JP3851150B2 - Offshore structure and offshore structure construction method - Google Patents

Offshore structure and offshore structure construction method Download PDF

Info

Publication number
JP3851150B2
JP3851150B2 JP2001357440A JP2001357440A JP3851150B2 JP 3851150 B2 JP3851150 B2 JP 3851150B2 JP 2001357440 A JP2001357440 A JP 2001357440A JP 2001357440 A JP2001357440 A JP 2001357440A JP 3851150 B2 JP3851150 B2 JP 3851150B2
Authority
JP
Japan
Prior art keywords
landfill
ground
revetment
steel pipe
board
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001357440A
Other languages
Japanese (ja)
Other versions
JP2003155734A (en
Inventor
康造 苗村
雅俊 武藤
貴至 西尾
茂 遠藤
Original Assignee
不動建設株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不動建設株式会社 filed Critical 不動建設株式会社
Priority to JP2001357440A priority Critical patent/JP3851150B2/en
Publication of JP2003155734A publication Critical patent/JP2003155734A/en
Application granted granted Critical
Publication of JP3851150B2 publication Critical patent/JP3851150B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Revetment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、海上での計画高さの高い空港滑走路等の海上構造物及び海上構造物施工方法に関するものである。
【0002】
【従来の技術】
我が国は島国であるため、空港の建設場所として、海上が選択されることがある。また、海上に建設されている既存の空港もあり、既存海上空港の滑走路の拡張工事が行われることもある。一方、海上には船舶が往来している。このため、海上空港の建設及び既存海上空港の拡張工事では、これら船舶の運行の障害とならないよう、海上での計画高さの高い滑走路の建設が必要となる。具体的には、海面から20〜30mもある高い場所に滑走路を建設することがある。
【0003】
通常、海上に構造物を建設する場合、埋立工法が適用される。前記のような計画高さが高い構造物の建設に埋立工法を適用する場合について、図4を参照して説明する。当該埋立は、例えば、海底地盤層から埋立地表に向けて、岩盤などからなる支持層10a、10〜20m程度の深さの洪積層10b、30〜40m程度の深さの沖積層10c及び水深10〜20mの海上地形に適用される。先ず、軟弱地盤である沖積層10cにおいて、護岸となるケーソン構築用の改良地盤104が締固め砂杭造成工法などにより造成され、次いで、該改良地盤104を起点に水平方向に改良地盤101が造成される。改良地盤104上に構築されるケーソン105は海面上、20〜30mもの高さを有するため、改良地盤101には高さが30〜50mもある高天端の埋立地盤106を造成することになる。
【0004】
【発明が解決しようとする課題】
しかしながら、上記埋立工法により建設された海上構造物100aは、(1)護岸であるケーソンの天端151が高いため、地盤沈下対策や耐震対策などで護岸建設コストが高くなる、(2)大量の埋立材が必要となり、建設コストを上昇させる、(3)供用後の残留沈下対策として、埋立材のうち、山砂部分102を少なく、軽量材部分103を多く採るにしても、軽量材が多量に必要となり、コストを上昇させる、(4)長期間に亘り発生する残留沈下により、床版上の舗装の補修が必要となり維持費がかかる、という種々の問題がある。一方、埋立工法に代わる工法として、桟橋の建設工法も考えられる。海上の桟橋構造物は、図5に示すように、沖積層10cである軟弱地盤上に、鋼管杭112が通る筒状管115を筋交い部材116で結合したジャケット114を設置し、ジャケット114の筒状管115を通して、支持層10aで支持される鋼管杭112を多数打設し、この多数の鋼管杭112の上に床版113を敷設することにより建設される。ジャケット114の設置は、海上での計画高さが高いため、地震時に発生する水平力に抵抗するために設置せざるを得ない。このような海上構造物100bは、床版113を支持する鋼管杭112が支持層10aまで打ち込まれるため、残留沈下が少ない点で有利である。更に、地震時に発生する水平力を鋼管杭112とジャケット114で支持することができる。しかしながら、上記桟橋構造は(1)耐震対策上、鋼管杭やジャケットの数量が膨大となり、建設コストを上昇させる、(2)鋼管杭の本数が多く、打設に多くの時間を要するため工期が長くなる、(3)海上の鋼管杭であるため、防食工事が必要で、維持費が嵩む、という問題がある。
【0005】
従って、本発明の目的は、残留沈下が無く、地震時に発生する水平力に抵抗でき、建設コストや維持費の上昇を抑制し、利用度の高い海上構造物及び海上構造物施工方法を提供することにある。
【0006】
【課題を解決するための手段】
かかる実情において、本発明者らは鋭意検討を行った結果、護岸の天端を低く抑え、低天端の埋立工法を採用し、この低天端の埋立地盤の上に桟橋構造物を建設して得られる海上構造物は、埋立材料の量が少なくて済み、且つ岩盤層まで鋼管杭を打ち込むため残留沈下が無く、また、地震時に発生する水平力は低天端の埋立地盤で支持できるため、ジャケットが不要となり建設コストの上昇を抑制し、且つ鋼管杭は陸上に建設されるため防食工事がほとんど不要となること、更に、埋立土と桟橋との地上空間が発生するため、倉庫などに使用でき、利用度の高いものとなることなどを見出し、本発明を完成するに至った。
【0007】
すなわち、本発明(1)は、海底地盤が深部より岩盤層、洪積層、沖積層から構成される海上に、天端高さの低い埋立地盤を造成し、該埋立地盤上に建設される桟橋構造であって、一端部が前記岩盤層に打ち込まれ、他端部が埋立地盤の地表より高い位置にある多数の鋼管杭と、該鋼管杭上に敷設される床版とを備える海上構造物を提供するものである。また、本発明(2)は、前記埋立地盤は、締固め砂杭造成工法により地盤強化されたものである前記(1)記載の海上構造物を提供するものである。また、本発明(3)は、前記埋立地盤を支持する軟弱な沖積層は、バーチカルドレーン工法により地盤強化されたものである前記(1)又は(2)記載の海上構造物を提供するものである。また、本発明(4)は、空港の滑走路である前記(1)〜(3)記載の海上構造物を提供するものである。
【0008】
本発明(5)は、海上の軟弱地盤を改良して護岸造成用改良地盤を構築する地盤改良工程、前記護岸造成用改良地盤に護岸を造成する護岸造成工程、前記造成された護岸の内側の沖積層上に埋立材を埋立、低天端の埋立地盤を形成する埋立工程、前記埋立地盤、前記沖積層及び洪積層を貫通して支持層となる岩盤層に鋼管杭を打ち込む基礎杭打設工程、前記鋼管杭の上方に床版を設置する床版設置工程、を行う海上構造物施工方法を提供するものである。また、本発明(6)は、海上の軟弱地盤を改良して護岸造成用改良地盤及び護岸の内側の沖積層を改良して埋立地盤用改良地盤をそれぞれ構築する地盤改良工程、前記護岸造成用改良地盤に護岸を造成する護岸造成工程、前記埋立地盤支持用改良地盤の上に埋立材を埋立、低天端の埋立地盤を形成する埋立工程、前記埋立地盤、前記埋立地盤支持用改良地盤及び洪積層を貫通して支持層となる岩盤層に鋼管杭を打ち込む基礎杭打設工程、前記鋼管杭の上方に床版を設置する床版設置工程、を行うことを特徴とする海上構造物施工方法を提供するものである。また、本発明(7)は、前記埋立工程後、該埋立地盤を改良する地盤改良工程を、更に行う前記(5)又は(6)記載の海上構造物施工方法を提供するものである。
【0009】
【発明の実施の形態】
本発明の実施の形態における海上構造物を図1を参照して説明する。図1は本例における海上構造物の模式図である。海上構造物1は、海底地盤が深部より岩盤層10a、洪積層10b、沖積層10cから構成される海上に、天端高さの低い埋立地盤7を造成し、該埋立地盤7上に建設される桟橋構造であって、一端部21が岩盤層10aに打ち込まれ、他端部22が埋立地盤の地表Aより高い位置にある多数の鋼管杭2と、鋼管杭2上に敷設される床版3とを備える。また、海上埋立区域内の周りの少なくとも一部には、護岸が形成され、本例では、護岸造成用改良地盤4の上にケーソン5を配置するケーソン式護岸を構成している。海上構造物1の各構成要素の大きさは、特に制限されるものではないが、一例を示すと、計画高さである海面S.L.から床版3までの高さHが、7〜30m、洪積層10bの高さが、10〜20m、沖積層10cの高さが、30〜40m、水深が10〜20m、海面S.L.からケーソン5の天端51までの高さ、すなわち、海面S.L.から埋立地盤7の表面までの高さhが2〜10m、好ましくは4〜5m程度である。海面S.L.から埋立地盤7の表面までの高さhが高すぎると、埋立層厚が大きくなり、埋立材が多量に必要となると共に、残留沈下の問題が生じる。海上構造物1は、計画高さHが特に、20〜30mもの高い場合においても本発明の効果が顕著に発揮される。
【0010】
護岸造成用改良地盤4は、例えば、ケーソン等の護岸が設置されるため、沖積層10cの地盤強度を改良したもので、通常、締固め砂杭造成工法(以下、単に「SCP」とも言う)により行われる。本発明において、護岸造成用改良地盤4の内側の埋立区域内に造成される天端高さの低い埋立地盤7は、埋立たままであっても、地盤強化されたものであってもよいが、地盤強化されたものが、埋立地盤の密度が増加し、地震時の液状化を防止できる点で好ましい。埋立地盤7としては、通所、山砂が使用される。埋立地盤7の地盤強化方法としては、SCPまたはサンドドレーン工法(以下、単に「SD」とも言う)が挙げられるが、このうち、SCPが、液状化を防止すると共に、鋼管杭の水平力を確実に支えることができる点で好適である。また、埋立地盤7を支持する軟弱な沖積層10cは、地盤強化されたものでも、地盤強化されていなくても、いずれでもよいが、地盤強化されたものが好ましい。沖積層10cの地盤強化方法としては、SD及びペーパードレーン工法などのバーチカルドレン工法が挙げられる。
【0011】
海上構造物1において、床版3は低天端の埋立地盤7上から地中深く、支持層である岩盤層10aにまで打ち込まれた多数の鋼管杭2の上に敷設される。床版3は通常、裏面に鋼管杭2の先端部に嵌合される嵌合部を設けた、所定の大きさのプレキャストコンクリート板(PC板)を、鋼管杭2の上方から次々と嵌め込む方法により形成される。これにより、埋立区域内には、縦横それぞれ、数百m〜数kmの広大な人工敷地が形成される。また、床版3上は、必要に応じて舗装される。鋼管杭2と隣接する鋼管杭2との間隔は、土質、地盤の設計強度などによって適宜決定されるが、概ね5〜十数mである。また、鋼管杭2は全て支持杭とせず、その一部を水平抵抗をとるための短い杭としてもよい。鋼管杭2による鉛直方向の支持は、長い支持鋼管杭で持たせ、水平方向の支持は、その他の短い鋼管杭で持たせば、鋼管杭の使用量を実質的に低減できる。また、埋立地盤7の地表と床版3との間は高さ数m〜20数mの地上空間部8が形成される。このような海上構造物1としては、特に制限されないが、空港の滑走路が挙げられる。本発明において、該空港の滑走路とは、広く解釈するものであり、誘導路等を含めた空港施設全体を言う。
【0012】
本例の海上構造物1は、計画高さが高い構造物であるにもかかわらず、低天端の埋立で済み、且つ床版3を支持する鋼管杭2が支持層10aまで打ち込まれているため、埋立材を多量に使用する必要がなく、且つ残留沈下が無い。また、地震時の水平力に対しては埋立地盤7で支持できるため、桟橋のみで構成される構造物に比べて、ジャケット等は不要であり、更に鋼管杭2の打設本数を減らすことができる。また、床版3下は陸上化でき、且つ地上空間部8を形成できるため、鋼管杭の防食工事は大幅に削減できると共に、地上空間部8は倉庫、駐車場などに有効利用できる。
【0013】
次に、本発明の実施の形態における海上構造物の施工方法について、図2及び図3を参照して説明する。図2(A)は地盤改良工程、(B)は護岸造成工程、(C)は埋立工程、図3(D)はSCPによる埋立地盤改良工程、(E)は基礎杭打設工程、(F)は床版設置工程をそれぞれ説明するための図である。
【0014】
本例においては、海上の軟弱地盤である沖積層10cを改良して護岸造成用改良地盤を構築し、更に、護岸の内側の沖積層10cを改良して埋立地盤支持用改良地盤を構築する地盤改良工程が実施される(図2(A))。当該工程において、地盤改良の対象となる軟弱地盤は、通常、埋立区域内の沖積層10cである。先ず、SCP船60aにより、沖積層10cに多数の締固め砂杭が打設され、護岸造成用改良地盤4が造成される。次いで、護岸造成用改良地盤4の内側の埋立区域の軟弱地盤に対して、SD船60bによる砂杭打設が行われ、埋立地盤支持用改良地盤6が構築される。この埋立区域内の軟弱地盤の地盤改良工法には、砂杭打設を含めたバーチカルドレーン工法を用いることができる。なお、本発明の海上構造物施工方法で用いる締固め砂杭造成工法、サンドドレーン工法及びこれらの工法を含むバーチカルドレン工法は公知の工法が適用される。埋立地盤支持用改良地盤6の造成の終点領域には、もう一方の護岸造成用改良地盤4が同様のSCP船60aにより造成される(図2(B))。
【0015】
次いで、護岸造成用改良地盤4に護岸を造成する護岸造成工程が実施される。当該工程においては、起重機船60cで運ばれたケーソン5が護岸造成用改良地盤4上に設置される。設置状態でのケーソン5の天端51は、海面より数m程度の高さである。この程度の高さであれば、護岸の機能を奏すると共に、低天端高での埋立が可能である(図2(B))。
【0016】
次いで、前記埋立地盤支持用改良地盤6の上に埋立材を埋立、低天端の埋立地盤7を形成する埋立工程が実施される。当該工程においては、土運船60eで運ばれた山砂が揚土船60dで埋立地盤支持用改良地盤6上に埋立られる(図2(C))。また、山砂で埋立られた埋立地盤7は、特に制限されないが、SCP施工機60fを使用し、締固め砂杭を多数打設して地盤を改良すれば、地震時における液状化を防止することができる。また、当該工程の締固め砂杭造成工法は陸上で施工されるため、SCP施工機60fを多く投入でき、該工程における工期を短縮することができる(図3(D))。
【0017】
次いで、埋立地盤7、埋立地盤支持用改良地盤6及び洪積層10bを貫通して岩盤層10aに鋼管杭2を打ち込む基礎杭打設工程を実施する(図3(E))。なお、図3(E)中、符号10bは作図の都合上、省略してある。当該工程においては、鋼管杭打設機60gを用いて、埋立区域内を適宜の間隔で多数の鋼管杭2を打設する。鋼管杭2は円形断面が好ましく、また、杭径及び杭長も設計事項であり、適宜決定される。また、鋼管杭2は全て長い支持杭とせず、その一部を水平力を支持するための短い杭としてもよい。この場合、長い支持杭と短い杭は交互に打設することが好ましい。また、鋼管杭2の打設は、鋼管杭2の周りに公知の滑材を塗布して行うことが、鋼管杭2が打設された後、地盤沈下により鋼管杭2に作用する負の摩擦力を低減させることができる点で好適である。
【0018】
次いで、前記鋼管杭の上方に床版を設置する床版設置工程を実施する(図3(F))。当該工程においては、床版3が鋼管杭2の上に敷設される。敷設方法としては、特に制限されないが、例えば、裏面に嵌合部を有する所定の大きさのPC板を、クローラクレーンを用いて、鋼管杭2の上方から次々と嵌め込む方法が挙げられる。鋼管杭2と隣接する鋼管杭2との間隔は、土質、地盤の設計強度などによって適宜決定されるが、概ね5〜十数mである。当該工程の実施により、埋立区域内には、縦横それぞれ、数百m〜数kmの広大な人口敷地が形成される。また、床版3上は、必要に応じて舗装される。
【0019】
本例の海上構造物施工方法によれば、護岸であるケーソンの天端51が低いため、護岸建設コストを低減できる。低天端の埋立地盤であるため、埋立材の使用量を低減できる。地震時の水平力を埋立地盤で支えるため、鋼管杭の本数が少なくて済み、建設費の削減と工期の短縮が可能となる。床版下は陸上化されているため、防食工事などが不要となる。また、埋立工程の後、該低天端の埋立地盤を砂杭造成により地盤強度を改良する地盤改良工程を、更に行う場合、当該施工は陸上で行うことになり、施工機を多く投入できるため、工期が短縮できる。
【0020】
本発明の海上構造物において、床版は傾斜度1%程度のわずかな傾斜を有していてもよい。特に、海上構造物が滑走路の場合、船舶の運航で規制される高さが、広大な滑走路の一部の側である場合、当該部分は計画高さを20〜30mとし、数km離れた他方の側は数mの計画高さで十分な場合に適用できる。また、このような傾斜した床版を有する海上構造物の場合、計画高さの低い一部の側は、埋立地盤を利用しない、沖積層の上に建設する桟橋構造とすることができる。
【0021】
本発明の海上構造物の施工方法において、埋立地盤支持用改良地盤6は、改良地盤とすることなく、沖積層10cの上に、低天端の埋立地盤7を造成することもできる。すなわち、海上の軟弱地盤を改良して護岸造成用改良地盤4を構築する地盤改良工程、護岸造成用改良地盤4にケーソン5などの護岸を造成する護岸造成工程、造成された護岸の内側の沖積層10c上に埋立材を埋立、低天端の埋立地盤7を形成する埋立工程の各工程を行い、この埋立地盤7の上に上記実施の形態例と同様の桟橋を建設する方法であってもよい。すなわち、本発明の海上構造物及び海上構造物の施工方法において、沖積層及び該沖積層の上に造成される低天端の埋立地盤としては、地盤改良されていない沖積層と地盤改良されていない埋立地盤の組み合わせ、地盤改良されていない沖積層と地盤改良された埋立地盤の組み合わせ、地盤改良された沖積層と地盤改良されていない埋立地盤の組み合わせ、地盤改良された沖積層と地盤改良された埋立地盤の組み合わせの4形態である。
【0022】
【発明の効果】
本発明の海上構造物は、計画高さが高い構造物であるにもかかわらず、低天端の埋立で済み、且つ床版を支持する鋼管杭が岩盤層まで打ち込まれているため、埋立材を多量に使用する必要がなく、且つ残留沈下を無くすることができる。また、地震時の水平力に対しては低天端の埋立地盤で支持できるため、桟橋のみで構成される構造物に比べて、ジャケット等は不要であり、更に鋼管杭の打設本数を減らすことができる。また、床版下は陸上化でき、且つ地上空間部を形成できるため、鋼管杭の防食工事は不要で維持コストを大幅に削減できると共に、地上空間部は倉庫、駐車場などに有効利用できる。また、本発明の海上構造物施工方法は、護岸の天端が低いため、護岸建設コストを低減できる。低天端の埋立であるため、埋立材の使用量を低減できる。地震時の水平力を埋立地盤で支えるため、鋼管杭の本数が少なくて済み、建設費の削減と工期の短縮が可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態における海上構造物の模式図である。
【図2】(A)は地盤改良工程、(B)は護岸造成工程、(C)は埋立工程をそれぞれ説明するための図である。
【図3】(D)はSCPによる埋立地盤改良工程、(E)は基礎杭打設工程、(F)は床版設置工程をそれぞれ説明するための図である。
【図4】計画高さの高い海上構造物に従来の埋立工法を適用した場合の説明図である。
【図5】計画高さの高い海上構造物に従来の桟橋工法を適用した場合の説明図である。
【符号の説明】
1、100a、100b 海上構造物
2 鋼管杭
3 床版
4、104 護岸造成用改良地盤
5、105 ケーソン
6、101 埋立地盤支持用改良地盤
7 低天端の埋立地盤
8 地上空間部
10a 岩盤層
10b 洪積層
10c 沖積層
51、151 ケーソンの上端
102 山砂
103 軽量土
106 高天端の埋立地盤
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a marine structure such as an airport runway with a high planned height at sea and a method for constructing a marine structure.
[0002]
[Prior art]
Since Japan is an island country, the sea may be selected as the airport construction site. In addition, there are existing airports constructed at sea, and the runway expansion of existing maritime airports may be carried out. On the other hand, there are ships on the sea. For this reason, in the construction of the maritime airport and the expansion of the existing maritime airport, it is necessary to construct a runway with a high planned height at sea so as not to hinder the operation of these ships. Specifically, a runway may be constructed at a high place 20 to 30 m above the sea level.
[0003]
Usually, when constructing structures on the sea, landfill methods are applied. A case where the landfill method is applied to the construction of a structure having a high planned height as described above will be described with reference to FIG. The landfill includes, for example, a support layer 10a made of rock or the like, a deep layer 10b having a depth of about 10 to 20 m, an alluvium 10c having a depth of about 30 to 40 m, and a water depth 10 from the seabed to the landfill table. Applies to 20m offshore terrain. First, in the alluvium 10c, which is soft ground, an improved ground 104 for caisson construction as a revetment is created by a compacted sand pile construction method or the like, and then the improved ground 101 is created in the horizontal direction starting from the improved ground 104. Is done. Since the caisson 105 constructed on the improved ground 104 has a height of 20 to 30 m above the sea surface, the improved ground 101 has a high-end landfill 106 having a height of 30 to 50 m.
[0004]
[Problems to be solved by the invention]
However, the offshore structure 100a constructed by the above-mentioned landfill construction method has (1) the top end 151 of the caisson, which is a revetment, is high, so the revetment construction cost increases due to ground subsidence measures and earthquake resistance measures. Landfill materials are required, which increases construction costs. (3) As a countermeasure for residual settlement after in-service, there are a lot of light-weight materials, even if landfill materials are few and sandstone portions 102 are small and light-weight material portions 103 are used. (4) Due to residual subsidence that occurs over a long period of time, repair of the pavement on the floor slab becomes necessary and maintenance costs are required. On the other hand, a pier construction method can be considered as an alternative to the landfill method. As shown in FIG. 5, the offshore pier structure has a jacket 114 in which a tubular tube 115 through which a steel pipe pile 112 passes is joined by a bracing member 116 on a soft ground which is an alluvium 10c. A large number of steel pipe piles 112 supported by the support layer 10 a are placed through the pipes 115, and the floor slab 113 is laid on the steel pipe piles 112. Since the planned height at sea is high, the jacket 114 must be installed to resist the horizontal force generated during an earthquake. Such a marine structure 100b is advantageous in that there is little residual settlement because the steel pipe pile 112 that supports the floor slab 113 is driven into the support layer 10a. Further, the horizontal force generated during the earthquake can be supported by the steel pipe pile 112 and the jacket 114. However, the above pier structure (1) due to earthquake resistance measures, the number of steel pipe piles and jackets is enormous, which increases the construction cost. (2) The number of steel pipe piles is large, and it takes a lot of time to drive, so the construction period is long. (3) Since it is a steel pipe pile at sea, there is a problem that anticorrosion work is required and maintenance costs increase.
[0005]
Accordingly, an object of the present invention is to provide a marine structure and a method for constructing a marine structure that have no residual settlement, can resist horizontal forces generated during an earthquake, suppress an increase in construction costs and maintenance costs, and have a high degree of utilization. There is.
[0006]
[Means for Solving the Problems]
In this situation, the present inventors have conducted intensive studies, and as a result, kept the top of the revetment low, adopted a low-top end landfill method, and built a pier structure on this low-top landfill. The resulting offshore structure requires less landfill material, and there is no residual subsidence because the steel piles are driven into the rock layer, and the horizontal force generated during an earthquake can be supported by a low-end landfill. Because the construction of the steel pipe piles is done on the land, no anticorrosion work is required, and the ground space between the landfill and the pier is generated. The present invention has been completed by finding out that it can be used and is highly utilized.
[0007]
That is, the present invention (1) is a pier constructed on the landfill board by constructing a landfill board having a low top edge on the sea where the seabed is composed of the rock layer, the Hongo stack, and the alluvium from deeper. A marine structure comprising a plurality of steel pipe piles, one end of which is driven into the bedrock layer and the other end being higher than the ground surface of the landfill board, and a floor slab laid on the steel pipe pile. Is to provide. Moreover, this invention (2) provides the marine structure of the said (1) description whose said landfill board is ground strengthened by the compacting sand pile construction method. Further, the present invention (3) provides the offshore structure according to (1) or (2), wherein the soft alluvial layer supporting the landfill is reinforced by the vertical drain method. is there. Moreover, this invention (4) provides the marine structure of said (1)-(3) description which is a runway of an airport.
[0008]
The present invention (5) includes a ground improvement step for improving the soft ground at sea to construct an improved ground for revetment formation, a revetment formation step for forming a revetment on the improved ground for revetment formation, and an inner side of the formed revetment. Landfill process on landfill on alluvium, landfill process to form a low-end landfill, foundation pile driving to drive steel pipe piles into the bedrock layer that penetrates the landfill board, the alluvium and Hongu stack An offshore structure construction method is provided that performs a process, a floor slab installation process in which a floor slab is installed above the steel pipe pile. Further, the present invention (6) includes a ground improvement process for improving the soft ground at sea to improve the revetment creation improved ground and the alluvium inside the revetment to construct an improved ground for reclaimed land, respectively, A revetment creation process for creating a revetment on the improved ground, a landfill material on the improved ground for supporting the landfill board, a landfill process for forming a low-end landfill board, the landfill board, the improved ground for supporting the landfill board, and Construction of offshore structures characterized by performing a foundation pile placing process in which a steel pipe pile is driven into a bedrock layer that penetrates the diluvium and a floor slab is installed above the steel pipe pile. A method is provided. Moreover, this invention (7) provides the offshore structure construction method of the said (5) or (6) description which further performs the ground improvement process which improves this landfill board after the said reclamation process.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The offshore structure in the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic view of an offshore structure in this example. The offshore structure 1 is constructed on the landfill board 7 by creating a landfill board 7 having a low top edge on the sea where the seabed ground is composed of the bedrock layer 10a, the dike 10b and the alluvium 10c from deeper. A plurality of steel pipe piles 2 whose one end 21 is driven into the bedrock layer 10a and whose other end 22 is higher than the ground surface A of the landfill board, and a floor slab laid on the steel pipe pile 2 3. In addition, a revetment is formed at least partially around the sea landfill area, and in this example, a caisson-type revetment in which a caisson 5 is arranged on the improved ground 4 for revetment construction is formed. The size of each component of the offshore structure 1 is not particularly limited, but as an example, the height H from the sea level SL to the floor slab 3, which is the planned height, is 7 to 30 m. The height of the laminated layer 10b is 10 to 20m, the height of the alluvial layer 10c is 30 to 40m, the water depth is 10 to 20m, the height from the sea level SL to the top 51 of the caisson 5, that is, from the sea level SL to the landfill board The height h to the surface of 7 is about 2 to 10 m, preferably about 4 to 5 m. If the height h from the sea surface SL to the surface of the landfill board 7 is too high, the landfill layer thickness increases, a large amount of landfill material is required, and the problem of residual settlement occurs. The offshore structure 1 exhibits the effect of the present invention remarkably even when the planned height H is as high as 20 to 30 m.
[0010]
The improved ground 4 for revetment creation is an improvement of the ground strength of the alluvium 10c because a revetment such as caisson is installed, and is usually a compacted sand pile construction method (hereinafter also simply referred to as “SCP”). Is done. In the present invention, the landfill board 7 having a low top height created in the landfill area inside the improved ground 4 for revetment construction may be either landfilled or ground strengthened, The ground-reinforced one is preferable in that the density of the landfill is increased and liquefaction during an earthquake can be prevented. As the landfill board 7, tsusho and mountain sand are used. As the ground strengthening method of the landfill board 7, SCP or sand drain method (hereinafter also referred to simply as “SD”) can be mentioned. Of these, the SCP prevents liquefaction and ensures the horizontal force of the steel pipe pile. It is suitable at the point which can be supported to. Further, the soft alluvial layer 10c supporting the landfill 7 may be either ground strengthened or not ground strengthened, but is preferably ground strengthened. Examples of the ground strengthening method for the alluvium 10c include vertical drain methods such as SD and paper drain method.
[0011]
In the offshore structure 1, the floor slab 3 is laid on a number of steel pipe piles 2 that are driven deeply into the ground from above the low-end landfill 7 and into the bedrock layer 10a as a support layer. The floor slab 3 is usually fitted one after another from above the steel pipe pile 2 with a predetermined size of precast concrete board (PC board) provided with a fitting part fitted to the tip of the steel pipe pile 2 on the back surface. Formed by the method. Thereby, a vast man-made site of several hundred meters to several kilometers is formed in the landfill area, both vertically and horizontally. Further, the floor slab 3 is paved as necessary. Although the space | interval of the steel pipe pile 2 and the adjacent steel pipe pile 2 is decided suitably by soil quality, the design strength of a ground, etc., it is about 5 to several tens m in general. Moreover, all the steel pipe piles 2 are good also as a short pile for taking a horizontal resistance instead of making it a support pile. If the vertical support by the steel pipe pile 2 is provided by a long support steel pipe pile and the support in the horizontal direction is provided by another short steel pipe pile, the amount of use of the steel pipe pile can be substantially reduced. Moreover, between the ground surface of the landfill board 7 and the floor slab 3, a ground space 8 having a height of several meters to 20 meters is formed. Such a marine structure 1 is not particularly limited, but includes an airport runway. In the present invention, the airport runway is broadly interpreted and refers to the entire airport facility including the taxiway.
[0012]
Although the offshore structure 1 of this example is a structure with a high planned height, it is sufficient for land reclamation at the low ceiling, and the steel pipe pile 2 supporting the floor slab 3 is driven to the support layer 10a. Therefore, it is not necessary to use a large amount of landfill material and there is no residual settlement. In addition, since the horizontal force during an earthquake can be supported by the landfill board 7, a jacket or the like is not required compared to a structure consisting only of a pier, and the number of steel pipe piles 2 can be reduced. it can. Further, since the floor slab 3 can be landed and the ground space 8 can be formed, the anticorrosion work of the steel pipe pile can be greatly reduced, and the ground space 8 can be effectively used for a warehouse, a parking lot, and the like.
[0013]
Next, the construction method of the offshore structure in the embodiment of the present invention will be described with reference to FIGS. 2 (A) is the ground improvement process, (B) is the revetment creation process, (C) is the landfill process, FIG. 3 (D) is the landfill improvement process by SCP, (E) is the foundation pile driving process, (F ) Is a diagram for explaining the floor slab installation process.
[0014]
In this example, the alluvium 10c, which is soft ground at sea, is improved to construct an improved ground for revetment construction, and the alluvium 10c inside the revetment is further improved to construct an improved ground for supporting landfills. An improvement process is implemented (FIG. 2 (A)). In this process, the soft ground to be ground improved is usually the alluvium 10c in the landfill area. First, a large number of compacted sand piles are placed in the alluvium 10c by the SCP ship 60a, and the improved ground 4 for revetment creation is created. Next, sand pile driving by the SD ship 60b is performed on the soft ground in the landfill area inside the improved ground 4 for revetment construction, and the improved ground 6 for supporting the landfill base is constructed. The vertical drain method including sand pile driving can be used for the ground improvement method for soft ground in this landfill area. In addition, a well-known construction method is applied to the compacted sand pile construction method, the sand drain construction method, and the vertical drain construction method including these construction methods used in the offshore structure construction method of the present invention. In the end point area of the improvement ground 6 for supporting the landfill board, the other improvement ground 4 for revetment development is created by the same SCP ship 60a (FIG. 2B).
[0015]
Next, a revetment creation process for creating a revetment on the improved ground 4 for revetment creation is performed. In the said process, the caisson 5 carried by the hoist ship 60c is installed on the improved ground 4 for revetment construction. The top 51 of the caisson 5 in the installed state is about several meters above the sea level. If it is such a height, while performing the function of a revetment, reclamation at the low ceiling height is possible (FIG. 2 (B)).
[0016]
Next, a landfill process is performed in which a landfill material is landfilled on the landfill board supporting improved ground 6 to form a landfill board 7 having a low ceiling. In the said process, the mountain sand carried by the earth transport ship 60e is landed on the improvement ground 6 for a landfill board support by the earthlift ship 60d (FIG.2 (C)). In addition, the landfill board 7 landfilled with mountain sand is not particularly limited, but if an SCP construction machine 60f is used to improve the ground by placing a number of compacted sand piles, liquefaction during an earthquake can be prevented. be able to. Moreover, since the compacted sand pile construction method of the said process is constructed on land, many SCP construction machines 60f can be thrown in, and the construction period in this process can be shortened (FIG.3 (D)).
[0017]
Next, a foundation pile placing process is performed in which the steel pipe pile 2 is driven into the bedrock layer 10a through the landfill board 7, the improved ground 6 for supporting the landfill board, and the diluvium 10b (FIG. 3E). In FIG. 3E, reference numeral 10b is omitted for the sake of drawing. In this process, a number of steel pipe piles 2 are driven at appropriate intervals in the landfill area using a steel pipe pile driving machine 60g. The steel pipe pile 2 preferably has a circular cross section, and the pile diameter and the pile length are also design matters and are appropriately determined. In addition, the steel pipe piles 2 are not all long support piles, and some of them may be short piles for supporting the horizontal force. In this case, it is preferable to place long support piles and short piles alternately. In addition, the steel pipe pile 2 is placed by applying a known lubricant around the steel pipe pile 2. After the steel pipe pile 2 is placed, negative friction acting on the steel pipe pile 2 due to ground subsidence. This is preferable in that the force can be reduced.
[0018]
Subsequently, the floor slab installation process which installs a floor slab above the said steel pipe pile is implemented (FIG.3 (F)). In this process, the floor slab 3 is laid on the steel pipe pile 2. Although it does not restrict | limit especially as a laying method, For example, the method of engage | inserting the PC board of the predetermined magnitude | size which has a fitting part in a back surface one after another from the upper direction of the steel pipe pile 2 using a crawler crane is mentioned. Although the space | interval of the steel pipe pile 2 and the adjacent steel pipe pile 2 is decided suitably by soil quality, the design strength of a ground, etc., it is about 5 to several tens m in general. By carrying out this process, a vast artificial site of several hundred meters to several kilometers is formed in the landfill area. Further, the floor slab 3 is paved as necessary.
[0019]
According to the offshore structure construction method of this example, since the top 51 of the caisson that is a revetment is low, the revetment construction cost can be reduced. Because it is a low-end landfill, it can reduce the amount of landfill material used. Since the horizontal force at the time of the earthquake is supported by the landfill board, the number of steel pipe piles can be reduced, and the construction cost and the construction period can be shortened. Since the floor slab is on land, anti-corrosion work is not required. In addition, after the reclamation process, if the ground improvement process of improving the ground strength by sand pile construction of the low-end landfill is further performed, the construction will be performed on land, and many construction machines can be thrown in. The construction period can be shortened.
[0020]
In the offshore structure of the present invention, the floor slab may have a slight inclination with an inclination of about 1%. In particular, when the offshore structure is a runway, if the height regulated by the vessel operation is on the side of a part of the vast runway, that part will be 20 to 30m in height and several kilometers away The other side is applicable when a planned height of several meters is sufficient. In the case of an offshore structure having such an inclined floor slab, a part of the side with a low planned height can be a pier structure constructed on an alluvium without using a landfill board.
[0021]
In the construction method of the offshore structure of the present invention, the improved ground 6 for supporting the landfill board can be formed on the alluvium 10c without using the improved ground 6 on the alluvium 10c. In other words, the ground improvement process to improve the soft ground at sea to construct the improved ground 4 for revetment formation, the revetment formation process to create a revetment such as caisson 5 on the improved ground 4 for revetment formation, off the inner side of the revetment created In this method, the landfill material is landed on the laminated layer 10c, each step of the landfill process for forming the low-end landfill board 7 is performed, and a pier similar to the above embodiment is constructed on the landfill board 7. Also good. That is, in the offshore structure and the construction method of the offshore structure according to the present invention, the alluvium and the low-end reclaimed land built on the alluvium are the alluvium and ground improvement that have not been improved. No combination of landfill, non-ground improved alluvium and ground improved landfill, ground improved alluvium and ungrounded landfill, ground improved alluvium and ground improved 4 types of landfill board combinations.
[0022]
【The invention's effect】
Although the offshore structure of the present invention is a structure with a high planned height, landfill material is sufficient because it only needs to be landfilled at the low end and the steel pipe pile supporting the slab is driven into the rock layer. Need not be used in a large amount, and residual settlement can be eliminated. In addition, since the horizontal force during an earthquake can be supported by a low-end landfill, a jacket is not required and the number of steel pile piles is further reduced compared to structures consisting only of piers. be able to. Moreover, since the floor slab can be landed and a ground space part can be formed, the anticorrosion work of the steel pipe pile is unnecessary, and the maintenance cost can be greatly reduced, and the ground space part can be effectively used for a warehouse, a parking lot, and the like. Further, the offshore structure construction method of the present invention can reduce the revetment construction cost because the top of the revetment is low. Because the landfill is at the low ceiling, the amount of landfill material used can be reduced. Since the horizontal force at the time of the earthquake is supported by the landfill board, the number of steel pipe piles can be reduced, and the construction cost and the construction period can be shortened.
[Brief description of the drawings]
FIG. 1 is a schematic diagram of an offshore structure in an embodiment of the present invention.
FIGS. 2A and 2B are diagrams for explaining a ground improvement process, FIG. 2B a revetment creation process, and FIG. 2C a landfill process, respectively.
3 (D) is a diagram for explaining a landfill board improvement process by SCP, (E) is a foundation pile placing process, and (F) is a floor slab installation process. FIG.
FIG. 4 is an explanatory diagram when a conventional landfill method is applied to an offshore structure having a high planned height.
FIG. 5 is an explanatory diagram when a conventional jetty method is applied to an offshore structure having a high planned height.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,100a, 100b Offshore structure 2 Steel pipe pile 3 Floor slab 4,104 Improved ground 5 for revetment construction Caisson 6,101 Improved ground for supporting landfill 7 Low landfill 8 Ground space 10a Rock bed 10b Hyundai 10c Alluvial 51, 151 Upper edge of caisson 102 Mountain sand 103 Lightweight soil 106 High-end landfill

Claims (7)

海底地盤が深部より岩盤層、洪積層、沖積層から構成される海上に、天端高さの低い埋立地盤を造成し、該埋立地盤上に建設される桟橋構造であって、一端部が前記岩盤層に打ち込まれ、他端部が埋立地盤の地表より高い位置にある多数の鋼管杭と、該鋼管杭上に敷設される床版とを備えることを特徴とする海上構造物。On the sea where the seabed is composed of rock bed, hong, and alluvium from deeper, a landfill with a low top edge is constructed, and the pier structure is constructed on the landfill. A marine structure characterized by comprising a large number of steel pipe piles that are driven into a bedrock layer and the other end of which is higher than the surface of the landfill board, and a floor slab laid on the steel pipe piles. 前記埋立地盤は、締固め砂杭造成工法により地盤強化されたものであることを特徴とする請求項1記載の海上構造物。The offshore structure according to claim 1, wherein the landfill board is ground strengthened by a compacted sand pile construction method. 前記埋立地盤を支持する軟弱な沖積層は、バーチカルドレーン工法により地盤強化されたものであることを特徴とする請求項1又は2記載の海上構造物。3. The offshore structure according to claim 1 or 2, wherein the soft alluvial layer supporting the landfill is reinforced by a vertical drain method. 空港の滑走路であることを特徴とする請求項1〜3のいずれか1項記載の海上構造物。The offshore structure according to any one of claims 1 to 3, wherein the offshore structure is an airport runway. 海上の軟弱地盤を改良して護岸造成用改良地盤を構築する地盤改良工程、前記護岸造成用改良地盤に護岸を造成する護岸造成工程、前記造成された護岸の内側の沖積層上に埋立材を埋立、低天端の埋立地盤を形成する埋立工程、前記埋立地盤、前記沖積層及び洪積層を貫通して支持層となる岩盤層に鋼管杭を打ち込む基礎杭打設工程、前記鋼管杭の上方に床版を設置する床版設置工程、を行うことを特徴とする海上構造物施工方法。A ground improvement process to improve the soft ground at sea and build an improved ground for revetment formation, a revetment formation process to create a revetment on the improved ground for revetment formation, a landfill material on the alluvium inside the revetment created above Landfill, landfill process for forming a low-end landfill board, foundation pile driving process for driving steel pipe piles into the bedrock layer that penetrates the landfill board, the alluvium and the diluvium and becomes a support layer, above the steel pipe piles An offshore structure construction method characterized by performing a floor slab installation step of installing a floor slab. 海上の軟弱地盤を改良して護岸造成用改良地盤及び護岸の内側の沖積層を改良して埋立地盤用改良地盤をそれぞれ構築する地盤改良工程、前記護岸造成用改良地盤に護岸を造成する護岸造成工程、前記埋立地盤支持用改良地盤の上に埋立材を埋立、低天端の埋立地盤を形成する埋立工程、前記埋立地盤、前記埋立地盤支持用改良地盤及び洪積層を貫通して支持層となる岩盤層に鋼管杭を打ち込む基礎杭打設工程、前記鋼管杭の上方に床版を設置する床版設置工程、を行うことを特徴とする海上構造物施工方法。Improving the soft ground at sea to improve the revetment creation ground and improving the alluvium inside the revetment to construct the improved ground for reclaimed land, revetment creation to create a revetment on the improved ground for revetment construction, respectively. A landfill material on the improved ground for supporting the landfill board, a landfill process for forming a low-end landfill board, the landfill board, the improved ground for supporting the landfill board, and A method for constructing a marine structure comprising performing a foundation pile placing step of driving a steel pipe pile into a bedrock layer and a floor slab installation step of installing a floor slab above the steel pipe pile. 前記埋立工程後、該埋立地盤を改良する地盤改良工程を、更に行うことを特徴とする請求項5又は6記載の海上構造物施工方法。7. The offshore structure construction method according to claim 5, further comprising a ground improvement step of improving the landfill board after the landfilling step.
JP2001357440A 2001-11-22 2001-11-22 Offshore structure and offshore structure construction method Expired - Fee Related JP3851150B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001357440A JP3851150B2 (en) 2001-11-22 2001-11-22 Offshore structure and offshore structure construction method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001357440A JP3851150B2 (en) 2001-11-22 2001-11-22 Offshore structure and offshore structure construction method

Publications (2)

Publication Number Publication Date
JP2003155734A JP2003155734A (en) 2003-05-30
JP3851150B2 true JP3851150B2 (en) 2006-11-29

Family

ID=19168786

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001357440A Expired - Fee Related JP3851150B2 (en) 2001-11-22 2001-11-22 Offshore structure and offshore structure construction method

Country Status (1)

Country Link
JP (1) JP3851150B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5142795B2 (en) * 2008-04-08 2013-02-13 株式会社冨士機 Deep ground improvement method
KR101222729B1 (en) 2010-12-13 2013-01-15 삼성중공업 주식회사 Construction and Launching Method of Floating Structure

Also Published As

Publication number Publication date
JP2003155734A (en) 2003-05-30

Similar Documents

Publication Publication Date Title
CN109487807B (en) Steel pipe pile cofferdam hole leading and replacement construction method
CN110258582B (en) Inclined support foundation pit supporting structure based on steel pipe pile and Lassen steel plate and construction method
KR101211811B1 (en) Cast in concrete pile With precast type Caisson
CN104264683B (en) Building concave shape ultra-deep foundation pit subregion supporting method is protected for three around literary composition
KR101256274B1 (en) Reverse Drill Method With precast type Caisson and Jacket
CN213145577U (en) Temporary overhead supporting structure for pipeline
WO2016109962A1 (en) Construction method for fixing offshore marine platform to a seabed having layers of a soil/clay nature
JP3851150B2 (en) Offshore structure and offshore structure construction method
CN215715515U (en) Municipal pipe network construction supporting integrated structure under unfavorable geological conditions
JPH09316894A (en) Bridge pier foundation structure, and construction method thereof
CN205857212U (en) Corrugated steel cofferdam borehole hollow pile
JP2015110871A (en) Caisson immersion method and underground column body group
CN211849297U (en) Double-row tubular pile damming cofferdam in shallow water area
KR20040084126A (en) Dry Construction Method of Underwater Structure Using Watertight Caisson
JP2004197307A (en) Soil improving method
CN109137944B (en) Construction method of water-stop wall in deep-water bottom-sealing-free steel cofferdam
Fang et al. Methods used to construct underwater pile caps on the Hong Kong–Zhuhai–Macao Bridge
Degen et al. Offshore Stone Columns-Equipment, Quality Control and Outlook for Future Applications
JP2630994B2 (en) Construction method of quay using caisson
Mehta et al. Open caisson: underwater construction technique and placement
CN116427432A (en) Grooving construction method for pipeline underpass
Chandler et al. JAMUNA RIVER 230 KV CROSSING-BANGLADESH III. CONSTRUCTION OF FOUNDAT-IONS.
JP2000248527A (en) Earthquake resistant reinforcing method for existing structure
Agerbæk et al. First Major US Offshore Wind Staging Terminal: Planning, Engineering, and Construction
Lambrechts What Lurks Below: The Geotechnical Intrigue of Boston’s Back Bay

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060824

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060831

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees