JP3853295B2 - Spraying method and apparatus - Google Patents

Spraying method and apparatus Download PDF

Info

Publication number
JP3853295B2
JP3853295B2 JP2003019758A JP2003019758A JP3853295B2 JP 3853295 B2 JP3853295 B2 JP 3853295B2 JP 2003019758 A JP2003019758 A JP 2003019758A JP 2003019758 A JP2003019758 A JP 2003019758A JP 3853295 B2 JP3853295 B2 JP 3853295B2
Authority
JP
Japan
Prior art keywords
gas
slurry
multiple outer
cylinder
outer cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003019758A
Other languages
Japanese (ja)
Other versions
JP2004230243A (en
Inventor
栄俊 内藤
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2003019758A priority Critical patent/JP3853295B2/en
Publication of JP2004230243A publication Critical patent/JP2004230243A/en
Application granted granted Critical
Publication of JP3853295B2 publication Critical patent/JP3853295B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、粉体、液体又はスラリーからなる流動性物質と気体とを衝突混合させ、流動性物質を微粒化して噴霧する方法及び装置に関するものであり、ダスト混合廃液スラリー等の噴霧乾燥等に用いるものである。
【0002】
【従来の技術】
現在、多くの産業において、液体の微粒化を二流体ノズルを用いて行っている。その微粒化する液体の処理量や、液滴の粒子径は非常に広範囲に及んでいる。その中でも、ダスト混合廃液スラリー等の噴霧乾燥では、高温炉内に廃液を圧縮気体により分散させる二流体ノズルで噴霧させ、スラリー中の水分を蒸発させ、廃液中のダストを乾燥回収させている。
【0003】
従来、用いられる二流体ノズルは、気体と液体とを衝突混合させて液滴を微粒化させている。その方式にはノズル内部で気液を衝突混合させる内部混合方式(特許文献1)と、液体吐出口外部で気液を衝突混合する外部混合方式とがある。内部混合方式のノズルでは、液体と気体とをノズル内部に設けた混合室で衝突させた後、整流室、噴射室を通過させ、吐出口から噴射する構造となっている。混合流体は、その流路において形成されている多段の壁面に衝突し、液滴の微粒化が図られる。
【0004】
このような内部混合方式のノズルは、液滴の微粒化を図るため、気液の流路に衝突壁が設けられ、更には吐出口が小さく絞られ、吐出速度を上げているので、ダスト濃度の高い高粘性かつ高沈降性のスラリーを噴霧すると、衝突壁や液体流路の曲がり部に溶解物が付着し、それが積層され流路が閉塞したり、粒径の大きい溶解物が吐出口に詰まったりする問題が生じる。
【0005】
【特許文献1】
第2710398号特許公報
【0006】
これに対し、外部混合方式の二流体ノズルは、図5に例示するように、ノズル本体101の中心に作られた液体供給路102を介し液体吐出口103より液体を噴射すると共に、気体供給口105から気体供給路106を介し外周に設けた気体吐出口107よりエアーを噴射し、液体吐出口の外部でエアーと液体とを衝突混合させている。
【0007】
このような外部混合方式のノズルにおいては、液滴の微粒化を図るため、液体供給路の径を絞り吐出速度を上げ分散を高めるように設計される。更には、気体と液体の衝突を促進するため、すり鉢状に形成された液体供給口104の最深部から液体が噴射され、その側面に形成された気体吐出口107から噴射した気体と衝突させる構造となっている。このため、ダスト濃度の高いスラリーを噴霧すると、液体供給路の絞りにより、スラリーの圧送に抵抗が働き流路が閉塞したり、気体の流量・流速が十分でないとスラリーの分散が不十分となり、十分に小さい液滴とすることができず、不完全乾燥となる問題があった。また、スラリーの分散が十分であっても、ノズル先端108などにスラリーがぶつかり、その部分で乾燥してスラリー溶解物が固着し、この固着物が成長し、スラリーの吐出・分散を阻害してしまう問題があった。
【0008】
そこで、これらのノズルを用いる場合、スラリーを希釈し、ダスト濃度を低減することでスラリーの噴霧を可能とすることができるが、スラリー処理量の増大や、希釈液分を蒸発させるための過剰な熱量が必要となり、大幅なコストアップとなってしまうので好ましくない。
【0009】
【発明が解決しようとする課題】
本発明は、上記に鑑みてなされたものであり、その目的は、高濃度・高粘度のスラリーであっても液滴を微粒化し供給することができる、粉体、液体又はスラリーからなる流動性物質の噴霧方法と噴霧装置を提供するものである。
【0010】
【課題を解決するための手段】
すなわち、本発明は、気体が流通する多重外筒(3a、3b)と、この多重外筒の内管(3a)内に配置され、粉体、液体又はスラリーからなる流動性物質が流通する直管内筒(2)とからなり、直管内筒(2)の外壁と多重外筒の内管(3a)の内壁とによって形成される流通路には旋回羽根(4a)が、また多重外筒の内管(3a)の外壁と多重外筒の外管(3b)の内壁とによって形成される流通路には旋回羽根(4b)が取り付けられており、それらの旋回羽根(4a、4b)の取付角度が流動性物質の供給方向に対しいずれも10°〜75°であり、しかも旋回羽根4aの取付角度が旋回羽根4bのそれと同等以下であることを特徴とする流動性物質の噴霧装置である。この噴霧装置の発明にあっては、直管内筒(2)と多重外筒(3a、3b)の吐出面は同一平面になっていることが好ましい。また、本発明は、粉体、液体又はスラリーからなる流動性物質に、旋回気流同士の複合気流を衝突させ、微細化しながら噴霧する方法であって、上記複合気流は多重外筒の内管と外管とから旋回気流を吐出させることによって形成された旋回気流同士の複合気流であり、また上記流動性物質は多重外筒の内管内に配置された直管内筒から吐出させたものであることを特徴とする流動性物質の噴霧方法である。この噴霧方法の発明にあっては、上記本発明の噴霧装置を用いることが好ましい。
【0011】
【発明の実施の形態】
以下、更に詳しく本発明について説明する。
【0012】
本発明においては、粉体、液体又はスラリーからなる流動性物質に、旋回気流同士の複合気流を衝突させる点において、従来の単一の旋回気流を衝突させ方式とは異なっている。複合気流は、分散させる流動性物質を供給する内筒の外側に複数本の単管を配置し、それぞれの単管の一方から他方に気体を圧送することによりそれぞれの気流を合流させ旋回流を形成させる方法、あるいは後述のように、例えば分散させる流動性物質を供給する内筒の外側に多重の外筒を同軸となるように設置し、筒同士の空間部に旋回羽根を設けてなる多重外筒の一方から他方に気体を圧送することによって各隔壁によって形成された単一の旋回気流を合流する方法によって行うことができる。これによって、流動性物質が粉体の場合にはその分散を良くし、液体の場合には微細化し、スラリーの場合にはそれが高濃度・高粘度であっても液滴を微粒化し噴霧することが可能となる。
【0013】
複合気流は、2又は2以上の旋回気流を複合させることで形成されるが、特に、外側の旋回気流が内側の旋回気流に合成されるように形成させることが好ましい。この気流の調整は旋回羽根の角度を調整することで可能である。また、複合気流を形成させる気体は圧搾気体で噴霧装置に供給することが好ましく、その供給気体の圧力は0.1MPa未満であると、旋回流の形成が不完全となる場合があるため0.1MPa以上であることが好ましい。その気体は、噴霧後に流動性物性と反応したり、圧搾することで爆発性が発生するものでなければ、特に指定されるものではなく、酸素、窒素、希ガスなどが挙げられるが、処理コストの面から空気であることが好ましい。
【0014】
本発明の噴霧装置は、本発明の噴霧方法を実施するのに好適な装置である。これを図面を参照しながら説明する。図1は、本発明の噴霧装置の概略横断面図、図2はその概略左側面図、図3は旋回羽根を取り付けた状態の斜視図、図4は図3の概略正面図である。なお、図5は、従来の外部混合方式の二流体ノズルの概略横断面図である。また、図6は、本発明の噴霧装置を用いたスラリーの噴霧乾燥試験装置の説明図である。
【0015】
本発明の噴霧装置1は、直管内筒2と、その周囲に位置した多重外筒3a、3bからなり、多重外筒の気体の流通路には旋回羽根4a、4bが設けられている。すなわち、気体が多重外筒の内管3aと多重外筒の外管3bから旋回羽根4a、4bを経由して吐出することによって旋回気流同士の複合気流が形成され、この複合気流を直管内筒2から吐出した流動性物質に衝突させる。旋回羽根4aは直管内筒2の外壁と多重外筒の内管3aの内壁とによって形成される流通路に取り付けられており、また旋回羽根4bは多重外筒の内管3aの外壁と多重外筒の外管3bの内壁とによって形成される流通路に取り付けられている。図には二重構造の多重外筒が示されているが、これを三重構造以上の多重外筒としてもよい。符号の5は、粉体、液体又はスラリーからなる流動性物質の供給口、6はその流通路であり、7a、7bは気体の供給口、8a、8bはその流通路である。
【0016】
本発明において、直管内筒2は、従来方式のように流動性物質の供給中にその抵抗を大きくしないように、流動性物質の供給口から吐出口までの間には、曲がり部や、分岐部、絞り部が存在しない直管で構成されることが好ましい。このような部分が存在すると、その部分でスラリー等の流動性物の抵抗が大きくなり、溶解物の沈降、閉塞を引き起こすことがある。
【0017】
本発明における多重外筒は、多重管構造からなるものであり、壁間で形成された気体の流通路のそれぞれには、その吐出口手前の管外壁に、旋回羽根の適宜数が設けられており、気体を供給したときに旋回気流同士の複合気流が形成するようになっている。旋回羽根は、気体の旋回力を維持するために、気体吐出口のすぐ手前に取り付けることが好ましいが、気体吐出口に接するような形を取ると、流動物質の吐出直後の旋回流にムラができるため、気体吐出口より僅かに内側に取り付けることが好ましい。また、各旋回羽根の取付角度は、流動性物質の供給方向に対し10°〜75°とすることが好ましい。更には、直管内筒に隣接する気体の流通路に設ける旋回羽根の取付角度は、この気体の流通路の外周に隣接する気体の流通路に設ける旋回羽根の取付角度と同等以下の角度にすることが好ましい。
【0018】
複合気流による流動性物質の分散性をより高めるためには、多重で形成した旋回気流の外側の気体供給量を内側のそれよりも1.5〜10倍量とする(多くする)ことが好ましい。外側の気体供給量を多くすることで、複合気流がより効果的に流動性物質に影響を与えることができ、分散性が向上される。更に多重管で形成される気体流通路の断面積は、気体の圧力損失が大きくならない程度であれば任意の広さで構わないが、外側の気体供給量を大きくする場合は、外側の気体流通路の断面積を内側の気体流通路の断面積に対し、設計流量比で広くすることが好ましい。
【0019】
このようにして旋回気流同士を合流させて複合することによって、各旋回気流は互いに干渉し、乱流を発生させて流動性物質に衝突するので、分散効果を大幅に高めることが可能となり、高濃度、高粘度のスラリーにおいても液滴の微粒化が可能となる。
【0020】
本発明の噴霧装置においては、直管内筒と多重外筒の吐出面、すなわち流動性物質と各旋回気流の吐出口は、同一平面になるようにしておくことが好ましい。従来の外部混合式のノズルでは、気体を効率よく液体に衝突させるため、流動性物質吐出口が気体吐出口よりも内側に入った形状のものが多い。このような構造であっては、流動性物質の種類によっては、噴霧した流動性物質が気体吐出口付近に接触し、液滴径が大きくなってしまうことがあるが、本発明ではこれを阻止することができる。
【0021】
【実施例】
以下、実施例、比較例をあげて更に説明する。
【0022】
図1〜4に示される噴霧装置1を製作した。直管内筒2は、SUS製、内径8mm、外径10mm×長さ200mmである。多重外筒3a、3bは、二重管構造でありそれぞれSUS製で、3aが内径14mm、外径16mm×長さ150mm、3bが内径20mm、外径22mm×長さ150mmである。この二重管の内管内に直管内筒2が吐出口が同一平面となるように収容されており、また直管内筒2の外周面と、多重外筒の二重管の内管3aの外周面とには、旋回羽根4a、4bが、いずれも吐出口の内側5mmの所に4aが6個、4bが12個設けられている。ノズル後部のプラグ9には配管を取り付け、流動性物質供給源と接続し、ノズル後部の供給口5から流動性物質を流通路6に導入するようにしている。流通路6を通過した流動性物質は吐出口7から吐出される。
【0023】
プラグ10a、10bに配管を取り付け、圧搾エアー源と接続し、気体供給口7a、7bから高圧気体を流通路8a、8bに導入するようにしている。流通路8a、8b中を通過した気体は旋回羽根4aと4bにて旋回流となり気体吐出口11a、11bから吐出される。なお、旋回羽根4aは直管内筒2の外周に、また旋回羽根4bは気体流通路8aと8bを分ける多重外筒3aの外周に設置されている。旋回羽根4a、4bの取付角度は、流動性物質流通路6の直線方向に対し、4aが45°、4bが60°である。
【0024】
実施例1
図6に示されるスラリーの噴霧乾燥試験装置を用いてスラリーの乾燥試験を行った。噴霧装置1(図6では符号201)のプラグ9にソケットを取り付け、そこからチューブホース202にて流動性物質を供給するラインを形成した。プラグ10a、10bにもそれぞれ205a、205bで示した配管を取り付け、圧搾エアー供給装置206と接続した。噴霧装置1は約400℃保温された電気炉207の炉頂部に炉内に向かって取り付けた。この電気炉207は炉体下部に設置したダンパー208より粉体が回収できる構造になっている。また炉体下部の横からは排気配管209が接続されており排気ができる構造となっている。流動性物質として、平均粒径30μmの破砕状の溶融シリカ粉と水とを6:4で攪拌混合したスラリーを調整し、このスラリーをチューブポンプ203にて噴霧装置に100L/hの量で電気炉内に204から供給した。また旋回気体には内側吐出口から20m/h、外側吐出口から40m/hになるように配管に設置した流量計で調整し供給した。スラリー噴霧後、炉体下から得られた粉を回収し、粉の水分含有量を測定した結果、回収粉の水分含有率は0.2%であることを確認した。
【0025】
実施例2
実施例1で調整したスラリーを用い、噴霧装置の旋回羽根4a、4bの枚数を4aが8個、4bが12個設け、旋回羽根4aの取付角度を30°、4bのそれは45°に変更した以外は実施例1と同様の条件で電気炉内にスラリーを噴霧した。スラリー噴霧後、炉体下から得られた粉を回収し、粉の水分含有量を測定した結果、回収粉の水分含有率は0.1%以下であることを確認した。
【0026】
比較例1
実施例1のスラリーを用い、噴霧装置における旋回気体を内側供給口からのみ20m/hで供給した以外は実施例1と同様の条件で電気炉内にスラリーを噴霧した。スラリー噴霧後、炉体下から得られた粉を回収し、粉の水分含有量を測定した結果、回収粉の水分含有率は13%であり、十分な乾燥が行われなかった。
【0027】
【発明の効果】
本発明によれば、流動性物質が粉体である場合にはその分散を良くし、液体である場合には微細化し、またスラリーである場合にはそれが高濃度・高粘度であっても安定噴霧と分散微粒化が可能となる。従って、ダスト混合廃液スラリー等の噴霧乾燥作業において、付帯設備の増強をせずに操業が可能となる。
【図面の簡単な説明】
【図1】本発明の噴霧装置の概略横断面図
【図2】本発明の噴霧装置の概略左側面図
【図3】旋回羽根を取り付けた状態の斜視図
【図4】図3の概略正面図
【図5】従来の外部混合方式の二流体ノズルの概略横断面図
【図6】スラリーの噴霧乾燥試験装置の説明図
【符号の説明】
1 本発明の噴霧装置
2 直管内筒
3a、3b 多重外筒
4a、4b 旋回羽根
5 流動性物質供給口
6 流動性物質流通路
7a、7b 気体供給口
8a、8b 気体流通路
9 流動性物質供給口プラグ
10a、10b 気体供給口プラグ
11a、11b 気体吐出口
12 流動性物質吐出口
101 外部混合方式の二流体ノズル本体
102 液体供給路
103 液体吐出口
104 液体供給口
105 気体供給口
106 気体供給路
107 気体吐出口
108 ノズル先端
201 本発明の噴霧装置
202 チューブホース
203 チューブポンプ
204 スラリー供給
205a、205b 気体供給配管
206 圧搾エアー源
207 電気炉
208 炉体下排出ダンパー
209 排気配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for colliding and mixing a fluid substance composed of powder, liquid or slurry and a gas, atomizing the fluid substance, and spraying it. It is what is used.
[0002]
[Prior art]
Currently, in many industries, liquid atomization is performed using a two-fluid nozzle. The processing amount of the liquid to be atomized and the particle diameter of the droplets are very wide. Among them, in spray drying of dust mixed waste liquid slurry or the like, the waste liquid is sprayed in a high-temperature furnace with a two-fluid nozzle that disperses with compressed gas, moisture in the slurry is evaporated, and dust in the waste liquid is dried and collected.
[0003]
Conventionally, a two-fluid nozzle that is used collides and mixes a gas and a liquid to atomize droplets. There are an internal mixing method (Patent Document 1) in which gas and liquid collide and mix inside the nozzle, and an external mixing method in which gas and liquid collide and mix outside the liquid discharge port. The internal mixing type nozzle has a structure in which liquid and gas collide with each other in a mixing chamber provided inside the nozzle, and then pass through a rectifying chamber and an injection chamber and are injected from a discharge port. The mixed fluid collides with multi-stage wall surfaces formed in the flow path, and droplets are atomized.
[0004]
In such an internal mixing type nozzle, a collision wall is provided in the gas-liquid flow path, and the discharge port is narrowed down to increase the discharge speed in order to atomize the droplets. When high-viscosity and high-sedimentation slurry with high viscosity is sprayed, the lysate adheres to the bends of the collision wall and liquid flow path, and it is stacked to block the flow path, or the lysate with a large particle size is discharged from the discharge port. Problems occur.
[0005]
[Patent Document 1]
Japanese Patent No. 2710398 [0006]
In contrast, an external mixing type two-fluid nozzle, as illustrated in FIG. 5, ejects liquid from a liquid discharge port 103 via a liquid supply path 102 formed in the center of the nozzle body 101 and also supplies a gas supply port. Air is jetted from a gas discharge port 107 provided on the outer periphery from 105 through a gas supply path 106, and air and liquid are collided and mixed outside the liquid discharge port.
[0007]
Such an external mixing type nozzle is designed to increase the dispersion by reducing the diameter of the liquid supply path and increasing the discharge speed in order to atomize the droplets. Further, in order to promote the collision between the gas and the liquid, the liquid is ejected from the deepest part of the liquid supply port 104 formed in a mortar shape and collides with the gas ejected from the gas discharge port 107 formed on the side surface. It has become. For this reason, when a slurry having a high dust concentration is sprayed, the liquid supply passage restricts the pressure of the slurry, and the flow path is blocked, or if the gas flow rate / flow velocity is not sufficient, the dispersion of the slurry becomes insufficient. There was a problem that the droplets could not be sufficiently small, resulting in incomplete drying. Even if the slurry is sufficiently dispersed, the slurry collides with the nozzle tip 108 and the like, and the slurry melts and adheres to the nozzle tip 108. This stuck matter grows, hindering the discharge and dispersion of the slurry. There was a problem.
[0008]
Therefore, when these nozzles are used, the slurry can be sprayed by diluting the slurry and reducing the dust concentration. However, an increase in the amount of slurry treatment or an excessive amount for evaporating the diluted liquid component can be achieved. This is not preferable because it requires a large amount of heat, resulting in a significant increase in cost.
[0009]
[Problems to be solved by the invention]
The present invention has been made in view of the above, and its purpose is fluidity comprising powder, liquid, or slurry that can atomize and supply droplets even in a high-concentration and high-viscosity slurry. A method and an apparatus for spraying a substance are provided.
[0010]
[Means for Solving the Problems]
That is, the present invention is arranged in a multiple outer cylinder (3a, 3b) through which a gas flows and an inner pipe (3a) of the multiple outer cylinder, in which a fluid substance made of powder, liquid or slurry flows. A swirl vane (4a) is formed in the flow passage formed by the outer wall of the straight pipe inner cylinder (2) and the inner wall of the inner pipe (3a) of the multiple outer cylinder. A swirl vane (4b) is attached to the flow path formed by the outer wall of the inner tube (3a) and the inner wall of the outer tube (3b) of the multiple outer cylinder, and the swirl vanes (4a, 4b) are attached. The fluid material spraying device is characterized in that the angle is 10 ° to 75 ° with respect to the flow direction of the fluid material, and the mounting angle of the swirl blade 4a is equal to or less than that of the swirl blade 4b. . In the invention of this spraying apparatus, it is preferable that the discharge surfaces of the straight pipe inner cylinder (2) and the multiple outer cylinders (3a, 3b) are in the same plane. Further, the present invention is a method for causing a composite airflow of swirling airflows to collide with a flowable substance made of powder, liquid, or slurry and spraying the fine airflow while the composite airflow is connected to an inner tube of a multiple outer cylinder. It is a composite airflow of swirling airflows formed by discharging a swirling airflow from the outer pipe, and the fluid substance is discharged from a straight pipe inner cylinder arranged in the inner pipe of the multiple outer cylinder A method for spraying a fluid substance characterized by the following. In the invention of this spraying method, it is preferable to use the spraying device of the present invention.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail.
[0012]
The present invention is different from the conventional method in which a single swirling air current is collided with a fluid substance made of powder, liquid, or slurry, in which a composite air current of swirling air currents collides. In the composite air flow, a plurality of single pipes are arranged outside the inner cylinder for supplying the fluid substance to be dispersed, and the gas flows from one of the single pipes to the other to join the air flows to generate a swirling flow. A method of forming, or as will be described later, for example, multiple outer cylinders are installed on the outside of an inner cylinder for supplying a fluid substance to be dispersed so as to be coaxial, and a swirl vane is provided in a space portion between the cylinders. This can be performed by a method in which a single swirling air flow formed by each partition is joined by pumping gas from one side of the outer cylinder to the other. This improves the dispersion when the fluid substance is a powder, refines it when it is a liquid, and atomizes and sprays droplets even if it is a slurry with a high concentration and high viscosity. It becomes possible.
[0013]
The composite airflow is formed by combining two or more swirling airflows, and it is particularly preferable that the outer airflow is combined with the inner swirling airflow. The airflow can be adjusted by adjusting the angle of the swirl vane. Moreover, it is preferable that the gas for forming the composite airflow is supplied as a compressed gas to the spraying device, and if the pressure of the supply gas is less than 0.1 MPa, the formation of the swirling flow may be incomplete. It is preferably 1 MPa or more. The gas is not particularly specified as long as it does not react with fluid properties after spraying or does not explosive when squeezed. Examples include oxygen, nitrogen, and rare gases. From the viewpoint of air, air is preferable.
[0014]
The spraying apparatus of the present invention is a suitable apparatus for carrying out the spraying method of the present invention. This will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view of the spray device of the present invention, FIG. 2 is a schematic left side view thereof, FIG. 3 is a perspective view with a swirl blade attached, and FIG. 4 is a schematic front view of FIG. FIG. 5 is a schematic cross-sectional view of a conventional two-fluid nozzle of an external mixing system. Moreover, FIG. 6 is explanatory drawing of the spray drying test apparatus of the slurry using the spraying apparatus of this invention.
[0015]
The spraying device 1 of the present invention comprises a straight pipe inner cylinder 2 and multiple outer cylinders 3a and 3b positioned around the inner pipe 2, and swirl vanes 4a and 4b are provided in the gas flow path of the multiple outer cylinder. That is, a gas stream is discharged from the inner tube 3a of the multiple outer cylinder and the outer tube 3b of the multiple outer cylinder via the swirl vanes 4a and 4b to form a complex air current of the swirling air currents. 2. Collide with fluid material discharged from 2. The swirl vane 4a is attached to a flow path formed by the outer wall of the straight tube inner cylinder 2 and the inner wall of the inner tube 3a of the multiple outer cylinder, and the swirl blade 4b is connected to the outer wall of the inner tube 3a of the multiple outer cylinder and the outer wall of the multiple outer cylinder. It is attached to the flow path formed by the inner wall of the outer tube 3b of the cylinder. Although the figure shows a double outer cylinder having a double structure, it may be a multiple outer cylinder having a triple structure or more. Reference numeral 5 denotes a supply port for a fluid substance made of powder, liquid or slurry, 6 denotes a flow passage, 7a and 7b denote gas supply ports, and 8a and 8b denote flow passages.
[0016]
In the present invention, the straight pipe inner cylinder 2 so as not to increase the resistance in the supply of flowable material as in the conventional method, the until the discharge port from the supply port of the flowable material, bends and, It is preferable that the pipe is constituted by a straight pipe having no branching part and throttle part. If such a portion exists, the resistance of a fluid such as slurry increases at that portion, which may cause sedimentation or clogging of the dissolved material.
[0017]
Multiple outer tube in the present invention is made of a multiple tube structure, each of the flow passage of gas formed in the walls, the outer tube wall of the discharge port before, and suitable number is provided a swirl vane In addition, when a gas is supplied, a composite airflow of swirling airflows is formed. Swirl vanes, in order to maintain the swirling force of the gas, but is preferably attached to the immediate front of the gas outlet port, take such forms in contact with the gas ejection port, uneven swirl flow immediately after the discharge of the flowable material Therefore, it is preferable that the gas outlet is attached slightly inside. Moreover, it is preferable that the attachment angle of each swirl | wing blade shall be 10 degrees-75 degrees with respect to the supply direction of a fluid substance. Furthermore, the mounting angle of the swirl vane provided in flow path of gas adjacent to the straight tube inner cylinder, the mounting angle equal to or less than the angle of the swirl vane provided in flow path of gas adjacent to the outer periphery of the flow passage of the gas It is preferable to do.
[0018]
In order to further improve the dispersibility of the flowable substance by the composite airflow, it is preferable that the amount of gas supplied outside the swirling airflow formed in multiple is 1.5 to 10 times that of the inside (more). . By increasing the outside gas supply amount, the composite airflow can more effectively affect the flowable substance, and the dispersibility is improved. Furthermore, the cross-sectional area of the gas flow passage formed by the multiple pipes may be any width as long as the pressure loss of the gas does not increase, but if the outside gas supply amount is increased, the outside gas flow to the cross-sectional area of the gas flow passage of the inner side cross sections of the road, it is preferable to widely design flow rate.
[0019]
By combining the swirling airflows in this way, the swirling airflows interfere with each other, generate turbulent flow and collide with the flowable substance, so that the dispersion effect can be greatly enhanced. It is possible to atomize droplets even in a slurry with high concentration and high viscosity.
[0020]
In the spray apparatus of the present invention, the discharge surface of the straight pipe inner cylinder and multiplex barrel, i.e. flowable material and the discharge port of the whirling current, it is preferable to set to be in the same plane. Many conventional external mixing nozzles have a shape in which the flowable substance discharge port is located inside the gas discharge port in order to cause the gas to collide with the liquid efficiently. In such a structure, depending on the type of the fluid substance, the sprayed fluid substance may come in contact with the vicinity of the gas discharge port and the droplet diameter may increase. can do.
[0021]
【Example】
Hereinafter, examples and comparative examples will be further described.
[0022]
The spraying apparatus 1 shown in FIGS. The straight pipe inner cylinder 2 is made of SUS, has an inner diameter of 8 mm, an outer diameter of 10 mm, and a length of 200 mm. The multiple outer cylinders 3a and 3b have a double tube structure and are each made of SUS. 3a has an inner diameter of 14 mm, an outer diameter of 16 mm × length of 150 mm, and 3b has an inner diameter of 20 mm, an outer diameter of 22 mm × length of 150 mm. The straight pipe inner cylinder 2 is accommodated in the inner pipe of the double pipe so that the discharge ports are flush with each other, and the outer circumference of the straight pipe inner cylinder 2 and the outer circumference of the inner pipe 3a of the double pipe of the multiple outer cylinder. On the surface, there are 6 swirl vanes 4a and 4b, 6a 4a and 12b 4b at 5mm inside the discharge port. A pipe 9 is attached to the plug 9 at the rear of the nozzle and connected to a fluid substance supply source so that the fluid substance is introduced into the flow passage 6 from the supply port 5 at the rear of the nozzle. The fluid substance that has passed through the flow passage 6 is discharged from the discharge port 7.
[0023]
Pipes are attached to the plugs 10a and 10b, connected to a compressed air source, and high-pressure gas is introduced into the flow passages 8a and 8b from the gas supply ports 7a and 7b. The gas that has passed through the flow passages 8a and 8b is swirled by the swirl vanes 4a and 4b and discharged from the gas discharge ports 11a and 11b. The swirl vane 4a is installed on the outer periphery of the straight pipe inner cylinder 2, and the swirl vane 4b is installed on the outer periphery of the multiple outer cylinder 3a that separates the gas flow passages 8a and 8b. The mounting angles of the swirl vanes 4a and 4b are 45 ° for 4a and 60 ° for 4b with respect to the linear direction of the fluid flow passage 6.
[0024]
Example 1
A slurry drying test was performed using the slurry spray drying test apparatus shown in FIG. A socket was attached to the plug 9 of the spraying apparatus 1 (reference numeral 201 in FIG. 6), and a line for supplying a fluid substance by a tube hose 202 was formed therefrom. Pipes indicated by 205a and 205b were also attached to the plugs 10a and 10b, respectively, and connected to the compressed air supply device 206. The spraying apparatus 1 was attached toward the furnace top of the electric furnace 207 kept at about 400 ° C. The electric furnace 207 has a structure in which powder can be collected from a damper 208 installed at the lower part of the furnace body. Further, an exhaust pipe 209 is connected from the side of the lower part of the furnace body so that exhaust can be performed. As a fluid substance, a slurry obtained by stirring and mixing crushed fused silica powder having an average particle size of 30 μm and water at a ratio of 6: 4 was prepared, and this slurry was electrically supplied to a spraying device by a tube pump 203 in an amount of 100 L / h. It supplied from 204 in the furnace. In addition, the swirling gas was adjusted and supplied with a flow meter installed in the pipe so that it was 20 m 3 / h from the inner discharge port and 40 m 3 / h from the outer discharge port. After the slurry spraying, the powder obtained from under the furnace body was collected, and the moisture content of the powder was measured. As a result, it was confirmed that the moisture content of the collected powder was 0.2%.
[0025]
Example 2
Using the slurry adjusted in Example 1, the number of the swirling blades 4a and 4b of the spraying device is set to 8 for 4a and 12 for 4b. Except for the above, the slurry was sprayed into the electric furnace under the same conditions as in Example 1. After the slurry spraying, the powder obtained from the bottom of the furnace body was collected and the moisture content of the powder was measured. As a result, it was confirmed that the moisture content of the collected powder was 0.1% or less.
[0026]
Comparative Example 1
Using the slurry of Example 1, the slurry was sprayed into the electric furnace under the same conditions as in Example 1 except that the swirling gas in the spraying apparatus was supplied only from the inner supply port at 20 m 3 / h. After the slurry spraying, the powder obtained from under the furnace body was collected and the moisture content of the powder was measured. As a result, the moisture content of the collected powder was 13%, and sufficient drying was not performed.
[0027]
【The invention's effect】
According to the present invention, when the fluid substance is a powder, its dispersion is improved, when it is a liquid, it is refined, and when it is a slurry, even if it has a high concentration and high viscosity, Stable spraying and dispersion atomization are possible. Accordingly, in the spray drying operation of the dust mixed waste liquid slurry or the like, the operation can be performed without increasing the incidental facilities.
[Brief description of the drawings]
1 is a schematic cross-sectional view of a spraying device of the present invention. FIG. 2 is a schematic left side view of the spraying device of the present invention. FIG. 3 is a perspective view of a state where swirl vanes are attached. FIG. 5 is a schematic cross-sectional view of a conventional two-fluid nozzle of an external mixing method. FIG. 6 is an explanatory diagram of a slurry spray drying test apparatus.
DESCRIPTION OF SYMBOLS 1 Spraying apparatus 2 of this invention Straight pipe | tube inner cylinder 3a, 3b Multiple outer cylinder 4a, 4b Swirling blade 5 Fluid substance supply port 6 Fluid substance flow path 7a, 7b Gas supply port 8a, 8b Gas stream path 9 Fluid substance supply Port plugs 10a, 10b Gas supply port plugs 11a, 11b Gas discharge port 12 Fluid substance discharge port 101 Two-fluid nozzle body 102 of external mixing system Liquid supply path 103 Liquid discharge port 104 Liquid supply port 105 Gas supply port 106 Gas supply path 107 Gas discharge port 108 Nozzle tip 201 Spray device 202 of the present invention Tube hose 203 Tube pump 204 Slurry supply 205a, 205b Gas supply pipe 206 Pressed air source 207 Electric furnace 208 Under-furnace discharge damper 209 Exhaust pipe

Claims (4)

気体が流通する多重外筒(3a、3b)と、この多重外筒の内管(3a)内に配置され、粉体、液体又はスラリーからなる流動性物質が流通する直管内筒(2)とからなり、直管内筒(2)の外壁と多重外筒の内管(3a)の内壁とによって形成される流通路には旋回羽根(4a)が、また多重外筒の内管(3a)の外壁と多重外筒の外管(3b)の内壁とによって形成される流通路には旋回羽根(4b)が取り付けられており、それらの旋回羽根(4a、4b)の取付角度が流動性物質の供給方向に対しいずれも10°〜75°であり、しかも旋回羽根4aの取付角度が旋回羽根4bのそれと同等以下であることを特徴とする流動性物質の噴霧装置。A multiple outer cylinder (3a, 3b) through which gas flows, and a straight pipe inner cylinder (2) disposed in the inner pipe (3a) of the multiple outer cylinder and through which a fluid substance made of powder, liquid or slurry flows. The flow passage formed by the outer wall of the straight pipe inner cylinder (2) and the inner wall of the inner pipe (3a) of the multiple outer cylinder has a swirl vane (4a) and the inner pipe (3a) of the multiple outer cylinder. A swirl vane (4b) is attached to the flow path formed by the outer wall and the inner wall of the outer tube (3b) of the multiple outer cylinder, and the angle of attachment of these swirl vanes (4a, 4b) An apparatus for spraying a fluid substance, characterized in that the angle is 10 ° to 75 ° with respect to the supply direction, and the mounting angle of the swirl vane 4a is equal to or less than that of the swirl vane 4b. 直管内筒(2)と多重外筒(3a、3b)の吐出面を同一平面にしてなる請求項1記載の噴霧装置。The spraying device according to claim 1, wherein the discharge surfaces of the straight pipe inner cylinder (2) and the multiple outer cylinders (3a, 3b) are flush with each other. 粉体、液体又はスラリーからなる流動性物質に、旋回気流同士の複合気流を衝突させ、微細化しながら噴霧する方法であって、上記複合気流は多重外筒の内管と外管とから旋回気流を吐出させることによって形成された旋回気流同士の複合気流であり、また上記流動性物質は多重外筒の内管内に配置された直管内筒から吐出させたものであることを特徴とする流動性物質の噴霧方法。A method in which a swirling airflow collides with a flowable substance made of powder, liquid, or slurry, and sprays while miniaturizing the combustible airflow, the swirling airflow from the inner tube and the outer tube of the multiple outer cylinder. A fluidity characterized in that it is a composite airflow of swirling airflows formed by discharging a gas, and the fluid substance is discharged from a straight pipe inner cylinder arranged in an inner pipe of a multiple outer cylinder . How to spray substances. 請求項1又は2に記載の噴霧装置を用いることを特徴とする請求項3記載の流動性物質の噴霧方法。The method for spraying a fluid substance according to claim 3, wherein the spraying apparatus according to claim 1 or 2 is used.
JP2003019758A 2003-01-29 2003-01-29 Spraying method and apparatus Expired - Fee Related JP3853295B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003019758A JP3853295B2 (en) 2003-01-29 2003-01-29 Spraying method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003019758A JP3853295B2 (en) 2003-01-29 2003-01-29 Spraying method and apparatus

Publications (2)

Publication Number Publication Date
JP2004230243A JP2004230243A (en) 2004-08-19
JP3853295B2 true JP3853295B2 (en) 2006-12-06

Family

ID=32949555

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003019758A Expired - Fee Related JP3853295B2 (en) 2003-01-29 2003-01-29 Spraying method and apparatus

Country Status (1)

Country Link
JP (1) JP3853295B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210131949A1 (en) * 2019-11-06 2021-05-06 Entegris, Inc. Optical sensor window cleaner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006198480A (en) * 2005-01-18 2006-08-03 Soken Kogyo Kk Nozzle for spray type vaporizer
US7799939B2 (en) 2005-09-20 2010-09-21 Asahi Kasei Chemicals Corporation Process for production of dialkyl carbonate and diol
JP5500475B2 (en) * 2009-04-14 2014-05-21 日本電磁測器株式会社 Two-fluid nozzle
CN101776261B (en) * 2009-12-21 2012-12-12 青岛特利尔环保锅炉工程有限公司 Granulation sowing device
JP2012035237A (en) * 2010-08-11 2012-02-23 Chugai Ro Co Ltd Powder production apparatus
JP2012035235A (en) * 2010-08-11 2012-02-23 Chugai Ro Co Ltd Spray device and powder production apparatus
CN108654858B (en) * 2018-05-16 2024-01-23 东南大学 Rectangular spiral spring nozzle for high-salt-content organic waste liquid
JP7157678B2 (en) * 2019-02-20 2022-10-20 太平洋セメント株式会社 spray nozzle
WO2022034852A1 (en) 2020-08-13 2022-02-17 株式会社村田製作所 Film manufacturing method and conductive film
CN114321921B (en) * 2021-12-13 2023-03-21 北京建筑材料科学研究总院有限公司 Polymorphic waste combustor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210131949A1 (en) * 2019-11-06 2021-05-06 Entegris, Inc. Optical sensor window cleaner

Also Published As

Publication number Publication date
JP2004230243A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP3773975B2 (en) High efficiency nozzle for fluid catalytic cracking
KR101825252B1 (en) External mixing pressurized two-fluid nozzle and a spray drying method
JP3853295B2 (en) Spraying method and apparatus
KR100562727B1 (en) Mist spray nozzle of internal mixed air
JP4417245B2 (en) Internal mixed air atomizing spray nozzle assembly
US10245602B2 (en) Atomizer nozzle
CN103381398A (en) Inside-mixing atomizing nozzle device
KR101119211B1 (en) Apparatus Generating Minute Particles And Micro/Nano Bubbles And System Using The Same
KR101363021B1 (en) Spray nozzle
JP4276311B2 (en) Two-fluid nozzle
JP2004344882A (en) Dual spray having external mixing chamber
JP5500475B2 (en) Two-fluid nozzle
US7988074B2 (en) Nozzle apparatus for material dispersion in a dryer and methods for drying materials
JPH04271860A (en) Cone-shaped air atomizing nozzle assembly
CN111097611A (en) Water-gas mixing atomizing nozzle and atomizing device
CN203459195U (en) Internal mix type atomizing nozzle device
JPH08210606A (en) Premix type burner
CN108031579A (en) Spray gun and its pipette tips, aerial spraying device
JPH09239299A (en) Two-fluid nozzle
JP3401267B2 (en) Media discharge nozzle
CN217725898U (en) Gas-assisted atomizing nozzle and atomizer thereof
CN211801733U (en) Water-gas mixing atomizing nozzle and atomizing device
CN114713390A (en) Gas-assisted atomizing nozzle and atomizer thereof
JP2003220354A (en) Spray nozzle
TWI270412B (en) Integrated micro-mixing atomization system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Ref document number: 3853295

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees