JP3850179B2 - High frequency diode oscillator - Google Patents

High frequency diode oscillator Download PDF

Info

Publication number
JP3850179B2
JP3850179B2 JP23866299A JP23866299A JP3850179B2 JP 3850179 B2 JP3850179 B2 JP 3850179B2 JP 23866299 A JP23866299 A JP 23866299A JP 23866299 A JP23866299 A JP 23866299A JP 3850179 B2 JP3850179 B2 JP 3850179B2
Authority
JP
Japan
Prior art keywords
frequency
line
frequency diode
diode
parallel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23866299A
Other languages
Japanese (ja)
Other versions
JP2001068934A (en
Inventor
信樹 平松
健 岡村
浩紀 喜井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP23866299A priority Critical patent/JP3850179B2/en
Publication of JP2001068934A publication Critical patent/JP2001068934A/en
Application granted granted Critical
Publication of JP3850179B2 publication Critical patent/JP3850179B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Waveguides (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ミリ波集積回路等の高周波回路等に組み込まれるガンダイオード発振器等の高周波ダイオード発振器であって、非放射性誘電体線路を用いた高周波ダイオード発振器に関する。
【0002】
【従来の技術】
従来のガンダイオード発振器を図5に示す。同図において、1,1は一対の平行平板導体であり、それらの間隔zをz≦λ/2とすることにより外部から誘電体線路2へのノイズの侵入をなくしかつ外部への高周波信号の放射をなくして信号を伝送させる、所謂非放射性誘電体線路(nonradiative dielectric waveguide で、以下、NRDガイドという)を構成する。なお、λは使用周波数において空気中を伝搬する電磁波(高周波信号)の波長である。
【0003】
また、2は金属ストリップ共振器5により共振した高周波信号を外部へ伝送させる誘電体線路、3はマイクロ波,ミリ波を発振する高周波ダイオードの1種であるガンダイオード素子、4はガンダイオード素子3を設置(マウント)するための金属ブロック等の金属部材、5は誘電体の基体に共振用の金属ストリップ線路5aを設けた金属ストリップ共振器、6は不要モードのLSE(Longitudinal Section Electric )モードを除去するLSEモードサプレッサである。なお、図5では、内部を透視するために上側の平行平板導体1を一部切り欠いて描いたものである。
【0004】
図5のNRDガイド型のガンダイオード発振器は、一対の平行平板導体1,1の間に、ガンダイオード素子3を搭載しガンダイオード素子3からの熱を放熱するヒートシンクを兼ねる金属部材4が配置されており、ガンダイオード素子3から発振されたマイクロ波等の高周波信号(電磁波)は、金属ストリップ線路5aを有する金属ストリップ共振器5を介して誘電体線路2に導出される。
【0005】
また、ガンダイオード素子3の高周波信号の発振面は、平行平板導体1,1に垂直な面に平行に配置され、高周波信号の電界成分は平行平板導体1,1に平行な方向に主に放射される。この金属ストリップ共振器5は、テフロン等から成る誘電体基体に銅箔等の金属ストリップ線路5aを貼り付けたものであり、ガンダイオード素子3の発振周波数を制御するとともに、誘電体線路2へ高周波信号を伝搬させる。なお、ガンダイオード素子3にバイアス電圧を供給し、広い幅の線路と狭い幅の線路が交互に形成されたチョーク型バイアス供給線路と、チョーク型バイアス供給線路とガンダイオード素子3とを接続する金属箔リボン等の帯状導体とが、金属部材4のガンダイオード素子3設置面に設けられるが、それらについては特に図示していない。
【0006】
そして、金属ストリップ共振器5の高周波信号の伝搬方向に沿う電磁界はTEM(Trasverse Electric and Magnetic )波であり、これに対して誘電体線路2の動作モードはLSM01(Longitudinal Section Magnetic )モードである。TEM波からLSM01モードを励振するためには、磁界Hに着目すると、図6に示すようにガンダイオード素子3の高周波信号の発振面を平行平板導体1に垂直な面に平行に配置して、金属ストリップ共振器5の一端に高周波信号を入力し、金属ストリップ共振器5の高周波信号の伝搬方向に対して横方向から誘電体線路2を結合させる必要がある。
【0007】
このようなNRDガイド型のガンダイオード発振器において、誘電体ストリップに対向して設けられた空洞共振器を有し、外部から空洞共振器の空洞部分の長さを変化させて発振周波数を調整する構成であって、ガンダイオード素子が平行平板導体上に直接接触して配置されていることにより、ガンダイオード素子から発生する熱を効率良く放散させるものが提案されている(従来例1:特開平9−326639号公報)。
【0008】
【発明が解決しようとする課題】
しかしながら、図5に示すような従来のNRDガイド型のガンダイオード発振器においては、ガンダイオード素子3のパッケージが平行平板導体1,1の間隔zよりも大きい場合は、ガンダイオード素子3を平行平板導体1,1間に装荷することができないという問題があった。例えば、市販されている公知のガンダイオード素子3の円筒状パッケージの直径は約3mmであるため、使用周波数が50GHz(λ=6mm)より高い場合にはガンダイオード素子3を装荷できない。また、平行平板導体1,1と金属部材4との密着性が良くないと、ガンダイオード素子3の熱を十分に放熱することができず、ガンダイオード素子3の温度が上昇して発振不良を起こしていた。また、上記従来例1には、TEM波からLSM01モードに効率良く変換させる構成については一切開示されていない。
【0009】
従って、本発明は上記事情に鑑みて完成されたものであり、その目的は、ガンダイオード素子等の高周波ダイオードを平行平板導体間に容易に配置でき、放熱性に優れ、また高周波ダイオードから発振された高周波信号の電磁界(TEM波)を効率良くLSM01モードに変換して誘電体線路に伝搬させることにある。
【0010】
【課題を解決するための手段】
本発明の高周波ダイオード発振器は、高周波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、平行平板導体の少なくとも一方の内側主面に直接設置され前記高周波信号を発振する高周波ダイオードと、一端を前記高周波ダイオードに近接配置した誘電体線路とを設けた高周波ダイオード発振器であって、前記誘電体線路は、前記高周波信号の伝搬方向に沿った中心軸の延長線が前記高周波ダイオードと重ならないように配置されて前記高周波ダイオードに電磁結合しており、前記高周波ダイオードは、幅の広い線路と幅の狭い線路がλ/4(λは前記高周波信号の波長)の周期で交互に形成されたチョーク型バイアス供給線路と、長さを{(3/4)+n}λ(nは以上の整数)とした帯状導体とからなる共振器を介してバイアス電圧が供給されていることを特徴とする。
【0011】
本発明は、このような構成により、高周波ダイオードを平行平板導体間に容易に配置でき、高周波ダイオードが平行平板導体に密着しているので放熱性に優れ、また高周波ダイオードから発振された高周波信号の電磁界(TEM波)を効率良くLSM01モードに変換して誘電体線路に伝搬させ得る。
【0012】
本発明において、好ましくは、前記高周波信号の波長をλとしたとき、前記中心軸の延長線と前記高周波ダイオードの発振部との距離がλ/2以下であることを特徴とする。これにより、高周波信号の損失を小さくして、高周波ダイオードと誘電体線路とを電磁結合させることができる。
【0013】
また、好ましくは、前記高周波ダイオードと誘電体線路との電磁結合部の外側に、前記中心軸の延長線と平行でありかつ平行平板導体の主面に垂直な主面を有する金属片を、該金属片の主面が高周波ダイオード側に対向するように配置したことを特徴とする。この構成により、電磁界を整流して良好な電磁結合をさせることが可能となる。
【0014】
【発明の実施の形態】
本発明の高周波ダイオード発振器について以下に説明する。図1〜図4は、本発明のNRDガイド型の高周波ダイオード発振器を示し、これらの図において、1はガンダイオード等の高周波ダイオードが発振する高周波信号の空気中での波長の2分の1以下の間隔で配置した一対の平行平板導体、2は一端面2aまたはその延長面2bを高周波ダイオードに対向させて近接配置され、かつ高周波信号の伝搬方向における中心軸の延長線7が高周波ダイオードと重ならない状態で前記一端面2aを高周波ダイオード近傍に配置して電磁結合している誘電体線路、3はマイクロ波,ミリ波を発振する高周波ダイオードの1種であるガンダイオード素子、6は不要モードのLSEモードを除去するLSEモードサプレッサである。なお、図1では、内部を透視するために平行平板導体1の上側を一部切り欠いている。
【0015】
また、図1では、誘電体線路2の一端面2aまたはその延長面2bを、ガンダイオード素子3に対向させて近接配置しているが、延長面2bがガンダイオード素子3に接するように配置する構成、延長面2bの後方であって誘電体線路2の側面がガンダイオード素子3に対向するように配置する構成も採り得る。
【0016】
本発明において、ガンダイオード素子3は平行平板導体1の内側主面、即ち高周波信号の伝搬空間側(内部空間側)の主面に直接設置されるものであり、例えば平行平板導体1の前記内側主面に孔,溝等の凹部を形成し、その凹部にガンダイオード素子3を接着する構成、または平行平板導体1の前記内側主面にガンダイオード素子3下部のネジ込み式パッケージ部をネジ込む構成とし得る。このような構成により、円筒状のガンダイオード素子3の直径が平行平板導体1,1間の間隔よりも大きい場合でも、ガンダイオード素子3を容易に実装でき、またガンダイオード素子3が平行平板導体1に密着して設置されるので、ガンダイオード素子3から発生する熱を効率良く放熱し得る。さらに、ガンダイオード素子3は、一対の平行平板導体1,1の両方に設けることもできる。
【0017】
また、誘電体線路2は、高周波信号の伝搬方向に沿った中心軸の延長線7がガンダイオード素子3の発振部3aと重ならない状態で一端面2aをガンダイオード素子3近傍に配置して電磁結合させる。前記延長線7がガンダイオード素子3の発振部3aと重なると、ガンダイオード素子3から発振された高周波信号のTEM波を効率良くLSM01モードに変換できなくなる。そして、前記中心軸の延長線7とガンダイオード素子3の発振部3aとの距離dはλ/2以下が良く、λ/2を超えると、ガンダイオード素子3からのTEM波を効率良くLSM01モードに変換して誘電体線路2に電磁結合させることが困難となる。より好ましくは、λ/8≦d≦λ/2である。
【0018】
また、誘電体線路2の一端面2aとガンダイオード素子3の発振部3aとの最短距離Lは1.0mm程度以下が好ましく、1.0mmを超えるとガンダイオード素子3との電磁結合が不良となり高周波信号の出力が低下する。
【0019】
ここで、図2に示すように、ガンダイオード素子3の発振部3aから放射される高周波信号の電磁界の電界Eは発振部3aより垂直方向および水平方向に進行し分布しており、図3のように、誘電体線路2にLSM01モードの電界Eを生じさせるには、誘電体線路2の高周波信号の伝搬方向に沿った中心軸の延長線7がガンダイオード素子3の発振部3aと重ならないように配置することが必要である。
【0020】
また好ましくは、図4に示すように、ガンダイオード素子3と誘電体線路2との電磁結合部の外側に、前記中心軸の延長線7と平行でありかつ平行平板導体1の主面に垂直な主面9aを有する金属片9を、該主面9aがガンダイオード素子3側に対向するように配置するのが良く、この場合、電界Eの向きは金属片9の主面9aに垂直となるため、平行平板導体1の主面に平行な成分が強くなり、LSM01モードへの変換効率が高くなる。従って、ガンダイオード素子3から発振された高周波信号の電磁界を整流して良好な電磁結合を行わせることができる。より好ましくは、図4のように、2つの金属片9,9をそれらの主面9a,9aが対向するように配置するのが良く、電磁界の整流作用がさらに向上する。また、2つの金属片9,9の間隔を変化させることで、金属片9,9間に生じる電磁界分布を制御して発振周波数を制御することも可能である。なお、図4では内部を透視した状態を図示している。
【0021】
金属片9の形状は、前記主面9aを有する直方体状,板状,四角錐状,三角柱等の角柱状,蒲鉾状等が良い。また、金属片9の材料はAl,Cu,Au,Ag,SUS(ステンレス),真鍮(黄銅:Cu−Zn合金)等の導電性に優れた金属,合金であれば良く、金属片9は、前記金属,合金のブロック、セラミックス等の絶縁性基体に前記金属,合金材料をメッキしたもの、または絶縁性基体に前記金属,合金材料をメタライズしたもの、絶縁性基体に前記金属,合金材料を含む有機樹脂材料をコートし硬化させたもの等でも構わない。
【0022】
また、ガンダイオード素子3の発振部3aに一端側が近接または接合し、他端側が誘電体線路2に接合する柱状の誘電体チップ8を配置するのが良く、その場合誘電体チップ8に電界が集中し、高出力の高周波信号が得られ、また誘電体チップ8の大きさを変化させることで発振周波数の制御も可能である。誘電体チップ8の形状は、円柱,四角柱等の多角柱等の柱状であり、その材料はコーディエライト(2MgO・2Al2 3 ・5SiO2 ),アルミナ(Al2 3 )等が好ましく、これらは高周波帯域において低損失である。
【0023】
本発明において、高周波信号を共振させる共振器として、ガンダイオード素子3にバイアス電圧を供給し、広い幅の線路と狭い幅の線路が交互に形成されたチョーク型バイアス供給線路と、チョーク型バイアス供給線路とガンダイオード素子3とを接続する金属箔リボン等の帯状導体とを別途設け、これらチョーク型バイアス供給線路と帯状導体とにより共振器を構成したものを使用する。この場合、チョーク型バイアス供給線路の広い幅の線路の空間的周期と狭い幅の線路の空間的周期をそれぞれ略λ/4とし、帯状導体の長さを略{(3/4)+n}λ(nは0以上の整数)とすることで、チョーク型バイアス供給線路の1パターン(広い幅の線路と狭い幅の線路のいずれか1つ)と帯状導体とで一体的な共振器構造とし得る。この共振器は、チョーク型バイアス供給線路と帯状導体とを、プリント配線基板等の配線基板に形成したものを、ガンダイオード素子3が設置された平行平板導体1の内側主面または外側主面に設ける構成等を採ることにより設置できる。前記nは0〜3が好ましく、3を超えると帯状導体に不要なモードが発生して、所望の発振周波数と異なる周波数の信号が生じ易くなる。より好ましくは、n=0,1である。
【0024】
本発明でいう高周波帯域は、数10〜数100GHz帯域のマイクロ波帯域およびミリ波帯域に相当し、例えば30GHz以上、特に50GHz以上、更には70GHz以上の高周波帯域が好適である。
【0025】
また本発明の高周波ダイオードとしては、インパット(impatt:impact ionisation avalanche transit time)・ダイオード,トラパット(trapatt :trapped plasma avalanche triggered transit)・ダイオード,ガンダイオード等のマイクロ波ダイオードおよびミリ波ダイオードが好適に使用される。
【0026】
本発明のNRDガイド用の平行平板導体1は、高い電気伝導度および加工性等の点で、Cu,Al,Fe,SUS(ステンレス),Ag,Au,Pt等の導体板、あるいはセラミックス,樹脂等から成る絶縁板の表面にこれらの導体層を形成したものでもよい。
【0027】
また、本発明のNRDガイド型の高周波ダイオード発振器は、無線LAN,自動車のミリ波レーダ等に使用されるものであり、例えば自動車の周囲の障害物および他の自動車に対しミリ波を照射し、反射波を元のミリ波と合成してビート信号を得、このビート信号を分析することにより障害物および他の自動車までの距離、それらの移動速度等が測定できる。
【0028】
かくして、本発明は、高周波ダイオードを平行平板導体間に容易に配置でき、高周波ダイオードが平行平板導体に密着しているので放熱性に優れ、また高周波ダイオードから発振された高周波信号のTEM波を効率良くLSM01モードに変換して誘電体線路に伝搬させ得る。
【0029】
なお、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更を行っても何等差し支えない。
【0030】
【実施例】
本発明の実施例を以下に説明する。
【0031】
(実施例)
図4のNRDガイド型のガンダイオード発振器を以下のように構成した。一対の平行平板導体1,1として、縦100mm×横100mm×厚さ2mmのAl板を1.8mmの間隔で配置し、一方の平行平板導体1の内側主面にネジ孔を形成し、ガンダイオード素子3をネジ込んで固定した。また、比誘電率が4.8のコーディエライトセラミックスから成り、断面形状が幅0.8mm,高さ1.8mmの誘電体線路2を、高周波信号の伝搬方向に沿った中心軸7とガンダイオード素子3の発振部3aとの距離dが1.5mmとなるように、平行平板導体1,1間に設置した。
【0032】
そして、比誘電率が4.8のコーディエライトセラミックスから成り、断面が幅0.5mm,高さ1.8mmで、長さ2.3mmの四角柱状の誘電体チップ8を、その一端が誘電体線路2の一端に接合され、他端側がガンダイオード素子3の発振部3a上に近接させて配置され、さらに誘電体チップ8の両端を挟んでAlから成る2つの金属片9,9を設置した。2つの金属片9,9は、断面が幅1.0mm,高さ1.8mmで、長さ8.0mmのものと、断面が幅1.0mm,高さ1.8mmで、長さ5.0mmのものであった。
【0033】
このガンダイオード発振器の発振特性を確認したところ、発振周波数76.7GHz(λ=3.9mm)で6mWの高出力が得られ、10時間使用しても熱による出力変動が殆ど生じず、信頼性の高いものであった。
【0034】
【発明の効果】
本発明は、平行平板導体の少なくとも一方の内側主面に直接設置される高周波ダイオードと、一端を高周波ダイオードに近接配置した誘電体線路とを設けて成り、誘電体線路は、高周波信号の伝搬方向に沿った中心軸の延長線が高周波ダイオードと重ならないように配置されて電磁結合しており、高周波ダイオードは、幅の広い線路と幅の狭い線路がλ/4(λは高周波信号の波長)の周期で交互に形成されたチョーク型バイアス供給線路と、長さを{(3/4)+n}λ(nは以上の整数)とした帯状導体とからなる共振器を介してバイアス電圧が供給されていることにより、平行平板導体間の間隔よりも大きな高周波ダイオードを平行平板導体間に容易に配置でき、また高周波ダイオードが平行平板導体に密着しているので放熱性に優れ、さらに高周波ダイオードから発振された高周波信号のTEM波を効率良くLSM01モードに変換して誘電体線路に伝搬させ得る。
【図面の簡単な説明】
【図1】本発明のNRD型の高周波ダイオード発振器の内部透視した斜視図である。
【図2】本発明の高周波ダイオード発振器の高周波ダイオードから放射される高周波信号の電界Eの進行方向および分布を示すものであり、高周波ダイオード部の断面図である。
【図3】本発明の高周波ダイオード発振器の誘電体線路を伝搬するLSM01モードの高周波信号の電界Eの進行方向および分布を示すものであり、誘電体線路の斜視図である。
【図4】本発明の高周波ダイオード発振器の一実施形態であり、内部透視した平面図である。
【図5】従来の高周波ダイオード発振器の内部透視した斜視図である。
【図6】従来の高周波ダイオード発振器において金属ストリップ共振器および誘電体線路を伝搬する高周波信号の磁界Hの分布を示すものであり、高周波ダイオードと金属ストリップ共振器および誘電体線路の模式的斜視図である。
【符号の説明】
1:平行平板導体
2:誘電体線路
3:ガンダイオード素子
6:LSEモードサプレッサ
7:誘電体線路の中心軸の延長線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-frequency diode oscillator such as a Gunn diode oscillator incorporated in a high-frequency circuit such as a millimeter-wave integrated circuit and using a nonradiative dielectric line.
[0002]
[Prior art]
A conventional Gunn diode oscillator is shown in FIG. In the figure, reference numerals 1 and 1 denote a pair of parallel plate conductors, and the interval z between them is set to z ≦ λ / 2, thereby eliminating noise from entering the dielectric line 2 from the outside and generating high-frequency signals to the outside. A so-called nonradiative dielectric waveguide (hereinafter referred to as an NRD guide) that transmits signals without radiation is formed. Note that λ is the wavelength of an electromagnetic wave (high frequency signal) propagating in the air at the operating frequency.
[0003]
2 is a dielectric line for transmitting a high-frequency signal resonated by the metal strip resonator 5 to the outside, 3 is a Gunn diode element which is a kind of high-frequency diode that oscillates microwaves and millimeter waves, and 4 is a Gunn diode element 3. 5 is a metal strip resonator in which a metal strip line 5a for resonance is provided on a dielectric substrate, and 6 is an LSE (Longitudinal Section Electric) mode in an unnecessary mode. LSE mode suppressor to be removed. In FIG. 5, the upper parallel plate conductor 1 is partially cut away in order to see through the inside.
[0004]
In the NRD guide type Gunn diode oscillator of FIG. 5, a metal member 4 is disposed between a pair of parallel plate conductors 1 and 1, and the Gunn diode element 3 is mounted and also serves as a heat sink that dissipates heat from the Gunn diode element 3. A high-frequency signal (electromagnetic wave) such as a microwave oscillated from the Gunn diode element 3 is led to the dielectric line 2 through the metal strip resonator 5 having the metal strip line 5a.
[0005]
The oscillation surface of the high-frequency signal of the Gunn diode element 3 is arranged in parallel to the plane perpendicular to the parallel plate conductors 1, 1, and the electric field component of the high-frequency signal radiates mainly in the direction parallel to the parallel plate conductors 1, 1. Is done. The metal strip resonator 5 is obtained by attaching a metal strip line 5a such as a copper foil to a dielectric substrate made of Teflon or the like, and controls the oscillation frequency of the Gunn diode element 3 and provides a high frequency to the dielectric line 2. Propagate the signal. Note that a bias voltage is supplied to the Gunn diode element 3, and a choke type bias supply line in which a wide line and a narrow line are alternately formed, and a metal that connects the choke type bias supply line and the Gunn diode element 3. Although a strip-shaped conductor such as a foil ribbon is provided on the surface of the metal member 4 where the Gunn diode element 3 is installed, they are not particularly shown.
[0006]
The electromagnetic field along the propagation direction of the high frequency signal of the metal strip resonator 5 is a TEM (Trasverse Electric and Magnetic) wave, whereas the operation mode of the dielectric line 2 is an LSM 01 (Longitudinal Section Magnetic) mode. is there. In order to excite the LSM 01 mode from the TEM wave, paying attention to the magnetic field H, the oscillation surface of the high-frequency signal of the Gunn diode element 3 is arranged parallel to a plane perpendicular to the parallel plate conductor 1 as shown in FIG. It is necessary to input a high frequency signal to one end of the metal strip resonator 5 and to couple the dielectric line 2 from the lateral direction with respect to the propagation direction of the high frequency signal of the metal strip resonator 5.
[0007]
Such an NRD guide type Gunn diode oscillator has a cavity resonator provided opposite to a dielectric strip, and adjusts the oscillation frequency by changing the length of the cavity portion of the cavity resonator from the outside. In this regard, there has been proposed one in which the Gunn diode element is disposed in direct contact with the parallel plate conductor to efficiently dissipate the heat generated from the Gunn diode element (conventional example 1: Japanese Patent Laid-Open No. Hei 9). -3266639).
[0008]
[Problems to be solved by the invention]
However, in the conventional NRD guide type Gunn diode oscillator as shown in FIG. 5, when the package of the Gunn diode element 3 is larger than the interval z between the parallel plate conductors 1 and 1, the Gunn diode element 3 is connected to the parallel plate conductor. There was a problem that it could not be loaded between 1 and 1. For example, since the diameter of the cylindrical package of the known Gunn diode element 3 that is commercially available is about 3 mm, the Gunn diode element 3 cannot be loaded when the operating frequency is higher than 50 GHz (λ = 6 mm). Also, if the adhesion between the parallel plate conductors 1 and 1 and the metal member 4 is not good, the heat of the Gunn diode element 3 cannot be sufficiently dissipated, and the temperature of the Gunn diode element 3 rises and oscillation failure occurs. I was waking up. In addition, the conventional example 1 does not disclose any configuration for efficiently converting the TEM wave to the LSM 01 mode.
[0009]
Accordingly, the present invention has been completed in view of the above circumstances, and the object thereof is to easily arrange a high-frequency diode such as a Gunn diode element between parallel plate conductors, excellent in heat dissipation, and oscillated from the high-frequency diode. It is to efficiently convert the electromagnetic field (TEM wave) of the high-frequency signal to the LSM 01 mode and propagate it to the dielectric line.
[0010]
[Means for Solving the Problems]
The high-frequency diode oscillator according to the present invention is a high-frequency diode that oscillates the high-frequency signal that is directly installed on at least one inner main surface of the parallel plate conductor between the parallel plate conductors arranged at intervals of 1/2 or less of the wavelength of the high-frequency signal. A high-frequency diode oscillator provided with a diode and a dielectric line having one end disposed close to the high-frequency diode, wherein the dielectric line has an extension line of a central axis along a propagation direction of the high-frequency signal. Are arranged so as not to overlap with each other and are electromagnetically coupled to the high-frequency diode. The high-frequency diode has a wide line and a narrow line alternately with a period of λ / 4 (λ is the wavelength of the high-frequency signal). Vias through a resonator comprising a formed choke-type bias supply line and a strip-shaped conductor having a length of {(3/4) + n} λ (n is an integer above) Characterized in that the voltage is supplied.
[0011]
According to the present invention, the high-frequency diode can be easily arranged between the parallel plate conductors, and the high-frequency diode is in close contact with the parallel plate conductor, so that the heat dissipation is excellent, and the high-frequency signal oscillated from the high-frequency diode is generated. The electromagnetic field (TEM wave) can be efficiently converted to the LSM 01 mode and propagated to the dielectric line.
[0012]
In the present invention, preferably, when the wavelength of the high-frequency signal is λ, the distance between the extension of the central axis and the oscillating portion of the high-frequency diode is λ / 2 or less. Thereby, the loss of the high frequency signal can be reduced, and the high frequency diode and the dielectric line can be electromagnetically coupled.
[0013]
Preferably, a metal piece having a main surface that is parallel to an extension line of the central axis and perpendicular to the main surface of the parallel plate conductor outside the electromagnetic coupling portion between the high-frequency diode and the dielectric line, The main surface of the metal piece is arranged so as to face the high-frequency diode side. With this configuration, it is possible to rectify the electromagnetic field and achieve good electromagnetic coupling.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The high-frequency diode oscillator of the present invention will be described below. 1 to 4 show the NRD guide type high frequency diode oscillator of the present invention. In these drawings, 1 is less than half of the wavelength in the air of a high frequency signal oscillated by a high frequency diode such as a Gunn diode. A pair of parallel plate conductors 2 arranged at an interval of 2 are arranged close to each other with one end face 2a or its extended face 2b facing the high frequency diode, and the extension line 7 of the central axis in the propagation direction of the high frequency signal overlaps the high frequency diode. In this state, the one end face 2a is disposed in the vicinity of the high frequency diode and electromagnetically coupled, 3 is a Gunn diode element which is a kind of high frequency diode that oscillates microwaves and millimeter waves, and 6 is an unnecessary mode. It is an LSE mode suppressor that removes the LSE mode. In FIG. 1, a part of the upper side of the parallel plate conductor 1 is notched in order to see through the inside.
[0015]
In FIG. 1, one end surface 2 a of the dielectric line 2 or its extended surface 2 b is disposed close to the Gunn diode element 3, but the extended surface 2 b is disposed so as to contact the Gunn diode element 3. The structure which arrange | positions so that the side of the dielectric track | line 2 may oppose the Gunn diode element 3 after the structure and the extension surface 2b can also be taken.
[0016]
In the present invention, the Gunn diode element 3 is directly installed on the inner main surface of the parallel plate conductor 1, that is, the main surface on the high-frequency signal propagation space side (inner space side). A concave part such as a hole or a groove is formed on the main surface, and a Gunn diode element 3 is bonded to the concave part, or a screw-type package part below the Gunn diode element 3 is screwed into the inner main surface of the parallel plate conductor 1. It can be configured. With such a configuration, the Gunn diode element 3 can be easily mounted even when the diameter of the cylindrical Gunn diode element 3 is larger than the interval between the parallel plate conductors 1 and 1, and the Gunn diode element 3 can be mounted on the parallel plate conductor. Since it is installed in close contact with 1, the heat generated from the Gunn diode element 3 can be efficiently dissipated. Further, the Gunn diode element 3 can be provided on both of the pair of parallel plate conductors 1 and 1.
[0017]
In addition, the dielectric line 2 has an end surface 2a disposed in the vicinity of the Gunn diode element 3 in a state where the extension line 7 of the central axis along the propagation direction of the high frequency signal does not overlap with the oscillation part 3a of the Gunn diode element 3. Combine. If the extension line 7 overlaps the oscillating portion 3a of the Gunn diode element 3, the TEM wave of the high frequency signal oscillated from the Gunn diode element 3 cannot be efficiently converted to the LSM 01 mode. The distance d between the extension line 7 of the central axis and the oscillating portion 3a of the Gunn diode element 3 is preferably λ / 2 or less, and if it exceeds λ / 2, the TEM wave from the Gunn diode element 3 is efficiently LSM 01 It becomes difficult to convert the mode and electromagnetically couple to the dielectric line 2. More preferably, λ / 8 ≦ d ≦ λ / 2.
[0018]
The shortest distance L between the one end face 2a of the dielectric line 2 and the oscillating portion 3a of the Gunn diode element 3 is preferably about 1.0 mm or less, and if it exceeds 1.0 mm, electromagnetic coupling with the Gunn diode element 3 becomes poor. The output of the high frequency signal is reduced.
[0019]
Here, as shown in FIG. 2, the electric field E of the electromagnetic field of the high-frequency signal radiated from the oscillating unit 3a of the Gunn diode element 3 advances and distributes in the vertical and horizontal directions from the oscillating unit 3a. As described above, in order to generate the LSM 01 mode electric field E in the dielectric line 2, the extension line 7 of the central axis along the propagation direction of the high-frequency signal of the dielectric line 2 is connected to the oscillation unit 3 a of the Gunn diode element 3. It is necessary to arrange so that they do not overlap.
[0020]
Preferably, as shown in FIG. 4, outside the electromagnetic coupling portion between the Gunn diode element 3 and the dielectric line 2, parallel to the extension line 7 of the central axis and perpendicular to the main surface of the parallel plate conductor 1. The metal piece 9 having the main surface 9a is preferably arranged so that the main surface 9a faces the Gunn diode element 3 side. In this case, the direction of the electric field E is perpendicular to the main surface 9a of the metal piece 9. Therefore, the component parallel to the main surface of the parallel plate conductor 1 becomes strong, and the conversion efficiency to the LSM 01 mode increases. Therefore, it is possible to rectify the electromagnetic field of the high-frequency signal oscillated from the Gunn diode element 3 and to perform good electromagnetic coupling. More preferably, as shown in FIG. 4, the two metal pieces 9 and 9 are preferably arranged so that their main surfaces 9a and 9a face each other, and the rectifying action of the electromagnetic field is further improved. It is also possible to control the oscillation frequency by controlling the electromagnetic field distribution generated between the metal pieces 9 and 9 by changing the interval between the two metal pieces 9 and 9. FIG. 4 shows a state seen through the inside.
[0021]
The shape of the metal piece 9 is preferably a rectangular parallelepiped shape having the main surface 9a, a plate shape, a quadrangular pyramid shape, a prism shape such as a triangular prism, or a bowl shape. The material of the metal piece 9 may be any metal or alloy having excellent conductivity, such as Al, Cu, Au, Ag, SUS (stainless steel), brass (brass: Cu—Zn alloy). Insulating base such as metal, alloy block, ceramics, etc. plated with the metal or alloy material, or metallized with the metal or alloy material on an insulating base, including the metal or alloy material on an insulating base An organic resin material coated and cured may be used.
[0022]
Further, it is preferable to dispose a columnar dielectric chip 8 whose one end is close to or joined to the oscillating portion 3a of the Gunn diode element 3 and whose other end is joined to the dielectric line 2. In this case, an electric field is applied to the dielectric chip 8. By concentrating and obtaining a high-output high-frequency signal, it is possible to control the oscillation frequency by changing the size of the dielectric chip 8. The shape of the dielectric chip 8 is a columnar shape such as a cylindrical column or a quadrangular column, and the material thereof is preferably cordierite (2MgO · 2Al 2 O 3 · 5SiO 2 ), alumina (Al 2 O 3 ) or the like. These are low loss in the high frequency band.
[0023]
In the present invention, as a resonator for resonating a high-frequency signal, a bias voltage is supplied to the Gunn diode element 3, a choke-type bias supply line in which a wide line and a narrow line are alternately formed, and a choke-type bias supply A band-shaped conductor such as a metal foil ribbon for connecting the line and the Gunn diode element 3 is separately provided, and a resonator is formed by the choke-type bias supply line and the band-shaped conductor. In this case, the spatial period of the wide-width line and the narrow-width line of the choke-type bias supply line are each approximately λ / 4, and the length of the strip conductor is approximately {(3/4) + n} λ. By setting (n is an integer of 0 or more), an integrated resonator structure can be formed by one pattern of choke-type bias supply lines (one of a wide-width line and a narrow-width line) and a strip conductor. . In this resonator, a choke-type bias supply line and a strip conductor are formed on a wiring board such as a printed wiring board on the inner main surface or the outer main surface of the parallel plate conductor 1 on which the Gunn diode element 3 is installed. It can be installed by adopting a configuration to be provided. The n is preferably 0 to 3, and if it exceeds 3, an unnecessary mode is generated in the strip conductor, and a signal having a frequency different from a desired oscillation frequency is easily generated. More preferably, n = 0,1.
[0024]
The high frequency band referred to in the present invention corresponds to a microwave band and a millimeter wave band of several tens to several hundreds GHz, and for example, a high frequency band of 30 GHz or higher, particularly 50 GHz or higher, and more preferably 70 GHz or higher is preferable.
[0025]
As the high-frequency diode of the present invention, microwave diodes such as impatt (impact ionization avalanche transit time) diode, trapatt (trapatt: trapped plasma avalanche triggered transit) diode, Gunn diode, and millimeter wave diode are preferably used. Is done.
[0026]
The parallel plate conductor 1 for NRD guide of the present invention is a conductor plate such as Cu, Al, Fe, SUS (stainless steel), Ag, Au, Pt, ceramics, resin, etc. in terms of high electrical conductivity and workability. These conductor layers may be formed on the surface of an insulating plate made of or the like.
[0027]
The NRD guide type high-frequency diode oscillator of the present invention is used for a wireless LAN, a millimeter wave radar of an automobile, and the like, for example, irradiates obstacles around the automobile and other automobiles with millimeter waves, By synthesizing the reflected wave with the original millimeter wave, a beat signal is obtained, and by analyzing this beat signal, the distance to obstacles and other automobiles, the moving speed thereof, and the like can be measured.
[0028]
Thus, according to the present invention, the high frequency diode can be easily arranged between the parallel plate conductors, and the high frequency diode is in close contact with the parallel plate conductor, so that the heat dissipation is excellent, and the TEM wave of the high frequency signal oscillated from the high frequency diode is efficiently used. It can be well converted to LSM 01 mode and propagated to the dielectric line.
[0029]
Note that the present invention is not limited to the above-described embodiment, and various modifications may be made without departing from the scope of the present invention.
[0030]
【Example】
Examples of the present invention will be described below.
[0031]
(Example)
The NRD guide type Gunn diode oscillator of FIG. 4 was configured as follows. As a pair of parallel plate conductors 1 and 1, Al plates having a length of 100 mm, a width of 100 mm, and a thickness of 2 mm are arranged at intervals of 1.8 mm, screw holes are formed on the inner main surface of one parallel plate conductor 1, The diode element 3 was fixed by screwing. Further, the dielectric line 2 made of cordierite ceramics having a relative dielectric constant of 4.8 and having a cross-sectional width of 0.8 mm and a height of 1.8 mm is connected to the central axis 7 along the propagation direction of the high-frequency signal and the gun. The diode element 3 was placed between the parallel plate conductors 1 and 1 so that the distance d with the oscillating portion 3a was 1.5 mm.
[0032]
A square pillar-shaped dielectric chip 8 made of cordierite ceramics having a relative dielectric constant of 4.8, a cross section of 0.5 mm, a height of 1.8 mm, and a length of 2.3 mm, one end of which is dielectric. It is joined to one end of the body line 2, the other end side is arranged close to the oscillation part 3 a of the Gunn diode element 3, and two metal pieces 9, 9 made of Al are provided with both ends of the dielectric chip 8 sandwiched between them. did. The two metal pieces 9 and 9 have a cross section of 1.0 mm in width and a height of 1.8 mm and a length of 8.0 mm, and a cross section of 1.0 mm in width and a height of 1.8 mm and a length of 5. It was 0 mm.
[0033]
As a result of confirming the oscillation characteristics of this Gunn diode oscillator, a high output of 6 mW was obtained at an oscillation frequency of 76.7 GHz (λ = 3.9 mm), and output fluctuation due to heat hardly occurred even after 10 hours of use. It was expensive.
[0034]
【The invention's effect】
The present invention comprises a high-frequency diode that is directly installed on at least one inner main surface of a parallel plate conductor, and a dielectric line having one end disposed close to the high-frequency diode, and the dielectric line has a high-frequency signal propagation direction. The extension line of the central axis along the line is arranged so as not to overlap the high-frequency diode and is electromagnetically coupled. The high-frequency diode has a wide line and a narrow line λ / 4 (λ is the wavelength of the high-frequency signal) A bias voltage is supplied via a resonator composed of choke-type bias supply lines alternately formed with a period of λ and a strip-shaped conductor having a length of {(3/4) + n} λ (n is an integer above). The high-frequency diode larger than the interval between the parallel plate conductors can be easily arranged between the parallel plate conductors, and the high-frequency diode is in close contact with the parallel plate conductor, so it has excellent heat dissipation. It converts the TEM waves of the oscillation high frequency signal from the high-frequency diode efficiently LSM 01 mode can propagate in the dielectric lines in et.
[Brief description of the drawings]
FIG. 1 is a perspective view of an NRD type high-frequency diode oscillator according to the present invention as seen through inside.
FIG. 2 is a cross-sectional view of a high-frequency diode portion, showing the traveling direction and distribution of an electric field E of a high-frequency signal radiated from the high-frequency diode of the high-frequency diode oscillator of the present invention.
FIG. 3 is a perspective view of a dielectric line, showing a traveling direction and a distribution of an electric field E of an LSM 01 mode high-frequency signal propagating through the dielectric line of the high-frequency diode oscillator of the present invention.
FIG. 4 is a plan view of an embodiment of the high-frequency diode oscillator according to the present invention as seen through the inside.
FIG. 5 is a perspective view of a conventional high-frequency diode oscillator as seen through.
FIG. 6 shows a distribution of a magnetic field H of a high-frequency signal propagating through a metal strip resonator and a dielectric line in a conventional high-frequency diode oscillator, and is a schematic perspective view of the high-frequency diode, the metal strip resonator, and the dielectric line. It is.
[Explanation of symbols]
1: Parallel plate conductor 2: Dielectric line 3: Gunn diode element 6: LSE mode suppressor 7: Extension of the central axis of the dielectric line

Claims (3)

高周波信号の波長の2分の1以下の間隔で配置した平行平板導体間に、平行平板導体の少なくとも一方の内側主面に直接設置され前記高周波信号を発振する高周波ダイオードと、一端を前記高周波ダイオードに近接配置した誘電体線路とを設けた高周波ダイオード発振器であって、前記誘電体線路は、前記高周波信号の伝搬方向に沿った中心軸の延長線が前記高周波ダイオードと重ならないように配置されて前記高周波ダイオードに電磁結合しており、前記高周波ダイオードは、幅の広い線路と幅の狭い線路がλ/4(λは前記高周波信号の波長)の周期で交互に形成されたチョーク型バイアス供給線路と、長さを{(3/4)+n}λ(nは以上の整数)とした帯状導体とからなる共振器を介してバイアス電圧が供給されていることを特徴とする高周波ダイオード発振器。A high-frequency diode that oscillates the high-frequency signal directly disposed on at least one inner main surface of the parallel plate conductor between parallel plate conductors arranged at an interval equal to or less than a half of the wavelength of the high-frequency signal, and one end of the high-frequency diode The dielectric line is disposed so that an extension line of a central axis along a propagation direction of the high-frequency signal does not overlap the high-frequency diode. The high-frequency diode is electromagnetically coupled, and the high-frequency diode has a choke-type bias supply line in which a wide line and a narrow line are alternately formed with a period of λ / 4 (λ is the wavelength of the high-frequency signal). When the length {(3/4) + n} λ (n is an integer greater than one) and characterized in that the bias voltage through a resonator consisting of a band-like conductor being supplied That the high-frequency diode oscillator. 前記中心軸の延長線と前記高周波ダイオードの発振部との距離がλ/2以下であることを特徴とする請求項1記載の高周波ダイオード発振器。Frequency diode oscillator of claim 1, wherein the distance between the oscillation portion of the high-frequency diode and an extension of the central axis and wherein the at lambda / 2 or less. 前記高周波ダイオードと誘電体線路との電磁結合部の外側に、前記中心軸の延長線と平行でありかつ平行平板導体の主面に垂直な主面を有する金属片を、該金属片の主面が高周波ダイオード側に対向するように配置したことを特徴とする請求項1または2記載の高周波ダイオード発振器。  A metal piece having a main surface that is parallel to the extension of the central axis and perpendicular to the main surface of the parallel plate conductor outside the electromagnetic coupling portion between the high-frequency diode and the dielectric line, The high-frequency diode oscillator according to claim 1 or 2, characterized by being arranged so as to face the high-frequency diode side.
JP23866299A 1999-08-25 1999-08-25 High frequency diode oscillator Expired - Fee Related JP3850179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23866299A JP3850179B2 (en) 1999-08-25 1999-08-25 High frequency diode oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23866299A JP3850179B2 (en) 1999-08-25 1999-08-25 High frequency diode oscillator

Publications (2)

Publication Number Publication Date
JP2001068934A JP2001068934A (en) 2001-03-16
JP3850179B2 true JP3850179B2 (en) 2006-11-29

Family

ID=17033471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23866299A Expired - Fee Related JP3850179B2 (en) 1999-08-25 1999-08-25 High frequency diode oscillator

Country Status (1)

Country Link
JP (1) JP3850179B2 (en)

Also Published As

Publication number Publication date
JP2001068934A (en) 2001-03-16

Similar Documents

Publication Publication Date Title
JP2006500835A (en) Devices for transmitting or radiating high frequencies
JP3850179B2 (en) High frequency diode oscillator
JP3667167B2 (en) High frequency diode oscillator
US4259647A (en) Millimeter wave image guide integrated oscillator
JP2002232212A (en) Pulse modulator for nonradiative dielectric line and millimeter-wave transmitter/receiver using the same
US6882253B2 (en) Non-radiative dielectric waveguide and millimeter wave transmitting/receiving apparatus
JP3702135B2 (en) High frequency diode oscillator
JP3667170B2 (en) High frequency diode oscillator
JP3866004B2 (en) Gunn diode oscillator
JP3667172B2 (en) High frequency diode oscillator
JP2021118446A (en) Waveguide device
JP2000022408A (en) Nonradioactive dielectric guide circuit
JP3605321B2 (en) Dielectric resonator and high-frequency diode oscillator
JP3652275B2 (en) Pulse modulator for non-radiative dielectric lines and millimeter wave transceiver using the same
JPH07154141A (en) Nrd guide oscillator
JPS61200693A (en) Microwave discharge light source unit
JP3777099B2 (en) High frequency diode oscillator and millimeter wave transceiver using the same
JP2000278006A (en) Very high frequency circuit
JPH09326639A (en) Nrd guide gun oscillator
JP3559530B2 (en) Non-radiative dielectric line and millimeter wave transceiver
JP3631666B2 (en) Millimeter wave transceiver
JP2001203510A (en) Circulator for non-radiative dielectric line and millimeter wave transmitter-receiver using it
JP3899193B2 (en) NRD guide gun oscillator
JP4824869B2 (en) Microwave oscillator
JPH0738312A (en) Manufacture of millimeter wave device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060330

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees