JP3849217B2 - Manufacturing method and manufacturing apparatus for resin-bonded lens - Google Patents

Manufacturing method and manufacturing apparatus for resin-bonded lens Download PDF

Info

Publication number
JP3849217B2
JP3849217B2 JP07835197A JP7835197A JP3849217B2 JP 3849217 B2 JP3849217 B2 JP 3849217B2 JP 07835197 A JP07835197 A JP 07835197A JP 7835197 A JP7835197 A JP 7835197A JP 3849217 B2 JP3849217 B2 JP 3849217B2
Authority
JP
Japan
Prior art keywords
resin
lens
light
manufacturing
light beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP07835197A
Other languages
Japanese (ja)
Other versions
JPH10272701A (en
Inventor
恵都夫 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP07835197A priority Critical patent/JP3849217B2/en
Publication of JPH10272701A publication Critical patent/JPH10272701A/en
Application granted granted Critical
Publication of JP3849217B2 publication Critical patent/JP3849217B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、レンズ基材の表面に所定の面形状をもつ樹脂層を形成させた樹脂接合型レンズを製造する方法およびその装置に関するものである。
【0002】
【従来の技術】
従来より、ガラスレンズ基材上に所定の硬化樹脂層を形成させた樹脂接合型レンズが知られている。この様なガラスレンズ基材上に硬化樹脂層を形成させる方法としては、紫外線硬化樹脂等の光反応性樹脂をレンズ基材表面に被着させ、紫外線等の光を照射して硬化させてレンズ基材上に形成させる方法がある。
図4は、樹脂接合型レンズの製造方法の一例であり、(a)から(d)は工程順を表す。
はじめに、図4(a)において、樹脂接合のための金型23は、ガラスレンズ基材21の一方の面(R2面)27に樹脂層を形成させたときに、樹脂層の表面を所望の光学面形状とするための鋳型面29を有している。この金型23に樹脂層の面積と厚さ等により決定される分量の紫外線硬化樹脂22を注入し、金型23の中心軸とガラスレンズ基材21の光軸とを一致させて鋳型面29とR2面27とを対峙させて配設する。
次に、図4(b)において、前述した中心軸に沿ってガラスレンズ基材21を金型23側に移動させ、ガラスレンズ基材21のR2面27と鋳型面29との間に紫外線硬化樹脂22を狭持する。このとき、ガラスレンズ基材21のR2面27と金型23の鋳型面29との間の紫外線硬化樹脂22は、鋳型面29全体に拡がった状態となっている。
図4(c)において、レンズ基材21の他方の面(R1面)28側からキセノンランプ等により紫外線24を照射する。この段階で、R2面27上で鋳型面29全体に拡がっている紫外線硬化樹脂22の反応が進み、ある一定の硬さをもった紫外線硬化樹脂層22が形成される。
最後に、図4(d)において、紫外線硬化樹脂22の反応が終了した後に紫外線24の照射を止め、鋳型面29と紫外線硬化樹脂層22との境界面を分離させ、R2面27に紫外線硬化樹脂層22が形成された樹脂接合型レンズを取り外す。
このように、光反応性樹脂を用いて表面に樹脂層を形成させるレンズの製造方法は、製造工程が比較的簡単であることに加えて、使用するガラスレンズ基材に、高精度な面形状のレンズを必要としないので、製造コストを抑えられるという利点がある。特に非球面レンズ等の複雑な形状のレンズを作製する場合はレンズ基材自体の光学面を正確に非球面形状にするには加工コストがかさむ問題がある。しかし、上記方法によれば、レンズ基材自体は目的とする光学面の形状に大体近いものであれば良く、その表面に形成する樹脂層の表面を目的とする非球面形状に仕上げればよいので、レンズの製造コストを低く抑えることができ、量産性に優れた方法ということができる。
【0003】
【発明が解決しようとする課題】
しかしながら、カメラ、顕微鏡等に用いられる樹脂接合型レンズには、要求される光学性能によりさまざまなレンズの形状が存在する。これらさまざまな形状をしたレンズの中には、例えば図3に示すレンズ基材のように、樹脂被着面の幾何学的中心から樹脂被着面を見込む角度の大きいものがある。
図3は、樹脂被着面を見込む角度が大きい樹脂接合型レンズの断面図である。すなわち、レンズ基材11の凹面の大部分に、樹脂層12が接合されている。図3で、点Oは、樹脂が被着している側のレンズ面(球面)の幾何学的中心、破線Aは、中心Oと樹脂の最外周端を結ぶ直線、実線Bは、レンズの光軸、θは、破線Aと実線Bとのなす角である。
【0004】
従来、この様な形状を有する樹脂接合型レンズは、樹脂の外周まで光線が到達し難かったために、樹脂の硬化が不十分であった。
本発明は上記の問題点に鑑みてなされたものであり、レンズ基材の曲面部分が大きくとも、樹脂被着面全面にわたって均一に硬化した樹脂層を得る製造方法とその装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明の請求項1に記載の発明は、「レンズ基材と金型との間に光硬化樹脂を挟持し、光線を前記レンズ基材を透過させて前記樹脂に照射し、前記樹脂を前記レンズ基材に被着硬化させて、前記レンズ基材と樹脂層とからなる樹脂接合型レンズを製造する方法において、
前記光線が前記樹脂に入射する際の入射角を、臨界角より小さくなるように、前記光線の光路を調整する」樹脂接合型レンズの製造方法である。
【0006】
請求項3に記載の発明は、「金型と、前記金型とレンズ基材との間に挟持される光硬化樹脂に対して、光源からの光線を前記レンズ基材を透過させて照射し、前記樹脂を前記レンズ基材に被着硬化させる光照射装置とを有する樹脂接合型レンズの製造装置において、前記光照射装置は、前記光源と前記レンズ基材との間に、前記光線が前記樹脂に入射する際の入射角を臨界角よりも小さくするための光学素子を備えた」樹脂接合型レンズの製造装置である。
【0007】
【発明の実施の形態】
本発明は、レンズ基材に被着させる樹脂層をレンズ基材の形状に依らず形成するために、光硬化樹脂に照射する光の光線方向を調整する。調整方法としては、光源と、光源からの光を透過させるレンズ基体との間に、光硬化樹脂に光が入射する際の入射角を臨界角より小さくするように光の光線方向を変更する光学素子を設置する。光学素子として凹凸レンズや非球面レンズ等を用いることにより、照射光に前記条件を満たす発散光あるいは集束光等の所望の光線方向を与える。光学素子としては、レンズだけではなく、例えば、光源からの光線の反射角を任意に変えられる角度可変ミラーや、必要な方向から照射するための複数の光源が挙げられる。
この光学素子の光学的特性は、レンズ基材や光硬化樹脂の光学的特性(形状、屈折率等)および光源からの光束の特性(平行光、発散光、集束光等)により決定されるが、装置の製造コスト等を考慮すれば、集光レンズや発散レンズのように構成が簡単で安価な光学素子を用いることが好ましい。
以上により本発明では、レンズ基材の形状に応じた所望の光線方向をもつ光を照射することにより、一方の光学面全域、少なくとも光硬化樹脂の被着領域の全体に光が到達し、なおかつ、レンズ基材と光硬化樹脂との界面に到達した光が全反射することなくレンズ基材から光反応性樹脂に進入することができるため、光硬化樹脂全体の硬化が達成できる。
【0008】
以下、本発明を具体的に説明する。
先ず、上記のように角度θが非常に大きいレンズにおいては、光軸から離れた外周部の樹脂が十分に硬化しない原因を、図2によって説明する。
図2は、角度θの大きいレンズ凹面に樹脂層を形成する状態を示す断面図である。光線4は、凹レンズ1のR1面8から入射し、凹レンズ1によって光路を曲げられ、凹レンズ1と金型3とに挟持された樹脂2に到達する。
【0009】
光硬化樹脂とレンズ基材の屈折率を比較した場合、一般に、レンズ基材の方が屈折率が高い傾向がある。光線の照射は、レンズ基材の光軸に対してほぼ平行に行われるために、レンズ基材から光硬化樹脂へ光が進むときに、光軸からある一定の距離より外周部にある光の入射角が、全反射を起こす臨界角より大きくなる場合がある。
図2において、光線4aは、破線Xの光路を進み、樹脂2に到達するが、全反射を起こす臨界角で入射するために、樹脂2に進入することができない。つまり、光線4aよりも光軸側の光線は、樹脂2に進入することができるが、光線4aよりも外側の光線は、樹脂2に進入することができない。従って樹脂2において、2aの部分は硬化するが、2bの部分は硬化しない。
次に、本発明において、樹脂全体が硬化し、均質な樹脂層が形成される理由を図1によって説明する。
図1は、角度θの大きいレンズ凹面に樹脂層を形成する状態を示す断面図である。図1が図2と異なる点は、集光レンズ5を配置した点である。集光レンズ5によって、光線4は、凹レンズ1のR1面8に入射する前に方向を変えられる。この場合、光軸から離れる程光線方向の変化が大きい。この光線方向が変えられた光が、凹レンズ1のR1面8から入射し、凹レンズ1と金型3とに挟持された樹脂2に到達する。
つまり、集光レンズ5によって、光軸と平行な光線4は、所定の光線方向をもつ光に変換された後、凹レンズ1のR1面8から入射する。
【0010】
光軸から離れた光線4bは、凹レンズ1と樹脂2との界面7において全反射を起こす臨界角で入射する光である。光線4bの光路を追跡すると、集光レンズ5によって光線方向が変えられた集束光6は、破線Yの光路を進み、樹脂2の最外周部に入射する。このように、樹脂2の最外周部に到達する光線の入射角が臨界角に等しくなるように調整すれば、少なくとも樹脂被着領域全面にわたって樹脂を硬化させることができる。
【0011】
もちろん、安全のために、凹レンズ1と樹脂2との界面7に入射する光が樹脂2の最外周部よりさらに外側で臨界角となるようにするのが現実的である。
以上の様に、レンズ基材の形状、屈折率に応じた光学素子を用いることにより、少なくとも樹脂被着領域全面にわたって樹脂を硬化させることができる。従って、金型3の鋳型面形状が正確に転写された樹脂層2が形成され、所望の光学特性をもった樹脂接合型レンズを得ることができる。
【0012】
【発明の効果】
本発明によれば、レンズ基材の形状、屈折率に影響されることなく、光源からの光を光硬化樹脂全面に導くことができ、レンズ表面に均一に硬化した樹脂層を形成することができる。
特に、金型を介して所望の表面形状をレンズ基材にトレースさせることができるので、非球面等の加工が難しい光学面を簡単な手段で且つ低コストで成形することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る、角度θの大きいレンズ凹面に樹脂層を形成する状態を示す部分断面図である。
【図2】 従来の、角度θの大きいレンズ凹面に樹脂層を形成する状態を示す部分断面図である。
【図3】 角度θの大きい樹脂接合型レンズの断面図である。
【図4】 樹脂接合型レンズの製造手順を示す図である。
【符号の説明】
1 凹レンズ(レンズ基材)
2 樹脂(樹脂層)
3 金型
4 光線(照射光)
5 集光レンズ
6 集束光
7 レンズ基材と樹脂との界面
8 R1面
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and an apparatus for manufacturing a resin-bonded lens in which a resin layer having a predetermined surface shape is formed on the surface of a lens substrate.
[0002]
[Prior art]
Conventionally, a resin-bonded lens in which a predetermined cured resin layer is formed on a glass lens substrate is known. As a method for forming a cured resin layer on such a glass lens substrate, a lens is prepared by depositing a photoreactive resin such as an ultraviolet curable resin on the surface of the lens substrate and irradiating it with light such as ultraviolet rays. There is a method of forming on a substrate.
FIG. 4 is an example of a method for producing a resin-bonded lens, and (a) to (d) show the process order.
First, in FIG. 4A, the mold 23 for resin bonding has a desired surface of the resin layer when the resin layer is formed on one surface (R2 surface) 27 of the glass lens base 21. It has a mold surface 29 for forming an optical surface shape. An amount of the ultraviolet curable resin 22 determined by the area and thickness of the resin layer is injected into the mold 23, and the mold surface 29 is aligned with the central axis of the mold 23 and the optical axis of the glass lens substrate 21. And the R2 surface 27 are arranged to face each other.
Next, in FIG. 4B, the glass lens base material 21 is moved to the mold 23 side along the central axis described above, and UV curing is performed between the R2 surface 27 of the glass lens base material 21 and the mold surface 29. The resin 22 is pinched. At this time, the ultraviolet curable resin 22 between the R2 surface 27 of the glass lens substrate 21 and the mold surface 29 of the mold 23 is in a state of spreading over the entire mold surface 29.
In FIG. 4C, ultraviolet rays 24 are irradiated from the other surface (R1 surface) 28 side of the lens substrate 21 by a xenon lamp or the like. At this stage, the reaction of the ultraviolet curable resin 22 spreading over the entire mold surface 29 on the R2 surface 27 proceeds, and the ultraviolet curable resin layer 22 having a certain hardness is formed.
Finally, in FIG. 4D, after the reaction of the ultraviolet curable resin 22 is completed, the irradiation of the ultraviolet ray 24 is stopped, the boundary surface between the mold surface 29 and the ultraviolet curable resin layer 22 is separated, and the R2 surface 27 is ultraviolet cured. The resin-bonded lens on which the resin layer 22 is formed is removed.
Thus, in addition to the relatively simple manufacturing process, the lens manufacturing method for forming a resin layer on the surface using a photoreactive resin has a highly accurate surface shape on the glass lens substrate to be used. Therefore, there is an advantage that the manufacturing cost can be suppressed. In particular, when a lens having a complicated shape such as an aspheric lens is manufactured, there is a problem that the processing cost is increased in order to accurately make the optical surface of the lens base material itself an aspheric shape. However, according to the above-described method, the lens substrate itself may be any shape that is approximately close to the shape of the target optical surface, and the surface of the resin layer formed on the surface may be finished to the target aspheric shape. Therefore, it can be said that the manufacturing cost of the lens can be kept low and the method is excellent in mass productivity.
[0003]
[Problems to be solved by the invention]
However, resin-bonded lenses used in cameras, microscopes, and the like have various lens shapes depending on required optical performance. Among these variously shaped lenses, there are lenses having a large angle for viewing the resin-coated surface from the geometric center of the resin-coated surface, for example, a lens substrate shown in FIG.
FIG. 3 is a cross-sectional view of a resin-bonded lens having a large angle for viewing the resin-coated surface. That is, the resin layer 12 is bonded to most of the concave surface of the lens substrate 11. In FIG. 3, the point O is the geometric center of the lens surface (spherical surface) on which the resin is applied, the broken line A is a straight line connecting the center O and the outermost peripheral edge of the resin, and the solid line B is the lens surface. The optical axis θ is an angle formed by the broken line A and the solid line B.
[0004]
Conventionally, the resin-bonded lens having such a shape has been insufficient in curing of the resin because the light beam hardly reaches the outer periphery of the resin.
The present invention has been made in view of the above problems, and provides a manufacturing method and apparatus for obtaining a resin layer that is uniformly cured over the entire surface of the resin-coated surface even if the curved surface portion of the lens substrate is large. Objective.
[0005]
[Means for Solving the Problems]
The invention according to claim 1 of the present invention is as follows: “A photo-curing resin is sandwiched between a lens base material and a mold, a light beam is transmitted through the lens base material, and the resin is irradiated with the resin. In a method for producing a resin-bonded lens comprising a lens base material and a resin layer by adhering and curing to a lens base material,
This is a method for manufacturing a resin-bonded lens, in which an optical path of the light beam is adjusted so that an incident angle when the light beam enters the resin is smaller than a critical angle.
[0006]
The invention according to claim 3, "and the mold, for the photocurable resin to be sandwiched between the mold and the lens substrate, a light beam from a light source is irradiated by transmitting the lens substrate in the manufacturing apparatus of the resin bonding type lens having a light irradiation device depositing curing said resin to said lens substrate, the light irradiation device, between the lens substrate and the light source, the light beam is the This is a resin-bonded lens manufacturing apparatus equipped with an optical element for making the incident angle when entering the resin smaller than the critical angle.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, in order to form a resin layer to be applied to a lens base material regardless of the shape of the lens base material, the light beam direction of light applied to the photocurable resin is adjusted. As an adjustment method, there is an optical that changes the light beam direction between the light source and the lens base that transmits the light from the light source so that the incident angle when the light enters the photocurable resin is smaller than the critical angle. Install the element. By using a concave-convex lens, an aspheric lens, or the like as the optical element, a desired light beam direction such as diverging light or converging light that satisfies the above conditions is given to the irradiation light. Examples of the optical element include not only a lens but also a variable angle mirror that can arbitrarily change a reflection angle of a light beam from a light source, and a plurality of light sources for irradiating from a necessary direction.
The optical characteristics of this optical element are determined by the optical characteristics (shape, refractive index, etc.) of the lens substrate and the photo-curing resin and the characteristics of the light flux from the light source (parallel light, divergent light, focused light, etc.). Considering the manufacturing cost of the apparatus, it is preferable to use an optical element that is simple and inexpensive, such as a condenser lens or a diverging lens.
As described above, in the present invention, by irradiating light having a desired light beam direction according to the shape of the lens base material, the light reaches the entire area of one optical surface, at least the entire deposition region of the photocurable resin, and Since the light that has reached the interface between the lens substrate and the photocurable resin can enter the photoreactive resin from the lens substrate without being totally reflected, the entire photocurable resin can be cured.
[0008]
The present invention will be specifically described below.
First, the reason why the resin at the outer peripheral portion away from the optical axis is not sufficiently cured in the lens having a very large angle θ as described above will be described with reference to FIG.
FIG. 2 is a cross-sectional view showing a state in which a resin layer is formed on a concave lens surface having a large angle θ. The light beam 4 enters from the R1 surface 8 of the concave lens 1, the optical path is bent by the concave lens 1, and reaches the resin 2 sandwiched between the concave lens 1 and the mold 3.
[0009]
When comparing the refractive indexes of the photo-curing resin and the lens substrate, the lens substrate generally tends to have a higher refractive index. Since the light irradiation is performed substantially parallel to the optical axis of the lens base material, when light travels from the lens base material to the photo-curing resin, the light on the outer peripheral portion is more than a certain distance from the optical axis. The incident angle may be larger than the critical angle that causes total reflection.
In FIG. 2, the light beam 4 a travels along the optical path indicated by the broken line X and reaches the resin 2, but cannot enter the resin 2 because it is incident at a critical angle causing total reflection. That is, a light beam on the optical axis side with respect to the light beam 4 a can enter the resin 2, but a light beam outside the light beam 4 a cannot enter the resin 2. Therefore, in the resin 2, the portion 2a is cured, but the portion 2b is not cured.
Next, the reason why the entire resin is cured and a homogeneous resin layer is formed in the present invention will be described with reference to FIG.
FIG. 1 is a cross-sectional view showing a state in which a resin layer is formed on a concave lens surface having a large angle θ. 1 differs from FIG. 2 in that a condenser lens 5 is arranged. The condensing lens 5 changes the direction of the light beam 4 before entering the R1 surface 8 of the concave lens 1. In this case, the change in the light beam direction increases as the distance from the optical axis increases. The light whose direction of light is changed enters from the R1 surface 8 of the concave lens 1 and reaches the resin 2 sandwiched between the concave lens 1 and the mold 3.
That is, the light beam 4 parallel to the optical axis is converted into light having a predetermined light beam direction by the condenser lens 5 and then enters from the R1 surface 8 of the concave lens 1.
[0010]
A light ray 4b away from the optical axis is light incident at a critical angle that causes total reflection at the interface 7 between the concave lens 1 and the resin 2. When the optical path of the light beam 4b is traced, the condensed light 6 whose light beam direction has been changed by the condenser lens 5 travels along the optical path of the broken line Y and enters the outermost peripheral portion of the resin 2. Thus, if the incident angle of the light beam reaching the outermost peripheral portion of the resin 2 is adjusted to be equal to the critical angle, the resin can be cured at least over the entire surface of the resin deposition region.
[0011]
Of course, for safety, it is realistic that the light incident on the interface 7 between the concave lens 1 and the resin 2 has a critical angle further outside the outermost peripheral portion of the resin 2.
As described above, by using an optical element corresponding to the shape and refractive index of the lens substrate, the resin can be cured at least over the entire surface of the resin deposition region. Accordingly, the resin layer 2 in which the mold surface shape of the mold 3 is accurately transferred is formed, and a resin-bonded lens having desired optical characteristics can be obtained.
[0012]
【The invention's effect】
According to the present invention, the light from the light source can be guided to the entire surface of the photocurable resin without being affected by the shape and refractive index of the lens substrate, and a uniformly cured resin layer can be formed on the lens surface. it can.
In particular, since a desired surface shape can be traced on the lens base material through a mold, an optical surface such as an aspherical surface that is difficult to process can be formed with simple means and at low cost.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a state in which a resin layer is formed on a lens concave surface having a large angle θ according to an embodiment of the present invention.
FIG. 2 is a partial cross-sectional view showing a conventional state where a resin layer is formed on a concave lens surface having a large angle θ.
FIG. 3 is a cross-sectional view of a resin-bonded lens having a large angle θ.
FIG. 4 is a diagram showing a manufacturing procedure of a resin-bonded lens.
[Explanation of symbols]
1 Concave lens (lens substrate)
2 Resin (resin layer)
3 Mold 4 Light beam (irradiation light)
5 Condensing lens 6 Condensing light 7 Interface 8 between lens base material and resin 8 R1 surface

Claims (4)

レンズ基材と金型との間に光硬化樹脂を挟持し、光線を前記レンズ基材を透過させて前記樹脂に照射し、前記樹脂を前記レンズ基材に被着硬化させて、前記レンズ基材と樹脂層とからなる樹脂接合型レンズを製造する方法において、
前記光線が前記樹脂に入射する際の入射角を、臨界角より小さくなるように、前記光線の光路を調整することを特徴とする、樹脂接合型レンズの製造方法。
A photo-curing resin is sandwiched between the lens base material and the mold, light is transmitted through the lens base material and irradiated to the resin, and the resin is adhered and cured to the lens base material, and the lens base In a method of manufacturing a resin-bonded lens composed of a material and a resin layer,
A method for producing a resin-bonded lens, wherein an optical path of the light beam is adjusted so that an incident angle when the light beam enters the resin is smaller than a critical angle.
請求項1に記載の樹脂接合型レンズの製造方法において、
前記光線の光路の調整は、レンズあるいはミラーによって行われることを特徴とする樹脂接合型レンズの製造方法。
In the manufacturing method of the resin-bonded lens according to claim 1,
The method of manufacturing a resin-bonded lens, wherein the adjustment of the optical path of the light beam is performed by a lens or a mirror.
金型と、前記金型とレンズ基材との間に挟持される光硬化樹脂に対して、光源からの光線を前記レンズ基材を透過させて照射し、前記樹脂を前記レンズ基材に被着硬化させる光照射装置とを有する樹脂接合型レンズの製造装置において、
前記光照射装置は、前記光源と前記レンズ基材との間に、前記光線が前記樹脂に入射する際の入射角を臨界角よりも小さくするための光学素子を備えたことを特徴とする樹脂接合型レンズの製造装置。
And the mold, for the photocurable resin to be sandwiched between the mold and the lens substrate, a light beam from a light source is irradiated by transmitting the lens substrate, the said resin to said lens substrate In a resin-bonded lens manufacturing apparatus having a light irradiation device to be cured ,
The light irradiation device, between the lens substrate and the light source, a resin in which the light beam is characterized by comprising an optical element for less than the critical angle of incidence angle at the time of entering into the resin Bonding lens manufacturing equipment.
前記光学素子は、レンズあるいはミラーであることを特徴とする請求項3に記載の樹脂接合型レンズの製造装置。  The apparatus for manufacturing a resin-bonded lens according to claim 3, wherein the optical element is a lens or a mirror.
JP07835197A 1997-03-28 1997-03-28 Manufacturing method and manufacturing apparatus for resin-bonded lens Expired - Lifetime JP3849217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07835197A JP3849217B2 (en) 1997-03-28 1997-03-28 Manufacturing method and manufacturing apparatus for resin-bonded lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07835197A JP3849217B2 (en) 1997-03-28 1997-03-28 Manufacturing method and manufacturing apparatus for resin-bonded lens

Publications (2)

Publication Number Publication Date
JPH10272701A JPH10272701A (en) 1998-10-13
JP3849217B2 true JP3849217B2 (en) 2006-11-22

Family

ID=13659576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07835197A Expired - Lifetime JP3849217B2 (en) 1997-03-28 1997-03-28 Manufacturing method and manufacturing apparatus for resin-bonded lens

Country Status (1)

Country Link
JP (1) JP3849217B2 (en)

Also Published As

Publication number Publication date
JPH10272701A (en) 1998-10-13

Similar Documents

Publication Publication Date Title
KR20190010605A (en) A waveguide for a head-up display, comprising a reflective output coupling structure
US5269867A (en) Method for producing optical device
KR101020634B1 (en) Manufacturing method of lens having nanopattern
JP2018533033A (en) Optical component having beam deflection element, method for manufacturing the same, and beam deflection element suitable for the component
JP2005157119A (en) Reflection preventing optical element and optical system using the same
US10852460B2 (en) Diffraction optical element, manufacturing method thereof, and optical apparatus
US20030112515A1 (en) Diffractive optical element and method for producing the same
JP5182097B2 (en) Manufacturing method of optical waveguide module
JPH09307697A (en) Microlens array, image sensor and optical image transmission element
US5067800A (en) Composite optical article and method of manufacture thereof
JP6823381B2 (en) Optical equipment with a diffractive optical element and a diffraction grating and a camera with a diffraction grating
JP2002355826A (en) Method for producing lens part for optical communication
JP3849217B2 (en) Manufacturing method and manufacturing apparatus for resin-bonded lens
JP2004013081A (en) Composite optical element, method for manufacturing the same, and optical apparatus
JP3409383B2 (en) Manufacturing method of aspherical optical element
US20070007675A1 (en) Method of manufacturing compound optical element and compound optical element module
EP0132874B1 (en) Geodesic optical component
JPH02157810A (en) Optical element
JP3111677B2 (en) Manufacturing method of aspherical optical element
JPH07164453A (en) Method and apparatus for manufacturing resin-bonded lens
JP4115165B2 (en) Optical part molding method
JPH02239202A (en) Lenticular screen and production thereof
JPH03200106A (en) Optical waveguide lens
JPH11174331A (en) Reflecting and refracting optical lens and its manufacture
KR100581688B1 (en) Method for manufacturing a multi-circular lens

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060821

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090908

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170908

Year of fee payment: 11

EXPY Cancellation because of completion of term