JP3850073B2 - Stereo microscope binocular tube - Google Patents

Stereo microscope binocular tube Download PDF

Info

Publication number
JP3850073B2
JP3850073B2 JP21241196A JP21241196A JP3850073B2 JP 3850073 B2 JP3850073 B2 JP 3850073B2 JP 21241196 A JP21241196 A JP 21241196A JP 21241196 A JP21241196 A JP 21241196A JP 3850073 B2 JP3850073 B2 JP 3850073B2
Authority
JP
Japan
Prior art keywords
prism
incident
optical axis
angle
binocular tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21241196A
Other languages
Japanese (ja)
Other versions
JPH1054941A (en
Inventor
実 祐川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP21241196A priority Critical patent/JP3850073B2/en
Publication of JPH1054941A publication Critical patent/JPH1054941A/en
Application granted granted Critical
Publication of JP3850073B2 publication Critical patent/JP3850073B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光学像の正立像の形成と、使用者の眼幅に対応する眼幅調整を可能とした実体顕微鏡用双眼鏡筒に関するものである。
一般に、実体顕微鏡においては、光学像の上下方向の反転による正立像の形成と、使用者の眼幅に対する接眼レンズ間距離の調整は、不可欠の構成であり、このため、従来より、双眼鏡筒として、図8(a)(b)、図9(a)(b)に示すようなものが知られている。
【0002】
図8(a)(b)は、三角プリズム51、直角プリズム52、53および台形プリズム54を組み合わせたもので、三角プリズム51で鏡筒角を30°にした後、直角プリズム52、53と台形プリズム54の組み合わせによるポロプリズムにより光学像を正立像に形成し、さらにポロプリズムに入射する光軸dを軸にして、ポロプリズムを回転させることで、接眼レンズ55間の間隔lを調整して使用者の眼幅に合わせられるようになっている。
【0003】
一方、図9(a)(b)は、ダハプリズム61と平行プリズム62を組み合わせたもので、ダハプリズム61の稜線部61aを使って鏡筒角を30°とするとともに、光学像を正立像に形成し、さらに平行プリズム62を通し、その平行プリズム62に入射する光軸dを軸に、同平行プリズム62を回転させることにより、使用者の眼幅に合わせた接眼レンズ63での眼幅調整ができるようになっている。
さらに、実開平1−164401号公報には、正立像を形成するとともに、眼幅調整のできるティルティング鏡筒の構成が開示されている。
【0004】
【発明が解決しようとする課題】
ところで、このような実体顕微鏡は、例えば、半導体チップの外観検査など作業用として使われ、長時間の観察に用いられることが多いことから、その観察の際の姿勢に無理があれば、使用者は、筋肉に生じるストレスにより疲労してしまい、長時間の作業が難しくなる。
【0005】
このため、最近では、長時間の観察に好ましい鏡筒角度の研究が行われるようになり、現在普及している鏡筒角度30°、45°よりも角度の浅い15°〜20°ぐらいの鏡筒角度のものが最適であることが判明してる。
【0006】
そこで、上述した図8(a)(b)に示す従来のものについて鏡筒角度15°または20°に構成することが考えられるが、こうすると、光束の通る有効径を確保するため、鏡筒角度を浅くするほど同図(c)(d)に示すように三角プリズム51が大型化し、さらに、三角プリズム51の底面で反射する際の反射角度eが浅くなるため、光束に対する反射面積が大きくなり、この反射面での面精度により像の劣化が大きくなってしまう。
【0007】
一方、このような鏡筒における眼幅調整のための左右の光軸間距離を決定する軸構成は、図10に示すように鏡筒本体71にポロプリズム72を固定したプリズム台73を回転軸74を介して回転自在に支持し、この回転軸74と鏡筒本体71との間に波ワッシャー75を介在させて回転軸74の回転に重さ出しをするようになっている。そして、このような軸構成において、その性能と信頼性を高めるには、
・光束の通る有効径fを広くとる(視野数、NAを大きくとり、写真装置や同軸落射などの中間鏡筒を鏡筒とズーム鏡体の間に入れても、いわゆるケラレなどを発生させないため)。
【0008】
・回転軸74の肉厚gを大きくとる(軸部の強度を高める)。
・波ワッシャー75の幅を大きくとる(確実な重さ出しのため)。
などを満足することが挙げられる。
【0009】
そして、これらの条件を満たすには、回転軸74間の距離hを大きくとることが考えられるが、上述した図8に示す構成のものでは、回転軸間距離hは、ポロプリズムに入射する光軸d間の距離と同一であり、この光軸d間の距離は、物体側の左右光軸の内向角、NAおよび装置自体の大きさでほぼ決まってしまうので(例えば、現在のガリレオタイプの実態顕微鏡では22〜24mmになっている。)、それ以上大きくすることはできず、鏡筒としての性能および信頼性に制限が生じてしまう。
【0010】
また、上述した図9(a)(b)についても、鏡筒角度を15°または20°に構成することを考えると、同図(c)(d)に示すように、いずれの場合も、コンパクト構成はできるものの、回転軸間距離hは、上述したと同様に鏡筒の光軸d間の距離と同一なので、やはり鏡筒としての性能および信頼性に制限は生じてしまう。
【0011】
また、このような構成に用いられるダハプリズム61は、その製作が難しいことで知られており、特に、稜線61aはシャープエッヂになるように数μmオーダーで研摩されなければならなず、このため、この部品の管理も運搬中などに欠けを生じないように稜線61a部分に特殊なコートを施すなど細心の注意が払われ、コスト高なものになる。それでも稜線61aのエッヂは0にはならないので視野にエッヂのフレアーがのる場合がある。
【0012】
このため、従来、フレアーのエッヂ管理をさけるため、稜線を使わないダハプリズムで構成することが考えられるが、このような稜線を使わないダハプリズムは、それ自身が大きなものであるため、コンパクト構成にできなくなるという問題があった。
【0013】
さらに、実開平1−164401号公報に開示されるティルティング鏡筒によれば、鏡筒角20°や15°を実現することはできる。ところが、周知のようにティルティング鏡筒自体、構成が複雑で高価なものであるため、特に安価を売り物にする実体顕微鏡用の双眼鏡筒への適用は難しく、さらに、プリズム自体も鈍角プリズムを使うとなれば、プリズムの加工などは一般的でなくなるため、さらに高価なものとなり、一般に使用しづらいものとなっている。
【0014】
本発明は、上記事情に鑑みてなされたもので、鏡筒角度の浅い双眼鏡筒をコンパクトにかつ安価にして得られ、しかも性能および信頼性に優れた実体顕微鏡用双眼鏡筒を提供することを目的とする。
【0015】
【課題を解決するための手段】
請求項1記載の発明は、対物レンズの観察光を結像する結像レンズと、前記結像レンズの上方で、かつ入射面が前記結像レンズの光軸と垂直となるように配置される入射プリズムと、出射面から垂直に光が出射される出射プリズムと、これら入射プリズムと出射プリズムとの間に介在される中間プリズムとからなる正立像を得るための一対のポロプリズムと、を備え、前記入射プリズムは、前記入射面から前記入射プリズムの反射面までの距離よりも前記反射面から前記入射プリズムの出射面までの距離が大きくなるように設定されるとともに、前記入射プリズムの出射光軸を軸に所定角度回転させ、前記出射プリズムは、その入射光軸を軸に前記入射プリズムの回転方向と逆向きに同じ角度だけ回転させ、それぞれ前記中間プリズムに接着固定されることを特徴としている。
【0016】
請求項2記載の発明は、請求項1記載において、さらに前記出射プリズムの出射光軸上に、該出射光軸を軸に回転自在に配置された平行四辺形プリズムを有している。
【0017】
請求項3記載の発明は、請求項1記載の発明において、前記結像レンズは、左右光路の各々一個所に設けられることを特徴としている。
【0018】
この結果、請求項1または2記載の発明によれば、入射プリズムと出射プリズムのそれぞれの回転角が等しい状態を保ったまま、これらの回転角を調整するのみで、スペース的にコンパクトにして、長時間の観察に好ましいとされる鏡筒角度15°〜20°程度の角度の浅い双眼鏡筒を簡単に得られる。
【0019】
また、請求項3記載の発明によれば、ポロプリズムの入射光軸間隔より出射光軸間隔を大きくできることから、鏡筒としての性能と信頼性を高めることもできる。
【0020】
【発明の実施の形態】
以下、本発明の実施の形態を図面に従い説明する。
(第1の実施の形態)
図1(a)(b)は、本発明が適用される実体顕微鏡用双眼鏡筒の概略構成を示している。図において、1は結像レンズで、この結像レンズ1は、実体顕微鏡の図示しない対物レンズの観察光を映像面に結像させるためのものである。
【0021】
この結像レンズ1の上方に、三角プリズムの入射面に垂直に光が入射される入射プリズム2と、三角プリズムの出射面から垂直に光が出射される出射プリズム3と、これら入射プリズム2と出射プリズム3の間に介在する中間プリズム4から構成される正立像を得るための一対のポロプリズムを配置している。
【0022】
この場合、入射プリズム2は、結像レンズ1からの光束が入射面から垂直に入射され、これを直角に折り曲げるように作用し、出射プリズム3は、中間プリズム4からの光束を直角に折り曲げ、出射面から垂直に出射させるように作用するものである。そして、これら入射プリズム2と出射プリズム3は、図2に示すように、入射プリズム2については、その出射光軸を軸に所定角度αだけ回転させ、出射プリズム3については、その入射光軸を軸に、入射プリズム2の回転方向と逆向きに同じ角度α′だけ回転させて、それぞれ中間プリズム4に接着固定している。さらに、入射プリズム2は、図3に示すように入射面から反射面までの距離i1 よりも反射面から出射面までの距離i2 が大きくなるように一辺の長さiを設定することにより、ポロプリズムの入射光軸間隔hi より出射光軸間隔hを大きく取れるようにもしている。
【0023】
このようにしたポロプリズムの出射プリズム3に対応させて平行プリズム5を配置している。この平行プリズム5は、出射プリズム3より出射される光束を2回反射して入射光軸と平行に出射させるもので、出射プリズム3からの出射光軸dを中心とした回転により、接眼レンズ6の間隔lを可変可能にしている。
【0024】
そして、この平行プリズム5の出射光軸と同軸上に、映像面に結像された像を観察する接眼レンズ6が配置している。
この場合、図2では、鏡筒角が30°の場合を示しているが、入射プリズム2と出射プリズム3のそれぞれの回転角αとα′が等しい状態を保ったまま、これら回転角αとα′を調整して、中間プリズム4に接着固定するようにすれば、図4および図5に示すように鏡筒角の浅い20°、15°のものも得られるようになる。
【0025】
しかして、このように構成した双眼鏡筒では、実体顕微鏡の図示しない対物レンズからの観察光が結像レンズ1に入射され、この結像レンズ1からの出射光が、入射プリズム2、出射プリズム3、中間プリズム4から構成されるポロプリズムに入射されると、このポロプリズム内の通過により、観察像の上下左右が反転され正立像に補正されるとともに、出射光軸が、入射プリズム2と出射プリズム3のそれぞれの回転角αとα′に応じて所定角度の傾きをもって出射され、平行プリズム5を回転して接眼レンズ6の間隔lを可変することで使用者の眼幅に合わせた双眼鏡筒が得られるようになる。
【0026】
従って、このようにすれば、入射プリズム2、出射プリズム3、中間プリズム4からなるポロプリズムにおいて、入射プリズム2について、その出射光軸を軸に所定角度αだけ回転させ、出射プリズム3についても、その入射光軸を軸に、入射プリズム2の回転方向と逆向きに同角度α′だけ回転させて、それぞれ中間プリズム4に接着固定しており、この時、これら入射プリズム2と出射プリズム3のそれぞれの回転角αとα′が等しい状態を保ったまま、これら回転角α、α′を調整するのみで、スペース的にコンパクトにして、長時間の観察に好ましいとされる鏡筒角度15°〜20°程度の角度の浅い双眼鏡筒をも簡単に得られることになる。この場合、構成部品として用いられる入射プリズム2および出射プリズム3は、特殊な形状のものでなく、一般的な三角プリズムなので、価格的にも安価にでき、さらに入射プリズム2、出射プリズム3、中間プリズム4での反射角をすべて45°にできるので、面精度による像の劣化も少なく良好な観察像も得られる。
【0027】
さらに、入射プリズム2については、図3に示すように一辺の長さiを選択し、光束の反射面から出射面までの距離を大きく設定することにより、ポロプリズムとして、入射光軸間隔hi より出射光軸間隔hを大きくできるので、つまり、眼幅調整の平行プリズム5の回転軸間距離がズーム鏡体の光軸間距離によらず自由に設定できるので、上述した図10に示した軸構成においても、光束の通る有効径fを広く、回転軸74の肉厚gを大きく、さらに波ワッシャー75の幅を大きくとることも可能となり、これにより鏡筒としての性能と信頼性を高めることもできるようになる。
【0028】
なお、ポロプリズムの一部を構成する入射プリズム2は、図6に示すような三角プリズムを用いてもよい。このような三角プリズムを用いれば、プリズム自体の加工が簡単になり、さらに安価にできる。
(第2の実施の形態)
図7は、第2の実施の形態を示すもので、第1の実施の形態で述べた双眼鏡筒をティルティング鏡筒に構成したものである。この場合、図7は、図2と同一部分には同符号を付している。
【0029】
この場合、入射プリズム2、出射プリズム3、中間プリズム4からなるポロプリズムの出射面3aに、さらに三角プリズム7を接合し、このプリズム7と平行プリズム5の間に、ミラー8を回動可能に配置し、この状態から、鏡筒の角度をθ傾けた状態で、ミラー8をθ/2だけ動かすようにしている。
【0030】
このようにすれば、鏡筒の傾き角度θに応じてミラー8の回動角度をθ/2の関係で調整することにより、鏡筒角度の深いものから浅いものまで、任意の鏡筒角からなる双眼鏡筒を得られるようになる。
【0031】
【発明の効果】
以上述べたように、本発明によれば鏡筒角度の浅い双眼鏡筒をコンパクトにかつ安価にして得られ、しかも性能および信頼性に優れた実体顕微鏡用双眼鏡筒を得られる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態の概略構成を示す図。
【図2】第1の実施の形態の入射プリズムと出射プリズムの位置関係を表した概略構成を示す図。
【図3】第1の実施の形態に用いられる入射プリズムを示す図。
【図4】第1の実施の形態の鏡筒角20°の場合の概略構成を示す図。
【図5】第1の実施の形態の鏡筒角15°の場合の概略構成を示す図。
【図6】第1の実施の形態に用いられる入射プリズムの他の例を示す図。
【図7】本発明の第2の実施の形態の概略構成を示す図。
【図8】従来の双眼鏡筒の一例の概略構成を示す図。
【図9】従来の双眼鏡筒の他の例の概略構成を示す図。
【図10】双眼鏡筒に用いられる眼幅調整のための左右光軸間距離を決定する軸構成を示す図。
【符号の説明】
1…結像レンズ、
2…入射プリズム、
3…出射プリズム、
4…中間プリズム、
5…平行プリズム、
6…接眼レンズ、
7…三角プリズム、
8…ミラー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a binocular tube for a stereomicroscope capable of forming an erect image of an optical image and adjusting the eye width corresponding to the eye width of a user.
In general, in a stereoscopic microscope, the formation of an upright image by reversing the optical image in the vertical direction and the adjustment of the distance between the eyepieces with respect to the user's eye width are indispensable configurations. 8 (a) and 8 (b) and FIGS. 9 (a) and 9 (b) are known.
[0002]
8A and 8B show a combination of the triangular prism 51, the right-angle prisms 52 and 53, and the trapezoidal prism 54. After the lens barrel angle is set to 30 ° by the triangular prism 51, the right-angle prisms 52 and 53 and the trapezoidal shape are shown. An optical image is formed into an erect image by a Porro prism formed by a combination of the prisms 54, and further, the distance l between the eyepiece lenses 55 is adjusted by rotating the Porro prism about the optical axis d incident on the Porro prism. It can be adapted to the user's eye width.
[0003]
On the other hand, FIGS. 9A and 9B show a combination of the roof prism 61 and the parallel prism 62. The edge angle portion 61a of the roof prism 61 is used to set the lens barrel angle to 30 ° and to form an optical image into an erect image. Further, by passing through the parallel prism 62 and rotating the parallel prism 62 around the optical axis d incident on the parallel prism 62, the eye width of the eyepiece 63 can be adjusted to the eye width of the user. It can be done.
Further, Japanese Utility Model Laid-Open No. 1-164401 discloses a configuration of a tilting lens barrel capable of forming an erect image and adjusting the eye width.
[0004]
[Problems to be solved by the invention]
By the way, such a stereomicroscope is used for work such as appearance inspection of a semiconductor chip, and is often used for long-time observation. Is exhausted by the stress generated in the muscles, making it difficult to work for a long time.
[0005]
For this reason, recently, studies have been made on a lens barrel angle that is preferable for long-time observation, and the mirror angles of 15 ° to 20 °, which are shallower than the currently popular lens barrel angles of 30 ° and 45 °, have been studied. It has been found that the tube angle is optimal.
[0006]
Therefore, it is conceivable to configure the lens barrel angle of 15 ° or 20 ° with respect to the conventional one shown in FIGS. 8 (a) and 8 (b). In this case, in order to ensure an effective diameter through which the light beam passes, As the angle is made shallower, the triangular prism 51 becomes larger as shown in FIGS. 5C and 5D, and the reflection angle e when reflected by the bottom surface of the triangular prism 51 becomes shallower, so that the reflection area with respect to the light beam becomes larger. Therefore, the deterioration of the image becomes large due to the surface accuracy on the reflecting surface.
[0007]
On the other hand, the axis configuration for determining the distance between the left and right optical axes for adjusting the eye width in such a lens barrel is such that a prism base 73 having a Porro prism 72 fixed to a lens barrel body 71 is rotated as shown in FIG. The rotary shaft 74 is rotatably supported, and a wave washer 75 is interposed between the rotary shaft 74 and the lens barrel main body 71 so that the rotation of the rotary shaft 74 is weighted. And in such a shaft configuration, to improve its performance and reliability,
-Wide effective diameter f through which the light beam passes (because the number of fields of view, NA is large, and so-called vignetting is not generated even if an intermediate barrel such as a photographic apparatus or coaxial incident light is placed between the barrel and the zoom barrel) ).
[0008]
-Increase the thickness g of the rotating shaft 74 (increase the strength of the shaft portion).
-Increase the width of the wave washer 75 (for reliable weight extraction).
And so on.
[0009]
In order to satisfy these conditions, it is conceivable that the distance h between the rotating shafts 74 is large. However, in the configuration shown in FIG. 8 described above, the distance h between rotating shafts is the light incident on the Porro prism. This distance is the same as the distance between the axes d, and the distance between the optical axes d is almost determined by the inward angle of the left and right optical axes on the object side, NA and the size of the device itself (for example, the current Galileo type In actuality microscopes, it is 22 to 24 mm.) It cannot be increased any further, and the performance and reliability as a lens barrel are limited.
[0010]
9A and 9B described above, considering that the lens barrel angle is configured to be 15 ° or 20 °, as shown in FIGS. 9C and 9D, in either case, Although a compact configuration is possible, the distance h between the rotation axes is the same as the distance between the optical axes d of the lens barrels as described above, so that the performance and reliability as a lens barrel are also limited.
[0011]
Further, the roof prism 61 used in such a configuration is known to be difficult to manufacture, and in particular, the ridge line 61a must be polished on the order of several μm so as to be a sharp edge. In the management of these parts, special care is taken such as applying a special coating to the ridge line 61a so as not to cause chipping during transportation, and the cost becomes high. Even so, the edge of the ridge line 61a does not become zero, so an edge flare may appear in the field of view.
[0012]
For this reason, in order to avoid the edge management of flare, it is conceivable to use a Dach prism that does not use ridge lines. However, such a Dach prism that does not use ridge lines is itself large, so it can be made compact. There was a problem of disappearing.
[0013]
Furthermore, according to the tilting lens barrel disclosed in Japanese Utility Model Laid-Open No. 1-164401, a lens barrel angle of 20 ° or 15 ° can be realized. However, as is well known, the tilting lens barrel itself is complicated and expensive, so it is difficult to apply it to binocular tubes for stereo microscopes that are particularly inexpensive, and the prism itself also uses an obtuse angle prism. Then, since the processing of the prism and the like is not common, it becomes more expensive and generally difficult to use.
[0014]
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a binocular tube for a stereomicroscope that can be obtained by making a binocular tube with a shallow barrel angle compact and inexpensive, and that is excellent in performance and reliability. And
[0015]
[Means for Solving the Problems]
According to the first aspect of the present invention, the imaging lens that forms the observation light of the objective lens and the imaging lens are arranged above the imaging lens so that the incident surface is perpendicular to the optical axis of the imaging lens. includes an incident prism, an exit prism light perpendicularly from the emitting surface is emitted, and a pair of Porro prisms for obtaining the erect image consisting of an intermediate prism is interposed between the to the entrance prism exit prism The incident prism is set such that a distance from the reflecting surface to the exit surface of the incident prism is set larger than a distance from the incident surface to the reflecting surface of the incident prism, and the outgoing light of the incident prism is set a shaft axially rotated by a predetermined angle, the exit prism adhered to the incident optical axis is rotated by the same angle in the rotational direction opposite to the direction of the incident prism axis, each said intermediate prism It is characterized by being a constant.
[0016]
According to a second aspect of the present invention, in the first aspect of the present invention, a parallelogram prism is disposed on the outgoing optical axis of the outgoing prism so as to be rotatable about the outgoing optical axis.
[0017]
According to a third aspect of the present invention, in the first aspect of the present invention, the imaging lens is provided in one place on each of the left and right optical paths.
[0018]
As a result, according to the first or second aspect of the invention, it is possible to make the space compact by simply adjusting the rotation angles while maintaining the same rotation angles of the incident prism and the output prism. A shallow binocular tube having a lens barrel angle of about 15 ° to 20 ° which is preferable for long-time observation can be easily obtained.
[0019]
In addition, according to the invention described in claim 3, since the distance between the outgoing optical axes can be made larger than the distance between the incident optical axes of the Porro prisms, the performance and reliability as a lens barrel can be improved.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(First embodiment)
FIGS. 1A and 1B show a schematic configuration of a binocular tube for a stereomicroscope to which the present invention is applied. In the figure, reference numeral 1 denotes an imaging lens, and this imaging lens 1 is for imaging the observation light of an objective lens (not shown) of the stereomicroscope on the image plane.
[0021]
Above the imaging lens 1, an incident prism 2 in which light is incident perpendicularly to the incident surface of the triangular prism, an output prism 3 in which light is emitted perpendicularly from the output surface of the triangular prism, and these incident prisms 2 A pair of Porro prisms for obtaining an erect image composed of the intermediate prism 4 interposed between the output prisms 3 is arranged.
[0022]
In this case, the incident prism 2 acts so that the light beam from the imaging lens 1 is perpendicularly incident from the incident surface and bends it at a right angle, and the output prism 3 bends the light beam from the intermediate prism 4 at a right angle, It acts to emit vertically from the emission surface. As shown in FIG. 2, the incident prism 2 and the output prism 3 are rotated by a predetermined angle α with respect to the output optical axis of the input prism 2, and the input optical axis of the output prism 3 is rotated. The shaft is rotated by the same angle α ′ in the direction opposite to the rotation direction of the incident prism 2, and is fixedly bonded to the intermediate prism 4. Further, as shown in FIG. 3, the incident prism 2 has a length i of one side so that the distance i2 from the reflecting surface to the emitting surface is larger than the distance i1 from the incident surface to the reflecting surface. The output optical axis interval h can be made larger than the incident optical axis interval hi of the prism.
[0023]
A parallel prism 5 is arranged in correspondence with the exit prism 3 of the Porro prism. The parallel prism 5 reflects the light beam emitted from the output prism 3 twice and emits it in parallel with the incident optical axis. By rotating around the output optical axis d from the output prism 3, the eyepiece lens 6 is rotated. The interval l can be made variable.
[0024]
An eyepiece 6 for observing an image formed on the image plane is arranged coaxially with the outgoing optical axis of the parallel prism 5.
In this case, FIG. 2 shows a case where the lens barrel angle is 30 °. However, the rotation angles α and α ′ of the incident prism 2 and the output prism 3 are kept equal to each other while maintaining the same state. If α ′ is adjusted and bonded and fixed to the intermediate prism 4, as shown in FIG. 4 and FIG. 5, those with 20 ° and 15 ° having shallow lens barrel angles can be obtained.
[0025]
Thus, in the binocular tube configured as described above, observation light from an objective lens (not shown) of the stereomicroscope is incident on the imaging lens 1, and the outgoing light from the imaging lens 1 is used as the incident prism 2 and the outgoing prism 3. When the light is incident on the Porro prism constituted by the intermediate prism 4, the observation image is inverted upside down and corrected by the passage through the Porro prism, and is corrected to an erect image. A binocular tube that is emitted with a predetermined inclination according to the rotation angles α and α ′ of the prism 3 and rotates the parallel prism 5 to change the interval l of the eyepiece 6 to match the eye width of the user. Can be obtained.
[0026]
Accordingly, in this way, in the Porro prism composed of the incident prism 2, the output prism 3, and the intermediate prism 4, the incident prism 2 is rotated by a predetermined angle α around the output optical axis, and the output prism 3 is also With the incident optical axis as an axis, it is rotated by the same angle α ′ in the opposite direction to the rotation direction of the incident prism 2 and is adhesively fixed to the intermediate prism 4 respectively. The lens barrel angle of 15 °, which is preferable for long-time observation, is made compact by simply adjusting the rotation angles α and α ′ while keeping the rotation angles α and α ′ equal. A shallow binocular tube having an angle of about 20 ° can be easily obtained. In this case, the incident prism 2 and the output prism 3 used as the component parts are not special shapes and are general triangular prisms, so that the price can be reduced, and the incident prism 2, the output prism 3, and the intermediate prism are used. Since all the reflection angles at the prism 4 can be 45 °, a good observation image can be obtained with little image degradation due to surface accuracy.
[0027]
Further, with respect to the incident prism 2, as shown in FIG. 3, by selecting the length i of one side and setting the distance from the reflecting surface to the exit surface of the light beam to be large, as a Porro prism, from the incident optical axis interval hi Since the outgoing optical axis interval h can be increased, that is, the distance between the rotation axes of the parallel prism 5 for adjusting the eye width can be freely set regardless of the distance between the optical axes of the zoom mirrors, the axis shown in FIG. Also in the configuration, it is possible to increase the effective diameter f through which the light beam passes, increase the thickness g of the rotating shaft 74, and increase the width of the wave washer 75, thereby improving the performance and reliability of the lens barrel. You will also be able to.
[0028]
The incident prism 2 constituting a part of the Porro prism may be a triangular prism as shown in FIG. If such a triangular prism is used, the processing of the prism itself can be simplified and the cost can be further reduced.
(Second Embodiment)
FIG. 7 shows a second embodiment, in which the binocular tube described in the first embodiment is configured as a tilting lens barrel. In this case, in FIG. 7, the same parts as those in FIG.
[0029]
In this case, a triangular prism 7 is further joined to the exit surface 3 a of the Porro prism composed of the entrance prism 2, the exit prism 3, and the intermediate prism 4, and the mirror 8 can be rotated between the prism 7 and the parallel prism 5. In this state, the mirror 8 is moved by θ / 2 while the angle of the lens barrel is inclined by θ.
[0030]
In this way, by adjusting the rotation angle of the mirror 8 according to the relationship of θ / 2 in accordance with the tilt angle θ of the lens barrel, the lens barrel angle can be adjusted from an arbitrary lens barrel angle from a deep lens barrel angle to a shallow one. It becomes possible to obtain a binocular tube.
[0031]
【The invention's effect】
As described above, according to the present invention, a binocular tube having a shallow lens barrel angle can be obtained in a compact and inexpensive manner, and a binocular tube for a stereoscopic microscope having excellent performance and reliability can be obtained.
[Brief description of the drawings]
FIG. 1 is a diagram showing a schematic configuration of a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a schematic configuration representing a positional relationship between an incident prism and an output prism according to the first embodiment.
FIG. 3 is a diagram showing an incident prism used in the first embodiment.
FIG. 4 is a diagram showing a schematic configuration when the lens barrel angle is 20 ° according to the first embodiment;
FIG. 5 is a diagram showing a schematic configuration when the lens barrel angle is 15 ° according to the first embodiment;
FIG. 6 is a diagram showing another example of the incident prism used in the first embodiment.
FIG. 7 is a diagram showing a schematic configuration of a second embodiment of the present invention.
FIG. 8 is a diagram showing a schematic configuration of an example of a conventional binocular tube.
FIG. 9 is a diagram showing a schematic configuration of another example of a conventional binocular tube.
FIG. 10 is a diagram showing an axis configuration for determining a distance between left and right optical axes for eye width adjustment used for a binocular tube.
[Explanation of symbols]
1 ... imaging lens,
2 ... Incident prism,
3 ... Output prism,
4 ... Intermediate prism,
5 ... Parallel prism,
6 ... Eyepiece,
7 ... Triangular prism,
8 ... Mirror.

Claims (3)

対物レンズの観察光を結像する結像レンズと、前記結像レンズの上方で、かつ入射面が前記結像レンズの光軸と垂直となるように配置される入射プリズムと、出射面から垂直に光が出射される出射プリズムと、これら入射プリズムと出射プリズムとの間に介在される中間プリズムとからなる正立像を得るための一対のポロプリズムと、を備え、
前記入射プリズムは、前記入射面から前記入射プリズムの反射面までの距離よりも前記反射面から前記入射プリズムの出射面までの距離が大きくなるように設定されるとともに、前記入射プリズムの出射光軸を軸に所定角度回転させ、
前記出射プリズムは、その入射光軸を軸に前記入射プリズムの回転方向と逆向きに同じ角度だけ回転させ、
それぞれ前記中間プリズムに接着固定されることを特徴とする実体顕微鏡用双眼鏡筒。
An imaging lens that forms an image of the observation light of the objective lens, an incident prism that is disposed above the imaging lens so that the incident surface is perpendicular to the optical axis of the imaging lens, and perpendicular to the exit surface A pair of Porro prisms for obtaining an erect image composed of an exit prism from which light is emitted and an intermediate prism interposed between the entrance prism and the exit prism ,
The incident prism is set such that a distance from the reflecting surface to the exit surface of the incident prism is larger than a distance from the incident surface to the reflecting surface of the incident prism, and an output optical axis of the incident prism Rotate the
The exit prism is rotated by the same angle in the direction opposite to the rotation direction of the entrance prism , with the incident optical axis as an axis,
A binocular tube for a stereomicroscope, characterized in that each is bonded and fixed to the intermediate prism.
さらに前記出射プリズムの出射光軸上に、該出射光軸を軸に回転自在に配置された平行四辺形プリズムを有することを特徴とする請求項1記載の実体顕微鏡用双眼鏡筒。  2. The binocular tube for a stereomicroscope according to claim 1, further comprising a parallelogram prism disposed on the outgoing optical axis of the outgoing prism so as to be rotatable about the outgoing optical axis. 前記結像レンズは、左右光路の各々一個所に設けられることを特徴とする請求項1記載の実体顕微鏡用双眼鏡筒。  2. The binocular tube for a stereomicroscope according to claim 1, wherein the imaging lens is provided at one position on each of the right and left optical paths.
JP21241196A 1996-08-12 1996-08-12 Stereo microscope binocular tube Expired - Fee Related JP3850073B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21241196A JP3850073B2 (en) 1996-08-12 1996-08-12 Stereo microscope binocular tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21241196A JP3850073B2 (en) 1996-08-12 1996-08-12 Stereo microscope binocular tube

Publications (2)

Publication Number Publication Date
JPH1054941A JPH1054941A (en) 1998-02-24
JP3850073B2 true JP3850073B2 (en) 2006-11-29

Family

ID=16622149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21241196A Expired - Fee Related JP3850073B2 (en) 1996-08-12 1996-08-12 Stereo microscope binocular tube

Country Status (1)

Country Link
JP (1) JP3850073B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4847095B2 (en) * 2005-10-24 2011-12-28 オリンパス株式会社 Stereo microscope binocular tube

Also Published As

Publication number Publication date
JPH1054941A (en) 1998-02-24

Similar Documents

Publication Publication Date Title
US4997242A (en) Achromatic scanning system
EP0418109B1 (en) Microscope/endoscope assembly, particularly useful in surgery
JP3708991B2 (en) Inner focus telescope
US4412727A (en) Optical system for tiltable lens barrel of a microscope
US4383741A (en) Binocular night telescope
JP3102707U (en) Binocular observation device for astronomical telescope
JPH08278448A (en) Lens barrel optical system
JPH0697302B2 (en) Optical system for variable tilt lens barrel
JP4161280B2 (en) Variable-angle tube for microscope
FI90285C (en) An optical system for determining the change in curvature of an object over a small area
JPH01233430A (en) Keplerian finder optical system
JP2594470B2 (en) Achromatic scanning device
US6384969B1 (en) Telescope and binoculars
JP3974976B2 (en) Stereo microscope with lens barrel
JP3850073B2 (en) Stereo microscope binocular tube
GB2122373A (en) Optical deflecting device
JPH06160757A (en) Method for scanning at small angle of of view and scanner at small angle of view
JPH08152554A (en) Optical branching optical system
JPH0641208Y2 (en) Combination prism and binocular microscope using this combination prism
JPH0949971A (en) Microscope
GB2122374A (en) Optical deflecting device
JPH105244A (en) Microscope for operation
JP2888408B2 (en) Stereo microscope
JPH08234113A (en) Bonocular tube of stereomicroscope
JP3827397B2 (en) Stereo microscope

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060829

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees