JP3852972B2 - Method for producing saturated ester - Google Patents

Method for producing saturated ester Download PDF

Info

Publication number
JP3852972B2
JP3852972B2 JP02468696A JP2468696A JP3852972B2 JP 3852972 B2 JP3852972 B2 JP 3852972B2 JP 02468696 A JP02468696 A JP 02468696A JP 2468696 A JP2468696 A JP 2468696A JP 3852972 B2 JP3852972 B2 JP 3852972B2
Authority
JP
Japan
Prior art keywords
reaction
ester
saturated
acetate
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02468696A
Other languages
Japanese (ja)
Other versions
JPH09194427A (en
Inventor
康隆 田中
一昭 福家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP02468696A priority Critical patent/JP3852972B2/en
Publication of JPH09194427A publication Critical patent/JPH09194427A/en
Application granted granted Critical
Publication of JP3852972B2 publication Critical patent/JP3852972B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は飽和エステルの製造方法であって、特定の触媒の存在下に不飽和基含有エステルを水素化することにより飽和エステルを製造する方法に関する。
【0002】
【従来の技術】
飽和エステル類は溶剤や反応溶媒として多用され、工業上重要な化合物である。これら飽和エステル類は、一般に、飽和エステルに対応するアルコールとカルボン酸との縮合によるエステル化を介して製造される。
【0003】
【発明が解決しようとする課題】
しかし、エステル反応系では、副生成物である水を系外に取り除かなければ、反応の平衡状態を生成側に傾けることができず、工業的に有意な原料転化率や反応速度が得られない。そのため、エステル化を介する飽和エステル類の工業的な製造は、他の反応系を介するより複雑な反応装置や反応工程を必要とし、加えて、空時収率が低く、水の蒸留分離にも多大のエネルギーを消費する等の困難を有する。
【0004】
一方、アリル基、メタリル基等を含有する不飽和基含有エステルは、対応するオレフィンとカルボン酸との酸化的アシルオキシル化反応を介して、極めて高収率、かつ高空時収率で工業的に生産することができる。従って、容易に入手できるこれら不飽和基含有エステルに水素化反応を実行し、飽和エステルの製造を試行したところ、この反応は相当するアルカンとカルボン酸への飽和エステルの分解反応をも伴った。これを防ぎ飽和エステルを高収率で得るには、白金族金属であるロジウム(Rh)を触媒として使用することが必要となる(接触水素化反応;西村重夫他、東京化学同人、p.117)。
しかし、白金族金属の中でもRhは極めて高価な金属である。Rhを触媒として、飽和エステル類のごとく比較的安価な化合物を工業的に生産することは、触媒の失活がある程度不可避であることを考慮すると、経済性上の不均衡を招くことになる。
【0005】
【課題を解決するための手段】
本発明者らは、不飽和基含有エステルの水素化反応について、鋭意検討を重ねた結果、意外にも、ラネーニッケル等の安価なニッケル系汎用水素化触媒を特定条件下で使用することにより、殆ど分解反応を伴わずに飽和エステルが高収率で得られることを見出し、本発明を完成するに至った。
【0006】
すなわち本発明は、ニッケルを10乃至100重量%含有する水素化触媒を用いて、下記一般式(1)で示す不飽和基含有エステルを水素化して飽和エステルを製造する方法であって、常圧〜10kg/cm 2 の圧力下、気相法で水素化反応を行うことを特徴とする飽和エステルの製造方法を提供するものである。また、前記不飽和基含有エステルが酢酸アリル、酢酸クロチル、酢酸メタリル、プロピオン酸アリル、プロピオン酸クロチル、プロピオン酸メタリルの群から選ばれる化合物であることを特徴とする前記飽和エステルの製造方法を提供するものである。さらに、水素化触媒が担持型ニッケルであることを特徴とする前記飽和エステルの製造方法を提供するものである。加えて、反応温度が30乃至200℃の範囲で水素化することを特徴とする前記飽和エステルの製造方法を提供するものである。以下、本発明について詳細に説明する。
【0007】
【化2】

Figure 0003852972
【0008】
【発明の実施の形態】
本発明では、上記一般式(1)で示す不飽和基含有エステルを、飽和エステルの原料として使用することができる。ここに一般式中、R1、R2、R3、R4、R5は、炭素数1乃至10の任意のアルキル基または水素原子を表わし、各々同一であっても異なっていてもよく、アルキル基は直鎖であっても分岐を有していてもよい。また、R6は、炭素数1乃至10の任意のアルキル基であり、直鎖であっても分岐を有していてもよい。本発明で最も好ましく使用できるのは、R1、R2、R3、R4、R5が全て水素原子であるアリルエステル、R3がメチル基でありR1、R2、R4及びR5が全て水素原子であるクロチルエステル、R1がメチル基でありR2、R3、R4及びR5が全て水素原子であるメタリルエステルである。具体的には、酢酸アリル、プロピオン酸アリル、プロピオン酸メタリル、酢酸メタリル、プロピオン酸クロチル、酢酸クロチル等を好ましく使用することができ、特に好ましくは、酢酸アリル、酢酸クロチル、酢酸メタリルである。
【0009】
本発明で使用する触媒は、ニッケルを主成分とする水素化触媒であり、ニッケルを10乃至100重量%含有する触媒が好ましく、特に好ましくはニッケル含量20乃至90重量%の触媒である。触媒の形態は、ニッケルを合金として含有していてもよく、担体にニッケルを担持させたものでもよい。
具体的には、ラネーニッケル等のニッケル合金や、ニッケルをシリカ、アルミナ、珪藻土などの担体に担持した担持型ニッケル触媒、さらにニッケル化合物である漆原ニッケル触媒等を例示できる。これらは、水素化用の汎用触媒として市販されているものでも使用することができる。なお、市販品は工業的規模での入手が容易である。また、市販ニッケル触媒には、触媒の活性、耐被毒性、耐熱性、耐酸性の改善等のため、ニッケル以外に助触媒として微量の他成分、例えば、Cu、Cr、Mg、Al等が添加されているものがあるが、そのような触媒であっても、本発明で好ましく使用することができる。
【0010】
本発明における反応形態は、気相法、液相法のいずれでも可能である。気相で反応させる場合は、固定床流通反応装置の使用が最も一般的であるが、流動床装置の使用も可能である。液相で反応させる場合は、完全混合槽型、気泡塔型、トリクルベッド型等の形態で実施することができる。
【0011】
反応温度は、原料の種類によっても異なるが、30乃至200℃の範囲が好ましく、50乃至150℃の範囲が特に好ましい。反応温度が30℃未満では充分な反応速度が得られず、また200℃を超えると水素化分解が進行し、いずれも好ましくない。酢酸アリルを原料として使用する場合には50乃至150℃の温度範囲であることが好ましい。
【0012】
反応圧力は、気相反応の場合は常圧でも通常充分な活性が得られる。このため常圧で実施するのが至便である。しかし、加圧条件とすることで更に反応を加速することもできる。この場合でも、加圧条件は、10kg/cm2以下で充分である。一方、液相反応の場合は溶解水素濃度を確保するために、通常は加圧が必要となる。この場合の反応圧力は、10乃至100kg/cm2の範囲であることが好ましく、特には15乃至50kg/cm2が好ましい。10kg/cm2未満では、反応が十分に促進されず、一方100kg/cm2を超えると、水素化分解が優勢となり好ましくない。
【0013】
本発明により、酢酸ノルマルプロピル、酢酸ブチル、酢酸イソプロピル、プロピオン酸ノルマルプロピル、プロピオン酸ブチル、プロピオン酸イソプロピル等の飽和エステルを得ることができる。
【0014】
【実施例】
以下、実施例および比較例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例中の転化率、選択率、収率の定義は下記式による。
【0015】
【数1】
Figure 0003852972
【0016】
(実施例1)
内径18mmφのステンレス製U字型反応管に、担持型ニッケル触媒(日揮化学製「N111」、ニッケル含量46重量%、円柱状成形品)6mlを充填した。常圧で、水素ガスを5.6リットル/hr(STP値、以下同じ)で流しながら170℃(触媒層での最高値、以下同じ)で6時間触媒を前処理した。次いで、酢酸アリルを5.2g/hr、水素ガスを5.6リットル/hrで仕込みながら、150℃で8時間反応を継続した。
反応器出口の凝縮液をガスクロマトグラフィーにて分析した結果、酢酸アリルの転化率は96.5%、酢酸ノルマルプロピルの選択率は96.2%、酢酸ノルマルプロピルの収率は92.8%であった。
【0017】
(実施例2)
反応温度を100℃に変更した以外は実施例1と全く同様に反応を行った。その結果、酢酸アリルの転化率は96.5%、酢酸ノルマルプロピルの選択率は99.1%、酢酸ノルマルプロピルの収率は95.6%であった。
【0018】
(実施例3)
反応温度を230℃に変更した以外は実施例1と全く同様に反応を行った。酢酸アリルの転化率は98.7%、酢酸ノルマルプロピルの選択率は66.7%、酢酸ノルマルプロピルの収率は65.8%であった。
【0019】
参考例
容量1000mlのステンレス製オートクレーブに酢酸アリルを200ml、ラネーニッケル(アルカリ展開用処理済品:日揮化学製「N154」、展開前のニッケル含量50重量%)を10g仕込み、水素ガス圧30kg/cm2(ゲージ圧)、反応温度100℃で攪拌しながら2時間反応させた。反応液をガスクロマトグラフィーにて分析した結果、酢酸アリルの転化率は97.3%、酢酸ノルマルプロピルの選択率は93.6%、酢酸ノルマルプロピルの収率は91.1%であった。
【0020】
【発明の効果】
本発明によれば、原料転化率、選択率、収率を高く維持しながら、飽和エステル類を工業的に製造することができる。しかも、複雑な反応装置や反応工程を必要としない。
本発明で使用する反応触媒は、通常用いられる白金族金属のロジウムと相違し、安価なニッケルを主成分とするため、容易に入手できると共に、飽和エステル類を工業的に安価に製造することができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a saturated ester, which relates to a method for producing a saturated ester by hydrogenating an unsaturated group-containing ester in the presence of a specific catalyst.
[0002]
[Prior art]
Saturated esters are frequently used as solvents and reaction solvents and are industrially important compounds. These saturated esters are generally produced via esterification by condensation of an alcohol corresponding to the saturated ester and a carboxylic acid.
[0003]
[Problems to be solved by the invention]
However, in the ester reaction system, unless the by-product water is removed from the system, the equilibrium state of the reaction cannot be tilted toward the production side, and industrially significant raw material conversion and reaction rate cannot be obtained. . Therefore, industrial production of saturated esters via esterification requires more complex reactors and reaction steps via other reaction systems, and in addition, the space-time yield is low, and water is also separated by distillation. Difficult to consume a great deal of energy.
[0004]
On the other hand, unsaturated group-containing esters containing an allyl group, a methallyl group, etc. are industrially produced in an extremely high yield and a high space-time yield through an oxidative acyloxylation reaction between a corresponding olefin and a carboxylic acid. Can be produced. Therefore, hydrogenation reaction was carried out on these readily available unsaturated group-containing esters, and production of saturated esters was attempted. This reaction also involved decomposition reaction of saturated esters into the corresponding alkanes and carboxylic acids. In order to prevent this and obtain a saturated ester in a high yield, it is necessary to use a platinum group metal rhodium (Rh) as a catalyst (catalytic hydrogenation reaction; Shigeo Nishimura et al., Tokyo Chemical Dojin, p. 117). ).
However, among platinum group metals, Rh is an extremely expensive metal. Industrially producing a relatively inexpensive compound such as a saturated ester using Rh as a catalyst causes an economic imbalance, considering that the deactivation of the catalyst is inevitable to some extent.
[0005]
[Means for Solving the Problems]
As a result of intensive studies on the hydrogenation reaction of unsaturated group-containing esters, the present inventors have surprisingly found that by using an inexpensive nickel-based general-purpose hydrogenation catalyst such as Raney nickel under specific conditions, The inventors have found that a saturated ester can be obtained in high yield without a decomposition reaction, and have completed the present invention.
[0006]
That is, the present invention is a method for producing a saturated ester by hydrogenating an unsaturated group-containing ester represented by the following general formula (1) using a hydrogenation catalyst containing 10 to 100% by weight of nickel. The present invention provides a method for producing a saturated ester , wherein a hydrogenation reaction is carried out by a gas phase method under a pressure of 10 to 10 kg / cm 2 . The unsaturated ester-containing ester is a compound selected from the group consisting of allyl acetate, crotyl acetate, methallyl acetate, allyl propionate, crotyl propionate, and methallyl propionate. To do. Furthermore, the present invention provides a method for producing the saturated ester, wherein the hydrogenation catalyst is supported nickel . In addition, the present invention provides a method for producing the saturated ester, characterized in that hydrogenation is carried out at a reaction temperature in the range of 30 to 200 ° C. Hereinafter, the present invention will be described in detail.
[0007]
[Chemical 2]
Figure 0003852972
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, the unsaturated group-containing ester represented by the general formula (1) can be used as a raw material for the saturated ester. Here, in the general formula, R 1 , R 2 , R 3 , R 4 , R 5 represent any alkyl group having 1 to 10 carbon atoms or a hydrogen atom, and may be the same or different, The alkyl group may be linear or branched. R 6 is an arbitrary alkyl group having 1 to 10 carbon atoms and may be linear or branched. Most preferably used in the present invention are allyl esters in which R 1 , R 2 , R 3 , R 4 and R 5 are all hydrogen atoms, R 3 is a methyl group and R 1 , R 2 , R 4 and R A crotyl ester in which 5 is a hydrogen atom, and a methallyl ester in which R 1 is a methyl group and R 2 , R 3 , R 4 and R 5 are all hydrogen atoms. Specifically, allyl acetate, allyl propionate, methallyl propionate, methallyl acetate, crotyl propionate, crotyl acetate, and the like can be preferably used, and allyl acetate, crotyl acetate, and methallyl acetate are particularly preferable.
[0009]
The catalyst used in the present invention is a hydrogenation catalyst mainly composed of nickel, preferably a catalyst containing 10 to 100% by weight of nickel, particularly preferably a catalyst having a nickel content of 20 to 90% by weight. The form of the catalyst may contain nickel as an alloy, or may be one in which nickel is supported on a carrier.
Specific examples include nickel alloys such as Raney nickel, supported nickel catalysts in which nickel is supported on a carrier such as silica, alumina, diatomaceous earth, and lacquer raw nickel catalysts that are nickel compounds. Any of those commercially available as a general-purpose catalyst for hydrogenation can be used. Commercial products are easily available on an industrial scale. In addition to nickel, a small amount of other components such as Cu, Cr, Mg, Al, etc. are added to the commercially available nickel catalyst as a co-catalyst in order to improve the activity, poisoning resistance, heat resistance, and acid resistance of the catalyst. Even such a catalyst can be preferably used in the present invention.
[0010]
The reaction form in the present invention can be either a gas phase method or a liquid phase method. When the reaction is carried out in the gas phase, the use of a fixed bed flow reactor is most common, but a fluidized bed device can also be used. When reacting in the liquid phase, it can be carried out in the form of a complete mixing tank type, bubble column type, trickle bed type or the like.
[0011]
The reaction temperature varies depending on the type of raw material, but is preferably in the range of 30 to 200 ° C, particularly preferably in the range of 50 to 150 ° C. When the reaction temperature is less than 30 ° C., a sufficient reaction rate cannot be obtained, and when it exceeds 200 ° C., hydrogenolysis proceeds, which is not preferable. When allyl acetate is used as a raw material, the temperature range is preferably 50 to 150 ° C.
[0012]
In the case of a gas phase reaction, a sufficient activity is usually obtained even at normal pressure in the case of a gas phase reaction. For this reason, it is convenient to carry out at normal pressure. However, the reaction can be further accelerated by applying pressure. Even in this case, the pressure condition is 10 kg / cm 2 or less. On the other hand, in the case of a liquid phase reaction, pressurization is usually required to ensure a dissolved hydrogen concentration. In this case, the reaction pressure is preferably in the range of 10 to 100 kg / cm 2 , particularly preferably 15 to 50 kg / cm 2 . If it is less than 10 kg / cm 2 , the reaction is not sufficiently promoted. On the other hand, if it exceeds 100 kg / cm 2 , hydrocracking becomes dominant, which is not preferable.
[0013]
According to the present invention, saturated esters such as normal propyl acetate, butyl acetate, isopropyl acetate, normal propyl propionate, butyl propionate and isopropyl propionate can be obtained.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these. The definitions of conversion, selectivity and yield in the examples are based on the following formula.
[0015]
[Expression 1]
Figure 0003852972
[0016]
Example 1
A stainless steel U-shaped reaction tube having an inner diameter of 18 mmφ was filled with 6 ml of a supported nickel catalyst (“N111” manufactured by JGC Chemical Co., Ltd., nickel content: 46% by weight, cylindrical molded product). The catalyst was pretreated at 170 ° C. (maximum value in the catalyst layer, the same applies hereinafter) for 6 hours while flowing hydrogen gas at 5.6 liters / hr (STP value, the same applies hereinafter) at normal pressure. Next, the reaction was continued at 150 ° C. for 8 hours while charging allyl acetate at 5.2 g / hr and hydrogen gas at 5.6 liter / hr.
As a result of analyzing the condensate at the outlet of the reactor by gas chromatography, the conversion of allyl acetate was 96.5%, the selectivity for normal propyl acetate was 96.2%, and the yield of normal propyl acetate was 92.8%. Met.
[0017]
(Example 2)
The reaction was performed in the same manner as in Example 1 except that the reaction temperature was changed to 100 ° C. As a result, the conversion of allyl acetate was 96.5%, the selectivity for normal propyl acetate was 99.1%, and the yield of normal propyl acetate was 95.6%.
[0018]
Example 3
The reaction was performed in the same manner as in Example 1 except that the reaction temperature was changed to 230 ° C. The conversion of allyl acetate was 98.7%, the selectivity for normal propyl acetate was 66.7%, and the yield of normal propyl acetate was 65.8%.
[0019]
( Reference example )
A stainless steel autoclave with a capacity of 1000 ml is charged with 200 g of allyl acetate, 10 g of Raney nickel (treated for alkali development: “N154” manufactured by JGC Chemicals, nickel content of 50% by weight before development), hydrogen gas pressure 30 kg / cm 2 (gauge Pressure), and the reaction temperature was 100 ° C. for 2 hours with stirring. As a result of analyzing the reaction solution by gas chromatography, the conversion of allyl acetate was 97.3%, the selectivity for normal propyl acetate was 93.6%, and the yield of normal propyl acetate was 91.1%.
[0020]
【The invention's effect】
According to the present invention, saturated esters can be industrially produced while maintaining high raw material conversion, selectivity, and yield. In addition, no complicated reaction apparatus or reaction process is required.
The reaction catalyst used in the present invention is different from the commonly used platinum group metal rhodium, and since it is mainly composed of inexpensive nickel, it can be easily obtained and can produce saturated esters industrially at low cost. it can.

Claims (4)

ニッケルを10乃至100重量%含有する水素化触媒を用いて、下記一般式(1)で示す不飽和基含有エステルを水素化して飽和エステルを製造する方法であって、常圧〜10kg/cm 2 の圧力下、気相法で水素化反応を行うことを特徴とする飽和エステルの製造方法。
Figure 0003852972
A method for producing a saturated ester by hydrogenating an unsaturated group-containing ester represented by the following general formula (1) using a hydrogenation catalyst containing 10 to 100% by weight of nickel, wherein the atmospheric pressure is 10 kg / cm A method for producing a saturated ester , wherein a hydrogenation reaction is carried out by a gas phase method under a pressure of 2 .
Figure 0003852972
請求項1記載の不飽和基含有エステルが酢酸アリル、酢酸クロチル、酢酸メタリル、プロピオン酸アリル、プロピオン酸クロチル、プロピオン酸メタリルの群から選ばれる化合物であることを特徴とする請求項1記載の飽和エステルの製造方法。  The saturated group-containing ester according to claim 1, wherein the unsaturated group-containing ester is a compound selected from the group consisting of allyl acetate, crotyl acetate, methallyl acetate, allyl propionate, crotyl propionate, and methallyl propionate. Ester production method. 水素化触媒が担持型ニッケルであることを特徴とする請求項1または2記載の飽和エステルの製造方法。3. The method for producing a saturated ester according to claim 1, wherein the hydrogenation catalyst is supported nickel . 反応温度が30乃至200℃の範囲で水素化することを特徴とする請求項1乃至3のいずれかに記載の飽和エステルの製造方法。  The method for producing a saturated ester according to any one of claims 1 to 3, wherein the hydrogenation is carried out at a reaction temperature in the range of 30 to 200 ° C.
JP02468696A 1996-01-18 1996-01-18 Method for producing saturated ester Expired - Fee Related JP3852972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02468696A JP3852972B2 (en) 1996-01-18 1996-01-18 Method for producing saturated ester

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02468696A JP3852972B2 (en) 1996-01-18 1996-01-18 Method for producing saturated ester

Publications (2)

Publication Number Publication Date
JPH09194427A JPH09194427A (en) 1997-07-29
JP3852972B2 true JP3852972B2 (en) 2006-12-06

Family

ID=12145056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02468696A Expired - Fee Related JP3852972B2 (en) 1996-01-18 1996-01-18 Method for producing saturated ester

Country Status (1)

Country Link
JP (1) JP3852972B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9823853D0 (en) * 1998-10-30 1998-12-23 Bp Chem Int Ltd A process for making n-butyl esters from butadiene
AU2575800A (en) * 1999-04-27 2000-11-10 Showa Denko Kabushiki Kaisha Process for producing hydrogenated ester, hydrogenation catalyst for use therein, and process for producing the catalyst
US6936730B1 (en) 1999-04-27 2005-08-30 Showa Denko K.K. Process for producing hydrogenated ester, hydrogenating catalyst used therefor and process for producing the catalyst
KR100555985B1 (en) * 1999-04-27 2006-03-03 쇼와 덴코 가부시키가이샤 Process for producing hydrogenated ester
KR20010019332A (en) * 1999-08-26 2001-03-15 김동석 Process for preparing methyl methoxy propionate
US7700801B2 (en) * 2004-11-15 2010-04-20 Celanese International Corporation Co-production of vinyl acetate and ethyl acetate
TWI370117B (en) 2008-05-21 2012-08-11 Showa Denko Kk Process for producing n-propyl acetate
JP2011116722A (en) 2009-12-07 2011-06-16 Showa Denko Kk METHOD FOR PRODUCING n-PROPYL ACETATE
JP2011136937A (en) * 2009-12-28 2011-07-14 Showa Denko Kk MANUFACTURING METHOD OF n-PROPYL ACETATE
JP5608403B2 (en) * 2010-03-31 2014-10-15 昭和電工株式会社 Method for producing n-propyl acetate
WO2012098067A1 (en) * 2011-01-19 2012-07-26 Dsm Ip Assets B.V. Preparation of 4-acetoxy-2-methylbutanal by catalytic carbon carbon double bond hydrogenation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5249447B2 (en) * 1972-09-11 1977-12-17
JPS53127405A (en) * 1977-04-08 1978-11-07 Japan Synthetic Rubber Co Ltd Continuous preparation of 1,4-butanediol
DE2928310A1 (en) * 1979-07-13 1981-02-05 Basf Ag METHOD FOR PRODUCING BUTANEDIOL DIACETATE BY CATALYTIC HYDRATION OF BUTANEDIOL DIACETATE

Also Published As

Publication number Publication date
JPH09194427A (en) 1997-07-29

Similar Documents

Publication Publication Date Title
US4104478A (en) Catalytic hydrogenation of fatty acids
JP2003506341A (en) Catalytic hydrogenation of 3-hydroxypropanal to 1,3-propanediol
JP3852972B2 (en) Method for producing saturated ester
JPS6346752B2 (en)
JP2007070358A (en) Hydrogenation of acetone
EP0653406B1 (en) Use of supported rhodium catalysts in the preparation of tertiary butyl alcohol from tertiary butyl hydroperoxide
EP1556320A2 (en) Process for preparation of 1,3-propanediol
JP5076739B2 (en) Method for producing hexafluroisopropanol
US5969194A (en) Process for preparing 1, 6-hexanediol
US6096931A (en) Process for preparing alcohols
JPH05345132A (en) Catalyst for dehalogenation of alpha-halocarboxylic acid and its use for purifying monochloroacetic acid
EP1174414B1 (en) Process for producing hydrogenated ester
US3965153A (en) Process for preparing allylic esters of carboxylic acids and allylic alcohols
JPH07223983A (en) Hydrogenation of acetylenic compound
JPH1045645A (en) Production of 1,4-cyclohexanedimethanol
JPS6260378B2 (en)
US6936730B1 (en) Process for producing hydrogenated ester, hydrogenating catalyst used therefor and process for producing the catalyst
JPH0510976B2 (en)
JPS62129231A (en) Production of diisopropyl carbinol
JP2001158754A (en) Method for producing tetrafluorobenzenedimethanol
JP4540307B2 (en) 6-Equatorial-alkyl-trans-decahydronaphthalen-2-ol and its derivatives
JPS6324500B2 (en)
JPH10114700A (en) Purification of saturated aliphatic carboxylic acid
JPH0558609B2 (en)
JPS58140030A (en) Preparation of 1,9-nonanediol

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050912

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050815

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20051017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D04

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees