JP3853083B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery Download PDF

Info

Publication number
JP3853083B2
JP3853083B2 JP24566998A JP24566998A JP3853083B2 JP 3853083 B2 JP3853083 B2 JP 3853083B2 JP 24566998 A JP24566998 A JP 24566998A JP 24566998 A JP24566998 A JP 24566998A JP 3853083 B2 JP3853083 B2 JP 3853083B2
Authority
JP
Japan
Prior art keywords
polymer
mixture layer
electrode mixture
organic electrolyte
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24566998A
Other languages
Japanese (ja)
Other versions
JPH11307082A (en
Inventor
明子 石田
一成 木下
誠 筒江
信夫 江田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP24566998A priority Critical patent/JP3853083B2/en
Priority to US09/248,914 priority patent/US6579649B2/en
Publication of JPH11307082A publication Critical patent/JPH11307082A/en
Application granted granted Critical
Publication of JP3853083B2 publication Critical patent/JP3853083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、有機電解質電池、特に電極およびセパレータが有機電解液を吸収保持するポリマーを含み、これら電極およびセパレータを熱融着により一体化できる有機電解質二次電池に関するものである。
【0002】
【従来の技術】
近年、携帯電話やノート型コンピューター等の携帯機器の普及に伴い、小型、軽量で、高エネルギー密度の二次電池が切望されている。このような要望に応えるために、各種二次電池の開発が進められている。リチウムを負極活物質とするリチウム二次電池は、高エネルギー密度が期待できることから注目されている。なかでも正極、負極およびセパレータにポリマーを含み、このポリマーに有機電解液を吸収保持させた、いわゆるポリマー電解質二次電池が注目されている。
このポリマー電解質二次電池は、ポリマーとしてフッ化ビニリデンと六フッ化プロピレンの共重合体を用い、正極、セパレータおよび負極を熱融着により一体化できることから、薄型電池の実用化に最も近い電池系として注目されている(特表平8−507407号公報)。
【0003】
上記ポリマー電解質二次電池は、たとえば、次のようにして製造される。まず、コバルト酸リチウムや黒鉛粒子などの電極活物質粉末と導電剤粉末の混合物に、ポリマーの有機溶媒溶液と造孔剤のフタル酸ジ−n−ブチルを添加してペーストを調製する。このペーストを集電体に塗着した後、乾燥し前記有機溶媒を除去して電極シートを得る。こうして得られた正極シートと負極シートとの間に、造孔剤を含むポリマーからなるセパレータシートを介在させ、加熱下で加圧することにより熱融着一体化して電池素子シートを得る。次いで、この電池素子シートを抽出溶媒であるたとえばジエチルエーテル中に浸漬して造孔剤を抽出除去して多孔性を付与し、しかる後細孔部分とポリマー自身に有機電解液を含浸させる。
リチウム二次電池の負極活物質としては、黒鉛、コークス、炭素繊維などリチウムを可逆的にインターカレート/デインターカレートする各種の炭素質材料が知られている。そして、この種ポリマー電解質二次電池の負極活物質としては、コークスが既に検討されている。また、炭素質メソフェーズ粒体を炭素化し、次いで黒鉛化した球状黒鉛粒子は、高容量でサイクル特性に優れたリチウム電池用負極を与えるものとして知られている(特開平5ー290833号公報)ことから、この球状黒鉛粒子も有望と考えられる。
【0004】
上記のようにして得られるポリマー電解質電池の容量密度は、電極中のポリマーの配合割合に大きく左右される。すなわち、電極中のポリマーの割合が高ければ活物質の量が相対的に減少するし、ポリマーの割合が低ければ結着力が劣って電極強度が低下する。従って、上記の電極材料のペーストを集電体に塗着した後、圧延するなどにより活物質の充填密度を上げるのが好ましい。このような方法により電極を製造する際、ポリマーの配合割合を高くするとゴム状になり、十分に圧延することができなくなる。さらに、電極の集電体としてラス板などを用いると、圧延するときに集電体も一緒に延びて甚だしいときには集電体が引きちぎられるなどにより、活物質の充填密度を上げることができない。
また、ポリマーの配合割合が少ないと、電極とセパレータとを一体に熱融着することができず、電極とセパレータとの間に隙間ができ、電池の内部抵抗が高くなり、安定した電池性能が得られない。従って、従来においては、電極の合剤層中のポリマー含量は20重量%程度が適切とされていた。
特に、負極活物質の炭素材料は、その種類や粒径などによって物性、殊に表面積が変わるから、電極を構成するに必要とするポリマー量も変わり、得られる電極の容量密度が左右される。
【0005】
【発明が解決しようとする課題】
本発明は、以上に鑑み、電極、特に負極の活物質材料を適切に選定して、容量密度の大きいポリマー電解質電池を提供することを目的とする。
また、本発明は、電極中のポリマー含量を適切に設定することにより、より容量密度の大きいポリマー電解質電池を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の有機電解質電池は、活物質のリチウム含有酸化物および有機電解液を吸収保持するポリマーを5〜10重量%含み集電体に支持された正極合剤層、有機電解液を吸収保持するポリマーからなる多項性のセパレータ、活物質の黒鉛質粒体および有機電解液を吸収保持するポリマーを7〜16重量%含み集電体に支持された負極合剤層、並びに前記正極合剤層、負極合剤層およびセパレータに保持された有機電解液を具備し、前記正極合剤層と、前記セパレータと、前記負極合剤層とが融着しており、前記黒鉛質粒体が、炭素質メソフェーズ粒体を炭素化し、次いで黒鉛化した平均粒径6〜35μmの球状黒鉛であることを特徴とする。
前記黒鉛質粒体は、X線回折における格子面間隔が3.365〜3.390オングストローム、c軸方向の結晶子の大きさが200〜650オングストローム、アルゴンレーザ・ラマン分光における1580cm-1のピーク強度I1580に対する1360cm-1のピーク強度I1360の比I1360/I1580が0.20〜0.40の範囲にあることが好ましい。
また、前記ポリマーがフッ化ビニリデンと六フッ化プロピレンの共重合体からなり、前記負極合剤層中のポリマー含量が7〜16重量%、前記正極合剤層中の活物質がコバルト酸リチウムであり、かつポリマー含量が5〜10重量%であることが好ましい。なお、このポリマー含量の算出には電解液を含めないものとする。
【0007】
【発明の実施の形態】
本発明者らは、ポリマー電解質電池の電極合剤中のポリマーの好ましい含量とともに、負極活物質に、高容量でサイクル特性に優れた球状黒鉛を適用し、活物質の充填密度が高く、かつ安定した性能を発揮できる条件を探索した結果、上記のように平均粒径6〜35μmの球状黒鉛粒子を用いることにより優れた電池が得られることを見いだした。
すなわち、炭素質メソフェーズ粒体を炭素化および黒鉛化して得られた球状黒鉛粒子は、石油コークスなどに較べてリチウムの吸蔵能力が大きく、電極とした際に放電容量を向上させることができる。この球状黒鉛粒子の粒径に関しては、粒径が大きなものは、表面積が小さいため、同じポリマー含量であれば、ポリマーによる球状黒鉛粒子相互の結着性は粒径の小さい球状黒鉛粒子を用いたものより十分大きい。このため少量のポリマー含量で黒鉛粒子相互の結着性が得られるので、放電容量が大きくなる。しかし、粒径が大きくなると、電極合剤のペーストをラスメタルなどの集電体に塗着して電極を製造する際、電極板表面に凹凸の塗着むらができ、製造効率が悪くなるばかりでなく、粒子が脱落しやすくなることからサイクル特性が悪くなる。
【0008】
一方、球状黒鉛粒子の粒径があまり小さいと、嵩が大きくなり粉体の総表面積が大きくなる。このため粒径の大きなものを用いた場合と同じポリマー含量の電極を作製すると、ポリマーによる球状黒鉛粒子相互の結着性が不十分となって、粉体相互の電気的接触が不安定となり導電性が悪くなる。従って、結着性を十分に得るにはポリマー含量を増やさねばならず、そうすると球状黒鉛の量が相対的に減って充填密度が低下し、放電容量は小さくなる。また、結着性が不十分であると、電極合剤層と集電体との密着が十分でなく、引っ張り強度の弱い電極板となる。さらに、電極合剤層が電解液を吸収しすぎて大きくふくれたりする不都合が生じる。さらに、粒径が小さく、表面積が大きな球状黒鉛粒子は、酸素を含む雰囲気下での取り扱い上安全性に問題がある。
以上の観点から、球状黒鉛の平均粒径が選定される。また、電極合剤層中のポリマー含量は、負極においては7〜16重量%、正極においては活物質にコバルト酸リチウムを用いたとき5〜10重量%が好適である。
【0009】
本発明によるポリマー電解質電池の電極は、以下のようにして作製することが好ましい。まず、コバルト酸リチウムや球状黒鉛粒子などの電極活物質、導電剤、ポリマーの有機溶媒溶液および造孔剤を混合してペーストを調製する。このペーストを集電体に塗着し乾燥した後、加圧ローラーにより圧延し、所定の寸法に切断して電極シートを得る。セパレータは、造孔剤を混入したポリマーシートの状態で準備する。そして、このようにして得られたシートの状態で、または正極、負極およびセパレータを一体に熱融着して電池素子に組み立てた状態において、溶媒例えばジエチルエーテルにより造孔剤を抽出することによりポリマー部分を多孔性化し、電解液を浸透保持させる細孔を形成する。
【0010】
本発明の電極およびセパレータに用いるポリマーは、フッ化ビニリデンと六フッ化プロピレンとの共重合体、また造孔剤はフタル酸ージ−nーブチルがそれぞれ好適であるが、これらに限定されるものではない。
正極活物質としては、LiCoO2、LiNiO2、LiMn24など充放電によりリチウムを可逆的に出し入れできる酸化物が用いられる。なかでもLiCoO2が好適に用いられる。
【0011】
正極の集電体には、アルミニウム、チタン、ステンレス鋼などの箔、穴あき板、ラス板、網体など、また負極の集電体には、銅、ステンレス鋼などの箔、穴あき板、ラス板、網体などがそれぞれ用いられる。セルを多層に積層する構成をとるときは、穴あき板などの多孔板を用いるのが好ましい。
有機電解液には、LiClO4、LiBF4、LiPF6、LiCF3SO3など溶質とエチレンカーボネート、プロピレンカーボネート、ジメトキシエタンなどの有機溶媒との組み合わせなど、有機電解質電池に用いるものとして知られているもののなかから適宜選択して用いられる。
【0012】
【実施例】
以下、本発明をその実施例により詳細に説明する。
《実施例1》
フッ化ビニリデンと六フッ化プロピレンとの共重合体(六フッ化プロピレンの比率:12重量%)(以下、P(VDF−HFP)で表す。)100gをアセトン500gに溶解し、その溶液にフタル酸ージ−nーブチル(以下、DBPで表す。)150gを添加して混合溶液を得た。この溶液をガラス板上に塗布した後、乾燥してアセトンを除去し、厚さ50μmのポリマーシートを得た。このシートを切断し、サイズ35mm×65mmのセパレータシートとした。
一方、P(VDF−HFP)90gをアセトン1500gに溶解した溶液に、コバルト酸リチウムLiCoO2900g、アセチレンブラック50g、およびDBP135gを混合してペーストを調製した。このペーストを集電体のアルミニウムのラス板の片面に塗着し乾燥した後、ロールプレスにより圧延した。こうして厚さ100μmのシートを得た。このシートを切断し、サイズ30mm×60mmの正極シートとした。
【0013】
P(VDF−HFP)120gをアセトン1000gに溶解した溶液に、炭素質メソフェーズ粒体を炭素化および黒鉛化して得られた平均粒径25μmの球状黒鉛粒子(大阪ガス製)750g、導電剤の黒鉛繊維(大阪ガス製)60g、およびDBP180gを混合してペーストを得た。ここに用いた黒鉛繊維は、気相成長法により得た炭素繊維を黒鉛化したものである。このペーストを集電体の銅のラス板の両面に塗着し乾燥した後、ロールプレスにより圧延した。こうして厚さ300μmのシートを得た。このシートを切断し、サイズ30mm×60mmの負極シートとした。
なお、上記の正極および負極の集電体は、表面にあらかじめ導電性炭素皮膜を形成したものを用いた。この導電性炭素皮膜は、ポリフッ化ビニリデンのNーメチルピロリドン溶液(濃度12重量%)にアセチレンブラックを分散した分散液を集電体表面に60μmの厚さに塗布した後、80℃以上の温度で乾燥して形成した。
【0014】
上記のようにして得た負極シートの両面に、それぞれセパレータとしてのポリマーシートを介して正極シートを配し、120℃に加熱された二本の加圧ローラー間をとおして加圧することにより一体に熱融着して電池素子を得た。この電池素子は、次に抽出溶媒のジエチルエーテル中に浸漬することによりDBPを抽出除去した後、50℃で真空乾燥した。DBPの除去によりポリマー部分には微細な細孔が形成され、多孔性となる。次いで、電解液中に浸漬して電極およびセパレータ中の細孔内へ電解液を含浸保持させた。電解液には、エチレンカーボネートとメチルエチルカーボネートの体積比1:3の混合溶媒に六フッ化リン酸リチウムLiPF6を1モル/lの割合で溶解したものを用いた。
このようにして調製した電池素子を、絶縁性樹脂フィルム間にアルミニウムフィルムを配したラミネートフィルムで外装して厚さ0.6mm、大きさ35mm×60mmの電池を得た。
この電池の正極合剤層中のポリマー含量(電解液は含めない)は8.7重量%、負極のそれは12.9重量%であった。
【0015】
《実施例2》
負極の球状黒鉛の平均粒径を約4、6、10、35または40μmとした他は実施例1と同様にして電池を作製した。なお、平均粒径約40μmの球状黒鉛粒子を用いて電極を作製したところ、電極表面の凹凸による塗着むらが大きく、セパレータと一体化して電池を作製するのは困難であった。
【0016】
《比較例》
球状黒鉛粒子に代えて平均粒径約10μmの石油コークス粉末を用いた以外は実施例1と同様にして電池を作製した。
【0017】
以上の実施例および比較例の電池を放電レート0.2Cで終止電圧3.0Vまで放電した。それら電池の放電曲線を図1に示す。図1では、負極に用いた球状黒鉛またはコークスの粒径で各電池を区別している。また、放電容量は、平均粒径10μmの球状黒鉛を用いた電池のそれを100%として表している。
図1から明らかなように、炭素質メソフェーズ粒体を炭素化および黒鉛化して得られた球状黒鉛粒子を用いた実施例の電池は、負極に石油コークスを用いた比較例の電池に較べて、いずれも放電容量が大きくなっている。特に、球状黒鉛粒子の粒径が大きいものの方が放電容量は大きい。球状黒鉛の粒径があまり小さいと、嵩が大きくなって粒体の総表面積が大きくなる。このため合剤中のポリマー含量を粒径の大きな黒鉛粒子を用いたものと同じにして電極を作製すると、ポリマーによる球状黒鉛粒子相互の結着性が不十分となるから、粒体相互の電気的接触が不安定となり導電性が悪くなる。粒子相互間の結着性を十分に得るには、合剤中のポリマー量を増やさねばならず、そうすると球状黒鉛の充填密度が相対的に低下し、電極として放電容量は小さくなる。図1に示したとおり、球状黒鉛の場合、平均粒径が6〜35μmの範囲で好ましい放電容量が得られる。一方、粒径が大きなものは、表面積が小さいため、ポリマーによる結着性は十分である。しかし、粒径が大きくなると、電極を製造する際電極板表面に凹凸の塗着むらが生じやすく、粒子も脱落しやすくなることからサイクル特性が悪くなる。
【0018】
《実施例3》
負極およびセパレータシートは実施例1と同じとし、正極合剤層中のポリマーP(VDF−HFP)の含量を0、2、5、7、10、15または25重量%と変えて同様に電池を作製した。ただし、正極活物質のコバルト酸リチウムと導電剤のアセチレンブラックの量は実施例1と同じとし、DBPの量はP(VDF−HFP)に対する比を一定(1.5)とした。これらをA群電池という。
【0019】
《実施例4》
正極およびセパレータシートは実施例1と同じとし、負極合剤層中のポリマーP(VDF−HFP)の含量を0、5、7、10、12、15、16または25重量%と変えて同様に電池を作製した。ただし、負極活物質の球状黒鉛と導電剤の黒鉛繊維の量は実施例1と同じとし、DBPの量はP(VDF−HFP)に対する比を一定(1.5)とした。これらをB群電池という。
【0020】
上記のA群電池およびB群電池の内部抵抗を1KHzの交流インピーダンス法によって測定した。その結果をそれぞれ図2および図3に示す。
これらの図から明らかなように、電池の内部抵抗を基準にすると、電極合剤層中の最適なポリマー含量は、従来の20重量%に比べてかなり低いところにあることがわかる。すなわち、内部抵抗の最小値は、正極では5〜10重量%、負極では7〜16重量%のポリマー含量である。それ自体導電性を持たないポリマーの配合割合が多いところでは電池の内部抵抗が高くなり、ポリマーの配合割合が少ないところでは電極中の活物質相互間の接触が悪くなる。また、ポリマー含量が少ないと電極とセパレータの熱融着が十分できないため、電極とセパレータとの間に隙間が生じてしまう。このため、内部抵抗が高くなり、安定した電池性能が得られず、甚だしい場合は放電できないこともある。
【0021】
【発明の効果】
以上のように、本発明によれば、負極に用いる球状黒鉛の平均粒径の適切な選択と正・負極合剤中のポリマー含量の適切な規定によって、容量密度の大きいポリマー電解質電池を提供することができる。
【図面の簡単な説明】
【図1】本発明の実施例におけるポリマー電解質電池および比較例の電池の放電特性を示す図である。
【図2】正極のポリマー含量と電池の内部抵抗との関係を示す図である。
【図3】負極のポリマー含量と電池の内部抵抗との関係を示す図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an organic electrolyte battery, and more particularly to an organic electrolyte secondary battery in which an electrode and a separator include a polymer that absorbs and holds an organic electrolyte, and the electrode and the separator can be integrated by heat fusion.
[0002]
[Prior art]
In recent years, with the widespread use of portable devices such as mobile phones and notebook computers, secondary batteries that are small, lightweight, and have high energy density are desired. In order to meet such demands, various secondary batteries are being developed. Lithium secondary batteries that use lithium as a negative electrode active material are attracting attention because they can be expected to have a high energy density. In particular, a so-called polymer electrolyte secondary battery in which a polymer is contained in a positive electrode, a negative electrode, and a separator, and an organic electrolytic solution is absorbed and held in the polymer has attracted attention.
This polymer electrolyte secondary battery uses a copolymer of vinylidene fluoride and propylene hexafluoride as a polymer, and the positive electrode, separator, and negative electrode can be integrated by thermal fusion. (Japanese Patent Publication No. 8-507407).
[0003]
The polymer electrolyte secondary battery is manufactured, for example, as follows. First, a paste is prepared by adding a polymer organic solvent solution and a pore-forming agent di-n-butyl phthalate to a mixture of electrode active material powder such as lithium cobaltate and graphite particles and conductive agent powder. The paste is applied to a current collector and then dried to remove the organic solvent to obtain an electrode sheet. A separator sheet made of a polymer containing a pore forming agent is interposed between the positive electrode sheet and the negative electrode sheet thus obtained, and heat fusion is integrated by applying pressure under heating to obtain a battery element sheet. Next, this battery element sheet is immersed in an extraction solvent such as diethyl ether to extract and remove the pore-forming agent to impart porosity, and then the pore portion and the polymer itself are impregnated with an organic electrolyte.
Various types of carbonaceous materials that reversibly intercalate / deintercalate lithium, such as graphite, coke, and carbon fiber, are known as negative electrode active materials for lithium secondary batteries. And as a negative electrode active material of this kind polymer electrolyte secondary battery, coke has already been examined. Further, spherical graphite particles obtained by carbonizing and then graphitizing carbonaceous mesophase granules are known to give a negative electrode for lithium batteries having a high capacity and excellent cycle characteristics (Japanese Patent Laid-Open No. 5-290833). Therefore, this spherical graphite particle is also considered promising.
[0004]
The capacity density of the polymer electrolyte battery obtained as described above greatly depends on the blending ratio of the polymer in the electrode. That is, if the ratio of the polymer in the electrode is high, the amount of the active material is relatively decreased. If the ratio of the polymer is low, the binding force is inferior and the electrode strength is decreased. Accordingly, it is preferable to increase the packing density of the active material by rolling the electrode material paste onto the current collector and then rolling it. When an electrode is produced by such a method, if the blending ratio of the polymer is increased, it becomes rubbery and cannot be sufficiently rolled. Furthermore, when a lath plate or the like is used as the current collector of the electrode, the current collector also extends together when rolling, and the current collector is torn off when it is severe, so the packing density of the active material cannot be increased.
In addition, when the blending ratio of the polymer is small, the electrode and the separator cannot be integrally heat-sealed, a gap is formed between the electrode and the separator, the internal resistance of the battery is increased, and stable battery performance is achieved. I can't get it. Therefore, conventionally, the polymer content in the electrode mixture layer is about 20% by weight.
In particular, the carbon material of the negative electrode active material changes its physical properties, particularly the surface area, depending on the type and particle size thereof, so that the amount of polymer required to constitute the electrode also changes, and the capacity density of the resulting electrode is influenced.
[0005]
[Problems to be solved by the invention]
In view of the above, an object of the present invention is to provide a polymer electrolyte battery having a large capacity density by appropriately selecting an active material material for an electrode, particularly a negative electrode.
Another object of the present invention is to provide a polymer electrolyte battery having a larger capacity density by appropriately setting the polymer content in the electrode.
[0006]
[Means for Solving the Problems]
The organic electrolyte battery of the present invention absorbs and holds a positive electrode mixture layer supported by a current collector containing 5 to 10% by weight of an active material lithium-containing oxide and a polymer that absorbs and holds the organic electrolyte, and the organic electrolyte. Polymeric separator made of polymer, graphite mixture of active material, and negative electrode mixture layer supported by current collector containing 7 to 16% by weight of polymer that absorbs and holds organic electrolyte, and positive electrode mixture layer and negative electrode An organic electrolyte solution held in a mixture layer and a separator, wherein the positive electrode mixture layer, the separator, and the negative electrode mixture layer are fused, and the graphite particles are carbonaceous mesophase particles. It is characterized by spherical graphite having an average particle size of 6 to 35 μm, which is carbonized and then graphitized.
The graphite particles have a lattice plane spacing of 3.365 to 3.390 angstroms in X-ray diffraction, a crystallite size in the c-axis direction of 200 to 650 angstroms, and a peak intensity of 1580 cm −1 in argon laser Raman spectroscopy. the ratio I 1360 / I 1580 of the peak intensity I 1360 of 1360 cm -1 for I 1580 is preferably in the range of 0.20 to 0.40.
The polymer is a copolymer of vinylidene fluoride and propylene hexafluoride, the polymer content in the negative electrode mixture layer is 7 to 16% by weight, and the active material in the positive electrode mixture layer is lithium cobaltate. And the polymer content is preferably 5 to 10% by weight. In addition, the electrolyte solution is not included in the calculation of the polymer content.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors applied spherical graphite having a high capacity and excellent cycle characteristics to the negative electrode active material together with a preferable content of the polymer in the electrode mixture of the polymer electrolyte battery, and the active material has a high packing density and is stable. As a result of searching for conditions that can exhibit the performance, it has been found that an excellent battery can be obtained by using spherical graphite particles having an average particle diameter of 6 to 35 μm as described above.
That is, the spherical graphite particles obtained by carbonizing and graphitizing the carbonaceous mesophase particles have a larger lithium storage capacity than petroleum coke and can improve the discharge capacity when used as an electrode. With respect to the particle size of the spherical graphite particles, those having a large particle size have a small surface area. Therefore, if the polymer content is the same, the spherical graphite particles having a small particle size were used for the binding property between the spherical graphite particles by the polymer. Big enough than the ones. For this reason, since the binding property between graphite particles can be obtained with a small amount of polymer content, the discharge capacity is increased. However, when the particle size is increased, when an electrode mixture paste is applied to a current collector such as a lath metal to produce an electrode, unevenness is unevenly applied to the surface of the electrode plate, resulting in poor production efficiency. In addition, since the particles easily fall off, the cycle characteristics are deteriorated.
[0008]
On the other hand, when the particle diameter of the spherical graphite particles is too small, the bulk increases and the total surface area of the powder increases. For this reason, when an electrode having the same polymer content as that using a large particle size is produced, the binding property between the spherical graphite particles due to the polymer becomes insufficient, and the electrical contact between the powders becomes unstable and the conductive property becomes unstable. Sexuality gets worse. Therefore, in order to obtain sufficient binding properties, the polymer content must be increased. Then, the amount of spheroidal graphite is relatively reduced, the packing density is lowered, and the discharge capacity is reduced. Further, if the binding property is insufficient, the electrode mixture layer and the current collector are not sufficiently adhered, resulting in an electrode plate having a low tensile strength. Furthermore, there is a disadvantage that the electrode mixture layer absorbs the electrolyte solution and swells greatly. Furthermore, spherical graphite particles having a small particle diameter and a large surface area have a problem in safety in handling in an atmosphere containing oxygen.
From the above viewpoint, the average particle diameter of the spherical graphite is selected. The polymer content in the electrode mixture layer is preferably 7 to 16% by weight in the negative electrode and 5 to 10% by weight in the positive electrode when lithium cobaltate is used as the active material.
[0009]
The electrode of the polymer electrolyte battery according to the present invention is preferably produced as follows. First, a paste is prepared by mixing an electrode active material such as lithium cobaltate and spherical graphite particles, a conductive agent, a polymer organic solvent solution and a pore former. The paste is applied to a current collector and dried, then rolled with a pressure roller, and cut into a predetermined size to obtain an electrode sheet. The separator is prepared in the state of a polymer sheet mixed with a pore forming agent. In the state of the sheet thus obtained, or in the state where the positive electrode, the negative electrode and the separator are integrally heat-sealed to be assembled into a battery element, the polymer is extracted by extracting the pore-forming agent with a solvent such as diethyl ether. The part is made porous to form pores that permeate and hold the electrolyte.
[0010]
The polymer used for the electrode and separator of the present invention is preferably a copolymer of vinylidene fluoride and propylene hexafluoride, and the pore-forming agent is preferably phthalate-di-n-butyl, but is not limited thereto. is not.
As the positive electrode active material, an oxide such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 that can reversibly put lithium in and out by charge and discharge is used. Of these, LiCoO 2 is preferably used.
[0011]
The current collector of the positive electrode is a foil, holed plate, lath plate, net, etc. of aluminum, titanium, stainless steel, etc. The current collector of the negative electrode is a foil, holed plate of copper, stainless steel, etc. A lath plate, a net, or the like is used. When taking a configuration in which cells are laminated in multiple layers, it is preferable to use a porous plate such as a perforated plate.
Organic electrolytes are known for use in organic electrolyte batteries, such as combinations of solutes such as LiClO 4 , LiBF 4 , LiPF 6 , LiCF 3 SO 3 and organic solvents such as ethylene carbonate, propylene carbonate, and dimethoxyethane. It is appropriately selected from those used.
[0012]
【Example】
Hereinafter, the present invention will be described in detail by examples.
Example 1
100 g of a copolymer of vinylidene fluoride and propylene hexafluoride (ratio of propylene hexafluoride: 12% by weight) (hereinafter referred to as P (VDF-HFP)) is dissolved in 500 g of acetone, and phthalate is added to the solution. 150 g of acid-di-n-butyl (hereinafter referred to as DBP) was added to obtain a mixed solution. This solution was applied on a glass plate and then dried to remove acetone, thereby obtaining a polymer sheet having a thickness of 50 μm. This sheet was cut into a separator sheet having a size of 35 mm × 65 mm.
On the other hand, a solution prepared by dissolving 90 g of P (VDF-HFP) in 1500 g of acetone was mixed with 900 g of lithium cobaltate LiCoO 2 , 50 g of acetylene black, and 135 g of DBP to prepare a paste. This paste was applied to one side of an aluminum lath plate as a current collector, dried, and then rolled by a roll press. Thus, a sheet having a thickness of 100 μm was obtained. This sheet was cut into a positive electrode sheet having a size of 30 mm × 60 mm.
[0013]
750 g of spherical graphite particles (manufactured by Osaka Gas) having an average particle diameter of 25 μm obtained by carbonizing and graphitizing carbonaceous mesophase granules in a solution of 120 g of P (VDF-HFP) in 1000 g of acetone, graphite as a conductive agent A paste was obtained by mixing 60 g of fibers (manufactured by Osaka Gas) and 180 g of DBP. The graphite fiber used here is a graphitized carbon fiber obtained by a vapor phase growth method. This paste was applied to both sides of a copper lath plate as a current collector, dried, and then rolled by a roll press. A sheet having a thickness of 300 μm was thus obtained. This sheet was cut into a negative electrode sheet having a size of 30 mm × 60 mm.
In addition, as the current collector for the positive electrode and the negative electrode, those in which a conductive carbon film was previously formed on the surface were used. This conductive carbon film was formed by applying a dispersion of acetylene black dispersed in an N-methylpyrrolidone solution of polyvinylidene fluoride (concentration: 12% by weight) to the surface of the current collector to a thickness of 60 μm and then a temperature of 80 ° C. or higher. And dried to form.
[0014]
The positive electrode sheet is arranged on both surfaces of the negative electrode sheet obtained as described above via a polymer sheet as a separator, and is integrally formed by pressing between two pressure rollers heated to 120 ° C. A battery element was obtained by heat sealing. The battery element was then immersed in diethyl ether as an extraction solvent to extract and remove DBP, and then vacuum dried at 50 ° C. By removing DBP, fine pores are formed in the polymer portion and become porous. Subsequently, it was immersed in the electrolytic solution, and the electrolytic solution was impregnated and held in the pores in the electrode and the separator. As the electrolytic solution, a solution obtained by dissolving lithium hexafluorophosphate LiPF 6 at a ratio of 1 mol / l in a mixed solvent of ethylene carbonate and methyl ethyl carbonate in a volume ratio of 1: 3 was used.
The battery element thus prepared was packaged with a laminate film in which an aluminum film was disposed between insulating resin films to obtain a battery having a thickness of 0.6 mm and a size of 35 mm × 60 mm.
The polymer content (not including the electrolyte) in the positive electrode mixture layer of this battery was 8.7% by weight, and that of the negative electrode was 12.9% by weight.
[0015]
Example 2
A battery was produced in the same manner as in Example 1 except that the average particle diameter of the negative spherical graphite was about 4, 6, 10, 35, or 40 μm. When an electrode was prepared using spherical graphite particles having an average particle size of about 40 μm, the unevenness of coating due to the unevenness of the electrode surface was large, and it was difficult to produce a battery integrated with the separator.
[0016]
《Comparative example》
A battery was fabricated in the same manner as in Example 1 except that petroleum coke powder having an average particle size of about 10 μm was used instead of the spherical graphite particles.
[0017]
The batteries of the above examples and comparative examples were discharged to a final voltage of 3.0 V at a discharge rate of 0.2C. The discharge curves of these batteries are shown in FIG. In FIG. 1, each battery is distinguished by the particle diameter of spherical graphite or coke used for the negative electrode. The discharge capacity is expressed as 100% of a battery using spherical graphite having an average particle diameter of 10 μm.
As is clear from FIG. 1, the battery of the example using the spherical graphite particles obtained by carbonizing and graphitizing the carbonaceous mesophase granules is compared with the battery of the comparative example using petroleum coke as the negative electrode. In both cases, the discharge capacity is large. In particular, the larger the particle size of the spherical graphite particles, the larger the discharge capacity. If the particle size of the spherical graphite is too small, the bulk becomes large and the total surface area of the particles increases. For this reason, if the electrode is made with the polymer content in the mixture being the same as that using graphite particles with a large particle size, the binding properties between the spherical graphite particles due to the polymer will be insufficient. The mechanical contact becomes unstable and the conductivity becomes poor. In order to obtain sufficient binding between the particles, the amount of the polymer in the mixture must be increased. In this case, the packing density of the spherical graphite is relatively lowered, and the discharge capacity as an electrode is reduced. As shown in FIG. 1, in the case of spherical graphite, a preferable discharge capacity is obtained when the average particle diameter is in the range of 6 to 35 μm. On the other hand, those having a large particle size have a small surface area, so that the binding property by the polymer is sufficient. However, when the particle size is increased, unevenness of the unevenness of the electrode plate surface tends to occur when the electrode is manufactured, and the particles are also likely to fall off, resulting in poor cycle characteristics.
[0018]
Example 3
The negative electrode and the separator sheet were the same as in Example 1, and the battery was similarly prepared by changing the content of polymer P (VDF-HFP) in the positive electrode mixture layer to 0, 2, 5, 7, 10, 15 or 25% by weight. Produced. However, the amount of lithium cobaltate as the positive electrode active material and the amount of acetylene black as the conductive agent were the same as in Example 1, and the amount of DBP was constant (1.5) with respect to P (VDF-HFP). These are called Group A batteries.
[0019]
Example 4
The positive electrode and the separator sheet were the same as in Example 1, and the content of polymer P (VDF-HFP) in the negative electrode mixture layer was changed to 0, 5, 7, 10, 12, 15, 16 or 25% by weight in the same manner. A battery was produced. However, the amount of spherical graphite of the negative electrode active material and the amount of graphite fiber of the conductive agent were the same as in Example 1, and the amount of DBP was constant (1.5) with respect to P (VDF-HFP). These are called group B batteries.
[0020]
The internal resistances of the group A batteries and the group B batteries were measured by a 1 KHz AC impedance method. The results are shown in FIGS. 2 and 3, respectively.
As can be seen from these figures, based on the internal resistance of the battery, the optimum polymer content in the electrode mixture layer is considerably lower than the conventional 20% by weight. That is, the minimum value of internal resistance is a polymer content of 5 to 10% by weight for the positive electrode and 7 to 16% by weight for the negative electrode. The internal resistance of the battery increases when the blending ratio of the polymer having no electrical conductivity is large, and the contact between the active materials in the electrode becomes poor when the blending ratio of the polymer is small. In addition, when the polymer content is low, the electrode and the separator cannot be sufficiently heat-sealed, so that a gap is generated between the electrode and the separator. For this reason, internal resistance becomes high, the stable battery performance is not obtained, and when it is severe, it may be unable to discharge.
[0021]
【The invention's effect】
As described above, according to the present invention, a polymer electrolyte battery having a large capacity density is provided by appropriate selection of the average particle diameter of the spherical graphite used for the negative electrode and appropriate regulation of the polymer content in the positive / negative electrode mixture. be able to.
[Brief description of the drawings]
FIG. 1 is a graph showing discharge characteristics of a polymer electrolyte battery and a comparative battery in Examples of the present invention.
FIG. 2 is a graph showing the relationship between the polymer content of the positive electrode and the internal resistance of the battery.
FIG. 3 is a graph showing the relationship between the polymer content of the negative electrode and the internal resistance of the battery.

Claims (3)

活物質のリチウム含有酸化物および有機電解液を吸収保持するポリマーを5〜10重量%含み集電体に支持された正極合剤層、有機電解液を吸収保持するポリマーからなる多孔性のセパレータ、活物質の黒鉛質粒体および有機電解液を吸収保持するポリマーを7〜16%含み集電体に支持された負極合剤層、並びに前記正極合剤層、負極合剤層およびセパレータに吸収保持された有機電解液を具備し、前記正極合剤層と、前記セパレータと、前記負極合剤層とが融着しており、前記黒鉛質粒体が、炭素質メソフェーズ粒体を炭素化し、次いで黒鉛化した平均粒径6〜35μmの球状黒鉛であることを特徴とする有機電解質電池。A positive electrode mixture layer containing 5 to 10% by weight of a lithium-containing oxide of an active material and a polymer that absorbs and holds the organic electrolyte, and a porous separator that is made of a polymer that absorbs and holds the organic electrolyte; Absorbed and held in the negative electrode mixture layer supported by the current collector containing 7 to 16% of the graphite particles of the active material and the polymer that absorbs and holds the organic electrolyte, and the positive electrode mixture layer, the negative electrode mixture layer, and the separator. The positive electrode mixture layer, the separator, and the negative electrode mixture layer are fused, and the graphite particles carbonize the carbonaceous mesophase particles, and then graphitize. An organic electrolyte battery characterized by being spherical graphite having an average particle diameter of 6 to 35 μm. 前記黒鉛質粒体が、X線回折における格子面間隔が3.365〜3.390オングストローム、c軸方向の結晶子の大きさが200〜650オングストローム、アルゴンレーザ・ラマン分光における1580cm-1のピーク強度I1580に対する1360cm-1のピーク強度I1360の比I1360/1580が0.20〜0.40の範囲にある請求項1記載の有機電解質電池。The graphite particles have a lattice spacing of 3.365 to 3.390 angstroms in X-ray diffraction, a crystallite size in the c-axis direction of 200 to 650 angstroms, and a peak intensity of 1580 cm −1 in argon laser Raman spectroscopy. the organic electrolyte battery according to claim 1, wherein the ratio I 1360 / I 1580 of the peak intensity I 1360 of 1360 cm -1 is in the range of 0.20 to 0.40 for the I 1580. 前記ポリマーがフッ化ビニリデンと六フッ化プロピレンの共重合体からなり、前記負極合剤層中のポリマー含量が7〜16重量%、前記正極合剤層中の活物質がコバルト酸リチウムであり、かつポリマー含量が5〜10重量%である請求項2記載の有機電解質電池。The polymer comprises a copolymer of vinylidene fluoride and propylene hexafluoride, the polymer content in the negative electrode mixture layer is 7 to 16% by weight, and the active material in the positive electrode mixture layer is lithium cobaltate, 3. The organic electrolyte battery according to claim 2, wherein the polymer content is 5 to 10% by weight.
JP24566998A 1998-02-18 1998-08-31 Organic electrolyte battery Expired - Fee Related JP3853083B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24566998A JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery
US09/248,914 US6579649B2 (en) 1998-02-18 1999-02-09 Polymer electrolyte battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-36150 1998-02-18
JP3615098 1998-02-18
JP24566998A JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH11307082A JPH11307082A (en) 1999-11-05
JP3853083B2 true JP3853083B2 (en) 2006-12-06

Family

ID=26375201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24566998A Expired - Fee Related JP3853083B2 (en) 1998-02-18 1998-08-31 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3853083B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120262B2 (en) 2002-02-26 2008-07-16 ソニー株式会社 Non-aqueous electrolyte battery

Also Published As

Publication number Publication date
JPH11307082A (en) 1999-11-05

Similar Documents

Publication Publication Date Title
JP3930002B2 (en) High density electrode and battery using the electrode
US8470473B2 (en) Electrode and electrochemical device
US20050241137A1 (en) Electrode, electrochemical device, and method of making electrode
WO2004001880A1 (en) Electrode and cell comprising the same
US20080241696A1 (en) Electrode and electrochemical device
JPH05190209A (en) Liquid electrolyte and rechargeable chemical cell with lithium/carbon anode
US6579649B2 (en) Polymer electrolyte battery
JP4632020B2 (en) Non-aqueous electrolyte secondary battery
JP5928591B2 (en) Lithium ion secondary battery
JP5380826B2 (en) Lithium ion secondary battery
JP2005209498A6 (en) Non-aqueous electrolyte secondary battery
WO2020184502A1 (en) Non-aqueous electrolyte secondary battery electrode and non-aqueous electrolyte secondary battery
JP4840302B2 (en) Separator and battery using the same
JP5742169B2 (en) Lithium secondary battery and vehicle equipped with the same
JP2002319386A (en) Nonaqueous electrolyte secondary battery
JP4945054B2 (en) Lithium polymer secondary battery and manufacturing method thereof
JP3183270B2 (en) Manufacturing method of organic electrolyte battery
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP2004158441A (en) Nonaqueous electrolyte secondary battery
US20020164529A1 (en) Secondary power source
JP2020126733A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JPH10154415A (en) Polymer solid-state electrolyte, lithium secondary battery using it, and electric double layer capacitor
JP4448963B2 (en) Flat type non-aqueous electrolyte secondary battery and method for manufacturing the same
JP3853083B2 (en) Organic electrolyte battery
JP4235285B2 (en) Organic electrolyte battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060831

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees