for corrosion resistance is distributed almost uniformly and there is almost no segregation, there is no decrease in Cr in the initial solidification region.
However, even if the primary crystal solidification phase is a ferrite phase, if solidification is completed with two phases of ferrite phase + austenite phase, the austenite phase grows into the ferrite phase in the cooling process after solidification, so the amount of ferrite And the ferrite-forming elements such as Cr and Mo are concentrated in the ferrite phase more than when solidified. As a result, brittle intermetallic compounds such as a sigma phase precipitate in the ferrite phase and the toughness decreases. In addition, since the austenite phase in this component system originates from the crystallized during solidification, the consistency of the interface between the ferrite phase and the austenite phase is poor, and Cr carbide and the like are likely to precipitate at the interface. Local corrosion due to the deficient layer is likely to occur.
[0024]
On the other hand, when the primary crystal solidification phase is the ferrite phase and solidification is completed with the ferrite single phase, the austenite phase precipitates in the ferrite phase during the cooling process after solidification, but the precipitation form is needle-like Concentration of Cr and Mo in the residual ferrite phase is considerably less than that in the case of two-phase solidification, and toughness deterioration due to sigma phase precipitation hardly occurs. In addition, since the austenite phase in this case is solid-phase precipitated, the consistency between the ferrite phase and the austenite phase is good, carbides and the like are hardly precipitated, and the corrosion resistance is hardly deteriorated.
[0025]
Therefore, in the present invention, in order to reduce the microsegregation during solidification of the weld metal and improve the corrosion resistance and toughness, the primary solidification phase of the weld metal component system is the ferrite phase and the solidification of the ferrite single phase. It must be limited to the component system to be completed.
In FIG. 1, the relationship between the component (Cr equivalent, Ni equivalent) of a weld metal and its solidification form is shown. Here, the Cr equivalent and the Ni equivalent are respectively defined by the following expressions (4) or (4) ′ and (5).
Figure 0003854530
[0026]
In FIG. 1, when the Cr equivalent / Ni equivalent is 1.52 or less, the primary crystal solidification phase of the weld metal becomes an austenite phase, and when the Cr equivalent / Ni equivalent exceeds 1.52, the primary crystal solidification phase becomes a ferrite phase. Further, when Cr equivalent / Ni equivalent is more than 1.52 and less than 1.90, after the primary ferrite phase solidifies, the austenite phase also crystallizes, and solidification is completed in two phases of ferrite phase + austenite phase, When the Cr equivalent / Ni equivalent is 1.90 or more, the solidification of the ferrite single phase is completed after the primary crystal phase is solidified.
[0027]
Therefore, in the present invention, as described above, the decrease in Ni, Mo, Cr effective for corrosion resistance in the initial solidification zone of the weld metal is suppressed, and harmful to the toughness due to the concentration of Cr, Mo, etc. in the final solidification zone. In order to suppress the formation of brittle intermetallic compounds such as sigma phase, the primary solidification phase of the weld metal must be a ferrite phase and the component system that completes solidification with a ferrite single phase. Is defined to satisfy the following relational expression (1).
Cr equivalent / Ni equivalent ≧ 1.90 (1)
[0028]
In addition, from the investigations and experiments conducted by the present inventors, in a corrosive environment of crude sulfuric acid, sulfuric acid absorbs moisture in the air and dilutes, and the diluted sulfuric acid causes the steel material to undergo significant corrosion, with the most corrosion occurring. The intense sulfuric acid concentration was found to be 50%.
FIG. 2 shows the relationship between the component index GI obtained from the equation (6) of the weld metal and its corrosion weight loss from the results of the corrosion weight loss test in a 50% sulfuric acid solution at 40 ° C.
Figure 0003854530
[0029]
In FIG. 2, when the component index: GI (= −Cr + 3.6 × Ni + 4.7 × Mo + 11.5 × Cu) is 65 or more and the sulfuric acid concentration is 50%, the corrosion weight loss is reduced and the sulfuric acid corrosion resistance is improved.
[0030]
Therefore, in the present invention, in order to improve the corrosion resistance of the crude sulfuric acid in a corrosive environment, the component system of the wire used for welding is defined to satisfy the following relational expression (2).
Figure 0003854530
[0031]
Furthermore, from investigations and experiments by the present inventors, in a seawater (chloride) corrosive environment, after austenitic stainless steel is pulled out from seawater, the salt is concentrated by evaporation of water, and red rust is generated from the vicinity. It was found that this leads to pitting corrosion.
[0032]
FIG. 3 shows the relationship between the component index: PI and the pitting corrosion potential obtained from the equation (7) of the weld metal from the results of measuring the pitting corrosion potential in a 3.5% NaCl solution at 40 ° C. is there.
PI = Cr + 3.3 × Mo + 16 × N (7)
[0033]
In FIG. 3, the component index: PI (= Cr + 3.3 × Mo + 16 × N) is 35 or more, and the pitting potential is 0.73 or more, so that pitting corrosion does not occur at all.
[0034]
Therefore, in this invention, in order to improve the pitting corrosion property in a seawater (chloride) corrosive environment, the component system of the wire used for welding is defined to satisfy the following relational expression (1).
PI = Cr + 3.3 × Mo + 16 × N ≧ 35 (1)
[0035]
Next, the reasons for limiting the components of the wire for welding austenitic stainless steel of the present invention will be described below.
[0036]
In the following description, “%” means mass% unless otherwise specified.
[0037]
The wire of the present invention is intended for solid wires and flux-cored wires. In the case of a flux-cored wire, the following components are contained in the hull or hull and the flux. In this case, “%” in the hull or hull and the flux is contained in the hull or hull and the flux with respect to the total weight of the wire. It means “mass%” as a ratio of component content, and is defined by the following calculation formula.
M w = (1−R) × M c + R × M f (8)
Where, Mc:% by mass of each component in the wire skin metal,
M f : mass% of each component in the filling flux,
R: Ratio of filling flux in the wire (mass ratio)
M w : mass% of each component of the flux-cored wire
[0038]
C: C is harmful to corrosion resistance, but it needs to be contained to some extent from the viewpoint of strength, so 0.001% or more is added. Further, if the content exceeds 0.05%, when it is in a welded state and reheated, C combines with Cr to precipitate Cr carbide, and the intergranular corrosion resistance and pitting corrosion resistance are remarkably deteriorated. The toughness and ductility of the weld metal are remarkably lowered, so the content is limited to 0.001 to 0.05%.
[0039]
Si: Si is added as a deoxidizing element, but if less than 0.01%, the effect is not sufficient, while if its content exceeds 1.5%, the toughness is greatly reduced as the ferrite phase decreases in ductility. At the same time, the melt penetration at the time of welding is reduced, which becomes a problem in practical welding. Therefore, the content was limited to 0.01 to 1.5%.
[0040]
Mn: Mn is added as a deoxidizing element, but if its content is less than 0.01%, the effect is not sufficient. On the other hand, if it exceeds 2.0%, the ductility is lowered, so its content is reduced to 0. Limited to 01-2.0%.
[0041]
Cr: Cr is a ferrite-forming element and forms a passive film as a main element of austenitic stainless steel, thereby contributing to improvement of corrosion resistance. When Ni, Mo, Cu, and N are contained, Cr solidifies in a single phase in the ferrite phase, and 21. To obtain excellent corrosion resistance in both a sulfuric acid corrosion environment and a seawater (chloride) corrosion environment. 5% or more is necessary. On the other hand, the greater the Cr content, the better the pitting corrosion resistance in seawater (chloride) corrosive environment and the more stable the ferrite phase. However, when the amount is excessively large, Ni, Mo are used to maintain the corrosion resistance in sulfuric acid environment. Further, it is necessary to increase the amount of Cu, which lowers the wire manufacturability and increases the manufacturing cost. Therefore, the upper limit of the content is set to 28.9%.
[0042]
Ni: Ni gives remarkable resistance to corrosion in neutral chloride corrosive environment and non-oxidizing sulfuric acid corrosive environment, and strengthens the passive film, so the higher the Ni content, the more effective the corrosion resistance It is. Ni is an austenite-forming element, and as a main element of austenitic stainless steel, austenite phase is generated and stabilized. In the present invention, since the weld metal structure needs to have the austenite phase as the main structure due to the transformation after the solidification in the ferrite phase single phase, the ferrite forming element Cr is 21.5 to 28.9%. From the viewpoint of the solidification form and the phase balance when added, the Ni content is 7.9% to 13.5%. The upper limit of the Ni content is limited to 13.5% because the decrease in wire manufacturability such as Cr is small, but the manufacturing cost also increases.
[0043]
Mo: Mo is an element that is extremely effective in stabilizing the passive film and obtaining high corrosion resistance. In particular, the pitting corrosion resistance is significantly improved in a chloride corrosive environment, but if it is less than 2.5%, the effect is insufficient. Moreover, since the brittle intermetallic compound, such as a sigma phase, will produce | generate when the content exceeds 4.5% and the toughness of a weld metal will fall, it limits to 2.5 to 4.5%.
[0044]
Cu: Cu has a remarkable effect in enhancing strength and corrosion resistance, and particularly exhibits excellent corrosion resistance in a sulfuric acid corrosion environment in the presence of Cr, Ni and Mo, and the effect is remarkable at 2.5% or more. Since the effect is saturated even if added over 4.5%, the Cu content is set to 2.5 to 4.5%.
[0045]
N: N is a strong austenite-forming element and improves pitting corrosion resistance in a chloride corrosive environment. When the content is 0.08% or more, the pitting corrosion resistance and crevice corrosion resistance are improved. The greater the content, the greater the effect. On the other hand, when the N content is increased, it is necessary to increase the amount of ferrite-forming elements such as Cr and Mo in order to solidify the single phase in the ferrite phase, which increases the manufacturing cost. Furthermore, if it exceeds 0.15%, blowholes are likely to occur during welding. Therefore, the N content is limited to 0.08 to 0.15%.
[0046]
P and S are inevitable components in the weld metal and are limited to a small amount for the following reason.
[0047]
P: When P is present in a large amount, the high temperature weld cracking resistance and toughness during solidification are deteriorated, so it is desirable that the content be less. The upper limit of the content is 0.03%.
[0048]
S: If S is also present in a large amount, the hot cracking resistance, ductility and corrosion resistance are deteriorated.
[0049]
Although the above is a basic component of the wire of the present invention, the following components can be selectively added.
[0050]
Ti: Ti combines with C to suppress the precipitation of Cr carbide, and has the effect of improving the corrosion resistance of the weld metal. In order to obtain the effect, addition of 0.01% or more is effective. However, addition of more than 0.5% lowers the ductility and toughness. 5%.
[0051]
Nb: Nb also has an action of combining with C to suppress the precipitation of Cr carbide and improve the corrosion resistance of the weld metal. In order to obtain the effect, addition of 0.01% or more is effective. However, addition of more than 0.5% lowers the ductility and toughness. 5%.
[0052]
In the present invention, as the austenitic stainless steel welding wire, the austenitic stainless steel is welded using the solid wire or the flux-cored wire with the specified component content as described above, so that the sulfuric acid corrosive environment and seawater (chlorinated) (1) A weld metal having excellent corrosion resistance in both corrosive environments can be obtained.
[0053]
In addition, the austenitic stainless steel welding wire of the present invention is used as a welding method for TIG welding, MIG welding, plasma welding, submerged arc welding, core wire of a coated arc welding rod, or flux-cored wire. It can also be used as a skin.
[0054]
Furthermore, the welding wire can be applied to the manufacture of welded structures and also to repair welding or overlaying of the structures.
[0055]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[0056]
Table 1 shows the composition of the produced solid wire for welding. The wire diameter is 1.2 mmφ. Further, the balance of the composition shown in Table 1 is iron and inevitable impurities, and the solidification mode is F in which solidification is completed in a single ferrite phase and FA in which solidification is completed in two phases of primary ferrite + austenite. It shows with. Next, on the SUS304 stainless steel plate having a thickness of 10 mm, using the above-mentioned solid wire for welding, welding current: 150 to 200 A, arc voltage: 23 to 31 V, welding speed: 30 to 40 cm / min, 98% Ar + 2% Overlay welding of 10 layers was performed by a gas shield welding method with an O 2 shield gas flow rate of 20 liters / min.
[0057]
[Table 1]
Figure 0003854530
[0058]
Further, a flux-cored wire having a wire diameter of 1.2 mmφ having the composition shown in Table 2 as mass% with respect to the total weight of the wire was produced. In addition, the balance of the composition shown in Table 2 is also iron and inevitable impurities, and the solidification mode is F in which solidification is completed in a single ferrite phase, and FA in which solidification is completed in two phases of primary ferrite + austenite. It shows with. Next, on the SUS304 stainless steel plate having a thickness of 10 mm, using the above-mentioned flux-cored wire, welding current: 150 to 200 A, arc voltage: 23 to 31 V, welding speed: 30 to 40 cm / min, 100% CO 2 shield 10 layers of overlay welding were performed at a gas flow rate of 20 liters / min.
[0059]
Corrosion test pieces were collected from the surface layer of each build-up weld metal, and various corrosion tests were performed. In the sulfuric acid corrosion test, the entire surface of the test piece having a thickness of 3 mm, a width of 20 mm, and a length of 30 mm was wet-polished with No. 600 emery paper, degreased, and immersed in a 50% sulfuric acid solution at 40 ° C. for 6 hours. The weight loss before and after immersion was measured to evaluate the corrosion weight loss. In the pitting corrosion test, the pitting corrosion potential was measured in a 3.5% NaCl solution at 40 ° C. according to the method specified in JIS G 0577.
[0060]
[Table 2]
Figure 0003854530
[0061]
Table 3 shows the corrosion test results when the solid wire is used, and Table 4 shows the corrosion test results when the flux-cored wire is used. The sulfuric acid corrosion test results in Tables 3 and 4 show the corrosion weight loss per unit area and unit time calculated from the test piece weight before and after immersion. The pitting corrosion test result shows the pitting corrosion potential at a current density of 100 A / cm 2 , and the ◯ mark indicates that no pitting corrosion occurred and oxygen was generated by electrolysis of water.
[0062]
In Tables 3 and 4, in the comparative examples of symbols k and K, C and Cr are out of range, and solidification is completed in two phases of ferrite phase + austenite phase, so both sulfuric acid corrosion and pitting corrosion occur is doing. Symbols 1 and L indicate that Ni exceeds 13.5%, so that two-phase solidification of ferrite phase + austenite phase occurs, and although both PI value and GI value are within the range, sulfuric acid is affected by solidification segregation. Corrosion and pitting have occurred. The symbols m and M have Mo of less than 2.5% and low PI and GI values, so that significant sulfuric acid corrosion and pitting corrosion have occurred. Symbol n and symbol N have Cu of less than 2.5% and a low GI value, so pitting corrosion does not occur, but significant sulfuric acid corrosion occurs. Symbols o and O have a N content of less than 0.08% and a low PI value, so that sulfuric acid corrosion is slight but pitting corrosion occurs. The symbols p and P and the symbols q and Q are within the range, but the PI value and the GI value are low. It has occurred. Each of the symbols r and R is within the range, but the Cr equivalent / Ni equivalent is low, so two-phase solidification of the ferrite phase and austenite phase occurs, and sulfuric acid corrosion and pitting corrosion occur due to solidification segregation. .
On the other hand, in the present invention examples of symbols a to j and A to J, the content of the components and the relationship between the components are within the scope of the present invention, so that the sulfuric acid corrosion amount is small compared to the comparative example, and There is no pitting corrosion.
[0063]
[Table 3]
Figure 0003854530
[0064]
[Table 4]
Figure 0003854530
[0065]
【The invention's effect】
As described above, the welding wire of the present invention makes it possible to obtain a weld metal having excellent sulfuric acid corrosion resistance and pitting corrosion resistance. Corrosion due to storage and transportation of crude sulfuric acid and seawater cleaning It is possible to ensure the safety of the welded parts of chemical tanker tanks where corrosion due to corrosion is a problem for a long time. From this viewpoint, the maintenance of the welded portion is reduced as much as possible to increase the economic efficiency, and the soundness of the welded structure is greatly improved. The application of the present invention greatly contributes to the development of the industry.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between Cr equivalents and Ni equivalents of weld metal and their solidification forms.
FIG. 2 is a diagram showing the relationship between the GI value (= −Cr + 3.6 × Ni + 4.7 × Mo + 11.5 × Cu) of a weld metal and corrosion weight loss in a 50% sulfuric acid solution at 40 ° C.
FIG. 3 is a diagram showing the relationship between the PI value (= Cr + 3.3 × Mo + 16 × N) of a weld metal and the pitting corrosion potential in a 3.5% NaCl solution at 40 ° C.

Claims (4)

質量%で、
C:0.001〜0.05%、
Si:0.01〜1.5%、
Mn:0.01〜2.0%、
Cr:21.5〜28.9%、
Ni:7.9〜13.5%、
Mo:2.5〜4.5%、
Cu:2.5〜4.5%、
N:0.08〜0.15%を含有し、
さらに、P:0.03%以下、
S:0.01%以下に制限し、
かつ、以下の(1)〜(3)式を満足し、残部が鉄および不可避的不純物からなることを特徴とする耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用ソリッドワイヤ。
Figure 0003854530
但し、Cr当量=Cr+1.37×Mo+1.5×Si、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、Nは、それぞれ元素の含有量(質量%)を示す。
% By mass
C: 0.001 to 0.05%,
Si: 0.01 to 1.5%,
Mn: 0.01 to 2.0%,
Cr: 21.5-28.9%,
Ni: 7.9 to 13.5%,
Mo: 2.5-4.5%,
Cu: 2.5-4.5%,
N: 0.08 to 0.15% is contained,
Furthermore, P: 0.03% or less,
S: limited to 0.01% or less,
And the solid wire for austenitic stainless steel welding excellent in sulfuric acid corrosion resistance and pitting corrosion resistance characterized by satisfying the following formulas (1) to (3), the balance being iron and inevitable impurities.
Figure 0003854530
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, and N represent the content (mass%) of each element.
質量%で、さらに、
Ti:0.01〜0.5%、および、Nb:0.01〜0.5%
のうちの1種または2種を含有することを特徴とする請求項1に記載の耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用ソリッドワイヤ。
但し、Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、N、Ti、Nbは、それぞれ元素の含有量(質量%)を示す。
In mass%,
Ti: 0.01-0.5% and Nb: 0.01-0.5%
The solid wire for austenitic stainless steel welding excellent in sulfuric acid corrosion resistance and pitting corrosion resistance according to claim 1, comprising one or two of these.
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, N, Ti, and Nb each represent the content (% by mass) of the element.
外皮または外皮とフラックス中に、ワイヤ全重量に対する質量%で、
C:0.001〜0.05%、
Si:0.01〜1.5%、
Mn:0.01〜2.0%、
Cr:21.5〜28.9%、
Ni:7.9〜13.5%、
Mo:2.5〜4.5%、
Cu:2.5〜4.5%、
N:0.08〜0.15%を含有し、
さらに、P:0.03%以下、
S:0.01%以下に制限し、
かつ、以下の(1)〜(3)式を満足し、残部が鉄および不可避的不純物からなることを特徴とする耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用フラックス入りワイヤ。
Figure 0003854530
但し、Cr当量=Cr+1.37×Mo+1.5×Si、
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、Nは、それぞれ元素の含有量(質量%)を示す。
In the hull or hull and flux, in mass% with respect to the total weight of the wire,
C: 0.001 to 0.05%,
Si: 0.01 to 1.5%,
Mn: 0.01 to 2.0%,
Cr: 21.5-28.9%,
Ni: 7.9 to 13.5%,
Mo: 2.5-4.5%,
Cu: 2.5-4.5%,
N: 0.08 to 0.15% is contained,
Furthermore, P: 0.03% or less,
S: limited to 0.01% or less,
A flux cored wire for welding austenitic stainless steel excellent in sulfuric acid corrosion resistance and pitting corrosion resistance, characterized in that the following formulas (1) to (3) are satisfied, and the balance consists of iron and inevitable impurities .
Figure 0003854530
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si,
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, and N represent the content (mass%) of each element.
前記外皮または外皮とフラックス中に、ワイヤ全重量に対する質量%で、さらに、
Ti:0.01〜0.5%、および、Nb:0.01〜0.5%
のうちの1種または2種を含有することを特徴とする請求項3に記載の耐硫酸腐食性と耐孔食性に優れたオーステナイト系ステンレス鋼溶接用フラックス入りワイヤ。
但し、Cr当量=Cr+1.37×Mo+1.5×Si+2×Nb+3×Ti
Ni当量=Ni+0.31×Mn+22×C+14.2×N+Cu、
C、Si、Mn、Cr、Ni、Mo、Cu、N、Ti、Nbは、それぞれ元素の含有量(質量%)を示す。
In the outer skin or outer shell and flux, in mass% with respect to the total weight of the wire,
Ti: 0.01-0.5% and Nb: 0.01-0.5%
The flux-cored wire for austenitic stainless steel welding excellent in sulfuric acid corrosion resistance and pitting corrosion resistance according to claim 3, comprising one or two of them.
However, Cr equivalent = Cr + 1.37 × Mo + 1.5 × Si + 2 × Nb + 3 × Ti
Ni equivalent = Ni + 0.31 × Mn + 22 × C + 14.2 × N + Cu,
C, Si, Mn, Cr, Ni, Mo, Cu, N, Ti, and Nb each represent the content (% by mass) of the element.
JP2002113980A 2002-04-16 2002-04-16 Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion Expired - Lifetime JP3854530B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113980A JP3854530B2 (en) 2002-04-16 2002-04-16 Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113980A JP3854530B2 (en) 2002-04-16 2002-04-16 Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion

Publications (2)

Publication Number Publication Date
JP2003311472A JP2003311472A (en) 2003-11-05
JP3854530B2 true JP3854530B2 (en) 2006-12-06

Family

ID=29533512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113980A Expired - Lifetime JP3854530B2 (en) 2002-04-16 2002-04-16 Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion

Country Status (1)

Country Link
JP (1) JP3854530B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4699161B2 (en) * 2005-04-15 2011-06-08 新日鐵住金ステンレス株式会社 Austenitic stainless steel welding wire with excellent low temperature toughness and seawater corrosion resistance
JP4699162B2 (en) * 2005-04-15 2011-06-08 新日鐵住金ステンレス株式会社 Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
JP4699164B2 (en) * 2005-10-11 2011-06-08 新日鐵住金ステンレス株式会社 Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP5194586B2 (en) * 2006-07-05 2013-05-08 新日鐵住金株式会社 Stainless steel flux-cored welding wire for galvanized steel sheet welding
JP5020574B2 (en) * 2006-09-05 2012-09-05 新日鐵住金ステンレス株式会社 Austenitic stainless wire and steel wire with excellent weldability and hot workability
CN101362258B (en) * 2008-09-25 2010-09-08 哈尔滨工业大学 Novel electric welding rod
CN102303196A (en) * 2011-08-29 2012-01-04 江苏兴海特钢有限公司 Welding wire material for austenitic stainless steel
JP6225598B2 (en) * 2013-09-24 2017-11-08 新日鐵住金株式会社 Austenitic stainless steel welding material
CN106583966A (en) * 2016-12-15 2017-04-26 昆山京群焊材科技有限公司 Ultralow-nitrogen austenite stainless steel welding rod for nuclear power
CN113352021B (en) * 2021-06-03 2022-11-01 西安热工研究院有限公司 Flux-cored wire for welding chromium-nickel austenitic stainless steel and preparation method thereof

Also Published As

Publication number Publication date
JP2003311472A (en) 2003-11-05

Similar Documents

Publication Publication Date Title
JP4771651B2 (en) Crude oil tank with welded joints with excellent corrosion resistance and sludge resistance
JP4699162B2 (en) Austenitic stainless steel welded structure with excellent low temperature toughness and seawater corrosion resistance
JP2008519165A (en) Duplex stainless steel
US6042782A (en) Welding material for stainless steels
JP6726499B2 (en) Duplex Stainless Steel Weld Joint, Duplex Stainless Steel Welding Method, and Duplex Stainless Steel Weld Joint Manufacturing Method
JP5239615B2 (en) Welded joints for crude oil tanks with excellent corrosion resistance and ductile fracture resistance
WO1998010888A1 (en) Welding material for stainless steels
JP3854530B2 (en) Austenitic stainless steel welding wire with excellent resistance to sulfuric acid corrosion and pitting corrosion
JP4784239B2 (en) Ferritic stainless steel filler rod for TIG welding
JP3854553B2 (en) Flux-cored wire for austenitic stainless steel with excellent sulfuric acid corrosion resistance, pitting corrosion resistance, ductility and toughness
JP4699164B2 (en) Non-consumable electrode welding wire for austenitic stainless steel welding with excellent low temperature toughness and seawater corrosion resistance
JP3576472B2 (en) Welding material for low carbon martensitic stainless steel and arc welding method for low carbon martensitic stainless steel
JP4699161B2 (en) Austenitic stainless steel welding wire with excellent low temperature toughness and seawater corrosion resistance
CN113001057B (en) High-strength pitting-resistant nitrogen-containing austenitic stainless steel flux-cored wire and preparation method thereof
JP6442852B2 (en) Duplex stainless steel welded joint
JP2019042782A (en) Gas shield arc-welding flux-cored wire and manufacturing method of welding joint
JP3854554B2 (en) Submerged arc welding method for austenitic stainless steel with excellent resistance to sulfuric acid corrosion and pitting corrosion
JPS58202993A (en) Welding wire rod of stainless steel
JP2019026940A (en) Two-phase stainless steel welded joint
JP7403285B2 (en) Duplex stainless steel welding joints and duplex stainless steel welding methods
JPH03204196A (en) Wire for welding two-phase stainless steel having excellent concentrated sulfuric acid corrosion resistance
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
JP3976660B2 (en) Chromium-containing steel for container material, welding method thereof, and container material
JPS59127991A (en) Deposited metal of austenitic stainless steel having resistance to chloride stress corrosion cracking
JP3531351B2 (en) Welded structure and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040812

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20050216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050314

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060908

R150 Certificate of patent or registration of utility model

Ref document number: 3854530

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term