JP3851419B2 - 工具チップ欠損検査システム - Google Patents

工具チップ欠損検査システム Download PDF

Info

Publication number
JP3851419B2
JP3851419B2 JP19204497A JP19204497A JP3851419B2 JP 3851419 B2 JP3851419 B2 JP 3851419B2 JP 19204497 A JP19204497 A JP 19204497A JP 19204497 A JP19204497 A JP 19204497A JP 3851419 B2 JP3851419 B2 JP 3851419B2
Authority
JP
Japan
Prior art keywords
tool
chip
inspection
robot
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19204497A
Other languages
English (en)
Other versions
JPH1096616A (ja
Inventor
孝幸 伊藤
太郎 有松
和彦 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FANUC Corp
Original Assignee
FANUC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FANUC Corp filed Critical FANUC Corp
Priority to JP19204497A priority Critical patent/JP3851419B2/ja
Publication of JPH1096616A publication Critical patent/JPH1096616A/ja
Application granted granted Critical
Publication of JP3851419B2 publication Critical patent/JP3851419B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、工作機械で使用する工具に装着されて使用された工具チップに生じる摩耗や欠け落ち等の欠損を視覚センサを用いて検査するためのシステムに関する。
【0002】
【従来の技術】
例えばフライス盤、旋盤あるいはマシニングセンタのような工作機械に装着された工具チップ(以下適宜、単に「チップ」とも言う。)は、長時間使用や硬いワークの加工により許容限度を越えた摩耗や欠け落ち(以下、単に「摩耗」あるいは「欠け落ち」とも言う。)等の欠損が発生する。このような劣化を起したチップをそのまま使用し続ければ、当然、加工不良の原因となる。
【0003】
チップの欠損による加工不良を防ぐ最も簡単な方法は、加工時間、回数等を目安にしてチップを定期的に交換するというものである。しかし、加工時間や回数等から実際に許容度を越えた摩耗や欠け落ちの発生時点を正確に予測することは容易ではない。従って、交換周期を短くすれば加工不良の発生を回避出来る確率は高まるが、欠損を生じていないチップを交換してしまう可能性も大きくなる。逆に、交換周期を長くすると加工不良が発生する確率が高まってしまう。
【0004】
そこで、チップに実際に欠損が生じているか否かを接触式の検査装置によって検査することが提案されているが、接触式の検査装置は高価であり、接触式であるために検査に時間を要するという問題点がある。また、チップに欠損が生ずると工作機械の軸のトルクに異常が現れ易いことを利用してチップの欠損を検出する方法もあるが、摩耗や欠け落ちの大きさとトルクの異常との関係が一定ではなく、信頼性の高い欠損検出を行ない難い。
【0005】
【発明が解決しようとする課題】
本発明の基本的な目的は、フライス盤、旋盤、マシニングセンタのような工作機械に装着されたチップの許容限度を越えた摩耗や欠け落ち等の欠損の発生を非接触で迅速・確実に検出することが出来るチップ欠損検査システムを提供し、上記従来技術の問題点を解決することにある
【0006】
【課題を解決するための手段】
本発明の工具チップ欠損検査システムは、工具チップの摩耗、欠け落ちあるいはその両者によって生じる欠損を、視覚センサ手段を用いて、前記工具を工作機械に取付けたまま視覚センサを用いて検査できるようにしたものである。
【0007】
そのために、本発明においては、工作機械を制御する制御装置に、工具に装着された複数の工具チップが予め定められた検査位置に順次来るように前記工具の並進位置並びに回転位置を位置決め制御する手段を具備させるとともに、視覚センサにより、検査位置にある工具チップについて所定の方向からセンシングを行ない、欠損の大きさを表わす指標のデータを取得する
【0008】
検査の時期を合理的に選択するために、工具の使用積算時間を検知する使用積算時間検知手段を設け、使用積算時間検知手段の出力に基づいて、工具に装着された工具チップが予め定められた検査位置に来るように工具の並進位置並びに回転位置を制御しても良い。
【0009】
典型的な発明の形態に従えば、視覚センサ手段は、検査位置にある工具チップを所定の方向から撮影するカメラ手段と、カメラ手段による前記撮影によって取得された画像を解析して前記撮影された工具チップの前記欠損の大きさを表わす指標のデータを取得する手段を備えたものとされる。
【0010】
欠損の大きさを表わす指標のデータは、システム内部で予め定められた判定基準と比較し、工具チップ交換の必要性を自動的に判定されることが好ましい。判定の結果が前記工具チップの交換必要性に対応するものである場合に所定のメッセージを報知する手段を更に設ければ、オペレータにチップ交換を促すことが出来る。
【0017】
【発明の実施の形態】
本発明の工具チップ欠損検査システムにおいて、工具チップを装着した工具を工作機械に取り付けたままで検査する形態を採用する。なお、工作機械から工具を取り外してその工具に装着されたチップを検査する形態についても参考例として説明しておく
【0018】
[実施形態
図1は、本発明に従った実施形態に係るシステムの全体構成を模式的に示した要部ブロック図である。システムには、フライス盤本体部FM、フライス盤制御装置FCL並びにチップの検査を行なう視覚センサVSが含まれる。フライス盤制御装置FCLはCNCを主要部とする周知のもので、通信インターフェイスを介して視覚センサVSの画像処理装置IPに接続されている。
【0019】
フライス盤制御装置FCLのCNCは、CPU、メモリ、ワークテーブルあるいは工具の並進位置を制御するXYZ軸、並びに工具を回転させる主軸を駆動するディジタルサーボ回路を備えている。CNCのメモリには、システム全体を制御するプログラム、加工プログラムの他、工具の稼働時間の積算値を記憶するタイマレジスタが設定されている。
視覚センサVSの画像処理装置IPは、CPU、フレームメモリ、データメモリ、画像処理プロセッサ、プログラムメモリ、通信インターフェイス、汎用インターフェイス等を有する周知のもので、カメラインターフェイスを介してカメラCMに接続される一方、通信インターフェイスを介して上述のフライス盤制御装置FCLに通信回線で接続されている。
【0020】
また、カメラCMによる工具チップの撮影時に欠損部を陰影できわだたせるために照明装置ILが汎用インターフェイスを介して接続されている。カメラCMはフライス盤本体部FMの適所に設置される。工具チップ検査時には、照明装置ILが点灯され、カメラCMはフラ所定の方向から工具チップの撮影を行なう。画像処理装置IPは撮影画像を取り込んで解析し、欠損の大きさを表わす指標データを作成し、チップ交換の必要性の有無を判定し、モニタMO上に結果を所定のメッセージで表示する。
【0021】
後述するように、これら一連の動作は、画像処理装置IPのCPUがプログラムメモリに予め格納された検査プログラムに従って各部を制御することで、実行される。工具チップ検査は定期検査の一つとして行なっても良いが、フライス盤制御装置FCLの上記工具稼働時間積算機能を利用して、工具チップ交換後の稼働時間積算値が基準値に達する毎にモニタMO上に要検査のメッセージで表示することでオペレータに要検査時期の到来を報知しても良い。また、要検査時期の到来時には加工停止を待って検査プログラムを自動的に起動させ、オペレータの指令入力がなくとも工具チップの検査が行なわれるようにしても良い。
【0022】
図2には、カメラCMの設置態様を、フライス盤本体部FMの概要並びにコンソールCSの外観とともに示した。図の左下部に示したコンソールCSは、フライス盤本体部FMと制御装置FCLを収容するもので、加工時に切削屑、切削油あるいは冷却水などが飛散するのを防止する役割も果している。コンソールCSの正面には開閉自ドアDRが設けられており、開閉自ドアDRを開放することで、フライス盤本体部FMの任意個所にアクセス出来るようになっている。従って、工具チップに欠損が見いだされた際のチップ交換も、開閉自ドアDRを開放して行なわれる。
【0023】
コンソールCSの正面には更に、開閉自ドアDRと並んでコントロールパネルCTLPが設けられおり、その背後にフライス盤制御装置FCL(図示省略)が埋め込まれている。なお、視覚センサVSの画像処理装置IPの図示も省略したが、コンソールCS内に収容する設計を採用しても良い。
【0024】
コンソールCS内に収容されているフライス盤本体部FMは、概観を図示されているように周知のもので、ドアDRに近い側にワークテーブル用ヘッドWTHが設けられ、ドアDRから遠い側に主軸ヘッドSPHが設けられる。ワークテーブル用ヘッドWTHはワークテーブルWTを搭載し、これをXY軸上で移動させ、位置決めするものである。ワークテーブルWTのXY位置は、フライス盤制御装置FCLのCNCで加工プログラムに従って制御される。
【0025】
主軸ヘッドSPHは工具(ミル)1を装着した主軸(スピンドル)SPをZ軸駆動機構上に設けた主軸ユニットSPUを搭載し、これをXY軸上で移動させ、位置決めするものである。加工時にフライス盤制御装置FCLのCNCが加工プログラムに従って主軸ユニットSPUのXYZ位置と主軸(スピンドル)SPの回転速度を制御する点は従来と同様であるが、本実施形態では更に、工具チップの検査時に、CNCにより主軸ユニットSPUのXYZ位置(並進位置)と主軸(スピンドル)SPの回転位置が検査位置に位置決めされる。
【0026】
ミル1は、拡大図を併記したように、複数の工具チップ3を装着した状態でY軸周りで回転する主軸SPにチャックを用いて取り付けられている。カメラCM及び付属の照明装置ILは、図示されているように、X軸方向の視線を持つ姿勢で主軸ユニットSPUの動作領域の側方に相当する位置に設置される。検査時の主軸ユニットSPUのXYZ位置(並進位置)は、照明装置ILの照明の下でカメラCMによるミル1のチップ装着部の撮影に適した位置として予めフライス盤制御装置FCLに教示される。
【0027】
また、検査時の主軸SPの回転位置は、検査対象とされるチップ3がカメラCMによって良好に撮影される位置(本例では視線正面位置)として、上述の並進位置とともに予めフライス盤制御装置FCLに教示される。複数(N個)の工具チップ3を順次検査する場合には、主軸SPの回転位置について、それら工具チップ3の各々をカメラCMの視線正面位置に来たらしめる複数(N個)の回転位置が教示される。なお、検査位置におけるカメラCMと検査対象工具チップ3の間の距離は、その工具チップ3の画像(後述図3参照)が視野内に多少の余裕をもって収まる程度であることが好ましい。
【0028】
図3は一つの検査位置に位置決めされた工具(ミル)1のチップ3について、カメラCMで撮影される画像を表わしている。チップ3を正面から見るとほぼ長方形をなしており、加工時間の累積に伴って、1つのエッジ部EGから摩耗が徐々に進行し、凹部Aが形成される。摩耗に欠けが加わることもある。このようにして形成された凹部Aは、カメラCMにより相対的に暗い部分として撮影される。照明装置ILによる照明方向を工夫すれば、凹部Aをより明瞭な陰影部として強調して撮影することが出来る。
【0029】
工具チップ3の交換必要性は、本実施形態では凹部Aの拡がりをY軸方向の拡がりLとZ軸方向の拡がりDで認識し、LとDを交換必要性を判断するための指標データとして採用する。判断論理としては、LとDに各々許容値L0 とD0 を予め設定しておき、検出されたLとDの少なくとも一方がL0 あるいはD0 を越えていたら交換必要性ありと判断する論理を採用する。なお、交換必要性を判断するための論理には種々の変形があり得ることは言うまでもない。例えば、L+DあるいはL2 +D2 に許容値を設けるなどが考えられる。
【0030】
次に、以上のシステム構成・機能を用いて実行される検査手順と関連処理の概要について図4のフローチャートを参照して説明する。
フライス盤制御装置FCLのCPUは、例えば1つのワークの加工が完了する毎に内部に設定された加工時間積算タイマレジスタの値をチェックし、要検査時期が到来したか否かを判断する(ステップU1)。もし要検査時期が到来していなければ、チップ検査は不要なので処理を終了する。要検査時期が到来していれば、チップ検査が必要なのでステップU2以下へ進む。
【0031】
ステップU2でフライス盤制御装置FCLのCPUは、CNCによりXYZ軸を移動させ、主軸ユニットSPUをXYZ位置(並進位置)に関して位置決めする。更にステップU3では、主軸SPを回転させ主軸SPの回転位置をi番目の検査位置に位置決めする。iはチップ番号に対応する指標である。なお、ここでは総計n本のチップが工具(ミル)1に装着されているものとする。
【0032】
i番目のチップに対する検査のための位置決めが完了したら、画像処理装置IPに検査指令を送信する(ステップU4)。検査指令を受信した画像処理装置IPのCPUは、ステップU5で照明装置ILを点灯する(既に点灯済みであれば点灯維持も可)。次いでカメラCMに撮影指令を送りi番目のチップ画像(図3参照)を画像処理装置IPのフレームメモリに取り込み(ステップU6)、画像解析プログラムを起動して画像処理プロセッサによる画像解析を行い、i番目のチップについて欠損の大きさを表わす指標データDi 、Li を求めて記憶する(ステップU7)。
【0033】
続いて、指標iの値と予め設定されたチップ総数nとの大小関係から未検査チップの存否をチェックする(ステップU8)。未検査チップがあれば指標iを1アップして(ステップU9)、ステップU3へ戻り、主軸SPの回転位置を次のチップの検査位置に位置決めする。以下、ステップU4〜ステップU9を未検査チップがなくなるまで繰り返す。
【0034】
未検査チップがなくなったらステップU8からステップU10へ進み、記憶されている指標データD1 〜Dn 、L1 〜Ln について、予め設定された指標Dの許容値D0 、指標Lの許容値L0 との大小関係をチェックする。もし、すべてのチップにについてDi がD0 以下(あるいは未満)であり、且つ、Li がL0 以下(あるいは未満)であれば、交換不要と判断してモニタMOの画面上あるいは音声等の報知手段を用いて交換不要のメッセージを出力して(ステップU11)処理を終了する。
【0035】
それ以外の場合、即ちいずれかのチップについてDi がD0 以下(あるいは未満)またはLi がL0 以下(あるいは未満)であれば、交換不要と判断してモニタMOの画面上あるいは音声等の報知手段を併せて交換の必要性と交換されるべきチップの番号を知らせるメッセージを出力して(ステップU12)処理を終了する。
【0036】
参考例
次に、図5以下を参照して参考例について説明する。図5は、参考例に係るシステムの全体構成を模式的に示した要部ブロック図である。システムには、フライス盤#1〜#3、ロボット#1〜#3、ロボット#1の走行軸RL、ロボット#1のための交換用ハンドが用意されたハンド交換機構、未加工ワークが供給される未加工ワーク供給部WS1、加工済みワークが収容される加工済みワーク収容部WS2、フライス盤#1〜#3のための交換用チップが用意されたチップ交換ラックCH、チップの検査と交換のためのチップ検査交換作業台TB、チップの検査を行なう視覚センサVSが含まれる。
【0037】
[1]システム要部の概略説明
(1)フライス盤#1〜#3;周知のように、フライス盤は加工用のチップ(以下、単に「チップ」と言う。)を装着したミルと呼ばれる工具を回転させて金属ワークの切削加工を行なう工作機械で、ロボット#1の走行軸RLに沿って何台か(ここでは3台)が整列配備される(図5)。
【0038】
図6は、各フライス盤で使用されるミルの外観とともに摩耗したチップの外観を拡大併記したものである。同図に示したように、全体を符号1で指示したミルは、テーパ部1aとヘッド1bを有している。ミル1は、テーパ部1aをフライス盤本体側のスピンドル(図示略)に装着することによりフライス盤に取り付けられる。ミル1の取付姿勢は、テーパ部1aとスピンドルに対で設けられたキー溝によって精密に規制される。
【0039】
ヘッド1bは歯車状の形状をなし、複数(本例では8個)の凸部2の一角に固定用ボルト4を用いて各々チップ3が装着される。拡大併記したように、チップ3は逃げ面6とすくい面7を有し、すくい面7には固定用ボルト4を通すボルト穴5が設けられている。未使用のチップ3は直方体形状、三角柱形状などの形状を有しているが、使用を重ねるうちに摩耗部8が生じて来る。
【0040】
図示されているように、摩耗部8はヘッド2の先端側から逃げ面6とすくい面7の交線9に沿った部分をえぐり取るように形成される。この時、えぐり取られる幅は逃げ面6の方がすくい面7に比べて広くなる性質がある(d>d’)。また、場合によっては、摩耗部8の一部が砕けて欠け落ち部8aが生じることもある。
【0041】
各フライス盤#1〜#3は、フライス盤制御装置(後述図50符号FCL#1〜FCL#3参照)に接続されている。フライス盤制御装置は周知のもので、動作プログラムに従って、スピンドル軸を所定の回転速度で回転させる機能、スピンドル軸の位置決めする機能、工具毎の使用時間積算機能等を備えている。従って、所定周期で工具検査時期の到来を知らせる信号をシステムに出力することが出来る。また、その信号に応じてチップ検査のためにスピンドルの回転を停止させる際に、ヘッド1aが予め定められた所定の方向を向くように動作プログラムで指示するすることが出来る。
【0042】
(2)ロボット#1;通常時には、走行軸RLを利用して各フライス盤#1〜#3、未加工ワーク供給部WS1、加工済みワーク収容部WS2にアクセスして、フライス盤#1〜#3に対するワークのローディング/アンローディングを行なう。フライス盤#1〜#3のいずれかにチップ検査時期が到来した場合には、ハンド交換機構Hにアクセスしてハンドをミル把持用のものに交換して、当該フライス盤#1のスピンドルからミル1を取り外し、チップ検査作業台TB上へ移送して固定する。ワークのローディング/アンローディングの再開時には、ハンド交換機構Hに再度アクセスしてハンドをワーク把持用のものに戻す。
【0043】
図7は、ミル1がチップ検査作業台TB上の治具JGに固定される様子を描いた模式図である。同図に示したように、ロボット#1は走行軸RL上を走行してチップ検査作業台TBに接近し、ミル把持用のハンドHDに把持したミル1のテーパ部1aを治具JGの取付穴HLに嵌着する。ミル1を所定の姿勢で固定するために、取付穴HL内にはスピンドルに設けたものと同様のキー溝が設けられている。治具JGは、チャックの開閉を行なう機能を有している。
【0044】
(3)ロボット#2及びロボット#3;ロボット#2は、チップ検査作業台TB上の治具JGに固定されたミル1について、チップ洗浄とチップ交換を行なうためのロボットである。一方、ロボット#3はチップ検査を行なうためのストラクチャライトをチップに投光するためのロボットである。図8は、ロボット#2,#3の作業状況を説明する模式図である。同図に示したように、ロボット#2の手先にはエアガンAGと小型のナットランナNRが装着されている。
【0045】
エアガンAGは、チップ検査に先だってチップ3に向けて圧搾空気を噴出し、チップ3の洗浄を行なう。また、ナットランナNRはチップ3の交換時にチップ固定用のナット4(図6参照)の締め付け/緩めの作業を行なう。エアガンAGとナットランナNRの動作は、ロボット#2を制御するロボット制御装置(後述図10符号RCL#2参照)によって制御される。
【0046】
一方、ロボット#3の手先にはストラクチャライトユニットSUが装着されている。ストラクチャライトユニットSUは視覚センサVS(図5参照)の投光/撮影部を構成するもので、ストラクチャライト投光用の窓11を通してストラクチャライトSLを検査対象のチップ3へ向けて投光し、ストラクチャライトSLが投影されたチップ3を撮影用の窓21を通して撮影する。
【0047】
図9は、(a)ストラクチャライトユニットSUの要部構造と(b)ストラクチャライトの形成方法を例示した模式図である。図9(a)に示されたストラクチャライトユニッSUは、ストラクチャライトSLとしてスリット光を投光するもので、投光部はレーザ発振器12、円柱レンズ13、偏向ミラーを備えたガルバノメータ14及び投光窓11を備え、撮影部はCCDカメラ20及び撮影窓21を備えている。図9(b)に示したように、レーザ発振器12から出射されたレーザビームは円柱レンズ13によってスリット光SLに変換される。スリット光SLは、高速駆動が可能なガルバノメータ14で投光方向を指示する指令値に従って所定の方向に偏向され、投光窓11から投光される。なお、ガルバノメータ14を含むスリット光投光部及びカメラ20のキャリブレーションは完了しているものとする。
【0048】
ロボット#3の動作並びにストラクチャライトユニットSU各部(カメラ、レーザ発振器、ガルバノメータ等)の動作は、画像処理装置を内蔵する型のロボット制御装置によって制御される。図10はその構成及び他の要素との接続関係の概略を要部ブロック図で例示したものである。
【0049】
ロボット#3のロボット制御装置RCL#3は、システム全体のメインの制御装置に相当し、同図に示したように、中央演算処理装置(以下、CPUと言う)51を有している。CPU51には、ROMからなるメモリ52、RAMからなるメモリ53、不揮発性メモリ54、液晶ディスプレイを備えた教示操作盤55、ロボットの各軸を制御するためのデジタルサーボ回路56、ストラクチャライトユニット用インターフェイス61、画像処理プロセッサ62、モニタインターフェイス63、フレームメモリ64、プログラムメモリ65、データメモリ66及び通信インターフェイス67がバス58を介して接続されている。
デジタルサーボ回路56は、ロボット#3の各軸を制御するために、サーボアンプ57を介してロボット#3の機構部に接続されている。また、ストラクチャライトユニット用インターフェイス61には前述のストラクチャライトユニットSUが接続され、モニタインターフェイス63には例えばCRTからなるモニタMOが接続されている。そして、後述する一連の作業に関連した指令やデータの授受を行なうために、通信インターフェイス67にロボット制御装置RCL#1,RCL#2、フライス盤制御装置FCL#1〜FCL#3等の外部装置(各外部装置に装備された通信インターフェイス)が接続されている。そしてこれら各制御装置RCL#1,RCL#2,FCL#1〜FCL#3間は、各々に装備された通信インターフェイスを介して相互に接続されている。
【0050】
ROM52には、CPU51がロボット#3、ロボット制御装置RCL#3自身の制御及び外部装置との入出力の制御等を行なうための諸プログラムが格納されている。RAM53はデ−タの一時記憶や演算の為に利用されるメモリである。不揮発性メモリ54には、ロボット33や外部装置の動作を規定した動作プログラムのデータや関連設定値等が格納される。
【0051】
ストラクチャライトユニット用インターフェイス61は、ストラクチャライトユニットSUの各部を制御するための指令の授受やカメラ20(図9(a)参照)で撮影された画像の取り込みに用いられる。取り込まれた画像はグレイスケールに変換後、一旦フレームメモリ64に格納される。フレームメモリ64に格納された画像はモニタMO上に表示することが出来るようになっている。
【0052】
プログラムメモリ65には、画像処理プロセッサ62を利用した画像処理と解析を行なうためのプログラムが格納され、データメモリ66には画像処理と解析に関連した設定データ等が格納される。本参考例では、特に、チップの摩耗と欠け落ちの検査のための処理を定めたプログラムデータと関連設定データがこれら格納データに含まれている。なお、検査処理の内容は後述する。
【0053】
また、ロボット制御装置RCL#1,RCL#2の要部構成と機能も本ロボット制御装置RCL#3と同様且つ周知であるから詳しい説明は省略する。但し、ロボット制御装置RCL#1の制御対象には走行軸RLが含まれており、ロボット制御装置RCL#2の制御対象にはエアガンAGとナットランナNRが含まれている。フライス盤制御装置FCL#1〜FCL#3についても、その構成と機能は周知であるから詳しい説明は省略する。
次に、以上のシステム構成・機能を用いて実行される作業手順の概要について箇条書き形式で順を追って述べる。ここで説明するシーケンスは、シーケンスに含まれる動作に関連する制御装置に教示されたプログラムに従って実行される。後述するチップ検査の動作を除き、これら動作のための処理については周知の事項なので、その詳細は省略する。
【0054】
[2]作業手順
(1)チップ検査が行なわれない通常作業時には、ロボット#1が、走行軸RLを使って移動を繰り返しながら各フライス盤#1〜#3に対する未加工ワークのローディングと加工済みワークのアンローディングを繰り返す。
(2)ロボット#1によるワークローディングを受けたフライス盤#1〜#3は、所属のフライス盤制御装置FCL#1〜FCL#3に教示された加工プログラムに従って切削加工を実行し、各ツール毎に加工実行時間を積算する。
【0055】
(3)一つのワークの加工が終了し、ロボット#1によるワークアンローディングを受けたフライス盤#1〜#3に所属するフライス盤制御装置FCL#1〜FCL#3は、ツールの加工実行時間積算値をチェックし、予め設定された制限時間を越えていた場合にはロボット#1のロボット制御装置RCL#1に要検査信号を関連データ(送信を行なったフライス盤、要検査ツールを特定するデータなど)と共に送る。なお、ミルを取り付けたスピンドルは教示された回転位置で停止するので、停止時のミルの姿勢(向き)は毎回一定となる。
【0056】
(4)これを受信したロボット制御装置RCL#1は、ロボット#1のハンドをミル用のハンドHD(図7参照)に交換させてから、送信を行なったフライス盤の前に移動させる。
【0057】
(5)ロボット制御装置RCL#1は、ロボット#1のハンドHDをフライス盤内に進入させ、停止状態にある要検査ミル1をつかむ。この時のミル1の姿勢(向き)は一定であるから、ミル1は一定の姿勢でハンドHDにつかまれる。
(6)ロボット制御装置RCL#1は、当該フライス盤の制御装置にミル1のつかみ動作の完了信号を送る。これを受信したフライス盤の制御装置は、ミル1を固定しているスピンドルのチャックを緩め、ミル1の拘束を解く。
【0058】
(7)ロボット制御装置RCL#1は、ロボット#1にミル1をフライス盤から取り外し、ミル1を把持した状態でチップ検査作業台TBの前に移動させる(図7参照)。
(8)ロボット制御装置RCL#1は、ロボット#1にミル1をチップ検査作業台TBの治具JGへ装着させ、チャック閉信号を出力して治具JGにミル1をクランプさせる。
【0059】
(9)ロボット制御装置RCL#1は、ロボット#1をチップ検査作業台TBから離れさせ、ロボット制御装置RCL#2にミル固定完了信号を送る。そして、再びハンドをワーク用に交換して、ミル検査のために停止中でないフライス盤に対する通常のワークローディング作業に復帰する。
【0060】
(10)これを受信したロボット制御装置RCL#2は、ロボット#2をミル1のまわりで移動させながら、ミル1に装着されているチップ3に付着している切粉等をエアガンAGを用いて除去する(洗浄作業)。
【0061】
(11)洗浄作業を完了したら、ロボット制御装置RCL#2はロボット#2のアームをミル1から遠ざけ(チップ検査時にロボット#3との干渉を避けるため)、洗浄完了信号をロボット制御装置RCL#3に送る。
(12)これを受信したロボット制御装置RCL#3は、視覚センサを用いて全チップ3の検査を行なう。チップ検査は、予め教示された各チップ検査用の検査位置(一般に、チップ個数と同数個教示される。)へのロボット移動と視覚センサによるチップ検査を繰り返す形態で行なわれる。個々のチップ検査の手順と処理については、次の[3]で述べる。
【0062】
(13)ロボット制御装置RCL#3は、全チップの検査結果(全要交換チップのミル上の装着アドレスを特定するデータ)をロボット制御装置RCL#2に送る。
(14)これを受信したロボット制御装置RCL#2は、要交換チップが一つでもあれば、ロボット#2を予め教示されたチップ交換プログラムと要交換チップのミル上の装着アドレスを特定するデータに基づいてチップ交換を行なう。ロボットを用いたチップの自動交換は周知なので詳しくは述べないが、概略次の動作手順で行なわれる。
1.要交換チップに対応した交換位置へのロボット移動
2.ナットランナNRによる要交換チップの固定ボルト(図6参照)の弛緩
3.要交換チップ取り外し
4.チップ交換ラックCHへのロボット移動と要交換チップ解放/新チップの把持
5.要交換チップに対応した交換位置へのロボット移動
6.新交換チップのミル1への装着(要交換チップが装着されていた位置へ装着)
7.ナットランナNRによる新交換チップの固定ボルトの緊締
8.ミル1からの退避
(15)ロボット制御装置RCL#2は、交換作業の完了あるいは要交換チップ不存在確認を表わす信号をロボット制御装置RCL#1に送る。
(16)これを受信したロボット制御装置RCL#1は、ロボット#1の通常作業を中断させ、ハンドを再度ミル用に交換させる。
【0063】
(17)ロボット制御装置RCL#1は、チャック開信号を出力し、治具JGにチャックを開いてミル1のクランプを解除させる。
【0064】
(18)ロボット制御装置RCL#1は、ロボット#1に治具JGからのミル1の取り外しを行なわせる。
【0065】
(19)ロボット制御装置RCL#1は、ロボット#1をミル1を取り外されていたフライス盤の前に移動させ、前述とは逆の手順でミル1をそのフライス盤#に装着する。
[3]チップ検査の手順と処理
上記(12)に記したように、チップ検査の作業は、予め教示された各チップ検査用の検査位置へロボット#3を順次移動させ、各検査位置で1個づつのチップ検査を行なうという態様で実行される。そこで、本項では、(1)チップ検査のための視覚センサの準備と、(2)チップ検査の開始から終了までの手順と処理について、図11(ストラクチャライトの投光状態の説明図)、図12(投光部のキャリブレーションの説明図)、図13(検査方式の説明図)並びに図14(処理の概要を記したフローチャート)を参照図に加えて述べる。
【0066】
(1)視覚センサの準備
1.チップ検査台TBに摩耗チップの見本を装着したミルを固定し、ロボット#3を移動させ、図8に示したような態勢をとらせる。
2.ロボット制御装置RCL#3の教示操作盤55を操作し、ストラクチャライトユニットSUのレーザ発振器12を点灯する。そして、ガルバノメータ14に種々の指令値を与えながら投光方向を調整し、チップ検査に適した投光方向を表わすパラメータを設定する。投光方向の角度間隔が広すぎる(あるいは投光本数が少なすぎる)と高い検出精度が得難いので、低下しないような範囲で適当な間隔をもった適当な投光本数が設計的に選択されることが好ましい。
【0067】
ここでは、図11に示したように、主として逃げ面6をカバーするように計11本のスリット光101〜111が投光されるようなパラメータを設定する。パラメータは、例えば、投光方向の中心を表わす指令値、間隔、投光本数である。
【0068】
投光に際して逃げ面6を重視する理由は、図6に関連して述べたように、摩耗部8が逃げ面6の方がすくい面7に比べて幅広くえぐられる性質があり、これを確実に検出することが好ましいからである。
【0069】
3.カメラ20とガルバノメータ14を含む投光部のキャリブレーションについては、前述した通り、周知の手法により完了済みとする。一応極く簡単に述べておくと、カメラ20のキャリブレーションにはドットパターンを用いてカメラ座標系上の位置と視線方向を表わすパラメータとの対応を求める方法が知られている。また、投光部のキャリブレーションを行なうには、例えば図12に示したような手法が用いられる。
【0070】
即ち、ロボット#3に設定済みのワーク座標系Σw 上で位置が既知の2つの平面PL1,PL2上に順次同じスリット光SLを投光し、得られた輝線L1,L2をキャリブレーション済みのカメラ20で撮影する。得られた画像をロボット制御装置RCL#3で解析すれば、各輝線L1,L2の3次元位置が求められる。なぜならば、平面PL1,PL2が既知で輝線L1,L2上の任意の各2点G1〜G4の視線方向が各々判り、従ってそれらの4点G1〜G4の3次元位置が判る。これら4点G1〜G4の乗る平面を計算すれば、その時のガルバノメータに与えた指令値に対応するスリット光SLの平面が求められる。
【0071】
なお、上記2.で設定された指令値(11個)のすべてに関してこのようなキャリブレーションを行ないスリット光SLを表わすパラメータを記憶しておけば、測定時に補間近似を行なう必要がないので、より有利である。
【0072】
(2)検査の実行
図14のフローチャートに記したように、ロボット制御装置RCL#3のCPU51は、洗浄完了信号をロボット制御装置RCL#2から受信したら(ステップS1でイエス)、教示された最初の検査位置へロボット#3を移動させる(ステップS2)。そして、ストラクチャライトユニットSUの投光部を起動し、スリット光のチップ3上への投光と、カメラ20による撮影を繰り返し、計11回づつの投光と撮影によって輝線11本分の画像(11フレーム)を取得する(ステップS3〜ステップS4)。
【0073】
カメラ20は逃げ面6にほぼ正対するように検査位置が教示されているので、計11回行なわれるスリット光の投光によって形成される輝線パターンをまとめて示せば、図13(a)または図13(b)のようになる。図13(a)は摩耗部8のみのケース、図13(b)は摩耗部8と欠け落ち部8aが併存しているケースを表わしている。
【0074】
次に、ステップS3〜ステップS4の繰り返しで取得された画像から摩耗/欠け落ち量を計測するために、先ず、輝線101〜111の一部または全部の直線部分(摩耗部8、欠け落ち部8a以外の部分)上の適宜個数の点(A1〜A8で例示)の3次元位置を計算し、逃げ面6の乗っている平面(平面を記述するパラメータ値)を求める(ステップS5)。
【0075】
次いで、摩耗/欠け落ちが発生する側(すくい面7に続く側;画面右側)の端点Q1〜Q11(またはQ1’〜Q11’)の内、屈曲点P1〜P6(またはP1’〜P6’)を持たない輝線107〜111の端点Q7〜Q11(またはQ7’〜Q11’)の3次元位置を計算し、逃げ面6とすくい面7との交線に相当する直線9(直線9を記述するパラメータ値)を求める(ステップS6)。
【0076】
輝線101〜111を構成するすべての点の内、ステップS5で求めた平面(逃げ面6)上になく、且つ、最も上記直線9から離れた点を求め、摩耗/欠け落ち量の測定点とする(ステップS7)。ステップS5で求めた平面(逃げ面6)上にないという条件は、その平面との距離を微小しきい値と比較することで判定出来る。こうして選ばれた測定点は、図13(a)のようなケースではP1(より正確に言えば、上記微小しきい値分摩耗部8内へ下った点)、図13(b)のようなケースではP2’(より正確に言えば、上記微小しきい値分欠け落ち部8a内へ下った点)となる。
【0077】
選ばれた測定点と直線9の距離s(またはs’)を摩耗/欠け落ち量を表わす指標として求め(ステップS8)、許容される限界を表わす基準値s0 と比較してチップ交換の要/不要を判定し、判定結果を記憶する(ステップS9)。更に、最終検査位置でないことを確認し(ステップS10)、次の検査位置へロボット#3を移動させ(ステップS11)、ステップS3へ戻り、次のチップの検査を開始する。以後、ステップS3〜ステップS11を繰り返し、最終検査位置におけるチップ検査を終了したら(ステップS10でイエス)、ステップS12へ進み、全チップの検査結果(全要交換チップのミル上の装着アドレスを特定するデータ)をロボット制御装置RCL#2に送る。
【0078】
なお、上記の実施形態と参考例は、フライス盤のミルに装着されたチップの検査/交換を行なうシステムについて説明されているが、フライス盤を旋盤、ミルをバイトと各々読みかえれば、旋盤のバイトチップの検査/交換を行なうシステムについての同様の記述が得られる。
【0079】
また、チップの摩耗/欠け落ち量を表わす指標には上述した実施形態で採用したD、L以外にも種々のものが採用可能である
【0081】
【発明の効果】
本発明によれば、フライス盤、旋盤、マシニングセンタのような工作機械に装着されたチップの摩耗や欠け落ちの発生を非接触で自動的に検出することが出来る。工具チップの検査は、工具を工作機械に装着したまま行なうことが出来る
【図面の簡単な説明】
【図1】 本発明の実施形態に係るシステムの全体構成を模式的に示した要部ブロック図である。
【図2】 カメラCMの設置態様を、フライス盤本体部FMの概要並びにコンソールCSの外観とともに示した図である。
【図3】 一つの検査位置に位置決めされた工具チップについて、カメラで撮影される画像を表わした図である。
【図4】 本発明の実施形態で実行されるチップの摩耗/欠け落ち検査のための処理の概要を記したフローチャートである。
【図5】 参考例に係るシステムの全体構成を模式的に示した要部ブロック図である。
【図6】 参考例で配備されるフライス盤に用いられるミルの外観に、摩耗部が発生したチップを拡大併記したものである。
【図7】 ミルがチップ検査作業台上の治具に固定される様子を描いた模式図である。
【図8】 参考例で配備されるロボット#2,#3の作業状況を説明する模式図である。
【図9】 (a)ストラクチャライトユニットの要部構造と、(b)ストラクチャライトの形成方法を例示した模式図である。
【図10】 参考例で配備される画像処理装置内蔵型のロボット制御装置の構成を他の要素との接続関係の概略とともに要部ブロック図で例示したものである。
【図11】 チップに対するストラクチャライトの投光状態を説明する図である。
【図12】 投光部のキャリブレーションについて説明する図である。
【図13】 チップの摩耗/欠け落ちを検査する方式を説明する図で、(a)は摩耗部のみのケース、(b)は摩耗部と欠け落ち部が併存しているケースを表わしている。
【図14】 参考例で実行されるチップの摩耗/欠け落ち検査のための処理の概要を記したフローチャートである。
【符号の説明】
1 工具(ミル)
1a ミルのテーパ部
1b ミルのヘッド
2 凸部
3 チップ
4 固定用ボルト
5 ボルト穴
6 逃げ面
7 すくい面
8 摩耗部
8a 欠け落ち部
9 逃げ面とすくい面の交線
11 投光窓
12 レーザ発振器
13 円柱レンズ
14 ガルバノメータ
20、CM カメラ
21 撮影窓
51 中央演算処理装置(CPU)
52 ROMメモリ
53 RAMメモリ
54 不揮発性メモリ
55 教示操作盤
56 デジタルサーボ回路
57 サーボアンプ
58 バス
61 ストラクチャライトユニット用インターフェイス
62 画像処理プロセッサ
63 モニタインターフェイス
64 フレームメモリ
65 プログラムメモリ
66 データメモリ
67 通信インターフェイス
101〜111,L1,L2 輝線
A1〜A8 輝線の直線部分上の点
AG エアガン
CH チップ交換ラック
DR ドア
FCL、FCL#1〜FCL#3 フライス盤制御装置
FM フライス盤本体部
G1,G2 輝線L1上の点
G3,G4 輝線L2上の点
H ハンド交換機構
HD ミル把持用ハンド
HL 治具の取付穴
IP 画像処理装置
IL 照明装置
JG 治具
MO モニタ
NR ナットランナ
P1〜P6,P1’〜P6’ 各輝線の屈曲点
PL1,PL2 既知の平面
Q1〜Q11,Q1’〜Q11’ 輝線の摩耗/欠け落ちが発生する側の端点
RCL#1〜RCL#3 ロボット制御装置
RL 走行軸
UL ストラクチャライト(スリット光)
SP 主軸(スピンドル)
SPH 主軸ヘッド
SPU 主軸ユニット
SU ストラクチャライトユニット
TB チップ検査交換作業台
VS 視覚センサ
WS1 未加工ワーク供給部
WS2 加工済みワーク収容部
WT ワークテーブル
WTH ワークテーブルヘッド
Σw ワーク座標系

Claims (4)

  1. 制御装置で制御される工作機械の工具に装着された複数の工具チップの摩耗、欠け落ちあるいはその両者によって生じる欠損を、視覚センサ手段を用いて、前記工具を工作機械に取付けた状態で検査する工具チップ欠損検査システムにおいて、
    前記制御装置は、前記工具に装着された複数の工具チップが予め定められた検査位置に順次来るように前記工具の並進位置並びに回転位置を位置決め制御する手段を有し
    前記視覚センサ手段は、前記検査位置にある工具チップについて所定の方向からセンシングを行ない、欠損の大きさを表わす指標のデータを取得することを特徴とする、前記工具チップ欠損検査システム。
  2. 制御装置で制御される工作機械の工具に装着された複数の工具チップの摩耗、欠け落ちあるいはその両者によって生じる欠損を、視覚センサ手段を用いて、前記工具を工作機械に取付けた状態で検査する工具チップ欠損検査システムにおいて、
    該工具チップ欠損検査システムには、前記工具の使用積算時間を検知する使用積算時間検知手段が具備されるとともに、
    前記制御装置は、前記使用積算時間検知手段の出力に基づいて、前記工具に装着された複数の工具チップが予め定められた検査位置に順次来るように前記工具の並進位置並びに回転位置を位置決め制御する手段を有し
    前記視覚センサは、前記検査位置にある工具チップについて所定の方向からセンシングを行ない、欠損の大きさを表わす指標のデータを取得することを特徴とする、前記工具チップ欠損検査システム。
  3. 前記視覚センサ手段は、前記検査位置にある工具チップを所定の方向から撮影するカメラ手段と、前記カメラ手段による前記撮影によって取得された画像を解析して前記撮影された工具チップの前記欠損の大きさを表わす指標のデータを取得する手段を備えている、請求項1または請求項2に記載された前記工具チップ欠損検査システム。
  4. 前記欠損の大きさを表わす指標のデータを予め定められた判定基準と比較して工具チップ交換の必要性を判定する手段と、
    前記判定の結果が前記工具チップの交換必要性に対応するものである場合に所定のメッセージを報知する手段を更に備えている、請求項1〜請求項3のいずれか1項に記載された工具チップ欠損検査システム。
JP19204497A 1996-07-09 1997-07-03 工具チップ欠損検査システム Expired - Fee Related JP3851419B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19204497A JP3851419B2 (ja) 1996-07-09 1997-07-03 工具チップ欠損検査システム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP19694496 1996-07-09
JP8-196944 1996-07-09
JP19204497A JP3851419B2 (ja) 1996-07-09 1997-07-03 工具チップ欠損検査システム

Publications (2)

Publication Number Publication Date
JPH1096616A JPH1096616A (ja) 1998-04-14
JP3851419B2 true JP3851419B2 (ja) 2006-11-29

Family

ID=26507063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19204497A Expired - Fee Related JP3851419B2 (ja) 1996-07-09 1997-07-03 工具チップ欠損検査システム

Country Status (1)

Country Link
JP (1) JP3851419B2 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1398598A1 (de) * 2002-09-16 2004-03-17 WENDT GmbH Verfahren und Vorrichtung zum Messen von kleinen Schneidkantengeometrien
US7270592B2 (en) * 2004-08-12 2007-09-18 D4D Technologies, Llc Milling machine
JP4997378B2 (ja) * 2006-03-03 2012-08-08 学校法人 芝浦工業大学 歯車の歯面又は軸受の転動面の損傷検知方法及び装置
JP2007278915A (ja) * 2006-04-10 2007-10-25 Tateyama Machine Kk 工具欠陥検査装置と工具欠陥検査方法
DE102007006032A1 (de) * 2007-02-07 2008-08-14 E. Zoller GmbH & Co. KG Einstell- und Messgeräte Einstell-, Mess- und/oder Werkzeugspanngerät
DE102008045470A1 (de) * 2008-09-03 2010-03-04 Wirtgen Gmbh Verfahren zur Bestimmung des Verschleißzustandes
JP5452973B2 (ja) 2009-04-28 2014-03-26 富士機械製造株式会社 撮像装置及びその撮像装置を備える切削機械
JP6037891B2 (ja) * 2013-02-26 2016-12-07 三菱重工工作機械株式会社 工具形状測定方法及び工具形状測定装置
JP2016200928A (ja) * 2015-04-09 2016-12-01 ファナック株式会社 工作機械の管理システム
JP6423769B2 (ja) 2015-08-31 2018-11-14 ファナック株式会社 加工精度維持機能を有する加工システム
JP6356655B2 (ja) 2015-12-10 2018-07-11 ファナック株式会社 加工屑を除去する機能を有する加工システム
JP6882134B2 (ja) * 2017-10-06 2021-06-02 ヘキサゴン・メトロジー株式会社 加工装置
KR20210145753A (ko) * 2019-03-01 2021-12-02 라이프 안드레아스 안데르센 절삭 공구 검사 및 교체를 위한 자동 시스템
JP6802306B2 (ja) * 2019-03-05 2020-12-16 Dmg森精機株式会社 撮像装置
CN110498315B (zh) * 2019-08-28 2020-10-02 浙江海洋大学 一种电梯曳引轮磨损检测装置及检测方法
CN111571307B (zh) * 2020-05-14 2021-11-02 哈尔滨理工大学 一种用于刀具磨损在机检测装置
JP6900561B1 (ja) * 2020-07-07 2021-07-07 Dmg森精機株式会社 工作機械、情報処理方法、および情報処理プログラム
KR102554478B1 (ko) * 2021-01-13 2023-07-12 강원대학교 산학협력단 적외선 이미지기반 딥러닝을 이용한 실시간 공구 마모 측정 시스템
CN114367996A (zh) * 2022-02-21 2022-04-19 南京理工大学 一种刀具损伤原位检测与换刀机器人
CN115229553B (zh) * 2022-08-03 2023-10-24 安徽江机重型数控机床股份有限公司 一种基于高端装备制造具有刀头故障诊断功能的数控机床

Also Published As

Publication number Publication date
JPH1096616A (ja) 1998-04-14

Similar Documents

Publication Publication Date Title
JP3851419B2 (ja) 工具チップ欠損検査システム
US4409718A (en) Electro-optical and robotic casting quality assurance
EP3401054B1 (en) System and method for processing a workpiece
EP1600247B1 (en) Nozzle checker for laser beam machine
US6479960B2 (en) Machine tool
US4620353A (en) Electro-optical and robotic casting quality assurance
JP5382053B2 (ja) ロボットシステムおよびロボットシステムを用いた検査方法
CA2353976C (en) Method and device for object recognition
EP2511055B1 (en) Robot system and method for operating robot system
JP5467773B2 (ja) 切削工具検査システム
JPH09168944A (ja) ターンブローチの異常検出装置
WO2021049186A1 (ja) 工具検査システム
JP5300003B2 (ja) 旋盤の制御装置
US6249599B1 (en) Method and apparatus for detecting tool trouble in machine tool
WO2020012569A1 (ja) 工作機械システムおよび工具の判定方法
WO2020008838A1 (ja) ダイシングチップ検査装置
JP2002337041A (ja) 工具管理方法及びその装置
JP2001269844A (ja) 工具観察方法とその装置および切削加工システム
JPH07237106A (ja) 遠隔操作疵手入れ方法およびその装置
JPH0557592A (ja) ワークの加工方法及び加工装置
JP2022123920A (ja) 工具収容装置、工作機械および画像処理装置
TWM530201U (zh) 防撞模擬系統
JPH09295249A (ja) 工作機械の工具異常検出装置
JPH03214006A (ja) ロボット用切削工具の刃具監視装置
JP3199320B2 (ja) ワークの加工方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees