JP3853584B2 - Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method - Google Patents

Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method Download PDF

Info

Publication number
JP3853584B2
JP3853584B2 JP2000279205A JP2000279205A JP3853584B2 JP 3853584 B2 JP3853584 B2 JP 3853584B2 JP 2000279205 A JP2000279205 A JP 2000279205A JP 2000279205 A JP2000279205 A JP 2000279205A JP 3853584 B2 JP3853584 B2 JP 3853584B2
Authority
JP
Japan
Prior art keywords
machining
liquid level
spindle
contact
float switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000279205A
Other languages
Japanese (ja)
Other versions
JP2002086317A (en
Inventor
茂生 大丁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sodick Co Ltd
Original Assignee
Sodick Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sodick Co Ltd filed Critical Sodick Co Ltd
Priority to JP2000279205A priority Critical patent/JP3853584B2/en
Publication of JP2002086317A publication Critical patent/JP2002086317A/en
Application granted granted Critical
Publication of JP3853584B2 publication Critical patent/JP3853584B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、形彫り放電加工機の加工槽に供給される加工液の液面高さ(液位)を検出する加工液液位検出装置に関する。また、本発明は、該加工液液位検出装置を用いて加工槽内の加工液の液位を所定の高さに調整し設定する加工液液位設定方法、及び前記加工液液位検出装置を用いて加工槽内の加工液の液位が所定の高さにあることを確認する加工液液位確認方法に関する。
【0002】
【従来の技術】
加工ヘッドに支持されZ軸に移動制御される主軸の先端部に装着した加工用電極を、加工槽内のテーブル上に載置した被加工物に放電間隙を介して対向配置し、加工槽に供給した油または水系の加工液中に被加工物と加工用電極を浸漬させた状態で、被加工物と加工用電極間に間欠的に電圧パルスを印加して繰り返し放電パルスを発生させると共に、両者間にZ軸方向、及び必要に応じてX軸、Y軸方向の相対的な加工送りを与えて被加工物を形彫り加工する放電加工にあっては、加工液の液位を放電間隙よりも高く保持することが肝要である。特に、加工液としてケロシン等の油を使用する場合、加工液の液位が低下して放電間隙が液面に露出する状態となると、火花放電により加工液が発火して火災事故を招く危険がある。このため通常、加工液の液位を被加工物の厚さに応じて所定の高さ(被加工物の表面から所定距離高い位置)に設定するようにしており、加工槽の側壁を昇降可能に構成したり、あるいは該側壁の一部に形成した切欠部に堰板を昇降可能に取り付け、該側壁や堰板(以後これ等を堰板等と言う)の内側所定位置にフロートスイッチを設け、堰板等の上下位置を駆動装置によりあるいは手作業により調整した後、フロートスイッチが動作するまで加工液を急速供給し、動作したら加工液の供給量を低減して堰板等からの溢流を継続さて、加工槽内の加工液の液位を所定の高さに設定するようにしている(特開昭59−152027号公報参照)。
【0003】
また、加工の全自動化のために、堰板等の上下位置を検出する検出装置を設け、該検出装置の出力信号に応じ、堰板等を昇降させる駆動装置をNC装置により制御して液位を自動設定することも行われている。しかし、被加工物が表面に段差を有する形状等の場合、NCプログラムが複雑になることもあり、より簡便な方法として、堰板等のフロートスイッチとは別個に、該フロートスイッチの動作液位を検出するフロートスイッチを主軸に支持させ、加工用電極を、X軸、Y軸に移動制御して加工位置に位置決めした後、Z軸下方に移動制御して加工開始位置に位置決めした状態で、加工液を供給しながら両フロートスイッチが共に動作するまで駆動装置により堰板等を上昇制御して、加工液の液位を主軸のフロートスイッチの動作位置に自動設定することも行われている(特開平9−174340号公報参照)。そして、この場合、被加工物の表面から所定距離高い位置という設定液位に対応して、主軸のフロートスイッチが、主軸先端部のコレットチャック等のチャック機構または該チャック機構により固定保持される電極ホルダあるいは該ホルダに固定保持される加工用電極の側方に主軸から垂下した態様で設置されている。
【0004】
また、形彫り放電加工機には、各種加工用電極を保持する多数の電極ホルダが収納されているマガジンから、適宜の電極ホルダを選択し搬送してチャック機構により主軸先端部に取り付け、また取り外してマガジンに収納する自動工具交換装置(ATC)が通常備えられており、主軸のフロートスイッチは、ATCによる電極ホルダの取り付け及び取り外し動作を妨害しない領域に設置される。
【0005】
【発明が解決しようとする課題】
このように、主軸に支持されるフロートスイッチは、加工用電極、電極ホルダ、あるいはチャック機構の側方近傍に設置されているため、またその設置領域がATCの動作を妨害しない領域に限定されていることもあり、被加工物が表面に段差を有する段付き形状であったり、加工位置が加工槽側壁近傍であったり、あるいは加工位置が被加工物取り付け治具の近傍であったりすると、主軸のフロートスイッチが被加工物や加工槽側壁あるいは被加工物取り付け治具と干渉(衝突)して加工用電極を加工開始位置に位置決めできない虞がある。また、加工開始位置への位置決めが可能であったとしても、加工開始後、加工送りにより加工用電極と共に主軸のフロートスイッチが下方に移動して前記被加工物等と干渉して加工不能となる虞がある。
このため、このような干渉が生じないように、加工準備段階で被加工物の取り付け位置や取り付け向き、あるいは加工軌跡、更には加工穴の深さと設定液位(主軸のフロートスイッチの設置高さ位置)との関係を検討する等、煩雑な作業を要していた。
【0006】
叙上の問題点に鑑み、本発明は、形彫り放電加工機の加工槽内の加工液の液位を主軸に設けたフロートスイッチにより検出し、且つ、加工中は該フロートスイッチを取り外して被加工物や加工槽側壁あるいは被加工物取り付け治具との干渉を起こすことがないようにした加工液液位検出装置の提供を目的とする。また、本発明は、該加工液液位検出装置と堰板等に設けたフロートスイッチとを協働させて、加工槽内の加工液の液位を所定の高さに調整して設定する方法の提供を目的とする。また、本発明は、前記加工液液位検出装置を用いて加工槽内の加工液の液位を確認する方法の提供を目的とする。
【0007】
【課題を解決するための手段】
この目的を達成するため、本発明の加工液液位検出装置は、所定長さの導体からなる棒状の接触子と、該接触子を固定保持して自動工具交換装置により主軸先端部に装着される接触子ホルダと、該接触子ホルダに固定して設けたフロートスイッチと、前記接触子ホルダに固定して設けられ前記フロートスイッチと電気的に接続されたホルダ側接続端子と、主軸に固定して設けられ形彫り放電加工機の数値制御装置と電気的に接続された主軸側接続端子と、自動工具交換装置によって前記接触子ホルダが主軸先端部に装着される際、前記ホルダ側接続端子と前記主軸側接続端子とを所定の押圧力をもって当接させるコネクタとから構成されることを特徴とする。
【0008】
また、本発明の加工液液位設定方法は、自動工具交換装置と、駆動装置により昇降制御して溢流液位を調整し得る溢流部材を有する加工槽と、前記溢流部材の上端部に設けた第1のフロートスイッチと、前記接触子ホルダにフロートスイッチが第2のフロートスイッチとして固定して設けられた前記加工液液位検出装置とを備えた形彫り放電加工機の前記加工槽内の加工液の液位を所定高さに設定する加工液液位設定方法であって、先ず、前記自動工具交換装置により前記接触子ホルダを主軸先端部に取り付け、被加工物の加工の行われる表面の上方に主軸を移動した後、主軸を下降させて前記接触子と被加工物との接触を感知し、該接触が感知されたら主軸の下降を停止し、該感知位置を基準として前記第2のフロートスイッチの動作位置が所定の設定液位となるように必要に応じて主軸を昇降移動し、前記数値制御装置により前記駆動装置を制御して前記溢流部材を上昇させると共に加工槽に加工液を供給して、前記第1のフロートスイッチと前記第2のフロートスイッチの動作を監視し、加工液の液位が前記第1のフロートスイッチの動作位置に達したことが判別されたとき加工液の液位が前記第2のフロートスイッチの動作位置に達していることが判別されたら、前記溢流部材の上昇を止め、前記自動工具交換装置により前記接触子ホルダを主軸先端部から取り外すことを特徴とする。
【0009】
また、本発明の加工液液位確認方法は、自動工具交換装置と、溢流液位を調整する溢流部材を駆動装置により昇降制御して所定のZ軸位置に自動的に設定し得る加工槽と、前記溢流部材の上端部に設けた第1のフロートスイッチと、前記接触子ホルダにフロートスイッチが第2のフロートスイッチとして固定して設けられた前記加工液液位検出装置とを備えた形彫り放電加工機の前記加工槽内の加工液の液位が所定高さにあるか確認する加工液液位確認方法であって、先ず、溢流部材を所定のZ軸位置に自動的に設定した後、前記加工槽に加工液を供給し、溢流が開始して加工液の液位が所定の高さに設定されたことが前記第1のフロートスイッチの動作により検出されたら、前記自動工具交換装置により前記接触子ホルダを主軸先端部に取り付け、被加工物の加工の行われる表面の上方に主軸を移動した後、主軸を下降させて前記接触子と被加工物との接触を感知し、該接触が感知されたら主軸の下降を停止し、該感知位置を基準として前記第2のフロートスイッチの動作位置が所定の設定液位となるように必要に応じて主軸を昇降移動した後、前記第2のフロートスイッチの動作状態を判別し、液位が該第2のフロートスイッチの動作位置以上にあることが判別されたら前記自動工具交換装置により前記接触子ホルダを主軸先端部から取り外して、加工可能を知らせる信号を出力することを特徴とする。
【0010】
【発明の実施の形態】
本発明の加工液液位検出装置の一実施例を図面に基いて説明する。
図1(a)は本発明の加工液液位検出装置の一実施例の使用状態を示す加工ヘッド主軸先端部正面図、図1(b)は同じく下面図である。
図1に於て、1は所定長さの導体からなる棒状の接触子であり、形彫り放電加工機に於て被加工物との接触を感知して被加工物の位置出しを行う際に用いる基準球が好適である。2は接触子1を固定保持する接触子ホルダであり、各種寸法形状の加工用電極を固定保持してATCのマガジンに収納されている多数の電極ホルダと同様のホルダであって、電極に替えて接触子1を固定保持する。3は一端部を接触子ホルダ2に固定して側方に伸長させて設けた舌状の下側支持板である。4は液面の上昇によりフロートが所定位置まで上昇したとき内蔵する接点が閉じて電気信号を出力する周知のフロートスイッチであり、下側支持板3に固定されて接触子1の側方に設けられる。フロートスイッチ4としては、例えばフロートに永久磁石を固定支持させ、ステム側にリードスイッチを設けて、フロートの上昇と共に永久磁石が所定位置まで上昇したときリードスイッチが動作して電気信号を出力するフロートスイッチ等、各種周知のフロートスイッチが適宜用いられる。5は形彫り放電加工機の数値制御装置(NC装置)とフロートスイッチ4とを電気的に着脱自在に接続するコネクタである。51は該コネクタ5の下側コネクタであり、フロートスイッチ4にリード線6により接続され、下側支持板3の自由端側上面に固定される。
【0011】
また、7は加工ヘッドであり、形彫り放電加工機のベッド上に設けたコラムにサドル及びラムを介してX軸及びY軸方向に移動可能に支持される。8は主軸であり、加工ヘッド7にZ軸方向に移動可能に支持される。加工ヘッド7のX軸及びY軸移動と主軸8のZ軸移動は前記NC装置により制御される。9は主軸8の先端部に設けたチャック機構であり、ATCの搬送アームによりマガジンから搬送された接触子ホルダ2を着脱自在に固定保持する。チャック機構9により接触子ホルダ2を固定保持した状態で、接触子1はホルダ2及びチャック機構9を介して主軸8に電気的に接続され、また主軸8と被加工物が夫々前記NC装置に電気的に接続されていて、接触子1と被加工物との接触が電気信号として検出される。10は主軸8に固定して設けたブロック材、11は該ブロック材10に一端部を固定して主軸8の側方に垂下状態で設けたL字形の上側支持板である。52はコネクタ5の上側コネクタであり、リード線12により前記NC装置に接続され、上側支持板11のL字形下端面に固定される。
【0012】
図2によりコネクタ5の詳細を説明する。
図2は図1(a)のコネクタ5部分を拡大して示した正面断面図である。
下側コネクタ51の本体51aは、円筒形状をなし、下端部には断面瓢箪形状の中空部51bが下方に開口して形成されており、該断面瓢箪形状の中央括れ部外側の肉厚部分にボルト取り付け孔が形成され、ボルト51cにより下側支持板3に固定される。前記断面瓢箪形状の両円形部分中空部の各底面から本体51aの軸方向に貫通して、段差部51d,51dを有するガイド孔51e,51eが形成される。51f,51fは真鍮等の導体からなる2本の棒状のスライド端子であり、段差部51g,51gを有し、2個のガイド孔51e,51eに夫々上下移動自在に嵌挿される。段差部51d,51dと51g,51g間には圧縮ばね51h,51hが介装され、スライド端子51f,51fは圧縮ばね51h,51hにより付勢されて円錐状の先端部を本体51aの上面から上方に突出させる。また、スライド端子51f,51fの後端部には螺子部51i,51iが形成され、夫々の螺子部に於てリード線6に接続された圧着端子6aが2個のナット51j,51k間に挟持固定され、2本のスライド端子51f,51fがフロートスイッチ4に接続される。
【0013】
上側コネクタ52の本体52aは、円筒形状をなし、仕切部52bの両側に断面瓢箪形状の中空部52c及び52dが上方及び下方に開口して形成されており、該断面瓢箪形状の中央括れ部外側の肉厚部分にボルト取り付け孔が形成され、ボルト52eにより上側支持板11に下側コネクタ51の本体51aと同軸上に固定される。下側コネクタ51の本体51aと上側コネクタ52の本体52aは共にベークライト等の絶縁物により形成される。また、コネクタ5は両本体51aと52aの間に1〜2mm程度の所定距離の隙間Gが形成されるように配置される。仕切部52bには、2個のガイド孔51e,51eと同軸上に端子取り付け孔52f,52fが形成される。該孔52f,52fの夫々に真鍮等の導体からなるボルト状の2本の端子52g,52gが挿入され、ナット52h,52hにより仕切部52bに固定される。また、夫々の端子52g,52gに、リード線12に接続された圧着端子12aがナット52iにより挟持固定されて、2本の端子52g,52gが前記NC装置に接続される。
【0014】
このように構成される本発明の加工液液位検出装置と堰板等に設けた液位検出装置(フロートスイッチ)とを用いて、前記NC装置により、加工槽内の加工液の液位を所定の高さに調整して設定する操作手順について、図3のフローチャートを参照しつつ説明する。図中のS101〜S118はステップ番号を示す。
先ず、図4に示すように、Nは被加工物13の表面(表面に段差がある場合は、加工が行われる上段側または下段側の表面)から設定液位までの距離(通常表面上の所望液面高さ)、Lは接触子1先端からフロートスイッチ4の動作位置までの長さであって、この長さLは固定の設定値であるが、前記距離Nの標準的な値と同一に設定されていることが多い。また、Z1は、前記設定液位の距離Nと長さLとが等しくなく、距離Nを長さLより深くまたは浅く設定したい場合に前記長さLに対する補正値(Z1=N−L)である。
【0015】
液面高さの設定に際し、先ず前記設定液位までの距離Nを設定し(ステップS101)、Z1=N−Lを演算して結果を記憶する(ステップS102)。次いで、主軸8をATCによる工具交換位置に移動させた後、接触子1を固定保持するホルダ2を、ATCによりマガジンからチャック機構9と同軸上の下方所定位置に搬送し、該位置から上方に移動させてチャック機構9により主軸8に固定保持させる(ステップS103)。この結果、接触子1が前記NC装置に電気的に接続され、接触子1と被加工物13との接触感知が可能となる。またこの際、接触子ホルダ2の上方移動により、本体51aが本体52aと同軸上の下方位置から上方に、両本体51aと52a間に所定距離の隙間Gが形成される位置まで移動し、この移動の間に2本のスライド端子51f,51fの円錐状先端部が夫々端子52g,52gの下面に当接し、各スライド端子51f,51fは圧縮ばね51h,51hに抗してガイド孔51e,51e内を下方に移動し、該移動量に応じた押圧力をもってスライド端子51f,51fと端子52g,52gとが当接する。この結果、フロートスイッチ4が前記NC装置に電気的に接続されて、液位の検出が可能となる。
【0016】
次いで、主軸8を移動させて、被加工物13の加工が行われる表面の適宜箇所(加工位置あるいはフロートスイッチ4が前記干渉を起こさない適宜箇所)の上方に接触子1を位置させてから(ステップS104)、主軸8を下降させ(ステップS105)、接触子1と被加工物との接触の有無を判別し(ステップS106)、該接触の有無の判別を所定のサンプリングタイムで繰り返して行い(ステップS107)、所定時間経過しても接触が感知されない場合は音響、ランプ、表示等により警報を発して異常を知らせる(ステップS108)。前記所定時間内に接触が感知されたら主軸の下方への移動を停止し(ステップS109)、接触感知Z軸位置を記憶する(ステップS110)。また、この時、加工開始原点(被加工物表面高さ位置)が前記NC装置に設定される。次いで、主軸8を前記接触感知Z軸位置から距離Z1だけZ軸移動させる(ステップS111)。長さL<距離Nの場合は、距離Z1は正となり主軸8はZ1だけ上昇し、また長さL>距離Nの場合は、距離Z1は負となり主軸8はZ1の絶対値だけ下降する。主軸8を下降させる場合は、接触子1が下降しても被加工物13等と干渉する虞のない位置に主軸8を水平移動させてから下降させる。また、安定した良好な加工に必要とされる距離Nは標準的に50mm程度であるから、長さLが50mmとなるように接触子1を形成しておき、距離Nを50mmに設定すれば、ステップS111による主軸8のZ軸移動は行われない。この場合は、ステップS110とステップS111は不要となる。
【0017】
以上で液位設定の準備作業が終了し、以後、加工液を供給しながら液位を調整、設定する作業に移行する。
液位の調整、設定作業は、ステップS111の状態、または、L=Nの場合はステップS109の状態で、あるいはこの状態から主軸8を更に別の位置に適宜水平移動させた状態で、本発明の加工液液位検出装置のフロートスイッチ(主軸のフロートスイッチ4)と溢流部材を構成する堰板等のフロートスイッチの両出力信号により堰板等を昇降させる駆動装置を制御して行う。該調整、設定作業中の堰板等の移動状態を図5に示す。図5は、加工槽15の一部の側壁16を、前記堰板等の部分とする加工槽15を昇降可能に構成し、図示しない昇降機構(ラックとピニオン、リンク機構等による周知の昇降機構)及び該機構を駆動する駆動装置によって該側壁16を加工槽15とともに昇降制御する場合を示す。17は側壁16の上端部に設けたフロートスイッチ、18は側壁16から溢流した加工液を回収する樋、19は加工槽15内に設けた加工テーブルであり、該加工テーブル19上に被加工物13が載置される。
【0018】
先ず、堰板等(側壁16)を例えば10mm程度の所定量上昇させる(ステップS112)。所定量の上昇は、例えばタイマーにより前記駆動装置を所定時間作動させることにより、あるいは、堰板等の昇降により動作するリミットスイッチを固定側に所定間隔(例えば10mm間隔)で多数配置して、該リミットスイッチの出力信号によって前記駆動装置を停止制御することにより行われる。次いで、加工槽に加工液を急速に供給する吐出量の大きい急送ポンプと堰板等から溢流した加工液を回収して加工槽に循環供給する比較的吐出量の小さい循環ポンプの両ポンプを運転して、加工槽への加工液14の供給を開始し(ステップS113)、堰板等のフロートスイッチ17の動作を判別する(ステップS114)。やがて液面20が上昇してスイッチ17がON動作したら、主軸のフロートスイッチ4の動作を判別する(ステップS115)。この状態を図5(a)に示す。判別の結果、主軸のフロートスイッチ4がOFFのときは、ステップS112に戻り側壁16を再び所定量上昇させる。この状態を図5(b)に示す(図では側壁16の上昇量を誇張して表している。実際の一回の上昇量は僅かである。)。加工液14の供給を継続した状態で再び堰板等のフロートスイッチ17の動作を判別し、液面20上昇によりON動作が判別されたら主軸のフロートスイッチ4の動作を判別する。この状態を図5(c)に示す。スイッチ4がOFF状態を維持している間、ステップS112乃至S115の操作をスイッチ4がON状態となるまで繰り返す。
【0019】
やがて液面20が上昇してスイッチ4のON状態が判別されたら、前記所定量上昇の繰り返し数と基準位置から算出される側壁16の現在位置を記憶し、堰板等に該高さ位置を維持させ(ステップS116)、急送ポンプの運転を停止して循環ポンプによる加工液14の供給のみを継続する(ステップS117)。この状態を図5(d)に示す。尚、ステップS116による側壁16の現在位置の記憶は確認のためであり、堰板等の高さ維持が可能なら必ずしも必要としない。次いで、主軸を上昇等させATCによる工具交換位置に移動させて、接触子ホルダ2を取り外しマガジンに搬送、収納する(ステップS118)。以上により、加工槽内の加工液の液位が、被加工物13の表面から所定距離高い位置に設定されるので、所定の電極を取り付けた電極ホルダをATCによりマガジンから取り出して主軸に取り付け、加工位置に戻して放電加工が開始される。実際の加工液の設定液位は、堰板等(側壁16)から溢流する液面高さであり、フロートスイッチ17の動作位置が側壁16の上端から加工液が溢れ出る高さとなるように該スイッチ17を配置した場合でも、循環供給量によって異なる溢流加工液の深さ(厚み)と、ステップ送りされる側壁16の前記所定量だけの誤差をともなう。
【0020】
なお、前述の堰板等(側壁16)の順次所定量上昇による加工槽15への加工液の充填の態様としては、一般的には、充填効率を高くするため、加工槽15内の液位が低位にある間は、堰板等の上昇所定量の大きさを大きく設定するのに対し、所定液位に近い位置においては、前記所定量を小さな値に設定されるが、被加工体13の形状、大きさ、作業の内容、またはオペレータ等により、所望のパターンに設定して行なわれるものである。
【0021】
ここで、放電加工中の液位の制御を図6のフローチャートを参照しつつ説明する。図中のS201〜212はステップ番号を示す。
側壁16が上述した位置に保持され、加工液が該側壁16から溢流して循環供給されている状態で、先ず、加工開始の指令信号により、加工に用いる加工用電極が固定保持されている電極ホルダがATCによってマガジンから選択され搬送されてチャック機構9により主軸8に装着される(ステップS201)。次いで、主軸8を加工位置に移動し(ステップS202)、加工開始のための諸処理がなされて放電加工が開始される(ステップS203)。加工開始後、所定時間T1経過毎に(ステップS204)、側壁16のフロートスイッチ17の動作状態を判別し(ステップS205)、ON状態であれば、加工が終了したか判別し(ステップS206)、未了であればステップS204に戻る。また、ステップS206で加工終了が判別されたら加工停止処理をして(ステップS207)、放電加工を終了する。
【0022】
また、通常は加工液が循環供給されていて側壁16からの溢流が継続するから、液位が低下することはないが、何等かの理由によりステップS205でフロートスイッチ17のOFF状態が判別され液位の低下が検知されたら、急送ポンプを運転して加工液の供給量を増大させ(ステップS208)、フロートスイッチ17の動作状態を監視し(ステップS209)、ON状態を回復したら急送ポンプを停止して(ステップS210)、ステップS205に移行する。また、所定時間T2経過してもフロートスイッチ17がONしないときは(ステップS211)、加工の非常停止処理を行い(ステップS212)、音響、ランプ、表示等により警報を発して異常を知らせる(ステップS213)。
【0023】
このように、液位の設定作業は、加工液液位検出装置を主軸に取り付けて行うが、主軸を被加工物の加工が行われる表面の加工位置に限らず適宜位置の上方に置いて行うことが可能であるから、主軸側のフロートスイッチ4に前記干渉を起こさせることなく、円滑に液位を所定の高さに自動設定することができる。また、放電加工中は、堰板等に設けたフロートスイッチ17によって液位が監視されて所定の高さに制御され、加工液液位検出装置は主軸から取り外されているから、フロートスイッチ4が前記干渉を起こす虞は全くない。
【0024】
次ぎに、堰板等を昇降させる駆動装置をNCプログラムによって制御して、自動的に堰板等を所定高さに上昇設定し得る加工槽、あるいは堰板等が自ら位置を検出しながら自動的に上昇して所定高さに設定される加工槽を用い、例えば各種被加工物を取り付けた多数のパレットを自動パレット交換装置(APC)により次々に交換して部品加工等の放電加工を行う場合に、パレット交換時に該加工槽内の加工液を一旦排出し、パレット交換後に再び加工液を供給して加工を開始するとき、該加工槽内の加工液の液位が所定の高さにあるかどうか、本発明の加工液液位検出装置によって確認する方法について、図7のフローチャートを参照しつつ説明する。図中のS301〜314はステップ番号を示す。
堰板等自体による位置の検出は、磁気スケール等の各種スケールの読み取りにより連続的に位置検出を行う場合や、所定間隔で多段に配置したリミットスイッチの動作出力回数により該所定間隔を単位として位置検出を行う場合等がある。
【0025】
先ず、APCによるパレット交換後、加工槽の堰板等が自動的に所定高さに上げられ、加工液の供給が開始され、やがて堰板等に設けたフロートスイッチが動作することにより、溢流開始が検出されて、加工液の液位が所定の高さに設定される(ステップS301)。次いで、ATCによりマガジンから接触子ホルダ2を選択し、搬送してチャック機構9によって主軸8に装着した後(ステップS302)、主軸8を被加工物の加工が行われる表面の上方に移動する(ステップS303)。次いで、主軸8を下方に移動して(ステップS304)、接触子1と被加工物13との接触の有無を判別する(ステップS305)。該接触の有無の判別を所定のサンプリングタイムで繰り返し行い(ステップS306)、所定時間経過しても接触が感知されない場合は音響、ランプ、表示等により警報を発して異常を知らせる(ステップS307)。前記所定時間内に接触が感知されたら主軸の下方への移動を停止して(ステップS308)、主軸のフロートスイッチ4の動作を判別する(ステップS309)。スイッチ4がON状態であれば、主軸8をATCによる交換位置に移動した後、接触子ホルダ2を取り外してマガジンに搬送、収納し(ステップS310)、当該被加工物の加工OKの信号を出力する(ステップS311)。そして、この加工OK信号により、上述説明した図6のフローチャートに従って当該被加工物の放電加工が行われる。また、ステップS309での判別の結果、スイッチ4がOFF状態であれば、主軸8をATCによる交換位置に移動した後、接触子ホルダ2を取り外してマガジンに搬送、収納し(ステップS312)、当該被加工物の加工を中止して次ぎの被加工物の加工を行う加工スキップの履歴を記録して(ステップS313)、加工スキップ指令信号を出力する(ステップS314)。そして、この加工スキップ指令信号により、APCが作動してパレットが次ぎのパレットに交換され、再びステップS301から前記と同様の処理操作が行われる。
尚、図7のフローチャートは、前記長さLと距離Nが等しい場合であり、LとNが等しくない場合は、図3のフローチャートと同様に、ステップS308で主軸8の下降を停止した後、主軸8をZ1=N−LだけZ軸移動してからステップS309に移行する。
【0026】
パレットを自動交換し、加工液を所定の液面高さに自動設定して無人運転する場合、加工液の液位を所定高さに保持することが防火安全上重要であり、堰板等がNCプログラムによりあるいは自らの位置検出により所定の高さに自動的に設定されることによって液面高さが一応保障されてはいるが、このように、主軸に本発明の加工液液位検出装置をATCにより取り付けて加工槽内の加工液の液位が所定の高さにあるかどうか確認することにより、液面高さを二重に保障することができ、加工の安全性が向上する。また、加工液液位検出装置は液位確認後に取り外されるから、主軸のフロートスイッチ4により前記干渉が起こる虞は全くない。
【0027】
以上述べたとおり、加工液の液面高さを指定して堰板等を所定高さに自動的に位置決めできない加工槽の場合には、堰板等に設けたフロートスイッチと本発明の加工液液位検出装置とを協働させることにより、堰板等を所定高さに自動的に位置決めすることができる。また、加工液の液面高さを指定すると堰板等が自動的に上昇制御されて所定の高さ位置に位置決めされる加工槽の場合には、本発明の加工液液位検出装置は、加工槽内の加工液の液面が確かに所定高さまで上昇しているか確認し、液位を二重に保障して安全性を向上させる上で有効である。
【0028】
【発明の効果】
本発明の加工液液位検出装置は、ATCによって主軸先端部に着脱自在に装着するこができる。従って、放電加工時にはATCにより取り外して適宜の加工用電極と交換されるから、加工液液位検出装置のフロートスイッチが被加工物や加工槽側壁あるいは被加工物取り付け治具等と干渉して所要の放電加工を阻害するようなことがない。また、本発明の加工液液位検出装置と加工槽の前記堰板等に設けたフロートスイッチとを協働させることにより、加工槽内の加工液の液位を所定高さに自動設定することができる。また、加工液の液面高さを指定すると堰板等が上昇制御されて自動的に所定の高さに位置決めされる加工槽の場合には、本発明の加工液液位検出装置を用いることにより、加工槽の有するフロートスイッチによって液位が検出された後、加工槽内の加工液の液面が確かに所定高さまで上昇しているか確認し、液位を二重に保障して安全性を向上させることができる。また、本発明の加工液液位検出装置のホルダ側接続端子と主軸側接続端子は、コネクタにより所定の押圧力をもって当接するように構成されるから、フロートスイッチを数値制御装置に確実に接続することができる。
【図面の簡単な説明】
【図1】(a)は本発明の加工液液位検出装置の一実施例の使用状態を示す加工ヘッド主軸先端部分の正面図、(b)は同じく下面図。
【図2】図1(a)のコネクタ5部分を拡大して示した正面断面図。
【図3】本発明の加工液液位設定方法の一実施例の操作手順を示すフローチャート。
【図4】本発明の加工液液位設定方法の一実施例を説明する説明図。
【図5】本発明の加工液液位設定方法の一実施例を説明する説明図。
【図6】放電加工中の液位制御の操作手順を示すフローチャート。
【図7】本発明の加工液液位確認方法の一実施例の操作手順を示すフローチャート。
【符号の説明】
1 :接触子
2 :接触子ホルダ
3 :下側支持板
4 :フロートスイッチ
5 :コネクタ
51 :下側コネクタ
51a:下側コネクタの本体
51b:中空部
51c:ボルト
51d:段差部
51e:ガイド孔
51f:スライド端子
51g:段差部
51h:圧縮ばね
51i:螺子部
51j:ナット
51k:ナット
52 :上側コネクタ
52a:上側コネクタの本体
52b:仕切部
52c:中空部
52d:中空部
52e:ボルト
52f:端子取り付け孔
52g:端子
52h:ナット
52i:ナット
6 :リード線
6a :圧着端子
7 :加工ヘッド
8 :主軸
9 :チャック機構
10 :ブロック材
11 :上側支持板
12 :リード線
12a:圧着端子
13 :被加工物
14 :加工液
15 :加工槽
16 :加工槽の側壁
17 :フロートスイッチ
18 :樋
19 :加工テーブル
20 :液面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a machining liquid level detection device that detects a liquid level (liquid level) of a machining liquid supplied to a machining tank of a die-sinking electric discharge machine. The present invention also provides a machining liquid level setting method for adjusting and setting the level of a machining liquid in a machining tank to a predetermined height using the machining liquid level detection apparatus, and the machining liquid level detection apparatus. The processing liquid level confirmation method of confirming that the liquid level of the processing liquid in a processing tank exists in predetermined | prescribed height using this.
[0002]
[Prior art]
A machining electrode mounted on the tip of the spindle supported by the machining head and controlled to move along the Z-axis is placed opposite to the workpiece placed on the table in the machining tank via a discharge gap. While the workpiece and the machining electrode are immersed in the supplied oil or water-based machining fluid, a voltage pulse is intermittently applied between the workpiece and the machining electrode to repeatedly generate a discharge pulse, In electrical discharge machining, in which the workpiece is engraved by giving a relative machining feed in the Z-axis direction and, if necessary, in the X-axis and Y-axis directions between them, the level of the machining fluid is set to the discharge gap. It is important to keep it higher. In particular, when oil such as kerosene is used as the machining fluid, there is a risk that the machining fluid may ignite due to spark discharge and cause a fire accident if the level of the machining fluid decreases and the discharge gap is exposed to the liquid surface. is there. For this reason, the liquid level of the machining liquid is usually set to a predetermined height (a position higher by a predetermined distance from the surface of the workpiece) according to the thickness of the workpiece, and the side wall of the machining tank can be raised and lowered Or a dam plate is attached to a notch formed in a part of the side wall so as to be movable up and down, and a float switch is provided at a predetermined position inside the side wall or the dam plate (hereinafter referred to as a dam plate or the like). After adjusting the vertical position of the weir plate, etc., by the drive device or manually, the machining fluid is rapidly supplied until the float switch is activated. Thus, the liquid level of the machining liquid in the machining tank is set to a predetermined height (see Japanese Patent Laid-Open No. 59-152027).
[0003]
In order to fully automate the processing, a detection device that detects the vertical position of the weir plate, etc. is provided, and in accordance with the output signal of the detection device, the drive device that raises and lowers the weir plate etc. is controlled by the NC device and the liquid level The automatic setting is also done. However, when the workpiece has a shape with a step on the surface, the NC program may be complicated. As a simpler method, the operating liquid level of the float switch is separated from the float switch such as a dam plate. In the state where the float switch for detecting the movement is supported on the main shaft, the machining electrode is moved to the X axis and the Y axis and positioned at the machining position, and then the movement is controlled below the Z axis to be positioned at the machining start position. It is also possible to automatically set the liquid level of the machining liquid to the operating position of the float switch of the spindle by controlling the elevation of the weir plate and the like by the driving device until both float switches operate while supplying the machining liquid ( JP, 9-174340, A). In this case, the spindle float switch is a chuck mechanism such as a collet chuck at the tip of the spindle, or an electrode fixedly held by the chuck mechanism, corresponding to a set liquid level that is a predetermined distance higher than the surface of the workpiece. It is installed in a manner that hangs down from the main shaft on the side of the holder or the processing electrode fixedly held by the holder.
[0004]
In addition, the Die-sinker EDM machine selects and transports appropriate electrode holders from a magazine that contains a large number of electrode holders for holding various machining electrodes, and attaches and removes them from the spindle tip using a chuck mechanism. An automatic tool changer (ATC) that is housed in a magazine is usually provided, and the float switch of the spindle is installed in an area that does not interfere with the attachment and removal operations of the electrode holder by the ATC.
[0005]
[Problems to be solved by the invention]
As described above, the float switch supported by the spindle is installed near the side of the machining electrode, electrode holder, or chuck mechanism, and the installation area is limited to an area that does not interfere with the operation of the ATC. If the workpiece has a stepped shape with a step on the surface, the processing position is near the side wall of the processing tank, or the processing position is near the workpiece attachment jig, The float switch may interfere with (collision with) the workpiece, the side wall of the processing tank, or the workpiece attachment jig, and the processing electrode may not be positioned at the processing start position. Further, even if positioning to the machining start position is possible, after machining starts, the float switch of the spindle moves together with the machining electrode by machining feed and interferes with the workpiece to make machining impossible. There is a fear.
For this reason, in order to prevent such interference, the workpiece attachment position and orientation, the machining trajectory, the machining hole depth and the set liquid level (the height of the spindle float switch installed) This requires complicated work such as examining the relationship with (position).
[0006]
In view of the above problems, the present invention detects the liquid level of the machining fluid in the machining tank of the EDM machine by a float switch provided on the spindle, and removes the float switch during machining. It is an object of the present invention to provide a machining liquid level detection device that does not cause interference with a workpiece, a side wall of a machining tank, or a workpiece attachment jig. Further, the present invention is a method for adjusting and setting the liquid level of the processing liquid in the processing tank to a predetermined height by cooperating the processing liquid level detecting device and a float switch provided on the weir plate or the like. The purpose is to provide. Another object of the present invention is to provide a method for confirming the level of the machining liquid in the machining tank using the machining liquid level detection device.
[0007]
[Means for Solving the Problems]
In order to achieve this object, the machining liquid level detection device of the present invention is a rod-shaped contact made of a conductor having a predetermined length, and is fixedly held on the tip of the main spindle by an automatic tool changer. A contact holder, a float switch fixed to the contact holder, a holder side connection terminal fixed to the contact holder and electrically connected to the float switch, and fixed to the main shaft. A spindle-side connection terminal electrically connected to the numerical controller of the Die-sinker EDM, and the holder-side connection terminal when the contact holder is attached to the spindle tip by an automatic tool changer. It is comprised from the connector which contacts the said spindle side connection terminal with predetermined | prescribed pressing force.
[0008]
Further, the processing liquid level setting method of the present invention includes an automatic tool changer, a processing tank having an overflow member capable of adjusting the overflow liquid level by raising and lowering by a driving device, and an upper end portion of the overflow member. The machining tank of an electric discharge machine with a first float switch provided on the contact holder and the machining liquid level detecting device provided with the float switch fixed to the contact holder as a second float switch. A machining liquid level setting method for setting a machining liquid level at a predetermined height, wherein the contact holder is first attached to the spindle tip by the automatic tool changer, and the workpiece is machined. After the main shaft is moved above the surface, the main shaft is lowered to sense contact between the contact and the workpiece. When the contact is sensed, the descent of the main shaft is stopped, and the detection position is used as a reference. Operating position of the second float switch The spindle is moved up and down as necessary so as to reach a predetermined set liquid level, the driving device is controlled by the numerical control device to raise the overflow member and supply the processing liquid to the processing tank, The operations of the first float switch and the second float switch are monitored, and when it is determined that the liquid level of the machining liquid has reached the operating position of the first float switch, the liquid level of the machining liquid is When it is determined that the operating position of the float switch No. 2 has been reached, the overflow member is stopped from rising, and the contact holder is removed from the tip of the spindle by the automatic tool changer.
[0009]
Further, the machining liquid level confirmation method of the present invention includes an automatic tool changer and a machining that can automatically set the overflow member for adjusting the overflow liquid level to a predetermined Z-axis position by raising / lowering control by a driving device. A tank, a first float switch provided at an upper end portion of the overflow member, and the machining liquid level detecting device provided with a float switch fixed to the contact holder as a second float switch. A machining liquid level check method for checking whether or not the level of the machining fluid in the machining tank of the sculpture electric discharge machine is at a predetermined height. First, the overflow member is automatically set to a predetermined Z-axis position. After the set float is supplied to the processing tank, it is detected by the operation of the first float switch that the overflow has started and the liquid level of the processing liquid has been set to a predetermined height. The contact holder is attached to the spindle tip by the automatic tool changer. After moving the spindle above the surface on which the workpiece is processed, the spindle is lowered to sense the contact between the contact and the workpiece, and when the contact is sensed, the spindle is lowered. Then, the spindle is moved up and down as necessary so that the operation position of the second float switch becomes a predetermined set liquid level with reference to the sensed position, and then the operation state of the second float switch is determined. When it is determined that the liquid level is equal to or higher than the operating position of the second float switch, the automatic tool changer removes the contact holder from the spindle tip and outputs a signal notifying that machining is possible. And
[0010]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the processing liquid level detecting device of the present invention will be described with reference to the drawings.
FIG. 1A is a front view of the front end of the machining head spindle showing the use state of an embodiment of the machining liquid level detection device of the present invention, and FIG. 1B is a bottom view of the same.
In FIG. 1, reference numeral 1 denotes a bar-shaped contact made of a conductor having a predetermined length, which is used when a workpiece is positioned by sensing contact with the workpiece in a die-sinking electric discharge machine. The reference sphere used is preferred. Reference numeral 2 denotes a contact holder for fixing and holding the contact 1, which is a holder similar to a number of electrode holders that are fixed and held for processing electrodes of various sizes and shapes and are stored in an ATC magazine. The contact 1 is fixed and held. Reference numeral 3 denotes a tongue-like lower support plate provided with one end fixed to the contact holder 2 and extended laterally. 4 is a well-known float switch that closes a built-in contact and outputs an electrical signal when the float rises to a predetermined position due to a rise in liquid level, and is provided on the side of the contact 1 fixed to the lower support plate 3. It is done. For example, the float switch 4 is a float in which a permanent magnet is fixedly supported on the float, a reed switch is provided on the stem side, and the reed switch operates to output an electrical signal when the permanent magnet rises to a predetermined position as the float rises. Various known float switches such as switches are used as appropriate. Reference numeral 5 denotes a connector for detachably connecting a numerical control device (NC device) of the die-sinking electric discharge machine and the float switch 4 in an detachable manner. Reference numeral 51 denotes a lower connector of the connector 5, which is connected to the float switch 4 by a lead wire 6 and is fixed to the upper surface of the lower support plate 3 on the free end side.
[0011]
Reference numeral 7 denotes a machining head, which is supported by a column provided on the bed of the die-sinking electric discharge machine so as to be movable in the X-axis and Y-axis directions via a saddle and a ram. A main shaft 8 is supported by the machining head 7 so as to be movable in the Z-axis direction. The X and Y axis movements of the machining head 7 and the Z axis movement of the main shaft 8 are controlled by the NC device. A chuck mechanism 9 is provided at the tip of the main shaft 8 and detachably fixes and holds the contact holder 2 transported from the magazine by the transport arm of the ATC. In a state where the contact holder 2 is fixedly held by the chuck mechanism 9, the contact 1 is electrically connected to the main shaft 8 via the holder 2 and the chuck mechanism 9, and the main shaft 8 and the workpiece are respectively connected to the NC device. Electrically connected, contact between the contact 1 and the workpiece is detected as an electrical signal. Reference numeral 10 denotes a block material fixed to the main shaft 8, and 11 denotes an L-shaped upper support plate which is fixed to the block material 10 at one end and is suspended from the side of the main shaft 8. An upper connector 52 of the connector 5 is connected to the NC device by a lead wire 12 and is fixed to the L-shaped lower end surface of the upper support plate 11.
[0012]
Details of the connector 5 will be described with reference to FIG.
FIG. 2 is an enlarged front sectional view showing the connector 5 portion of FIG.
A main body 51a of the lower connector 51 has a cylindrical shape, and a hollow portion 51b having a cross-sectional shape is opened downward at a lower end portion, and is formed on a thick portion outside the central constricted portion having the cross-sectional shape. Bolt mounting holes are formed and fixed to the lower support plate 3 by bolts 51c. Guide holes 51e and 51e having stepped portions 51d and 51d are formed through the bottom surfaces of the hollow portions of both circular portions having a cross-sectional shape in the axial direction of the main body 51a. 51f and 51f are two rod-like slide terminals made of a conductor such as brass, and have stepped portions 51g and 51g, which are respectively inserted into the two guide holes 51e and 51e so as to be vertically movable. Compression springs 51h and 51h are interposed between the stepped portions 51d and 51d and 51g and 51g, and the slide terminals 51f and 51f are urged by the compression springs 51h and 51h so that the conical tip ends upward from the upper surface of the main body 51a. To protrude. Further, screw portions 51i and 51i are formed at the rear end portions of the slide terminals 51f and 51f, and the crimp terminal 6a connected to the lead wire 6 is sandwiched between the two nuts 51j and 51k at the respective screw portions. The two slide terminals 51f and 51f are fixed and connected to the float switch 4.
[0013]
The main body 52a of the upper connector 52 is formed in a cylindrical shape, and hollow portions 52c and 52d having a cross-sectional shape are formed on both sides of the partition portion 52b so as to open upward and downward. Bolt attachment holes are formed in the thick portion of the lower plate 51, and are fixed to the upper support plate 11 coaxially with the main body 51a of the lower connector 51 by bolts 52e. The main body 51a of the lower connector 51 and the main body 52a of the upper connector 52 are both formed of an insulator such as bakelite. The connector 5 is arranged such that a gap G of a predetermined distance of about 1 to 2 mm is formed between both the main bodies 51a and 52a. Terminal attachment holes 52f and 52f are formed coaxially with the two guide holes 51e and 51e in the partition 52b. Two bolt-like terminals 52g and 52g made of a conductor such as brass are inserted into the holes 52f and 52f, respectively, and fixed to the partition portion 52b by nuts 52h and 52h. Further, the crimping terminal 12a connected to the lead wire 12 is clamped and fixed to the respective terminals 52g and 52g by the nut 52i, and the two terminals 52g and 52g are connected to the NC device.
[0014]
Using the machining liquid level detection device of the present invention configured as described above and the liquid level detection device (float switch) provided on the weir plate or the like, the NC device controls the liquid level of the machining liquid in the machining tank. An operation procedure for adjusting and setting the predetermined height will be described with reference to the flowchart of FIG. S101 to S118 in the figure indicate step numbers.
First, as shown in FIG. 4, N is the distance (normally on the surface) from the surface of the workpiece 13 (when there is a step on the upper or lower surface where processing is performed) to the set liquid level. (Desired liquid level height), L is the length from the tip of the contact 1 to the operating position of the float switch 4, and this length L is a fixed set value, Often set to the same. Z1 is a correction value (Z1 = N−L) for the length L when the distance N of the set liquid level is not equal to the length L and the distance N is set to be deeper or shallower than the length L. is there.
[0015]
When setting the liquid level, first, the distance N to the set liquid level is set (step S101), Z1 = N−L is calculated, and the result is stored (step S102). Next, after the spindle 8 is moved to the tool change position by the ATC, the holder 2 for fixing and holding the contact 1 is conveyed from the magazine to a predetermined lower position on the same axis as the chuck mechanism 9 by the ATC. It is moved and fixed to the main shaft 8 by the chuck mechanism 9 (step S103). As a result, the contact 1 is electrically connected to the NC device, and contact detection between the contact 1 and the workpiece 13 becomes possible. At this time, due to the upward movement of the contact holder 2, the main body 51a moves upward from a lower position coaxial with the main body 52a to a position where a gap G of a predetermined distance is formed between both the main bodies 51a and 52a. During the movement, the conical tip portions of the two slide terminals 51f and 51f abut against the lower surfaces of the terminals 52g and 52g, respectively, and the slide terminals 51f and 51f oppose the compression springs 51h and 51h and guide holes 51e and 51e. The slide terminals 51f, 51f and the terminals 52g, 52g come into contact with each other with a pressing force corresponding to the amount of movement. As a result, the float switch 4 is electrically connected to the NC device, and the liquid level can be detected.
[0016]
Next, the spindle 8 is moved, and the contactor 1 is positioned above an appropriate location on the surface where the workpiece 13 is processed (an appropriate location where the float switch 4 does not cause the interference). Step S104), the spindle 8 is lowered (Step S105), the presence or absence of contact between the contact 1 and the workpiece is determined (Step S106), and the presence or absence of the contact is repeatedly determined at a predetermined sampling time (Step S106). Step S107) If no contact is detected even after a predetermined time has elapsed, an alarm is issued by sound, lamp, display, etc. to notify the abnormality (Step S108). If contact is detected within the predetermined time, the downward movement of the main shaft is stopped (step S109), and the contact detection Z-axis position is stored (step S110). At this time, the machining start origin (workpiece surface height position) is set in the NC device. Next, the main shaft 8 is moved by the distance Z1 from the contact-sensing Z-axis position by the Z-axis (step S111). When length L <distance N, the distance Z1 is positive and the main shaft 8 is increased by Z1, and when length L> distance N, the distance Z1 is negative and the main shaft 8 is decreased by the absolute value of Z1. When the spindle 8 is lowered, the spindle 8 is moved horizontally to a position where there is no possibility of interfering with the workpiece 13 or the like even when the contact 1 is lowered, and then lowered. Further, since the distance N required for stable and good processing is typically about 50 mm, the contact 1 is formed so that the length L is 50 mm, and the distance N is set to 50 mm. The Z-axis movement of the main shaft 8 in step S111 is not performed. In this case, step S110 and step S111 are unnecessary.
[0017]
The liquid level setting preparatory work is completed as described above, and thereafter, the process proceeds to an operation of adjusting and setting the liquid level while supplying the machining liquid.
The adjustment and setting of the liquid level is performed in the state of step S111, in the state of step S109 when L = N, or in a state where the main shaft 8 is further horizontally moved from this state to another position as appropriate. This is performed by controlling the drive device for raising and lowering the weir plate and the like by the output signals of the float switch (main shaft float switch 4) of the machining liquid level detecting device and the float switch such as the weir plate constituting the overflow member. FIG. 5 shows a moving state of the weir plate and the like during the adjustment and setting work. FIG. 5 shows that the processing tank 15 in which a part of the side wall 16 of the processing tank 15 is a part such as the dam plate can be moved up and down, and a lifting mechanism (not shown) such as a well-known lifting mechanism using a rack and pinion, a link mechanism or the like. ) And a case where the side wall 16 is lifted and lowered together with the processing tank 15 by a driving device for driving the mechanism. Reference numeral 17 denotes a float switch provided at the upper end of the side wall 16, 18 denotes a trough for collecting the processing liquid overflowing from the side wall 16, and 19 denotes a processing table provided in the processing tank 15. An object 13 is placed.
[0018]
First, a barrier plate or the like (side wall 16) is raised by a predetermined amount, for example, about 10 mm (step S112). The predetermined amount is increased by, for example, operating a number of limit switches operated by a timer for a predetermined time or by raising and lowering a weir plate or the like on a fixed side at predetermined intervals (for example, 10 mm intervals). This is performed by controlling the driving device to stop by the output signal of the limit switch. Next, both a rapid delivery pump with a large discharge rate for supplying the machining fluid rapidly to the machining tank and a circulation pump with a relatively small discharge amount for collecting the machining liquid overflowing from the weir plate and circulatingly supplying it to the machining tank The operation is started, and the supply of the machining liquid 14 to the machining tank is started (step S113), and the operation of the float switch 17 such as a barrier plate is discriminated (step S114). When the liquid level 20 eventually rises and the switch 17 is turned on, the operation of the spindle float switch 4 is determined (step S115). This state is shown in FIG. If the result of determination is that the spindle float switch 4 is OFF, the process returns to step S112 to raise the side wall 16 again by a predetermined amount. This state is shown in FIG. 5 (b) (in the figure, the rising amount of the side wall 16 is exaggerated. The actual one-time rising amount is slight). The operation of the float switch 17 such as the weir plate is determined again while the supply of the machining fluid 14 is continued. When the ON operation is determined due to the rise of the liquid level 20, the operation of the float switch 4 of the spindle is determined. This state is shown in FIG. While the switch 4 is maintained in the OFF state, the operations in steps S112 to S115 are repeated until the switch 4 is in the ON state.
[0019]
When the liquid level 20 eventually rises and the ON state of the switch 4 is determined, the current position of the side wall 16 calculated from the number of repetitions of the predetermined amount increase and the reference position is stored, and the height position is set on the weir plate or the like. It is maintained (step S116), the operation of the rapid pump is stopped, and only the supply of the machining fluid 14 by the circulation pump is continued (step S117). This state is shown in FIG. Note that the storage of the current position of the side wall 16 in step S116 is for confirmation, and is not necessarily required if the height of the barrier plate or the like can be maintained. Next, the spindle is raised and moved to a tool change position by ATC, and the contact holder 2 is removed and conveyed and stored in the magazine (step S118). As described above, the liquid level of the processing liquid in the processing tank is set at a position higher by a predetermined distance from the surface of the workpiece 13, so that the electrode holder with the predetermined electrode attached is taken out of the magazine by the ATC and attached to the main shaft. The electric discharge machining is started by returning to the machining position. The actual set liquid level of the machining fluid is the height of the liquid surface overflowing from the weir plate or the like (side wall 16), and the operation position of the float switch 17 is such that the machining liquid overflows from the upper end of the side wall 16. Even when the switch 17 is arranged, the depth (thickness) of the overflow processing liquid that varies depending on the circulation supply amount and an error of the predetermined amount of the side wall 16 that is step-fed are accompanied.
[0020]
In addition, as a mode of filling the processing liquid into the processing tank 15 by sequentially increasing a predetermined amount of the above-described barrier plate or the like (side wall 16), in general, in order to increase the filling efficiency, the liquid level in the processing tank 15 While the level is low, the predetermined amount of rising of the weir plate or the like is set large, whereas in the position close to the predetermined liquid level, the predetermined amount is set to a small value. This is performed by setting a desired pattern according to the shape, size, work content, operator, or the like.
[0021]
Here, control of the liquid level during electric discharge machining will be described with reference to the flowchart of FIG. S201 to 212 in the figure indicate step numbers.
In a state where the side wall 16 is held at the above-described position and the machining liquid overflows from the side wall 16 and is circulated and supplied, first, an electrode on which a machining electrode used for machining is fixedly held by a machining start command signal The holder is selected from the magazine by the ATC, conveyed, and attached to the spindle 8 by the chuck mechanism 9 (step S201). Next, the spindle 8 is moved to the machining position (step S202), various processes for starting machining are performed, and electric discharge machining is started (step S203). After the start of machining, every time the predetermined time T1 has elapsed (step S204), the operation state of the float switch 17 on the side wall 16 is determined (step S205). If the state is ON, it is determined whether the processing is completed (step S206). If not completed, the process returns to step S204. If it is determined in step S206 that the machining has been completed, a machining stop process is performed (step S207), and the electric discharge machining is terminated.
[0022]
In addition, since the machining fluid is normally circulated and overflowing from the side wall 16 continues, the liquid level does not decrease. However, the OFF state of the float switch 17 is determined in step S205 for some reason. When a drop in the liquid level is detected, the rapid feed pump is operated to increase the supply amount of the machining fluid (step S208), and the operating state of the float switch 17 is monitored (step S209). Stop (step S210), and proceed to step S205. If the float switch 17 is not turned on even after the predetermined time T2 has elapsed (step S211), an emergency stop process is performed (step S212), and an alarm is given by sound, lamp, display, etc. to notify the abnormality (step S212). S213).
[0023]
As described above, the liquid level setting operation is performed by attaching the machining liquid level detection device to the main shaft. However, the main shaft is not limited to the processing position on the surface where the workpiece is processed but is appropriately placed above the position. Therefore, the liquid level can be automatically set to a predetermined height smoothly without causing the interference to the float switch 4 on the main shaft side. Further, during electric discharge machining, the liquid level is monitored by a float switch 17 provided on a weir plate or the like and controlled to a predetermined height, and the machining liquid level detector is removed from the main shaft. There is no possibility of causing the interference.
[0024]
Next, the driving device that raises and lowers the weir plate and the like is controlled by the NC program, and the processing tank or the weir plate that can automatically set the weir plate and the like to the predetermined height is automatically detected while detecting the position itself. When using a processing tank that is set to a predetermined height and, for example, a number of pallets with various workpieces attached are replaced one after another by an automatic pallet changer (APC) to perform electrical discharge machining such as part machining In addition, when the processing liquid in the processing tank is temporarily discharged at the time of pallet replacement and the processing liquid is supplied again after the pallet replacement to start processing, the level of the processing liquid in the processing tank is at a predetermined height. A method for confirming whether or not the machining liquid level detection device of the present invention is used will be described with reference to the flowchart of FIG. S301 to S314 in the figure indicate step numbers.
Position detection by the weir plate itself can be performed when the position is continuously detected by reading various scales such as a magnetic scale, or by the number of operation outputs of limit switches arranged in multiple stages at predetermined intervals. In some cases, detection is performed.
[0025]
First, after the pallet is replaced by APC, the dam plate of the processing tank is automatically raised to a predetermined height, the supply of the machining liquid is started, and the float switch provided on the dam plate and the like is operated before the overflow. The start is detected, and the liquid level of the machining liquid is set to a predetermined height (step S301). Next, after the contact holder 2 is selected from the magazine by ATC, conveyed and mounted on the spindle 8 by the chuck mechanism 9 (step S302), the spindle 8 is moved above the surface on which the workpiece is processed (step S302). Step S303). Next, the spindle 8 is moved downward (step S304), and the presence or absence of contact between the contact 1 and the workpiece 13 is determined (step S305). The presence / absence of the contact is repeatedly determined at a predetermined sampling time (step S306). If contact is not detected even after the predetermined time has elapsed, an alarm is given by sound, lamp, display, etc. to notify the abnormality (step S307). If contact is detected within the predetermined time, the downward movement of the spindle is stopped (step S308), and the operation of the float switch 4 of the spindle is discriminated (step S309). If the switch 4 is in the ON state, the spindle 8 is moved to the exchange position by the ATC, and then the contact holder 2 is removed, transported and stored in the magazine (step S310), and a processing OK signal for the workpiece is output. (Step S311). Then, by this machining OK signal, electric discharge machining of the workpiece is performed according to the flowchart of FIG. 6 described above. If the switch 4 is in the OFF state as a result of the determination in step S309, the spindle 8 is moved to the replacement position by the ATC, and then the contact holder 2 is removed and conveyed and stored in the magazine (step S312). The processing skip history for processing the next workpiece by stopping the processing of the workpiece is recorded (step S313), and a processing skip command signal is output (step S314). Then, by this processing skip command signal, the APC is activated and the pallet is replaced with the next pallet, and the processing operation similar to the above is performed again from step S301.
7 is a case where the length L and the distance N are equal. When L and N are not equal, the lowering of the spindle 8 is stopped in step S308 as in the flowchart of FIG. After moving the spindle 8 by Z1 = N−L Z-axis, the process proceeds to step S309.
[0026]
When the pallet is automatically changed and the machining fluid is automatically set to the predetermined liquid level and the unmanned operation is performed, it is important for fire safety to maintain the liquid level of the machining fluid. Although the liquid level is guaranteed for a while by being automatically set to a predetermined height by the NC program or by its own position detection, the machining liquid level detecting device of the present invention is thus provided on the spindle. Is attached by ATC and it is confirmed whether the liquid level of the machining liquid in the machining tank is at a predetermined height, so that the liquid level can be ensured twice, and the safety of machining is improved. Further, since the machining liquid level detector is removed after the liquid level is confirmed, there is no possibility that the interference is caused by the float switch 4 of the spindle.
[0027]
As described above, in the case of a processing tank in which the level of the processing liquid is specified and the weir plate cannot be automatically positioned at a predetermined height, the float switch provided on the weir plate etc. and the processing liquid of the present invention By cooperating with the liquid level detection device, the weir plate and the like can be automatically positioned at a predetermined height. In addition, in the case of a processing tank in which the weir plate and the like are automatically controlled to rise and positioned at a predetermined height position when the liquid level of the processing liquid is specified, the processing liquid level detector of the present invention is It is effective in confirming whether the liquid level of the processing liquid in the processing tank has risen to a predetermined height, and ensuring the liquid level twice to improve safety.
[0028]
【The invention's effect】
The machining liquid level detection device of the present invention can be detachably attached to the tip of the main shaft by ATC. Therefore, since it is removed by ATC and replaced with an appropriate machining electrode during electric discharge machining, the float switch of the machining liquid level detection device interferes with the workpiece, the side wall of the machining tank, the workpiece attachment jig, etc. There is no such thing as obstructing electrical discharge machining. In addition, the level of the processing liquid in the processing tank is automatically set to a predetermined height by cooperating the processing liquid level detection device of the present invention and the float switch provided on the weir plate of the processing tank. Can do. In addition, when the liquid level of the machining liquid is specified, the machining liquid level detecting device of the present invention is used in the case of a machining tank in which the weir plate and the like are controlled to rise and are automatically positioned at a predetermined height. After the liquid level is detected by the float switch of the processing tank, check whether the liquid level of the processing liquid in the processing tank has risen to the specified height, and guarantee the liquid level twice to ensure safety Can be improved. Further, since the holder side connection terminal and the spindle side connection terminal of the machining liquid level detection device of the present invention are configured to contact with a predetermined pressing force by the connector, the float switch is securely connected to the numerical control device. be able to.
[Brief description of the drawings]
FIG. 1A is a front view of a tip end portion of a machining head spindle showing a use state of an embodiment of a machining liquid level detection apparatus of the present invention, and FIG.
FIG. 2 is an enlarged front sectional view showing a connector 5 portion of FIG.
FIG. 3 is a flowchart showing an operation procedure of an embodiment of the machining liquid level setting method of the present invention.
FIG. 4 is an explanatory view for explaining one embodiment of a processing liquid level setting method of the present invention.
FIG. 5 is an explanatory view for explaining one embodiment of a processing liquid level setting method of the present invention.
FIG. 6 is a flowchart showing an operation procedure of liquid level control during electric discharge machining.
FIG. 7 is a flowchart showing an operation procedure of an embodiment of the processing liquid level confirmation method of the present invention.
[Explanation of symbols]
1: Contact
2: Contact holder
3: Lower support plate
4: Float switch
5: Connector
51: Lower connector
51a: Lower connector body
51b: Hollow part
51c: Bolt
51d: Stepped portion
51e: Guide hole
51f: Slide terminal
51 g: Stepped portion
51h: compression spring
51i: Screw part
51j: nut
51k: Nut
52: Upper connector
52a: Upper connector body
52b: Partition
52c: Hollow part
52d: Hollow part
52e: Bolt
52f: Terminal mounting hole
52g: Terminal
52h: Nut
52i: nut
6: Lead wire
6a: Crimp terminal
7: Processing head
8: Spindle
9: Chuck mechanism
10: Block material
11: Upper support plate
12: Lead wire
12a: Crimp terminal
13: Work piece
14: Processing fluid
15: Processing tank
16: Side wall of processing tank
17: Float switch
18: 樋
19: Processing table
20: Liquid level

Claims (6)

加工ヘッドにZ軸移動可能に支持された主軸の先端部に加工用電極を自動的に交換して装着する自動工具交換装置を備え、該自動工具交換装置により主軸先端部に装着した加工用電極を加工槽内のテーブル上に載置した被加工物に放電間隙を介して対向配置し、加工槽に供給した加工液中に被加工物と加工用電極を浸漬させた状態で、被加工物と加工用電極間に間欠的に電圧パルスを印加して繰り返し放電パルスを発生させると共に、両者間にZ軸方向、及び必要に応じてX軸、Y軸方向の相対的な加工送りを与えて被加工物を形彫り加工する形彫り放電加工機の前記加工槽内の加工液の液位を検出する加工液液位検出装置であって、
所定長さの導体からなる棒状の接触子と、
該接触子を固定保持して前記自動工具交換装置により主軸先端部に装着される接触子ホルダと、
該接触子ホルダに固定して設けたフロートスイッチと、
前記接触子ホルダに固定して設けられ前記フロートスイッチに電気的に接続されたホルダ側接続端子と、
主軸に固定して設けられ形彫り放電加工機の数値制御装置に電気的に接続された主軸側接続端子と、
前記自動工具交換装置によって前記接触子ホルダが主軸先端部に装着される際、前記ホルダ側接続端子と前記主軸側接続端子とを所定の押圧力をもって当接させるコネクタと、
からなることを特徴とする形彫り放電加工機の加工液液位検出装置。
An automatic tool changer that automatically replaces and attaches a machining electrode to the tip of the spindle supported so as to be movable in the Z axis on the machining head, and the machining electrode attached to the spindle tip by the automatic tool changer The workpiece is placed opposite to the workpiece placed on the table in the machining tank via the discharge gap, and the workpiece and the machining electrode are immersed in the machining fluid supplied to the machining tank. A voltage pulse is intermittently applied between the machining electrodes to repeatedly generate a discharge pulse, and a relative machining feed in the Z-axis direction and, if necessary, the X-axis and Y-axis directions is given between them. A machining liquid level detecting device for detecting a liquid level of a machining liquid in the machining tank of a die-sinking electric discharge machine for engraving a workpiece,
A rod-shaped contact made of a conductor of a predetermined length;
A contact holder that is fixedly held by the automatic tool changer and is attached to the tip end of the spindle;
A float switch fixed to the contact holder;
A holder-side connection terminal fixed to the contact holder and electrically connected to the float switch;
A spindle-side connection terminal that is fixed to the spindle and is electrically connected to a numerical controller of an electric discharge machine,
A connector for bringing the holder side connection terminal and the spindle side connection terminal into contact with each other with a predetermined pressing force when the contact holder is mounted on the spindle tip by the automatic tool changer;
A machining liquid level detection device for a die-sinking electric discharge machine characterized by comprising:
前記所定の押圧力が圧縮ばねによって付与されることを特徴とする請求項1に記載の形彫り放電加工機の加工液液位検出装置。The machining liquid level detection device for a die-sinking electric discharge machine according to claim 1, wherein the predetermined pressing force is applied by a compression spring. 前記接触子が基準球であることを特徴とする請求項1に記載の形彫り放電加工機の加工液液位検出装置。2. The machining liquid level detecting device for an electric discharge machine according to claim 1, wherein the contact is a reference sphere. 前記接触子の先端と前記フロートスイッチの動作位置との上下間隔が被加工物表面から所要の加工液液位までの距離と同じ長さに形成されていることを特徴とする請求項1に記載の形彫り放電加工機の加工液液位検出装置。The vertical distance between the tip of the contact and the operating position of the float switch is formed to have the same length as the distance from the workpiece surface to a required machining liquid level. Liquid level detection device for EDM of EDM. 加工ヘッドにZ軸移動可能に支持された主軸の先端部に加工用電極を自動的に交換して装着する自動工具交換装置と、駆動装置により昇降制御して溢流液位を調整し得る溢流部材を有する加工槽と、前記溢流部材の上端部に設けた第1のフロートスイッチとを備えると共に、所定長さの導体からなる棒状の接触子と、該接触子を固定保持して前記自動工具交換装置により主軸先端部に装着される接触子ホルダと、該接触子ホルダに固定して設けた第2のフロートスイッチと、前記接触子ホルダに固定して設けられ前記第2のフロートスイッチと電気的に接続されたホルダ側接続端子と、主軸に固定して設けられ形彫り放電加工機の数値制御装置と電気的に接続された主軸側接続端子と、前記自動工具交換装置によって前記接触子ホルダが主軸先端部に装着される際、前記ホルダ側接続端子と前記主軸側接続端子とを所定の押圧力をもって当接させるコネクタとから構成される加工液液位検出装置を備えた形彫り放電加工機の前記加工槽内の加工液の液位を所定高さに設定する加工液液位設定方法であって、
先ず、前記自動工具交換装置により前記接触子ホルダを主軸先端部に取り付け、被加工物の加工の行われる表面の上方に主軸を移動した後、主軸を下降させて前記接触子と被加工物との接触を感知し、該接触が感知されたら主軸の下降を停止し、該感知位置を基準として前記第2のフロートスイッチの動作位置が所定の設定液位となるように必要に応じて主軸を昇降移動し、前記数値制御装置により前記駆動装置を制御して前記溢流部材を上昇させると共に加工槽に加工液を供給して、前記第1のフロートスイッチと前記第2のフロートスイッチの動作を監視し、加工液の液位が前記第1のフロートスイッチの動作位置に達したことが判別されたとき加工液の液位が前記第2のフロートスイッチの動作位置に達していることが判別されたら、前記溢流部材の上昇を止め、前記自動工具交換装置により前記接触子ホルダを主軸先端部から取り外すことを特徴とする形彫り放電加工機の加工液液位設定方法。
An automatic tool changer that automatically replaces and attaches the machining electrode to the tip of the spindle that is supported by the machining head so that it can move in the Z axis, and an overflow that can be adjusted up and down by the drive to adjust the overflow liquid level A processing tank having a flow member, a first float switch provided at the upper end of the overflow member, a rod-shaped contact made of a conductor of a predetermined length, and holding and holding the contact Contact holder attached to the spindle tip by an automatic tool changer, a second float switch fixed to the contact holder, and the second float switch fixed to the contact holder A holder side connection terminal electrically connected to the spindle, a spindle side connection terminal fixed to the spindle and electrically connected to a numerical control device of a sculpture electric discharge machine, and the contact by the automatic tool changer The child holder is the spindle An electric discharge machining apparatus provided with a machining liquid level detection device comprising a connector for bringing the holder side connection terminal and the spindle side connection terminal into contact with each other with a predetermined pressing force when mounted on an end. A processing liquid level setting method for setting the liquid level of the processing liquid in the processing tank to a predetermined height,
First, the contact holder is attached to the tip of the spindle by the automatic tool changer, the spindle is moved above the surface on which the workpiece is processed, the spindle is lowered, and the contact and workpiece When the contact is detected, the lowering of the main shaft is stopped, and the main shaft is moved as necessary so that the operation position of the second float switch becomes a predetermined set liquid level with reference to the detected position. Move up and down, control the drive device by the numerical control device to raise the overflow member and supply the processing liquid to the processing tank, and operate the first float switch and the second float switch Monitoring, and when it is determined that the liquid level of the processing liquid has reached the operating position of the first float switch, it is determined that the liquid level of the processing liquid has reached the operating position of the second float switch. Once Serial stops rising of the overflow member, said automatic tool changer by working fluid liquid level method of setting die sinking electric discharge machine, characterized in that removing the contact holder from the spindle tip.
加工ヘッドにZ軸移動可能に支持された主軸の先端部に加工用電極を自動的に交換して装着する自動工具交換装置と、溢流液位を調整する溢流部材を駆動装置により昇降制御して所定のZ軸位置に自動的に設定し得る加工槽と、前記溢流部材の上端部に設けた第1のフロートスイッチとを備えると共に、所定長さの導体からなる棒状の接触子と、該接触子を固定保持して前記自動工具交換装置により主軸先端部に装着される接触子ホルダと、該接触子ホルダに固定して設けた第2のフロートスイッチと、前記接触子ホルダに固定して設けられ前記第2のフロートスイッチと電気的に接続されたホルダ側接続端子と、主軸に固定して設けられ形彫り放電加工機の数値制御装置と電気的に接続された主軸側接続端子と、前記自動工具交換装置によって前記接触子ホルダが主軸先端部に装着される際、前記ホルダ側接続端子と前記主軸側接続端子とを所定の押圧力をもって当接させるコネクタとから構成される加工液液位検出装置を備えた形彫り放電加工機の前記加工槽内の加工液の液位が所定高さにあるか確認する加工液液位確認方法であって、
先ず、溢流部材を所定のZ軸位置に自動的に設定した後、前記加工槽に加工液を供給し、溢流が開始して加工液の液位が所定の高さに設定されたことが前記第1のフロートスイッチの動作により検出されたら、前記自動工具交換装置により前記接触子ホルダを主軸先端部に取り付け、被加工物の加工の行われる表面の上方に主軸を移動した後、主軸を下降させて前記接触子と被加工物との接触を感知し、該接触が感知されたら主軸の下降を停止し、該感知位置を基準として前記第2のフロートスイッチの動作位置が所定の設定液位となるように必要に応じて主軸を昇降移動した後、前記第2のフロートスイッチの動作状態を判別し、液位が該第2のフロートスイッチの動作位置以上にあることが判別されたら前記自動工具交換装置により前記接触子ホルダを主軸先端部から取り外して、加工可能を知らせる信号を出力することを特徴とする加工液液位確認方法。
Automatic tool changer that automatically replaces and attaches the machining electrode to the tip of the spindle that is supported by the machining head so that it can move in the Z-axis, and an overflow member that adjusts the overflow level is controlled by the drive unit And a rod-like contactor made of a conductor having a predetermined length, and a processing tank that can be automatically set to a predetermined Z-axis position, a first float switch provided at the upper end of the overflow member, A contact holder that is fixedly held by the automatic tool changer and attached to the tip of the spindle, a second float switch that is fixed to the contact holder, and fixed to the contact holder. And a holder side connection terminal electrically connected to the second float switch, and a spindle side connection terminal fixed to the spindle and electrically connected to the numerical control device of the die-sinking electric discharge machine And the automatic tool changer And a machining liquid level detecting device comprising a connector for bringing the holder side connection terminal and the spindle side connection terminal into contact with each other with a predetermined pressing force when the contact holder is mounted on the tip of the main shaft. A machining liquid level confirmation method for confirming whether or not the liquid level of the machining liquid in the machining tank of the die-sinking electric discharge machine is at a predetermined height,
First, after the overflow member was automatically set to a predetermined Z-axis position, the machining liquid was supplied to the machining tank, the overflow started, and the liquid level of the machining liquid was set to a predetermined height. Is detected by the operation of the first float switch, the contact holder is attached to the tip of the spindle by the automatic tool changer, and the spindle is moved above the surface on which the workpiece is processed. , The contact between the contact and the workpiece is sensed, and when the contact is sensed, the descending of the main shaft is stopped, and the operation position of the second float switch is set to a predetermined value based on the sensed position. After the spindle is moved up and down as necessary to reach the liquid level, the operating state of the second float switch is determined, and if it is determined that the liquid level is equal to or higher than the operating position of the second float switch. The automatic tool changer Remove the probe holder from the spindle tip, working fluid liquid level confirmation method and outputting a signal indicative of the possible machining.
JP2000279205A 2000-09-14 2000-09-14 Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method Expired - Lifetime JP3853584B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000279205A JP3853584B2 (en) 2000-09-14 2000-09-14 Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000279205A JP3853584B2 (en) 2000-09-14 2000-09-14 Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method

Publications (2)

Publication Number Publication Date
JP2002086317A JP2002086317A (en) 2002-03-26
JP3853584B2 true JP3853584B2 (en) 2006-12-06

Family

ID=18764246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000279205A Expired - Lifetime JP3853584B2 (en) 2000-09-14 2000-09-14 Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method

Country Status (1)

Country Link
JP (1) JP3853584B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347251B2 (en) * 2005-04-01 2009-10-21 ファナック株式会社 Machining fluid level detector for wire-cut electrical discharge machine
CN111468792A (en) * 2020-05-14 2020-07-31 安庆市兴业精工机械有限公司 Spark machine for preventing carbon deposition from being ignited

Also Published As

Publication number Publication date
JP2002086317A (en) 2002-03-26

Similar Documents

Publication Publication Date Title
KR20120087813A (en) Method of cutting out part with making partially welded spots in wire-cut electrical discharge machining
JPH0346246B2 (en)
JP3853584B2 (en) Machining liquid level detector, machining liquid level setting method, and machining liquid level confirmation method
CN111037017B (en) Mold core moving device of wire electric discharge machine
RU2044610C1 (en) Machine-tool for the electro-erosion processing
KR20160063953A (en) Apparatus for electrochemical discharge machining
JPS6257450B2 (en)
US6310312B1 (en) Method and apparatus for testing electrodes in an EDM process
CN110814453B (en) Mold core moving device of wire electric discharge machine
JP5008132B2 (en) Welding torch electrode changer
US3383296A (en) Electrochemical trepanning process and apparatus to accomplish the same
CN113601222A (en) Hydraulic clamp for drilling and milling shaft parts and using method thereof
JP3999537B2 (en) Electrode guide device for small hole electric discharge machine
JP2682341B2 (en) Electric discharge machine
JPH09174341A (en) Electric discharge machine
CN220144952U (en) Automatic tin dipping device
JPH09174340A (en) Diesinking electric discharge machine
KR102421479B1 (en) Method of checking jammed guide of electrical discharge machine
CN214417991U (en) Welding device of automatic riveting and pressing welding equipment for bus plates
JPH06226541A (en) Wire cut type electric discharge machining device
JP2571929B2 (en) Compound electric discharge machine
JP2019166609A (en) Fine hole electric discharge machine
JP3335741B2 (en) Small hole electric discharge machine
JPH08118151A (en) Wire electric discharge machine with automatic head changer
JP2001129725A (en) Dip type wire electric discharge machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060906

R150 Certificate of patent or registration of utility model

Ref document number: 3853584

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term